1
|
Rahiminezhad Seta R, Eftekhari Mahabadi S, Delphi L, Alijanpour S, Rezayof A. Hippocampal nicotinic acetylcholine receptor signaling mediates the anti-allodynic effect of ketamine and morphine on neuropathic pain. Neuroscience 2025; 565:138-147. [PMID: 39615650 DOI: 10.1016/j.neuroscience.2024.11.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/08/2024]
Abstract
The present study investigated the involvement of hippocampal nicotinic acetylcholine receptors (nAChRs) in the anti-allodynic effect of ketamine/morphine on neuropathic pain in adult male Wistar rats. Morphine or ketamine administration decreased the percentage of maximum possible effect (MPE%), indicating an analgesic effect. The most significant decrease occurred with a 5 mg/kg dose of morphine (average MPE% = 98), while a 0.5 mg/kg dose of ketamine resulted in a high response (average MPE% = 91), using decision trees as a machine learning tool. Combining morphine and ketamine improved neuropathic pain (average MPE% = 91). Intra-CA1 microinjection of mecamylamine (2 μg/rat) with morphine (3 mg/kg) reduced neuropathic pain (average MPE% = 94). Co-administration of lower doses of ketamine (0.1 mg/kg, i.p.) and mecamylamine (0.5 or 1 μg/rat) with morphine (3 mg/kg) led to a considerable reduction in pain (average MPE% = 91). Utilizing the generalized least squares (GLS) model enabled the establishment of a continuous relation between drug dose and MPE% as the outcome of interest. There was a 19.60 higher average MPE% for each mg/kg increase in morphine dose. In contrast, there was a 17.05 higher average MPE% for every 0.1 mg/kg increase in ketamine dose. Each 0.1 mg/kg increase in ketamine dose, when combined with morphine (3 mg/kg), led to a 30.85 higher average MPE%. A tenfold impact of increasing mecamylamine dosage on MPE% was observed when paired with morphine. Thus, hippocampal nAChRs play a significant role in mediating the anti-allodynic effect of ketamine and morphine in neuropathic pain.
Collapse
Affiliation(s)
- Romina Rahiminezhad Seta
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Samaneh Eftekhari Mahabadi
- School of Mathematics, Statistics and Computer Science, College of Science, University of Tehran, Tehran, Iran
| | - Ladan Delphi
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Sakineh Alijanpour
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran; Department of Biology, Faculty of Science, Gonbad Kavous University, Gonbad Kavous, Iran
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
2
|
Montigné E, Balayssac D. Exploring Cholinergic Compounds for Peripheral Neuropathic Pain Management: A Comprehensive Scoping Review of Rodent Model Studies. Pharmaceuticals (Basel) 2023; 16:1363. [PMID: 37895835 PMCID: PMC10609809 DOI: 10.3390/ph16101363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/01/2023] [Accepted: 09/14/2023] [Indexed: 10/29/2023] Open
Abstract
Neuropathic pain affects about 7-8% of the population, and its management still poses challenges with unmet needs. Over the past decades, researchers have explored the cholinergic system (muscarinic and nicotinic acetylcholine receptors: mAChR and nAChR) and compounds targeting these receptors as potential analgesics for neuropathic pain management. This scoping review aims to provide an overview of studies on peripheral neuropathic pain (PNP) in rodent models, exploring compounds targeting cholinergic neurotransmission. The inclusion criteria were original articles on PNP in rodent models that explored the use of compounds directly targeting cholinergic neurotransmission and reported results of nociceptive behavioral assays. The literature search was performed in the PubMed and Web of Science databases (1 January 2000-22 April 2023). The selection process yielded 82 publications, encompassing 62 compounds. The most studied compounds were agonists of α4β2 nAChR and α7 nAChR, and antagonists of α9/α10 nAChR, along with those increasing acetylcholine and targeting mAChRs. Studies mainly reported antinociceptive effects in traumatic PNP models, and to a lesser extent, chemotherapy-induced neuropathy or diabetic models. These preclinical studies underscore the considerable potential of cholinergic compounds in the management of PNP, warranting the initiation of clinical trials.
Collapse
Affiliation(s)
- Edouard Montigné
- INSERM, U1107, NEURO-DOL, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France;
| | - David Balayssac
- INSERM, U1107, NEURO-DOL, Université Clermont Auvergne, Direction de la Recherche Clinique et de l’Innovation, CHU Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| |
Collapse
|
3
|
Asgharpour-Masouleh N, Rezayof A, Alijanpour S, Delphi L. Pharmacological activation of mediodorsal thalamic GABA-A receptors modulates morphine/cetirizine-induced changes in the prefrontal cortical GFAP expression in a rat model of neuropathic pain. Behav Brain Res 2023; 438:114213. [PMID: 36372242 DOI: 10.1016/j.bbr.2022.114213] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/21/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
Abstract
The present study investigated the involvement of mediodorsal thalamic (MD) GABA-A receptors in cetirizine/morphine-induced anti-allodynia using a rat model of neuropathic pain. To assess the importance of the prefrontal cortex (PFC) for chronic pain processing, its expression level changes of glial fibrillary acidic protein (GFAP) were measured following drug treatments. Each animal was subjected to chronic constriction of the sciatic nerve surgery simultaneously with the MD cannulation under stereotaxic surgery. The results showed that the administration of morphine (3-5 mg/kg) or cetirizine (1-3 mg/kg) produced significant analgesia in neuropathic rats. Systemic administration of cetirizine (2.5 and 3 mg/kg) potentiated the analgesic response to a low and intolerance dose of morphine (3 mg/kg). Intra-MD microinjection of muscimol, a selective GABA-A receptor agonist (0.005-0.01 μg/rat), increased the cetirizine/morphine-induced anti-allodynia, while muscimol by itself did not affect neuropathic pain. The neuropathic pain was associated with the increased PFC expression level of GFAP, suggesting the impact of chronic pain on PFC glial management. Interestingly, the anti-allodynia was associated with a decrease in the PFC expression level of GFAP under the drugs' co-administration. Thus, cetirizine has a significant potentiating effect on morphine response in neuropathic pain via interacting with the MD GABA-A receptors. It seems that neuropathic pain affects the prefrontal cortex GFAP signaling pathway. In clinical studies, these findings can be considered to create a combination therapy with low doses of GABA-A receptor agonist plus cetirizine and morphine to manage neuropathic pain.
Collapse
Affiliation(s)
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Sakineh Alijanpour
- Department of Biology, Faculty of Science, Gonbad Kavous University, Gonbad Kavous, Iran
| | - Ladan Delphi
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
4
|
Bartík P, Šagát P, Pyšná J, Pyšný L, Suchý J, Trubák Z, Petrů D. The Effect of High Nicotine Dose on Maximum Anaerobic Performance and Perceived Pain in Healthy Non-Smoking Athletes: Crossover Pilot Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1009. [PMID: 36673765 PMCID: PMC9859273 DOI: 10.3390/ijerph20021009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/30/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
Background: In recent years, there has been intensive discussion about the positive effect of nicotine usage on enhancing sports performance. It is frequently applied through a non-burned tobacco form before physical activity. Nicotine is under the World Anti-Doping Agency (WADA) 2021 monitoring program. Therefore, study results that reveal either positive or negative effects are expected. This is the pilot study that reports the effect of 8 mg dose of nicotine on performance and perceived pain. Material and Methods: This research aimed to explore the oral intake effect of a high-nicotine dose (8 mg) on the maximum anaerobic performance and other selected physical performance parameters in healthy, well-trained adult athletes (n = 15, age 30.7 ± 3.6, BMI 25.3 ± 1.7). The cross-sectional study protocol included the oral administration of either sublingual nicotine or placebo tablets before the anaerobic load assessed by a standardized 30 s Wingate test of the lower limbs. Afterward, the Borg subjective perception of pain (CR 10) and Borg rating of perceived exertion (RPE) were evaluated. Wilcoxon signed-rank test was used for the analysis of data with a 0.05 level of significance. Results: The results revealed that oral administration of an 8 mg nicotine dose does not significantly improve any of the physical performance parameters monitored. We only reported the statistically significant positive effect in RPE (p = 0.03). Conclusion: Lower perception of pain intensity that we reported after nicotine application might be an important factor that affects performance. However, we did not report any improvement in physical performance parameters.
Collapse
Affiliation(s)
- Peter Bartík
- Health and Physical Education Department, Prince Sultan University, Riyadh 11586, Saudi Arabia
| | - Peter Šagát
- Health and Physical Education Department, Prince Sultan University, Riyadh 11586, Saudi Arabia
| | - Jana Pyšná
- Department of Physical Education and Sport, Faculty of Education, J. E. Purkyne University in Ústí nad Labem, 400 96 Ústí nad Labem, Czech Republic
| | - Ladislav Pyšný
- Department of Physical Education and Sport, Faculty of Education, J. E. Purkyne University in Ústí nad Labem, 400 96 Ústí nad Labem, Czech Republic
| | - Jiří Suchý
- Department of Physical Education, Faculty of Education, Charles University, 116 39 Prague, Czech Republic
| | - Zdeněk Trubák
- Department of Physical Education and Sport, Faculty of Education, J. E. Purkyne University in Ústí nad Labem, 400 96 Ústí nad Labem, Czech Republic
| | - Dominika Petrů
- Department of Physical Education and Sport, Faculty of Education, J. E. Purkyne University in Ústí nad Labem, 400 96 Ústí nad Labem, Czech Republic
| |
Collapse
|
5
|
Cippitelli A, Zribi G, Toll L. PPL-103: A mixed opioid partial agonist with desirable anti-cocaine properties. Prog Neuropsychopharmacol Biol Psychiatry 2022; 119:110599. [PMID: 35798174 DOI: 10.1016/j.pnpbp.2022.110599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 11/19/2022]
Abstract
Cocaine use disorder (CUD) is a persistent public health problem for which no effective medications are available. PPL-103 is an opioid receptor ligand with partial agonist activity at mu, kappa and delta opioid receptors, with a greater efficacy for kappa and low efficacy at mu receptors. Because chronic cocaine use induces changes in the kappa opioid receptor/dynorphin system, we hypothesized that a kappa partial agonist, such as PPL-103, would attenuate the aversive properties of the upregulated kappa system, resulting in effective treatment approach for CUD. We tested the effects of PPL-103 on cocaine self-administration models that recapitulate core aspects of CUD in humans. We found that PPL-103 reduced both long and short access cocaine self-administration, motivation to respond for cocaine, and binge-like cocaine taking, in rats. Operant responding for food, fentanyl and locomotor behavior were not altered at doses that decreased cocaine infusions. Repeated PPL-103 treatment did not lead to tolerance development. PPL-103 also reduced both priming- and cue-induced reinstatement of cocaine seeking, being more effective in the former. Surprisingly, PPL-103 reduced self-administration parameters and reinstatement in rats previously treated with the long-acting kappa receptor antagonist JDTic more potently than in non-JDTic treated animals, whereas naltrexone injected to rats subsequent to JDTic administration increased self-administration, suggesting that the partial mu agonist activity, rather than kappa agonism is important for reduction in cocaine taking and seeking. However, partial kappa activation seems to increase safety by limiting dysphoria, tolerance and addiction development. PPL-103 displays a desirable profile as a possible CUD pharmacotherapy.
Collapse
Affiliation(s)
- Andrea Cippitelli
- Biomedical Science Department, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States.
| | - Gilles Zribi
- Biomedical Science Department, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Lawrence Toll
- Biomedical Science Department, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| |
Collapse
|
6
|
Akinola LS, Bagdas D, Alkhlaif Y, Jackson A, Gurdap CO, Rahimpour E, Carroll FI, Papke RL, Damaj MI. Pharmacological characterization of 5-iodo-A-85380, a β2-selective nicotinic receptor agonist, in mice. J Psychopharmacol 2022; 36:1280-1293. [PMID: 36321267 PMCID: PMC9817006 DOI: 10.1177/02698811221132214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Because of their implications in several pathological conditions, α4β2* nicotinic acetylcholine receptors (nAChRs) are potential targets for the treatment of nicotine dependence, pain, and many psychiatric and neurodegenerative diseases. However, they exist in various subtypes, and finding selective tools to investigate them has proved challenging. The nicotinic receptor agonist, 5-iodo-A-85380 (5IA), has helped in delineating the function of β2-containing subtypes in vitro; however, much is still unknown about its behavioral effects. Furthermore, its effectiveness on α6-containing subtypes is limited. AIMS To investigate the effects of 5IA on nociception (formalin, hot-plate, and tail-flick tests), locomotion, hypothermia, and conditioned reward after acute and repeated administration, and to examine the potential role of β2 and α6 nAChR subunits in these effects. Lastly, its selectivity for expressed low sensitivity (LS) and high sensitivity (HS) α4β2 receptors is investigated. RESULTS 5IA dose-dependently induced hypothermia, locomotion suppression, conditioned place preference, and antinociception (only in the formalin test but not in the hot-plate or tail-flick tests). Furthermore, these effects were mediated by β2 but not α6 nicotinic subunits. Finally, we show that 5-iodo-A-85380 potently activates both stoichiometries of α4β2 nAChRs with differential efficacies, being a full agonist on HS α4(2)β2(3) nAChRs, and a partial agonist on LS α4(3)β2(2) nAChRs and α6-containing subtypes as well.
Collapse
Affiliation(s)
- Lois S Akinola
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, USA
| | - Deniz Bagdas
- Department of Psychiatry, School of Medicine, Yale University, USA
- Yale Tobacco Center of Regulatory Science, Yale University, USA
| | - Yasmin Alkhlaif
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, USA
| | - Asti Jackson
- Department of Psychiatry, School of Medicine, Yale University, USA
- Yale Tobacco Center of Regulatory Science, Yale University, USA
| | - Cenk O Gurdap
- Science for Life Laboratory, Department of Women’s and Children’s Health, Karolinska Institutet, Sweden
| | - Elnaz Rahimpour
- Yale Tobacco Center of Regulatory Science, Yale University, USA
| | - F Ivy Carroll
- Center for Organic and Medicinal Chemistry, Research Triangle Institute, Research Triangle Park, USA
| | - Roger L Papke
- Department of Pharmacology and Therapeutics, University of Florida, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, USA
- Translational Research Initiative for Pain and Neuropathy, Medical College of Virginia Campus, Virginia Commonwealth University, USA
| |
Collapse
|
7
|
Zhou YQ, Liu DQ, Liu C, Xu AJ, Tian YK, Mei W, Tian XB. Targeting α7 nicotinic acetylcholine receptors for chronic pain. Front Mol Neurosci 2022; 15:970040. [PMID: 36245927 PMCID: PMC9561890 DOI: 10.3389/fnmol.2022.970040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Despite rapid advances in the field of chronic pain, it remains extremely challenging in the clinic. Pain treatment strategies have not improved for decades as opioids remain the main prescribed drugs for chronic pain management. However, long-term use of opioids often leads to detrimental side effects. Therefore, uncovering the mechanisms underlying the development and maintenance of chronic pain may aid the discovery of novel therapeutics to benefit patients with chronic pain. Substantial evidence indicates downregulation of α7 nicotinic acetylcholine receptors (α7 nAChR) in the sciatic nerve, dorsal root ganglia, and spinal cord dorsal horn in rodent models of chronic pain. Moreover, our recent study and results from other laboratories demonstrate that potentiation of α7 nAChR attenuates pain behaviors in various murine models of chronic pain. This review summarized and discussed the preclinical evidence demonstrating the therapeutic potential of α7 nAChR agonists and allosteric modulators in chronic pain. This evidence indicates that potentiation of α7 nAChR is beneficial in chronic pain, mostly by alleviating neuroinflammation. Overall, α7 nAChR-based therapy for chronic pain is an area with great promise, but more research regarding its detailed mechanisms is warranted.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xue-Bi Tian
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Cippitelli A, Martinez M, Zribi G, Cami-Kobeci G, Husbands SM, Toll L. PPL-138 (BU10038): A bifunctional NOP/mu partial agonist that reduces cocaine self-administration in rats. Neuropharmacology 2022; 211:109045. [PMID: 35378170 PMCID: PMC9074796 DOI: 10.1016/j.neuropharm.2022.109045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/11/2022] [Accepted: 03/21/2022] [Indexed: 12/30/2022]
Abstract
The search for new and effective treatments for cocaine use disorder (CUD) is a priority. We determined whether PPL-138 (BU10038), a compound with partial agonist activity at both nociceptin opioid peptide (NOP) and mu-opioid receptors, reduces cocaine consumption, reinstatement, and whether the compound itself produces reinforcing effects in rats. Using an intermittent access (IntA) cocaine self-administration procedure, we found that PPL-138 (0.1 and 0.3 mg/kg) effectively decreased the total number of cocaine infusions and burst-like cocaine intake in both male and female rats. Responses for food in an IntA model of food self-administration were not altered for either sex, although locomotor activity was increased in female but not male rats. Blockade of NOP receptors with the selective antagonist J-113397 (5 mg/kg) did not prevent the PPL-138-induced suppression of cocaine self-administration, whereas blockade of mu-opioid receptors by naltrexone (1 mg/kg) reversed such effect. Consistently, treatment with morphine (1, 3, and 10 mg/kg) dose-dependently reduced IntA cocaine self-administration measures. PPL-138 also reduced reinstatement of cocaine seeking at all doses examined. Although an initial treatment with PPL-138 (2.5, 10, and 40 μg/kg/infusion) appeared rewarding, the compound did not maintain self-administration behavior. Animals treated with PPL-138 showed initial suppression of cocaine self-administration, which was eliminated following repeated daily dosing. However, suppression of cocaine self-administration was retained when subsequent PPL-138 treatments were administered 48 h apart. These findings demonstrate that the approach of combining partial NOP/mu-opioid activation successfully reduces cocaine use, but properties of PPL-138 seem to depend on the timing of drug administration.
Collapse
Affiliation(s)
- Andrea Cippitelli
- Biomedical Science Department, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States.
| | - Madeline Martinez
- Biomedical Science Department, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Gilles Zribi
- Biomedical Science Department, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| | - Gerta Cami-Kobeci
- School of Life Sciences, Faculty of Creative Arts, Technologies & Science, University of Bedfordshire Luton, Luton, UK
| | | | - Lawrence Toll
- Biomedical Science Department, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, United States
| |
Collapse
|
9
|
Wan Q, Qin W, Ma Y, Shen M, Li J, Zhang Z, Chen J, Tay FR, Niu L, Jiao K. Crosstalk between Bone and Nerves within Bone. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003390. [PMID: 33854888 PMCID: PMC8025013 DOI: 10.1002/advs.202003390] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/29/2020] [Indexed: 05/11/2023]
Abstract
For the past two decades, the function of intrabony nerves on bone has been a subject of intense research, while the function of bone on intrabony nerves is still hidden in the corner. In the present review, the possible crosstalk between bone and intrabony peripheral nerves will be comprehensively analyzed. Peripheral nerves participate in bone development and repair via a host of signals generated through the secretion of neurotransmitters, neuropeptides, axon guidance factors and neurotrophins, with additional contribution from nerve-resident cells. In return, bone contributes to this microenvironmental rendezvous by housing the nerves within its internal milieu to provide mechanical support and a protective shelf. A large ensemble of chemical, mechanical, and electrical cues works in harmony with bone marrow stromal cells in the regulation of intrabony nerves. The crosstalk between bone and nerves is not limited to the physiological state, but also involved in various bone diseases including osteoporosis, osteoarthritis, heterotopic ossification, psychological stress-related bone abnormalities, and bone related tumors. This crosstalk may be harnessed in the design of tissue engineering scaffolds for repair of bone defects or be targeted for treatment of diseases related to bone and peripheral nerves.
Collapse
Affiliation(s)
- Qian‐Qian Wan
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Wen‐Pin Qin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Yu‐Xuan Ma
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Min‐Juan Shen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Jing Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Zi‐Bin Zhang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Ji‐Hua Chen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Franklin R. Tay
- College of Graduate StudiesAugusta UniversityAugustaGA30912USA
| | - Li‐Na Niu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Kai Jiao
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| |
Collapse
|
10
|
Balayssac D. [Relation between tobacco smoking and pain: A narrative review of the scientific literature]. Rev Mal Respir 2021; 38:269-277. [PMID: 33648775 DOI: 10.1016/j.rmr.2021.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/20/2020] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Tobacco smoking and pain have an intimate, complex, two-way interaction. The purpose of this narrative review of the literature is to present what is currently understood about the relationship. STATE OF KNOWLEDGE Tobacco smoking (and the associated chronic exposure to nicotine) has been defined as a risk factor for chronic pain, involving nociceptive sensitisation. For people who smoke, pain will be both a motivational factor for tobacco consumption and a barrier to tobacco use cessation. Conversely, nicotine (acute exposure) has clearly demonstrated analgesic properties, mediated in particular by activation of nicotinic acetylcholine receptors. PERSPECTIVES The management of pain in people who smoke is still largely unaddressed, and further studies will be needed to develop effective strategies for tobacco use cessation in this context. Nicotine and modulators of nicotinic acetylcholine receptors represent innovative strategies for the discovery of new analgesics. CONCLUSIONS The effects of smoking on pain, chronic nociceptive sensitisation and acute analgesia, serve to maintain tobacco consumption via negative reinforcement. A holistic therapeutic strategy is necessary to maximise the likelihood of successful smoking cessation.
Collapse
Affiliation(s)
- D Balayssac
- Université Clermont Auvergne, Inserm U1107 Neuro-Dol, Laboratoire de toxicologie, CHU Clermont-Ferrand, Direction de la recherche clinique et de l'innovation, 63000 Clermont-Ferrand, France.
| |
Collapse
|
11
|
Li Z, Han X, Hong X, Li X, Gao J, Zhang H, Zheng A. Lyophilization Serves as an Effective Strategy for Drug Development of the α9α10 Nicotinic Acetylcholine Receptor Antagonist α-Conotoxin GeXIVA[1,2]. Mar Drugs 2021; 19:md19030121. [PMID: 33668830 PMCID: PMC7996264 DOI: 10.3390/md19030121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 12/22/2022] Open
Abstract
α-Conotoxin GeXIVA[1,2] is a highly potent and selective antagonist of the α9α10 nicotinic acetylcholine receptor (nAChR) subtype. It has the advantages of strong efficacy, no tolerance, and no effect on motor function, which has been expected help patients with neuropathic pain. However, drug development for clinical use is severely limited owing to its instability. Lyophilization is applied as the most preferred method to solve this problem. The prepared lyophilized powder is characterized by differential scanning calorimetry (DSC), powder X-ray diffractometry (PXRD), and Fourier transform infrared spectroscopy (FTIR). Molecular simulation is also used to explore the internal distribution and forces formed in the system. The analgesic effect on paclitaxel-induced neuropathic pain following single and 14-day repeated administrations are evaluated by the von Frey test and the tail-flick test. Trehalose combined with mannitol in a ratio of 1:1 is employed as the excipients in the determined formulation, where trehalose acts as the stabilizer and mannitol acts as the bulking agent, according to the results of DSC, PXRD, and FTIR. Both GeXIVA[1,2] (API) and GeXIVA[1,2] lyophilized powder (formulation) could produce stable analgesic effect. These results indicated that GeXIVA[1,2] lyophilized powder could improve the stability and provide an effective strategy to push it into clinical use as a new analgesic drug.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Aiping Zheng
- Correspondence: ; Tel.: +86-010-66931694 or +86-13520467936
| |
Collapse
|
12
|
Reduced vagal tone in women with endometriosis and auricular vagus nerve stimulation as a potential therapeutic approach. Sci Rep 2021; 11:1345. [PMID: 33446725 PMCID: PMC7809474 DOI: 10.1038/s41598-020-79750-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/11/2020] [Indexed: 12/14/2022] Open
Abstract
Sensory and sympathetic nerves have been shown to promote the progression of endometriosis through the release of neuromediators and the lesional activation of respective receptors. The role of vagus nerves (VN) in lesional progression, however, is completely unclear, despite the signs suggestive of increased sympathetic tone in women with endometriosis. This study was undertaken to investigate whether VN plays any role in the progression of endometriosis. We recruited 45 patients with endometriosis and 42 healthy women, who were given electrocardiogram test and their heart rate variability was evaluated. In addition, three prospective, and randomized mouse experiments were conducted that evaluated, respectively, the effect of vagotomy, the effect of VN stimulation (VNS), and the therapeutic potential of VNS after the endometriosis was well established. All lesions were excised, weighed, and processed for immunohistochemistry and histochemistry analysis of select markers for lesional progression and fibrosis. We found that endometriosis patients exhibited reduced vagal activity as compared with controls, indicative of disrupted autonomic balance. Vagotomy increased while VNS decreased the lesion weight as compared with control mice, concomitant with more progressive and retarded lesion development and fibrogenesis, respectively. In addition, VNS demonstrated promising therapeutic effect, as evidenced by significantly reduced lesion weight, more attenuated lesional progression concomitant with improved hyperalgesia. Taken together, our data indicate that VN activity may play a dampening role in the progression of endometriosis. Consequently, boosting the VN activity may have therapeutic potentials for patients with endometriosis.
Collapse
|
13
|
Chronic pain impact on rodents’ behavioral repertoire. Neurosci Biobehav Rev 2020; 119:101-127. [DOI: 10.1016/j.neubiorev.2020.09.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/14/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022]
|
14
|
Cippitelli A, Barnes M, Zaveri NT, Toll L. Potent and selective NOP receptor activation reduces cocaine self-administration in rats by lowering hedonic set point. Addict Biol 2020; 25:e12844. [PMID: 31709687 DOI: 10.1111/adb.12844] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/29/2019] [Accepted: 09/30/2019] [Indexed: 12/16/2022]
Abstract
Developing new medications for the treatment of cocaine dependence continues to be a research priority. Compelling evidence indicates that mixed opioid receptor agonists, particularly bifunctional compounds that target nociceptin/orphanin FQ peptide (NOP) and mu opioid receptors, may be useful for the treatment of cocaine addiction. Here, we verify that potent and selective pharmacological activation of NOP receptors is sufficient to reduce relevant facets of cocaine addiction in animal models. Accordingly, we determined whether systemic injections of the small molecule AT-312 (0, 1, 3 mg/kg) could reduce operant cocaine self-administration, motivation for cocaine, and vulnerability to cocaine relapse in rats. Results indicate that a potent and selective NOP receptor agonist was equally efficacious in reducing the number of cocaine infusions in short (1-hour), as well as long (6-hour) access sessions. When tested on an economic-demand reinforcement schedule, AT-312 reduced Q0 , the parameter that describes the amount of drug consumed at zero price, while leaving the parameter α, a measure of motivation for drug consumption, unaltered. Furthermore, AT-312 successfully reduced conditioned reinstatement of cocaine seeking. In contrast, the NOP receptor agonist did not modify food self-administration. Blockade of the NOP receptor with the antagonist SB-612111 prevented the effect of AT-312 in decreasing cocaine-reinforced responding under a 2-hour fixed ratio 1 schedule, suggesting a NOP receptor-mediated mechanism. This work demonstrates that potent and selective activation of NOP receptors is sufficient to decrease cocaine taking and seeking behaviors in rats.
Collapse
Affiliation(s)
- Andrea Cippitelli
- Biomedical Science Department Charles E. Schmidt College of Medicine Florida Atlantic University Boca Raton FL United States
| | - Megan Barnes
- Biomedical Science Department Charles E. Schmidt College of Medicine Florida Atlantic University Boca Raton FL United States
| | | | - Lawrence Toll
- Biomedical Science Department Charles E. Schmidt College of Medicine Florida Atlantic University Boca Raton FL United States
| |
Collapse
|
15
|
Targowska-Duda KM, Ozawa A, Bertels Z, Cippitelli A, Marcus JL, Mielke-Maday HK, Zribi G, Rainey AN, Kieffer BL, Pradhan AA, Toll L. NOP receptor agonist attenuates nitroglycerin-induced migraine-like symptoms in mice. Neuropharmacology 2020; 170:108029. [PMID: 32278976 PMCID: PMC7243257 DOI: 10.1016/j.neuropharm.2020.108029] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/11/2020] [Accepted: 03/02/2020] [Indexed: 01/02/2023]
Abstract
Migraine is an extraordinarily prevalent and disabling headache disorder that affects one billion people worldwide. Throbbing pain is one of several migraine symptoms including sensitivity to light (photophobia), sometimes to sounds, smell and touch. The basic mechanisms underlying migraine remain inadequately understood, and current treatments (with triptans being the primary standard of care) are not well tolerated by some patients. NOP (Nociceptin OPioid) receptors, the fourth member of the opioid receptor family, are expressed in the brain and periphery with particularly high expression known to be in trigeminal ganglia (TG). The aim of our study was to further explore the involvement of the NOP receptor system in migraine. To this end, we used immunohistochemistry to examine NOP receptor distribution in TG and trigeminal nucleus caudalus (TNC) in mice, including colocalization with specific cellular markers, and used nitroglycerin (NTG) models of migraine to assess the influence of the selective NOP receptor agonist, Ro 64-6198, on NTG-induced pain (sensitivity of paw and head using von Frey filaments) and photophobia in mice. Our immunohistochemical studies with NOP-eGFP knock-in mice indicate that NOP receptors are on the majority of neurons in the TG and are also very highly expressed in the TNC. In addition, Ro 64-6198 can dose dependently block NTG-induced paw and head allodynia, an effect that is blocked by the NOP antagonist, SB-612111. Moreover, Ro 64-6198, can decrease NTG-induced light sensitivity in mice. These results suggest that NOP receptor agonists should be futher explored as treatment for migraine symptoms. This article is part of the special issue on Neuropeptides.
Collapse
Affiliation(s)
- Katarzyna M Targowska-Duda
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL, United States; Department of Biopharmacy, Medical University of Lublin, Lublin, Poland
| | - Akihiko Ozawa
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL, United States
| | - Zachariah Bertels
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Andrea Cippitelli
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL, United States
| | - Jason L Marcus
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL, United States
| | - Hanna K Mielke-Maday
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL, United States
| | - Gilles Zribi
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL, United States
| | - Amanda N Rainey
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL, United States
| | - Brigitte L Kieffer
- Douglas Hospital Research Center, Dep. of Psychiatry, School of Medicine, McGill University, Montreal, Quebec, Canada; INSERM U1114, Strasbourg, France
| | - Amynah A Pradhan
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States
| | - Lawrence Toll
- Department of Biomedical Science, Florida Atlantic University, Boca Raton, FL, United States.
| |
Collapse
|