1
|
Weiß E, Pauletti A, Egilmez A, Bröer S. Testing perioperative meloxicam analgesia to enhance welfare while preserving model validity in an inflammation-induced seizure model. Sci Rep 2024; 14:30563. [PMID: 39702430 DOI: 10.1038/s41598-024-81925-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/29/2024] [Indexed: 12/21/2024] Open
Abstract
Despite the international effort to improve laboratory animal welfare through the 3R principles (Reduce, Refine, Replace), many scientists still fail to implement and report their assessment of pain and well-being, likely due to concerns regarding the potential effects of analgesics on experimental outcomes. This study aimed to determine whether refining our viral encephalitis model with perioperative analgesia could enhance well-being and recovery after intracerebral virus infection without impacting disease outcomes. We routinely use the Theiler's Murine Encephalomyelitis Virus (TMEV) model to study virus-induced epilepsy. Given the crucial role of immune cell activation in acute seizure development, we evaluated the effects of the non-steroidal anti-inflammatory drug (NSAID) meloxicam on inflammation, neurodegeneration, and neuronal cell proliferation at 7 days post-infection (dpi). Overall, the impact of virus infection on well-being was less severe than anticipated, and meloxicam treatment did not affect well-being or nest building behavior in TMEV-infected mice. Furthermore, meloxicam treatment did not influence key experimental readouts such as seizure burden, central inflammatory response, neurodegeneration, or neuronal proliferation within the hippocampus. Notably, animals experiencing seizures displayed heightened inflammatory responses and neurodegeneration, which were not influenced by meloxicam treatment. In summary, perioperative analgesia did not compromise key outcome measures such as seizure frequency, inflammation, and neurodegeneration or -regeneration in the TMEV model. However, it also did not add any significant benefits to well-being in the first week after intracranial injections.
Collapse
Affiliation(s)
- Edna Weiß
- Institute of Pharmacology and Toxicology, School of Veterinary Medicine, Freie Universität Berlin, Koserstraße 20, 14195, Berlin, Germany
| | - Alberto Pauletti
- Institute of Pharmacology and Toxicology, School of Veterinary Medicine, Freie Universität Berlin, Koserstraße 20, 14195, Berlin, Germany
| | - Asya Egilmez
- Institute of Pharmacology and Toxicology, School of Veterinary Medicine, Freie Universität Berlin, Koserstraße 20, 14195, Berlin, Germany
| | - Sonja Bröer
- Institute of Pharmacology and Toxicology, School of Veterinary Medicine, Freie Universität Berlin, Koserstraße 20, 14195, Berlin, Germany.
| |
Collapse
|
2
|
Gualtierotti R, Bressi C, Garavaglia B, Brambilla P. Exploring the Impact of Sex and Gender in Brain Function: Implications and Considerations. Adv Ther 2024; 41:4377-4383. [PMID: 39443404 PMCID: PMC11550254 DOI: 10.1007/s12325-024-03016-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024]
Abstract
INTRODUCTION Sex and gender are crucial variables in understanding brain development and disease. Biological sex is determined by genetic and hormonal factors, whereas gender is a multidimensional construct shaped by social and cultural influences. The interplay of these factors contributes to sex-specific susceptibilities and disease progression in psychiatric and neurological disorders. However, sex and gender are often considered as a single variable, which can lead to biased data analysis and interpretation. This commentary aims to analyze how sex and gender influence brain structure and function, with implications for personalized medicine, research, and the development of gender-sensitive clinical guidelines. METHODS Findings from various studies employing neuroimaging techniques and animal models are discussed, as well as the impact of biological sex, gender, environmental, cultural, and social factors on brain development, organization, and behavior. RESULTS Evidence suggests that sex differences in brain structure and function are not only genetically determined but are also influenced by gender-related experiences and societal contexts. Importantly, discrepancies between male and female brains are reduced in gender-equal societies. Preclinical studies play a pivotal role in determining the influence of biological sex, independent of gender, in different disease models. CONCLUSION The findings underscore the need to consider both sex and gender in research and clinical practice to avoid biases and promote equitable health outcomes. Moving forward, we advocate for gender-sensitive approaches to be integrated into brain research and in clinical guidelines to achieve personalized and precision medicine.
Collapse
Affiliation(s)
- Roberta Gualtierotti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.
- SC Medicine-Haemostasis and Thrombosis, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Cinzia Bressi
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Barbara Garavaglia
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Paolo Brambilla
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
3
|
Hakim S, Jain A, Woolf CJ. Immune drivers of pain resolution and protection. Nat Immunol 2024; 25:2200-2208. [PMID: 39528810 DOI: 10.1038/s41590-024-02002-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024]
Abstract
Immune cells are involved in the pathogenesis of pain by directly activating or sensitizing nociceptor sensory neurons. However, because the immune system also has the capacity to self-regulate through anti-inflammatory mechanisms that drive the resolution of inflammation, it might promote pain resolution and prevention. Here, we describe how immune cell-derived cytokines can act directly on sensory neurons to inhibit pain hypersensitivity and how immune-derived endogenous opioids promote analgesia. We also discuss how immune cells support healthy tissue innervation by clearing debris after nerve injury, protecting against axon retraction from target tissues and enhancing regeneration, preventing the development of chronic neuropathic pain. Finally, we review the accumulating evidence that manipulating immune activity positively alters somatosensation, albeit with currently unclear molecular and cellular mechanisms. Exploration of immune-mediated analgesia and pain prevention could, therefore, be important for the development of novel immune therapies for the treatment of clinical pain states.
Collapse
Affiliation(s)
- Sara Hakim
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Aakanksha Jain
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Clifford J Woolf
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Alexander SN, Green AR, Debner EK, Ramos Freitas LE, Abdelhadi HMK, Szabo-Pardi TA, Burton MD. The influence of sex on neuroimmune communication, pain, and physiology. Biol Sex Differ 2024; 15:82. [PMID: 39439003 PMCID: PMC11494817 DOI: 10.1186/s13293-024-00660-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024] Open
Abstract
With the National Institutes of Health's mandate to consider sex as a biological variable (SABV), there has been a significant increase of studies utilizing both sexes. Historically, we have known that biological sex and hormones influence immunological processes and now studies focusing on interactions between the immune, endocrine, and nervous systems are revealing sex differences that influence pain behavior and various molecular and biochemical processes. Neuroendocrine-immune interactions represent a key integrative discipline that will reveal critical processes in each field as it pertains to novel mechanisms in sex differences and necessary therapeutics. Here we appraise preclinical and clinical literature to discuss these interactions and key pathways that drive cell- and sex-specific differences in immunity, pain, and physiology.
Collapse
Affiliation(s)
- Shevon N Alexander
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Audrey R Green
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Emily K Debner
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Lindsey E Ramos Freitas
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Hanna M K Abdelhadi
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Thomas A Szabo-Pardi
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA
| | - Michael D Burton
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, BSB 10.537, Richardson, TX, 75080, USA.
| |
Collapse
|
5
|
Midavaine É, Brouillette RL, Théberge E, Mona CE, Kashem SW, Côté J, Zeugin V, Besserer-Offroy É, Longpré JM, Marsault É, Sarret P. Discovery of a CCR2-targeting pepducin therapy for chronic pain. Pharmacol Res 2024; 205:107242. [PMID: 38823470 DOI: 10.1016/j.phrs.2024.107242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Targeting the CCL2/CCR2 chemokine axis has been shown to be effective at relieving pain in rodent models of inflammatory and neuropathic pain, therefore representing a promising avenue for the development of non-opioid analgesics. However, clinical trials targeting this receptor for inflammatory conditions and painful neuropathies have failed to meet expectations and have all been discontinued due to lack of efficacy. To overcome the poor selectivity of CCR2 chemokine receptor antagonists, we generated and characterized the function of intracellular cell-penetrating allosteric modulators targeting CCR2, namely pepducins. In vivo, chronic intrathecal administration of the CCR2-selective pepducin PP101 was effective in alleviating neuropathic and bone cancer pain. In the setting of bone metastases, we found that T cells infiltrate dorsal root ganglia (DRG) and induce long-lasting pain hypersensitivity. By acting on CCR2-expressing DRG neurons, PP101 attenuated the altered phenotype of sensory neurons as well as the neuroinflammatory milieu of DRGs, and reduced bone cancer pain by blocking CD4+ and CD8+ T cell infiltration. Notably, PP101 demonstrated its efficacy in targeting the neuropathic component of bone cancer pain, as evidenced by its anti-nociceptive effects in a model of chronic constriction injury of the sciatic nerve. Importantly, PP101-induced reduction of CCR2 signaling in DRGs did not result in deleterious tumor progression or adverse behavioral effects. Thus, targeting neuroimmune crosstalk through allosteric inhibition of CCR2 could represent an effective and safe avenue for the management of chronic pain.
Collapse
Affiliation(s)
- Élora Midavaine
- Department of Pharmacology & Physiology, Institute of pharmacology of Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Rebecca L Brouillette
- Department of Pharmacology & Physiology, Institute of pharmacology of Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Elizabeth Théberge
- Department of Pharmacology & Physiology, Institute of pharmacology of Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Christine E Mona
- Department of Pharmacology & Physiology, Institute of pharmacology of Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Sakeen W Kashem
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jérôme Côté
- Department of Pharmacology & Physiology, Institute of pharmacology of Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Vera Zeugin
- Department of Pharmacology & Physiology, Institute of pharmacology of Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Élie Besserer-Offroy
- Department of Pharmacology & Physiology, Institute of pharmacology of Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Jean-Michel Longpré
- Department of Pharmacology & Physiology, Institute of pharmacology of Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Éric Marsault
- Department of Pharmacology & Physiology, Institute of pharmacology of Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Philippe Sarret
- Department of Pharmacology & Physiology, Institute of pharmacology of Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| |
Collapse
|
6
|
Ahmed L, Biddle K, Blundell A, Koushesh S, Kiely P, Mein G, Sedgwick P, Sofat N. Assessing the effects of distinct biologic therapies on rheumatoid arthritis pain by nociceptive, neuropathic and nociplastic pain components: a randomised feasibility study. Pilot Feasibility Stud 2024; 10:77. [PMID: 38755699 PMCID: PMC11097416 DOI: 10.1186/s40814-024-01505-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 04/30/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Pain management is a major unmet need in people with rheumatoid arthritis (RA). Although many patients are treated with disease modifying anti-rheumatic drugs (DMARDS), including biologic therapies, many people with RA continue to experience significant pain. We aimed to determine whether performing a comprehensive pain evaluation is feasible in people with active RA receiving conventional DMARDs and biologic therapies. METHODS The BIORA-PAIN feasibility study was an open-label, randomised trial, which recruited participants suitable for treatment with biologic therapy. The primary feasibility outcomes were recruitment, randomisation and retention of eligible participants. All participants underwent pain assessment for nociceptive, neuropathic and nociplastic pain during the 12-month study period, with quarterly assessments for VAS (Visual Analogue Scale) pain, painDETECT and QST (quantitative sensory testing). This trial was registered in clinicaltrials.gov NCT04255134. RESULTS During the study period, 93 participants were screened of whom 25 were eligible: 13 were randomised to adalimumab and 12 to abatacept. Participant recruitment was lower than expected due to the COVID-19 pandemic. Pain assessments were practical in the clinical trial setting. An improvement was observed for VAS pain from baseline over 12 months, with a mean (SEM) of 3.7 (0.82) in the abatacept group and 2.3 (1.1) in the adalimumab group. There was a reduction in painDETECT and improvement in QST measures in both treatment groups during the study. Participant feedback included that some of the questionnaire-based pain assessments were lengthy and overlapped in their content. Adverse events were similar in both groups. There was one death due to COVID-19. CONCLUSIONS This first-ever feasibility study of a randomised controlled trial assessing distinct modalities of pain in RA met its progression criteria. This study demonstrates that it is feasible to recruit and assess participants with active RA for specific modalities of pain, including nociceptive, neuropathic and nociplastic elements. Our data suggests that it is possible to stratify people for RA based on pain features. The differences in pain outcomes between abatacept and adalimumab treated groups warrant further investigation. TRIAL REGISTRATION NCT04255134, Registered on Feb 5, 2020.
Collapse
Affiliation(s)
- Liban Ahmed
- Institute for Infection and Immunity, St George's University of London, Cranmer Terrace, London, SW17 ORE, UK
- Department of Rheumatology, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Kathryn Biddle
- Institute for Infection and Immunity, St George's University of London, Cranmer Terrace, London, SW17 ORE, UK
- Department of Rheumatology, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Anna Blundell
- Institute for Infection and Immunity, St George's University of London, Cranmer Terrace, London, SW17 ORE, UK
| | - Soraya Koushesh
- Institute for Infection and Immunity, St George's University of London, Cranmer Terrace, London, SW17 ORE, UK
| | - Patrick Kiely
- Department of Rheumatology, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Gill Mein
- Centre for Allied Health, St George's, University of London, Cranmer Terrace, London, SW17 ORE, UK
| | - Philip Sedgwick
- Institute of Medical and Biomedical Education, St George's, University of London, Cranmer Terrace, London, SW17 ORE, UK
| | - Nidhi Sofat
- Institute for Infection and Immunity, St George's University of London, Cranmer Terrace, London, SW17 ORE, UK.
- Department of Rheumatology, St George's University Hospitals NHS Foundation Trust, London, UK.
| |
Collapse
|
7
|
Jain A, Hakim S, Woolf CJ. Immune drivers of physiological and pathological pain. J Exp Med 2024; 221:e20221687. [PMID: 38607420 PMCID: PMC11010323 DOI: 10.1084/jem.20221687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/25/2023] [Accepted: 04/02/2024] [Indexed: 04/13/2024] Open
Abstract
Physiological pain serves as a warning of exposure to danger and prompts us to withdraw from noxious stimuli to prevent tissue damage. Pain can also alert us of an infection or organ dysfunction and aids in locating such malfunction. However, there are instances where pain is purely pathological, such as unresolved pain following an inflammation or injury to the nervous system, and this can be debilitating and persistent. We now appreciate that immune cells are integral to both physiological and pathological pain, and that pain, in consequence, is not strictly a neuronal phenomenon. Here, we discuss recent findings on how immune cells in the skin, nerve, dorsal root ganglia, and spinal cord interact with somatosensory neurons to mediate pain. We also discuss how both innate and adaptive immune cells, by releasing various ligands and mediators, contribute to the initiation, modulation, persistence, or resolution of various modalities of pain. Finally, we propose that the neuroimmune axis is an attractive target for pain treatment, but the challenges in objectively quantifying pain preclinically, variable sex differences in pain presentation, as well as adverse outcomes associated with immune system modulation, all need to be considered in the development of immunotherapies against pain.
Collapse
Affiliation(s)
- Aakanksha Jain
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, USA
| | - Sara Hakim
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Clifford J. Woolf
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Waarala ZM, Comins L, Laumet S, Folger JK, Laumet G. Massage-like stroking produces analgesia in mice. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 15:100149. [PMID: 38226332 PMCID: PMC10788302 DOI: 10.1016/j.ynpai.2023.100149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/17/2024]
Abstract
Chronic pain treatment remains a major challenge and pharmacological interventions are associated with important side effects. Manual medicine treatments such as massage, acupuncture, manipulation of the fascial system (MFS), and osteopathic manipulative treatments produce pain relief in humans, but the underlying mechanism is poorly understood limiting leverage and optimization of manual medicine techniques as safe pain therapy. To decipher the physiological mechanisms of manipulative medicine treatments, we have established a preclinical model. Here, we established a murine model of massage-like stroking (MLS)-induced analgesia. We characterized that the analgesia effects were present in both sexes, and were independent of the experimenters, handling, consciousness, and opioid receptors. MLS alleviates thermal pain in naive mice and postoperative pain hypersensitivity. This novel model will allow discovery of the physiological mechanisms involved in MLS-induced analgesia and identification of new therapeutic strategies.
Collapse
Affiliation(s)
- Zachary M.S. Waarala
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Logan Comins
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Sophie Laumet
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Joseph K. Folger
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Geoffroy Laumet
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
9
|
King'uyu DN, Nti-Kyemereh L, Bonin JL, Feustel PJ, Tram M, MacNamara KC, Kopec AM. The effect of morphine on rat microglial phagocytic activity: An in vitro study of brain region-, plating density-, sex-, morphine concentration-, and receptor-dependency. J Neuroimmunol 2023; 384:578204. [PMID: 37774553 DOI: 10.1016/j.jneuroim.2023.578204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/24/2023] [Accepted: 09/19/2023] [Indexed: 10/01/2023]
Abstract
Opioids have long been used for clinical pain management, but also have addictive properties that have contributed to the ongoing opioid epidemic. While opioid activation of opioid receptors is well known to contribute to reward and reinforcement, data now also suggest that opioid activation of immune signaling via toll-like receptor 4 (TLR4) may also play a role in addiction-like processes. TLR4 expression is enriched in immune cells, and in the nervous system is primarily expressed in microglia. Microglial phagocytosis is important for developmental, homeostatic, and pathological processes. To examine how morphine impacts microglial phagocytosis, we isolated microglia from adult male and female rat cortex and striatum and plated them in vitro at 10,000 (10K) or 50,000 cells/well densities. Microglia were incubated with neutral fluorescent microbeads to stimulate phagocytosis in the presence of one of four morphine concentrations. We found that the brain region from which microglia are isolated and plating density, but not morphine concentration, impacts cell survival in vitro. We found that 10-12 M morphine, but not higher concentrations, increases phagocytosis in striatal microglia in vitro independent of sex and plating density, while 10-12 M morphine increased phagocytosis in cortical microglia in vitro independent of sex, but contingent on a plating density. Finally, we demonstrate that the effect of 10-12 M morphine in striatal microglia plated at 10 K density is mediated via TLR4, and not μORs. Overall, our data suggest that in rats, a morphine-TLR4 signaling pathway increases phagocytic activity in microglia independent of sex. This may is useful information for better understanding the possible neural outcomes associated with morphine exposures.
Collapse
Affiliation(s)
- David N King'uyu
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, United States of America.
| | - Lily Nti-Kyemereh
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, United States of America; Siena College, Loudonville, NY 12211, United States of America
| | - Jesse L Bonin
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, United States of America
| | - Paul J Feustel
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, United States of America
| | - Michelle Tram
- Siena College, Loudonville, NY 12211, United States of America
| | - Katherine C MacNamara
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, United States of America
| | - Ashley M Kopec
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, United States of America
| |
Collapse
|
10
|
Lesnak JB, Mazhar K, Price TJ. Neuroimmune Mechanisms Underlying Post-acute Sequelae of SARS-CoV-2 (PASC) Pain, Predictions from a Ligand-Receptor Interactome. Curr Rheumatol Rep 2023; 25:169-181. [PMID: 37300737 PMCID: PMC10256978 DOI: 10.1007/s11926-023-01107-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
PURPOSE OF REVIEW Individuals with post-acute sequelae of SARS-CoV-2 (PASC) complain of persistent musculoskeletal pain. Determining how COVID-19 infection produces persistent pain would be valuable for the development of therapeutics aimed at alleviating these symptoms. RECENT FINDINGS To generate hypotheses regarding neuroimmune interactions in PASC, we used a ligand-receptor interactome to make predictions about how ligands from PBMCs in individuals with COVID-19 communicate with dorsal root ganglia (DRG) neurons to induce persistent pain. In a structured literature review of -omics COVID-19 studies, we identified ligands capable of binding to receptors on DRG neurons, which stimulate signaling pathways including immune cell activation and chemotaxis, the complement system, and type I interferon signaling. The most consistent finding across immune cell types was an upregulation of genes encoding the alarmins S100A8/9 and MHC-I. This ligand-receptor interactome, from our hypothesis-generating literature review, can be used to guide future research surrounding mechanisms of PASC-induced pain.
Collapse
Affiliation(s)
- Joseph B Lesnak
- School for Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, BSB 14.102G, Richardson, TX, 75080, USA
| | - Khadijah Mazhar
- School for Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, BSB 14.102G, Richardson, TX, 75080, USA
| | - Theodore J Price
- School for Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, BSB 14.102G, Richardson, TX, 75080, USA.
| |
Collapse
|
11
|
Yang Z, Zhang F, Abdul M, Jiang J, Li Y, Li Y, Yin C, Xing Y, Liu S, Lu C. Tumor necrosis factor-α-induced protein 8-like 2 alleviates morphine antinociceptive tolerance through reduction of ROS-mediated apoptosis and MAPK/NF-κB signaling pathways. Neuropharmacology 2023:109667. [PMID: 37451333 DOI: 10.1016/j.neuropharm.2023.109667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Chronic morphine tolerance is a repulsive barrier to the clinical treatment of pain. Whereas the underlying molecular mechanisms of morphine tolerance remain unknown. Here, we proposed that tumor necrosis factor-α-induced protein 8-like 2 (TIPE2) is an essential control point regarding the progression of chronic morphine tolerance. We found that TIPE2 levels in the lumbar spinal cord were significantly downregulated in the morphine tolerance mouse model. Specifically, decreased TIPE2 by morphine tolerance was primarily expressed in spinal neurons, while increased expression of spinal TIPE2 distinctly attenuated the chronic morphine antinociceptive tolerance and tolerance-associated hyperalgesia. We also observed that increased expression of spinal TIPE2 significantly reduced morphine tolerance-induced neuronal ROS production and apoptosis, along with the activation of MAPKs and NF-κB signaling pathways. Moreover, the increased TIPE2 expression inhibited neuronal activation and glial reactivity in the spinal dorsal horn after chronic morphine exposure. Additionally, TIPE2 overexpression in cultured SH-SY5Y cells significantly suppressed ROS production and apoptosis in response to morphine challenge. Therefore, we can conclude that the upregulation of spinal TIPE2 may attenuate the morphine antinociceptive tolerance via TIPE2-dependent downregulation of neuronal ROS, inhibition of neuronal apoptosis, suppression of MAPKs and NF-κB activation. TIPE2 may be a potential strategy for preventing morphine tolerance in the future studies and clinical settings. Schematic diagram for the proposed mechanisms of TIPE2 regulates morphine antinociceptive tolerance. TIPE2 may alleviate morphine antinociceptive tolerance by regulating MAPK/NF-κB signaling pathways and apoptosis, which might be associated with ROS production.
Collapse
Affiliation(s)
- Zhong Yang
- School of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Feifei Zhang
- School of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Mannan Abdul
- Department of Anesthesiology, Eye & ENT Hospital, Fudan University, Shanghai, China; School of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jinhong Jiang
- School of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yanqiang Li
- School of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yeqi Li
- School of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Cui Yin
- School of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yanhong Xing
- School of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Su Liu
- Department of Anesthesiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Chen Lu
- School of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
12
|
Visvabharathy L, Hanson BA, Orban ZS, Lim PH, Palacio NM, Jimenez M, Clark JR, Graham EL, Liotta EM, Tachas G, Penaloza-MacMaster P, Koralnik IJ. Neuro-PASC is characterized by enhanced CD4+ and diminished CD8+ T cell responses to SARS-CoV-2 Nucleocapsid protein. Front Immunol 2023; 14:1155770. [PMID: 37313412 PMCID: PMC10258318 DOI: 10.3389/fimmu.2023.1155770] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/11/2023] [Indexed: 06/15/2023] Open
Abstract
Introduction Many people with long COVID symptoms suffer from debilitating neurologic post-acute sequelae of SARS-CoV-2 infection (Neuro-PASC). Although symptoms of Neuro-PASC are widely documented, it is still unclear whether PASC symptoms impact virus-specific immune responses. Therefore, we examined T cell and antibody responses to SARS-CoV-2 Nucleocapsid protein to identify activation signatures distinguishing Neuro-PASC patients from healthy COVID convalescents. Results We report that Neuro-PASC patients exhibit distinct immunological signatures composed of elevated CD4+ T cell responses and diminished CD8+ memory T cell activation toward the C-terminal region of SARS-CoV-2 Nucleocapsid protein when examined both functionally and using TCR sequencing. CD8+ T cell production of IL-6 correlated with increased plasma IL-6 levels as well as heightened severity of neurologic symptoms, including pain. Elevated plasma immunoregulatory and reduced pro-inflammatory and antiviral response signatures were evident in Neuro-PASC patients compared with COVID convalescent controls without lasting symptoms, correlating with worse neurocognitive dysfunction. Discussion We conclude that these data provide new insight into the impact of virus-specific cellular immunity on the pathogenesis of long COVID and pave the way for the rational design of predictive biomarkers and therapeutic interventions.
Collapse
Affiliation(s)
- Lavanya Visvabharathy
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Barbara A. Hanson
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Zachary S. Orban
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Patrick H. Lim
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Nicole M. Palacio
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Millenia Jimenez
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jeffrey R. Clark
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Edith L. Graham
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Eric M. Liotta
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - George Tachas
- Drug Discovery & Patents, Antisense Therapeutics Ltd., Melbourne, VIC, Australia
| | - Pablo Penaloza-MacMaster
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Igor J. Koralnik
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
13
|
Illario JA, Osborn KG, Garcia AV, Sepulveda YJ, Momper JD, Kiel JW, Kirihennedige AS, Sun SA, Richter PJ. Comparative Pharmacokinetics and Injection Site Histopathology in Nude Mice Treated with Long-acting Buprenorphine Formulations. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2023; 62:147-152. [PMID: 36813268 PMCID: PMC10078935 DOI: 10.30802/aalas-jaalas-22-000102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/05/2022] [Accepted: 02/06/2023] [Indexed: 02/24/2023]
Abstract
Two long-acting formulations of buprenorphine are commercially available as analgesics for rodents. However, these drugs have not yet been studied in nude mice. We sought to investigate whether the manufacturer-recommended or labeled mouse doses of either drug would provide and sustain the purported therapeutic plasma concentration of buprenorphine (1 ng/mL) over 72 h in nude mice and to characterize the injection site histopathology. NU/NU nude and NU/+ heterozygous mice were subcutaneously injected with extended-release buprenorphine polymeric formulation (ER; 1 mg/kg), extendedrelease buprenorphine suspension (XR; 3.25 mg/kg), or saline (2.5 mL/kg). Plasma concentrations of buprenorphine were measured 6, 24, 48, and 72 h after injection. The injection site was examined histologically at 96 h after administration. XR dosing yielded significantly higher plasma buprenorphine concentrations than did ER dosing at every time point in both nude and heterozygous mice. No significant difference in plasma buprenorphine concentrations were detected between nude and heterozygous mice. Both formulations yielded plasma levels of buprenorphine of over 1 ng/mL at 6 h; XR sustained buprenorphine plasma levels above 1 ng/mL for over 48 h, whereas ER sustained this level for over 6 h. Injections sites of both formulations were characterized by a cystic lesion with a fibrous/fibroblastic capsule. ER induced more inflammatory infiltrates than did XR. This study indicates that while both XR and ER are suitable for use in nude mice, XR has a longer duration of likely therapeutic plasma levels and induces less subcutaneous inflammation at the injection site.
Collapse
Affiliation(s)
| | - Kent G Osborn
- Animal Care Program, University of California San Diego, La Jolla, California
| | - Arnold V Garcia
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California
| | - Yadira J Sepulveda
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California
| | - Jeremiah D Momper
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California
| | - Jeffrey W Kiel
- Professor Emeritus, University of Texas Health San Antonio, San Antonio, Texas
| | - Ayuri S Kirihennedige
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California
| | - Steven A Sun
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California
| | - Philip J Richter
- Animal Care Program, University of California San Diego, La Jolla, California
| |
Collapse
|
14
|
Jiao Y, Gao P, Dong L, Ding X, Meng Y, Qian J, Gao T, Wang R, Jiang T, Zhang Y, Kong D, Wu Y, Chen S, Xu S, Tang D, Luo P, Wu M, Meng L, Wen D, Wu C, Zhang G, Shi X, Yu W, Rong W. Molecular identification of bulbospinal ON neurons by GPER, which drives pain and morphine tolerance. J Clin Invest 2023; 133:e154588. [PMID: 36346677 PMCID: PMC9797334 DOI: 10.1172/jci154588] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
The rostral ventromedial medulla (RVM) exerts bidirectional descending modulation of pain attributable to the activity of electrophysiologically identified pronociceptive ON and antinociceptive OFF neurons. Here, we report that GABAergic ON neurons specifically express G protein-coupled estrogen receptor (GPER). GPER+ neurons exhibited characteristic ON-like responses upon peripheral nociceptive stimulation. Optogenetic activation of GPER+ neurons facilitated, but their ablation abrogated, pain. Furthermore, activation of GPER caused depolarization of ON cells, potentiated pain, and ameliorated morphine analgesia through desensitizing μ-type opioid receptor-mediated (MOR-mediated) activation of potassium currents. In contrast, genetic ablation or pharmacological blockade of GPER attenuated pain, enhanced morphine analgesia, and delayed the development of morphine tolerance in diverse preclinical pain models. Our data strongly indicate that GPER is a marker for GABAergic ON cells and illuminate the mechanisms underlying hormonal regulation of pain and analgesia, thus highlighting GPER as a promising target for the treatment of pain and opioid tolerance.
Collapse
Affiliation(s)
- Yingfu Jiao
- Department of Anatomy and Physiology and
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Po Gao
- Department of Anatomy and Physiology and
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Dong
- Department of Anatomy and Physiology and
| | | | - Youqiang Meng
- Department of Anatomy and Physiology and
- Department of Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Chongming Branch, Shanghai University of Medicine and Health Sciences Affiliated Chongming Hospital, Shanghai, China
| | | | - Ting Gao
- Department of Anatomy and Physiology and
| | - Ruoxi Wang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Jiang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunchun Zhang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dexu Kong
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Wu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sihan Chen
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Saihong Xu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Tang
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Luo
- Department of Anatomy and Physiology and
| | - Meimei Wu
- Department of Anatomy and Physiology and
| | - Li Meng
- Department of Anatomy and Physiology and
| | - Daxiang Wen
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changhao Wu
- School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | | | - Xueyin Shi
- Department of Anesthesiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weifang Rong
- Department of Anatomy and Physiology and
- Department of Anesthesiology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
15
|
Visvabharathy L, Hanson BA, Orban ZS, Lim PH, Palacio NM, Jimenez M, Clark JR, Graham EL, Liotta EM, Tachas G, Penaloza-MacMaster P, Koralnik IJ. T cell responses to SARS-CoV-2 in people with and without neurologic symptoms of long COVID. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2021.08.08.21261763. [PMID: 34401886 PMCID: PMC8366804 DOI: 10.1101/2021.08.08.21261763] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Many people experiencing long COVID syndrome, or post-acute sequelae of SARS-CoV-2 infection (PASC), suffer from debilitating neurologic symptoms (Neuro-PASC). However, whether virus-specific adaptive immunity is affected in Neuro-PASC patients remains poorly understood. We report that Neuro-PASC patients exhibit distinct immunological signatures composed of elevated humoral and cellular responses toward SARS-CoV-2 Nucleocapsid protein at an average of 6 months post-infection compared to healthy COVID convalescents. Neuro-PASC patients also had enhanced virus-specific production of IL-6 from and diminished activation of CD8+ T cells. Furthermore, the severity of cognitive deficits or quality of life disturbances in Neuro-PASC patients were associated with a reduced diversity of effector molecule expression in T cells but elevated IFN-γ production to the C-terminal domain of Nucleocapsid protein. Proteomics analysis showed enhanced plasma immunoregulatory proteins and reduced pro-inflammatory and antiviral response proteins in Neuro-PASC patients compared with healthy COVID convalescents, which were also correlated with worse neurocognitive dysfunction. These data provide new insight into the pathogenesis of long COVID syndrome and a framework for the rational design of predictive biomarkers and therapeutic interventions.
Collapse
Affiliation(s)
- Lavanya Visvabharathy
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago IL 60611 USA
| | - Barbara A. Hanson
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago IL 60611 USA
| | - Zachary S. Orban
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago IL 60611 USA
| | - Patrick H. Lim
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago IL 60611 USA
| | - Nicole M. Palacio
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago IL 60611 USA
| | - Millenia Jimenez
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago IL 60611 USA
| | - Jeffrey R. Clark
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago IL 60611 USA
| | - Edith L. Graham
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago IL 60611 USA
| | - Eric M. Liotta
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago IL 60611 USA
| | - George Tachas
- Director, Drug Discovery & Patents, Antisense Therapeutics Ltd., Melbourne, Australia
| | - Pablo Penaloza-MacMaster
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago IL 60611 USA
| | - Igor J. Koralnik
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago IL 60611 USA
| |
Collapse
|
16
|
Arthur JD, Alamaw ED, Jampachairsri K, Sharp P, Nagamine CM, Huss MK, Pacharinsak C. Efficacy of 3 Buprenorphine Formulations for the Attenuation of Hypersensitivity after Plantar Incision in Immunodeficient NSG Mice. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2022; 61:448-456. [PMID: 36068076 PMCID: PMC9536821 DOI: 10.30802/aalas-jaalas-22-000058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Buprenorphine is perhaps the most prescribed analgesic for management of postoperative pain in mice. Although various buprenorphine formulations are effective in commonly used immunocompetent mouse strains, a knowledge gap exists regarding its efficacy in immunodeficient mice. Here we used a plantar incision to evaluate the efficacy of 3 buprenorphine formulations for attenuating postoperative mechanical and thermal hypersensitivity in the immunodeficient NSG mouse strain. We also characterized the pharmacokinetics of these formulations over a 72-h period. We hypothesized that all 3 buprenorphine formulations evaluated-the standard preparation and 2 extended-release products (Bup-HCl, Bup-ER, and Bup-XR, respectively)-would attenuate postoperative mechanical and thermal hypersensitivity resulting from a plantar incision in NSG mice. Male and female NSG mice (n = 48) were allocated to 4 treatment groups: saline (0.9% NaCl, 5 mL/kg SC once); Bup-HCl (0.1 mg/kg SC, BID for 2 d); Bup-ER (1.0 mg/kg SC once); and Bup-XR (3.25 mg/kg SC once). Mechani- cal and thermal hypersensitivity assessments were conducted 24 h before surgery and at 4, 8, 24, 48, and 72 h afterward. All groups of mice showed mechanical and thermal hypersensitivity within the first 24 h after surgery. Behavioral pain indicators (guarding, toe-touching [intermittent partial weight bearing], licking the incision, vocalizations) were observed in some mice from each group at every postoperative time point. Plasma buprenorphine was measured in a separate group of mice and concentrations surpassed the suggested therapeutic level (1.0 ng/mL) for less than 4 h for Bup-HCl, for at least 24 h for Bup-ER, and for 72 h for Bup-XR. Our results indicate that at the dosages studied, these buprenorphine formulations do not adequately attenuate postoperative mechanical and thermal hypersensitivity in the plantar incisional model in NSG mice. These findings support the need for strain-specific analgesic protocols for mice used in research.
Collapse
Affiliation(s)
- Justin D Arthur
- Department of Comparative Medicine, Stanford University, Stanford, California;,Corresponding author.
| | - Eden D Alamaw
- Department of Comparative Medicine, Stanford University, Stanford, California
| | | | - Patrick Sharp
- Department of Animal Research Services, University of California, Merced, Merced, California;,School of Veterinary and Life Sciences, Murdoch University, Murdoch, Australia
| | - Claude M Nagamine
- Department of Comparative Medicine, Stanford University, Stanford, California
| | - Monika K Huss
- Department of Comparative Medicine, Stanford University, Stanford, California
| | | |
Collapse
|
17
|
Jiang W, Tan XY, Li JM, Yu P, Dong M. DNA Methylation: A Target in Neuropathic Pain. Front Med (Lausanne) 2022; 9:879902. [PMID: 35872752 PMCID: PMC9301322 DOI: 10.3389/fmed.2022.879902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Neuropathic pain (NP), caused by an injury or a disease affecting the somatosensory nervous system of the central and peripheral nervous systems, has become a global health concern. Recent studies have demonstrated that epigenetic mechanisms are among those that underlie NP; thus, elucidating the molecular mechanism of DNA methylation is crucial to discovering new therapeutic methods for NP. In this review, we first briefly discuss DNA methylation, demethylation, and the associated key enzymes, such as methylases and demethylases. We then discuss the relationship between NP and DNA methylation, focusing on DNA methyltransferases including methyl-CpG-binding domain (MBD) family proteins and ten-eleven translocation (TET) enzymes. Based on experimental results of neuralgia in animal models, the mechanism of DNA methylation-related neuralgia is summarized, and useful targets for early drug intervention in NP are discussed.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Xuan-Yu Tan
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Jia-Ming Li
- Department of Emergency, The First Hospital of Jilin University, Changchun, China
| | - Peng Yu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Peng Yu
| | - Ming Dong
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
- Ming Dong
| |
Collapse
|
18
|
Presto P, Mazzitelli M, Junell R, Griffin Z, Neugebauer V. Sex differences in pain along the neuraxis. Neuropharmacology 2022; 210:109030. [DOI: 10.1016/j.neuropharm.2022.109030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/24/2022] [Accepted: 03/12/2022] [Indexed: 12/30/2022]
|
19
|
Strath LJ, Sorge RE. Racial Differences in Pain, Nutrition, and Oxidative Stress. Pain Ther 2022; 11:37-56. [PMID: 35106711 PMCID: PMC8861224 DOI: 10.1007/s40122-022-00359-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/21/2022] [Indexed: 12/12/2022] Open
Abstract
Investigating the disproportionate rates of chronic pain and their related comorbidities between Black and non-Hispanic White (White) individuals is a growing area of interest, both in the healthcare community and in general society. Researchers have identified racial differences in chronic pain prevalence and severity, but still very little is known about the mechanisms underlying them. Current explanations for these differences have primarily focused on socioeconomic status and unequal healthcare between races as causal factors. Whereas these factors are informative, a racial gap still exists between Black and White individuals when these factors are controlled for. One potential cause of this racial gap in chronic pain is the differences in nutrition and dietary intake between groups. Certain foods play a key role in the inflammatory and oxidative stress pathways in the human body and could potentially influence the severity of the pain experience. Here, we review the previous literature on the surrounding topics and propose a potential mechanism to explain racial differences in the chronic pain population, based on established racial differences in diet and oxidative stress.
Collapse
Affiliation(s)
- Larissa J Strath
- Department of Psychology, The University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL, 35294, USA
| | - Robert E Sorge
- Department of Psychology, The University of Alabama at Birmingham, 1300 University Blvd, Birmingham, AL, 35294, USA.
| |
Collapse
|
20
|
Tang T, Lang F, Gao S, Chen L. Effect of Combined Thoracic Paravertebral Block and General Anesthesia vs General Anesthesia Alone on Postoperative Stress and Pain in Patients Undergoing Laparoscopic Radical Nephrectomy. MEDICAL SCIENCE MONITOR : INTERNATIONAL MEDICAL JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2022; 28:e933623. [PMID: 34999670 PMCID: PMC8756735 DOI: 10.12659/msm.933623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Background This single-center study compared the effect of combined thoracic paravertebral block (TPVB) and general anesthesia vs general anesthesia alone on postoperative stress and pain in patients undergoing laparoscopic radical nephrectomy. Material/Methods Patients undergoing laparoscopic radical nephrectomy were selected and randomized into a study group given TPVB combined with general anesthesia (n=43) and a reference group (n=43) given general anesthesia. The perioperative clinical indicators, blood pressure, pulse rate, visual analog scale (VAS) score, and adverse reactions were compared. Results Perioperative clinical indicators of the study group (other than operation duration) were superior to those of the reference group (P<0.05). At 90 min in the operation, systolic blood pressure (SBP), diastolic blood pressure (DBP), and pulse rate were lower than before anesthesia (t=7.691, 10.017, and 7.728, P<0.05). SBP, DBP, and pulse rate at 90 minutes during operation were significantly lower in the study group than in the reference group (t=7.582, 8.754, and 6.682, P<0.01). The study group had lower VAS scores both during activity and at rest 48 h after the operation than in the reference group (t=5.171 and 6.025, P<0.001). The total incidence of adverse reactions in the study group was lower than in the reference group (χ2=5.018, P=0.024). Conclusions The findings from this study from a single center showed that TPVB combined with general anesthesia for patients undergoing laparoscopic radical nephrectomy significantly reduced postoperative pain and stress.
Collapse
Affiliation(s)
- Tao Tang
- Department of Anesthesiology, Dalian Friendship Hospital, Dalian, Liaoning, China (mainland)
| | - Fengjiao Lang
- Department of Anesthesiology, Dalian Friendship Hospital, Dalian, Liaoning, China (mainland)
| | - Shoulin Gao
- Department of Anesthesiology, Dalian Friendship Hospital, Dalian, Liaoning, China (mainland)
| | - Li Chen
- Department of Anesthesiology, Dalian Friendship Hospital, Dalian, Liaoning, China (mainland)
| |
Collapse
|
21
|
Trask S, Mogil JS, Helmstetter FJ, Stucky CL, Sadler KE. Contextual control of conditioned pain tolerance and endogenous analgesic systems. eLife 2022; 11:75283. [PMID: 35275062 PMCID: PMC8937231 DOI: 10.7554/elife.75283] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/10/2022] [Indexed: 11/13/2022] Open
Abstract
The mechanisms underlying the transition from acute to chronic pain are unclear but may involve the persistence or strengthening of pain memories acquired in part through associative learning. Contextual cues, which comprise the environment in which events occur, were recently described as a critical regulator of pain memory; both male rodents and humans exhibit increased pain sensitivity in environments recently associated with a single painful experience. It is unknown, however, how repeated exposure to an acute painful unconditioned stimulus in a distinct context modifies pain sensitivity or the expectation of pain in that environment. To answer this question, we conditioned mice to associate distinct contexts with either repeated administration of a mild visceral pain stimulus (intraperitoneal injection of acetic acid) or vehicle injection over the course of 3 days. On the final day of experiments, animals received either an acid injection or vehicle injection prior to being placed into both contexts. In this way, contextual control of pain sensitivity and pain expectation could be tested respectively. When re-exposed to the noxious stimulus in a familiar environment, both male and female mice exhibited context-dependent conditioned analgesia, a phenomenon mediated by endogenous opioid signaling. However, when expecting the presentation of a painful stimulus in a given context, males exhibited conditioned hypersensitivity whereas females exhibited endogenous opioid-mediated conditioned analgesia. These results are evidence that pain perception and engagement of endogenous opioid systems can be modified through their psychological association with environmental cues. Successful determination of the brain circuits involved in this sexually dimorphic anticipatory response may allow for the manipulation of pain memories, which may contribute to the development of chronic pain states.
Collapse
Affiliation(s)
- Sydney Trask
- Department of Psychological Sciences, Purdue UniversityWest LafayetteUnited States
| | - Jeffrey S Mogil
- Department of Psychology and Anesthesia, Alan Edwards Centre for Research on Pain, McGill UniversityMontrealCanada
| | - Fred J Helmstetter
- Department of Psychology, University of Wisconsin-MilwaukeeMilwaukeeUnited States
| | - Cheryl L Stucky
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of WisconsinMilwaukeeUnited States
| | - Katelyn E Sadler
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of WisconsinMilwaukeeUnited States
| |
Collapse
|
22
|
Inan S, Chen X, Eisenstein EM, Meissler JJ, Geller EB, Tallarida C, Watson M, Doura M, Barrett JE, Cowan A, Rawls SM, Adler MW, Eisenstein TK. Chemokine receptor antagonists enhance morphine's antinociceptive effect but not respiratory depression. Life Sci 2021; 285:120014. [PMID: 34619167 DOI: 10.1016/j.lfs.2021.120014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 02/07/2023]
Abstract
AIMS We have shown that chemokines injected into the periaqueductal gray region of the brain blocks opioid-induced analgesia in the rat cold-water tail flick test (CWTF). The present experiments tested whether chemokine receptor antagonists (CRAs), in combination with sub-analgesic doses of morphine, would provide maximal analgesia in the CWTF test and the mouse formalin pain assay. The effect of CRAs on respiratory depression was also evaluated. MAIN METHODS One, two or four CRAs (AMD3100/CXCR4, maraviroc/CCR5, RS504393/CCR2 orAZD8797/CX3CR1) were used in combination with sub-analgesic doses of morphine, all given systemically. Pain was assessed using the rat CWTF test or formalin injection into the paw of mice scored by licking. Respiration and oxygen saturation were measured in rats using a MouseOX® Plus - pulse oximeter. KEY FINDINGS In the CWTF test, a sub-maximal dose of morphine in combination with maraviroc alone, maraviroc plus AMD3100, or with the four chemokine receptor antagonists, produced synergistic increases in antinociception. In the formalin test, the combination of four CRAs plus a sub-maximal dose of morphine resulted in increased antinociception in both male and female mice. AMD3100 had an additive effect with morphine in both sexes. Coadministration of CRAs with morphine did not potentiate the opioid respiratory depressive effect. SIGNIFICANCE These results support the conclusion that combinations of CRAs can increase the potency of sub-analgesic doses of morphine analgesia without increasing respiratory depression. The results support an "opioid sparing" strategy for alleviation of pain using reduced doses of opioids in combination with CRAs to achieve maximal analgesia.
Collapse
Affiliation(s)
- Saadet Inan
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - Xiaohong Chen
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - Eric M Eisenstein
- Departments of Statistical Science and Marketing, Fox School of Business at Temple University,1810 Liacouras Walk, Philadelphia, PA 19122, USA
| | - Joseph J Meissler
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - Ellen B Geller
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - Christopher Tallarida
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - Mia Watson
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - Menahem Doura
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - James E Barrett
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - Alan Cowan
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - Scott M Rawls
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - Martin W Adler
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - Toby K Eisenstein
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA.
| |
Collapse
|
23
|
Epigenetic signature of chronic low back pain in human T cells. Pain Rep 2021; 6:e960. [PMID: 34746619 PMCID: PMC8568391 DOI: 10.1097/pr9.0000000000000960] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/21/2021] [Accepted: 08/05/2021] [Indexed: 12/19/2022] Open
Abstract
Supplemental Digital Content is Available in the Text. This study reveals sex-specific DNA methylation signatures in human T cells that discriminate chronic low back pain participants from healthy controls. Objective: Determine if chronic low back pain (LBP) is associated with DNA methylation signatures in human T cells that will reveal novel mechanisms and potential therapeutic targets and explore the feasibility of epigenetic diagnostic markers for pain-related pathophysiology. Methods: Genome-wide DNA methylation analysis of 850,000 CpG sites in women and men with chronic LBP and pain-free controls was performed. T cells were isolated (discovery cohort, n = 32) and used to identify differentially methylated CpG sites, and gene ontologies and molecular pathways were identified. A polygenic DNA methylation score for LBP was generated in both women and men. Validation was performed in an independent cohort (validation cohort, n = 63) of chronic LBP and healthy controls. Results: Analysis with the discovery cohort revealed a total of 2,496 and 419 differentially methylated CpGs in women and men, respectively. In women, most of these sites were hypomethylated and enriched in genes with functions in the extracellular matrix, in the immune system (ie, cytokines), or in epigenetic processes. In men, a unique chronic LBP DNA methylation signature was identified characterized by significant enrichment for genes from the major histocompatibility complex. Sex-specific polygenic DNA methylation scores were generated to estimate the pain status of each individual and confirmed in the validation cohort using pyrosequencing. Conclusion: This study reveals sex-specific DNA methylation signatures in human T cells that discriminates chronic LBP participants from healthy controls.
Collapse
|
24
|
Kuhn J, Vainchtein ID, Braz JM, Hamel K, Bernstein M, Craik V, Dahlgren MW, Ortiz-Carpena J, Molofsky A, Molofsky A, Basbaum A. Regulatory T-cells inhibit microglia-induced pain hypersensitivity in female mice. eLife 2021; 10:69056. [PMID: 34652270 PMCID: PMC8639143 DOI: 10.7554/elife.69056] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 10/14/2021] [Indexed: 12/17/2022] Open
Abstract
Peripheral nerve injury-induced neuropathic pain is a chronic and debilitating condition characterized by mechanical hypersensitivity. We previously identified microglial activation via release of colony-stimulating factor 1 (CSF1) from injured sensory neurons as a mechanism contributing to nerve injury-induced pain. Here, we show that intrathecal administration of CSF1, even in the absence of injury, is sufficient to induce pain behavior, but only in male mice. Transcriptional profiling and morphologic analyses after intrathecal CSF1 showed robust immune activation in male but not female microglia. CSF1 also induced marked expansion of lymphocytes within the spinal cord meninges, with preferential expansion of regulatory T-cells (Tregs) in female mice. Consistent with the hypothesis that Tregs actively suppress microglial activation in females, Treg deficient (Foxp3DTR) female mice showed increased CSF1-induced microglial activation and pain hypersensitivity equivalent to males. We conclude that sexual dimorphism in the contribution of microglia to pain results from Treg-mediated suppression of microglial activation and pain hypersensitivity in female mice.
Collapse
Affiliation(s)
- Julia Kuhn
- Anatomy, University of California San Francisco, San Francisco, United States
| | - Ilia D Vainchtein
- Psychiatry, University of California San Francisco, San Francisco, United States
| | - Joao M Braz
- Anatomy, University of California, San Francisco, San Francisco, United States
| | - Katherine Hamel
- Anatomy, University of California San Francisco, San Francisco, United States
| | - Mollie Bernstein
- Anatomy, University of California, San Francisco, San Francisco, United States
| | - Veronica Craik
- Anatomy, University of California, San Francisco, San Francisco, United States
| | - Madelene W Dahlgren
- Laboratory Medicine, University California San Francisco, San Francisco, United States
| | - Jorge Ortiz-Carpena
- Laboratory Medicine, University of California San Francisco, San Francisco, United States
| | - Ari Molofsky
- Laboratory Medicine, University of California San Francisco, San Francisco, United States
| | - Anna Molofsky
- Laboratory Medicine, University of California San Francisco, San Francisco, United States
| | - Allan Basbaum
- Anatomy, University of California San Francisco, San Francisco, United States
| |
Collapse
|
25
|
Cabañero D, Martín-García E, Maldonado R. The CB2 cannabinoid receptor as a therapeutic target in the central nervous system. Expert Opin Ther Targets 2021; 25:659-676. [PMID: 34424117 DOI: 10.1080/14728222.2021.1971196] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Targeting CB2 cannabinoid receptor (CB2r) represents a promising approach for the treatment of central nervous system disorders. These receptors were identified in peripheral tissues, but also in neurons in the central nervous system. New findings have highlighted the interest to target these central receptors to obtain therapeutic effects devoid of the classical cannabinoid side-effects. AREAS COVERED In this review, we searched PubMed (January 1991-May 2021), ClinicalTrials.gov and Cochrane Library databases for articles, reviews and clinical trials. We first introduce the relevance of CB2r as a key component of the endocannabinoid system. We discuss CB2r interest as a possible novel target in the treatment of pain. This receptor has raised interest as a potential target for neurodegenerative disorders treatment, as we then discussed. Finally, we underline studies revealing a novel potential CB2r interest in mental disorders treatment. EXPERT OPINION In spite of the interest of targeting CB2r for pain, clinical trials evaluating CB2r agonist analgesic efficacy have currently failed. The preferential involvement of CB2r in preventing the development of chronic pain could influence the failure of clinical trials designed for the treatment of already established pain syndromes. Specific trials should be designed to target the prevention of chronic pain development.
Collapse
Affiliation(s)
- David Cabañero
- Institute of Research, Development and Innovation in Healthcare Biotechnology of Elche (IDiBE), Universidad Miguel Hernández. Elche, Alicante, Spain
| | - Elena Martín-García
- Neuropharmacology Laboratory, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain.,IMIM (Hospital Del Mar Medical Research Institute), Barcelona, Spain
| | - Rafael Maldonado
- Neuropharmacology Laboratory, Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona, Spain.,IMIM (Hospital Del Mar Medical Research Institute), Barcelona, Spain
| |
Collapse
|
26
|
Lenert ME, Avona A, Garner KM, Barron LR, Burton MD. Sensory Neurons, Neuroimmunity, and Pain Modulation by Sex Hormones. Endocrinology 2021; 162:bqab109. [PMID: 34049389 PMCID: PMC8237991 DOI: 10.1210/endocr/bqab109] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Indexed: 12/16/2022]
Abstract
The inclusion of women in preclinical pain studies has become more commonplace in the last decade as the National Institutes of Health (NIH) released its "Sex as a Biological Variable" mandate. Presumably, basic researchers have not had a comprehensive understanding about neuroimmune interactions in half of the population and how hormones play a role in this. To date, we have learned that sex hormones contribute to sexual differentiation of the nervous system and sex differences in behavior throughout the lifespan; however, the cycling of sex hormones does not always explain these differences. Here, we highlight recent advances in our understanding of sex differences and how hormones and immune interactions influence sensory neuron activity to contribute to physiology and pain. Neuroimmune mechanisms may be mediated by different cell types in each sex, as the actions of immune cells are sexually dimorphic. Unfortunately, the majority of studies assessing neuronal contributions to immune function have been limited to males, so it is unclear if the mechanisms are similar in females. Finally, pathways that control cellular metabolism, like nuclear receptors, have been shown to play a regulatory role both in pain and inflammation. Overall, communication between the neuroimmune and endocrine systems modulate pain signaling in a sex-dependent manner, but more research is needed to reveal nuances of these mechanisms.
Collapse
Affiliation(s)
- Melissa E Lenert
- Neuroimmunology and Behavior Laboratory, Center for Advanced Pain Studies (CAPS), Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Amanda Avona
- Neuroimmunology and Behavior Laboratory, Center for Advanced Pain Studies (CAPS), Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Katherine M Garner
- Neuroimmunology and Behavior Laboratory, Center for Advanced Pain Studies (CAPS), Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Luz R Barron
- Neuroimmunology and Behavior Laboratory, Center for Advanced Pain Studies (CAPS), Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Michael D Burton
- Neuroimmunology and Behavior Laboratory, Center for Advanced Pain Studies (CAPS), Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080, USA
| |
Collapse
|
27
|
Gregus AM, Levine IS, Eddinger KA, Yaksh TL, Buczynski MW. Sex differences in neuroimmune and glial mechanisms of pain. Pain 2021; 162:2186-2200. [PMID: 34256379 PMCID: PMC8277970 DOI: 10.1097/j.pain.0000000000002215] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023]
Abstract
ABSTRACT Pain is the primary motivation for seeking medical care. Although pain may subside as inflammation resolves or an injury heals, it is increasingly evident that persistency of the pain state can occur with significant regularity. Chronic pain requires aggressive management to minimize its physiological consequences and diminish its impact on quality of life. Although opioids commonly are prescribed for intractable pain, concerns regarding reduced efficacy, as well as risks of tolerance and dependence, misuse, diversion, and overdose mortality rates limit their utility. Advances in development of nonopioid interventions hinge on our appreciation of underlying mechanisms of pain hypersensitivity. For instance, the contributory role of immunity and the associated presence of autoimmune syndromes has become of particular interest. Males and females exhibit fundamental differences in innate and adaptive immune responses, some of which are present throughout life, whereas others manifest with reproductive maturation. In general, the incidence of chronic pain conditions, particularly those with likely autoimmune covariates, is significantly higher in women. Accordingly, evidence is now accruing in support of neuroimmune interactions driving sex differences in the development and maintenance of pain hypersensitivity and chronicity. This review highlights known sexual dimorphisms of neuroimmune signaling in pain states modeled in rodents, which may yield potential high-value sex-specific targets to inform future analgesic drug discovery efforts.
Collapse
Affiliation(s)
- Ann M. Gregus
- School of Neuroscience, Virginia Polytechnic and State University, 970 Washington Street SW, Blacksburg, VA 24061
| | - Ian S. Levine
- School of Neuroscience, Virginia Polytechnic and State University, 970 Washington Street SW, Blacksburg, VA 24061
| | - Kelly A. Eddinger
- Dept. of Anesthesiology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, USA 92093-0818
| | - Tony L. Yaksh
- Dept. of Anesthesiology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, USA 92093-0818
- Dept. of Pharmacology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, USA 92093-0601
| | - Matthew W. Buczynski
- School of Neuroscience, Virginia Polytechnic and State University, 970 Washington Street SW, Blacksburg, VA 24061
| |
Collapse
|
28
|
Kopruszinski CM, Swiokla J, Lee YS, Navratilova E, VanderVeen L, Yang M, Liu Y, Miyazaki T, Schmidt WK, Zalevsky J, Porreca F. Preclinical Assessment of the Analgesic Pharmacology of NKTR-181 in Rodents. Cell Mol Neurobiol 2021; 41:949-960. [PMID: 32107752 PMCID: PMC11448559 DOI: 10.1007/s10571-020-00816-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/16/2020] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Pharmacological evaluation of the mu-opioid receptor (MOR) agonist properties of NKTR-181 in rodent models. METHODS Graded noxious stimulus intensities were used in rats to establish the antinociceptive potency and efficacy of NKTR-181 relative to morphine, fentanyl, and oxycodone. Characteristics of MOR agonist actions, as measured by antinociceptive tolerance and cross-tolerance, as well as opioid-induced hyperalgesia (OIH) and naloxone-precipitated withdrawal in NKTR-181- and morphine-dependent in mice, were compared. RESULTS NKTR-181 showed dose- and time-related antinociception with similar maximal effects to morphine in the rat and mouse hot-water tail-flick test. No sex or species differences were observed in NKTR-181 or morphine antinociception. Rats treated with NKTR-181 and morphine exhibited decreases in both potency and maximal efficacy as nociceptive stimulus intensity was increased from a water temperature of 50 °C to 54 °C. Evaluation of antinociception at a high stimulus intensity revealed that oxycodone and fentanyl exhibited greater efficacy than either NKTR-181 or morphine. The relative potency difference between NKTR-181 and morphine across all tail-flick studies was determined to be 7.6-fold (90% confidence interval, 2.6, 21.5). The peak antinociceptive effect of NKTR-181 was delayed compared to that of the other opioids and cumulative drug effects were not observed. Repeated treatment with escalating, approximately equi-analgesic doses of NKTR-181 or morphine, produced antinociceptive tolerance and cross-tolerance. Under these pharmacological conditions, OIH and naloxone-precipitated physical dependence were similar for NKTR-181 and morphine. CONCLUSIONS NKTR-181 had a slower onset, but similar efficacy, to morphine in the models studied supporting reduced abuse potential while maintaining analgesic effect in comparison with current opioids.
Collapse
Affiliation(s)
| | - Juliana Swiokla
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Yeon Sun Lee
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Edita Navratilova
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | | | - Miao Yang
- Nektar Therapeutics, San Francisco, CA, USA
| | - Yi Liu
- Nektar Therapeutics, San Francisco, CA, USA
| | | | | | | | - Frank Porreca
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
29
|
Navarro KL, Huss M, Smith JC, Sharp P, Marx JO, Pacharinsak C. Mouse Anesthesia: The Art and Science. ILAR J 2021; 62:238-273. [PMID: 34180990 PMCID: PMC9236661 DOI: 10.1093/ilar/ilab016] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/04/2021] [Accepted: 12/01/2020] [Indexed: 12/15/2022] Open
Abstract
There is an art and science to performing mouse anesthesia, which is a significant component to animal research. Frequently, anesthesia is one vital step of many over the course of a research project spanning weeks, months, or beyond. It is critical to perform anesthesia according to the approved research protocol using appropriately handled and administered pharmaceutical-grade compounds whenever possible. Sufficient documentation of the anesthetic event and procedure should also be performed to meet the legal, ethical, and research reproducibility obligations. However, this regulatory and documentation process may lead to the use of a few possibly oversimplified anesthetic protocols used for mouse procedures and anesthesia. Although a frequently used anesthetic protocol may work perfectly for each mouse anesthetized, sometimes unexpected complications will arise, and quick adjustments to the anesthetic depth and support provided will be required. As an old saying goes, anesthesia is 99% boredom and 1% sheer terror. The purpose of this review article is to discuss the science of mouse anesthesia together with the art of applying these anesthetic techniques to provide readers with the knowledge needed for successful anesthetic procedures. The authors include experiences in mouse inhalant and injectable anesthesia, peri-anesthetic monitoring, specific procedures, and treating common complications. This article utilizes key points for easy access of important messages and authors’ recommendation based on the authors’ clinical experiences.
Collapse
Affiliation(s)
- Kaela L Navarro
- Department of Comparative Medicine, Stanford University, Stanford, California, USA
| | - Monika Huss
- Department of Comparative Medicine, Stanford University, Stanford, California, USA
| | - Jennifer C Smith
- Bioresources Department, Henry Ford Health System, Detroit, Michigan, USA
| | - Patrick Sharp
- Office of Research and Economic Development, University of California, Merced, California, USA
- Animal Resources Authority, Murdoch, Australia
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, Australia
| | - James O Marx
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Cholawat Pacharinsak
- Corresponding Author: Cholawat Pacharinsak, DVM, PhD, DACVAA, Stanford University, Department of Comparative Medicine, 287 Campus Drive, Stanford, CA 94305-5410, USA. E-mail:
| |
Collapse
|
30
|
Inyang KE, Folger JK, Laumet G. Can FDA-Approved Immunomodulatory Drugs be Repurposed/Repositioned to Alleviate Chronic Pain? J Neuroimmune Pharmacol 2021; 16:531-547. [PMID: 34041656 DOI: 10.1007/s11481-021-10000-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022]
Abstract
Pain is among the most widespread chronic health condition confronting society today and our inability to manage chronic pain contributes to the opioid abuse epidemic in America. The immune system is known to contribute to acute and chronic pain, but only limited therapeutic treatments such as non-steroid anti-inflammatory drugs have resulted from this knowledge. The last decade has shed light on neuro-immune interactions mediating the development, maintenance, and resolution of chronic pain. Here, we do not aim to perform a comprehensive review of all immune mechanisms involved in chronic pain, but to briefly review the contribution of the main cytokines and immune cells (macrophages, microglia, mast cells and T cells) to chronic pain. Given the urgent need to address the Pain crisis, we provocatively propose to repurpose/reposition FDA-approved immunomodulatory drugs for their potential to alleviate chronic pain. Repositioning or repurposing offers an attractive way to accelerate the arrival of new analgesics.
Collapse
Affiliation(s)
| | - Joseph K Folger
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Geoffroy Laumet
- Department of Physiology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
31
|
Wangzhou A, Paige C, Ray PR, Dussor G, Price TJ. Diversity of Receptor Expression in Central and Peripheral Mouse Neurons Estimated from Single Cell RNA Sequencing. Neuroscience 2021; 463:86-96. [PMID: 33774127 PMCID: PMC8106651 DOI: 10.1016/j.neuroscience.2021.03.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 12/15/2022]
Abstract
Because somatosensory PNS neurons, in particular nociceptors, are specially tuned to be able to detect a wide variety of both exogenous and endogenous signals, one might assume that these neurons express a greater variety of receptor genes. This assumption has not been formally tested. Because cells detect such signals via cell surface receptors, we sought to formally test the hypothesis that PNS neurons might express a broader array of cell surface receptors than CNS neurons using existing single cell RNA sequencing resources from mouse. We focused our analysis on ion channels, G-protein coupled receptors (GPCRS), receptor tyrosine kinase and cytokine family receptors. In partial support of our hypothesis, we found that mouse PNS somatosensory, sympathetic and enteric neurons and CNS neurons have similar receptor expression diversity in families of receptors examined, with the exception of GPCRs and cytokine receptors which showed greater diversity in the PNS. Surprisingly, these differences were mostly driven by enteric and sympathetic neurons, not by somatosensory neurons or nociceptors. Secondary analysis revealed many receptors that are very specifically expressed in subsets of PNS neurons, including some that are unique among neurons for nociceptors. Finally, we sought to examine specific ligand-receptor interactions between T cells and PNS and CNS neurons. Again, we noted that most interactions between these cells are shared by CNS and PNS neurons despite the fact that T cells only enter the CNS under rare circumstances. Our findings demonstrate that both PNS and CNS neurons express an astonishing array of cell surface receptors and suggest that most neurons are tuned to receive signals from other cells types, in particular immune cells.
Collapse
Affiliation(s)
- Andi Wangzhou
- University of Texas at Dallas, Department of Neuroscience and Center for Advanced Pain Studies, United States
| | - Candler Paige
- University of Texas at Dallas, Department of Neuroscience and Center for Advanced Pain Studies, United States
| | - Pradipta R Ray
- University of Texas at Dallas, Department of Neuroscience and Center for Advanced Pain Studies, United States
| | - Gregory Dussor
- University of Texas at Dallas, Department of Neuroscience and Center for Advanced Pain Studies, United States
| | - Theodore J Price
- University of Texas at Dallas, Department of Neuroscience and Center for Advanced Pain Studies, United States.
| |
Collapse
|
32
|
Namba MD, Leyrer-Jackson JM, Nagy EK, Olive MF, Neisewander JL. Neuroimmune Mechanisms as Novel Treatment Targets for Substance Use Disorders and Associated Comorbidities. Front Neurosci 2021; 15:650785. [PMID: 33935636 PMCID: PMC8082184 DOI: 10.3389/fnins.2021.650785] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
Recent studies examining the neurobiology of substance abuse have revealed a significant role of neuroimmune signaling as a mechanism through which drugs of abuse induce aberrant changes in synaptic plasticity and contribute to substance abuse-related behaviors. Immune signaling within the brain and the periphery critically regulates homeostasis of the nervous system. Perturbations in immune signaling can induce neuroinflammation or immunosuppression, which dysregulate nervous system function including neural processes associated with substance use disorders (SUDs). In this review, we discuss the literature that demonstrates a role of neuroimmune signaling in regulating learning, memory, and synaptic plasticity, emphasizing specific cytokine signaling within the central nervous system. We then highlight recent preclinical studies, within the last 5 years when possible, that have identified immune mechanisms within the brain and the periphery associated with addiction-related behaviors. Findings thus far underscore the need for future investigations into the clinical potential of immunopharmacology as a novel approach toward treating SUDs. Considering the high prevalence rate of comorbidities among those with SUDs, we also discuss neuroimmune mechanisms of common comorbidities associated with SUDs and highlight potentially novel treatment targets for these comorbid conditions. We argue that immunopharmacology represents a novel frontier in the development of new pharmacotherapies that promote long-term abstinence from drug use and minimize the detrimental impact of SUD comorbidities on patient health and treatment outcomes.
Collapse
Affiliation(s)
- Mark D. Namba
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | | | - Erin K. Nagy
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| | - M. Foster Olive
- Department of Psychology, Arizona State University, Tempe, AZ, United States
| | | |
Collapse
|
33
|
Shansky RM, Murphy AZ. Considering sex as a biological variable will require a global shift in science culture. Nat Neurosci 2021; 24:457-464. [PMID: 33649507 DOI: 10.1038/s41593-021-00806-8] [Citation(s) in RCA: 247] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/19/2021] [Indexed: 01/31/2023]
Abstract
For over half a century, male rodents have been the default model organism in preclinical neuroscience research, a convention that has likely contributed to higher rates of misdiagnosis and adverse side effects from drug treatment in women. Studying both sexes could help to rectify these public health problems, but incentive structures in publishing and career advancement deter many researchers from doing so. Moreover, funding agency directives to include male and female animals and human participants in grant proposals lack mechanisms to hold recipients accountable. In this Perspective, we highlight areas of behavioral, cellular and systems neuroscience in which fundamental sex differences have been identified, demonstrating that truly rigorous science must include males and females. We call for a cultural and structural change in how we conduct research and evaluate scientific progress, realigning our professional reward systems and experimental standards to produce a more equitable, representative and therefore translational body of knowledge.
Collapse
Affiliation(s)
| | - Anne Z Murphy
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
34
|
Wangzhou A, Paige C, Neerukonda SV, Naik DK, Kume M, David ET, Dussor G, Ray PR, Price TJ. A ligand-receptor interactome platform for discovery of pain mechanisms and therapeutic targets. Sci Signal 2021; 14:14/674/eabe1648. [PMID: 33727337 DOI: 10.1126/scisignal.abe1648] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the peripheral nervous system, ligand-receptor interactions between cells and neurons shape sensory experience, including pain. We set out to identify the potential interactions between sensory neurons and peripheral cell types implicated in disease-associated pain. Using mouse and human RNA sequencing datasets and computational analysis, we created interactome maps between dorsal root ganglion (DRG) sensory neurons and an array of normal cell types, as well as colitis-associated glial cells, rheumatoid arthritis-associated synovial macrophages, and pancreatic tumor tissue. These maps revealed a common correlation between the abundance of heparin-binding EGF-like growth factor (HBEGF) in peripheral cells with that of its receptor EGFR (a member of the ErbB family of receptors) in DRG neurons. Subsequently, we confirmed that increased abundance of HBEGF enhanced nociception in mice, likely acting on DRG neurons through ErbB family receptors. Collectively, these interactomes highlight ligand-receptor interactions that may lead to treatments for disease-associated pain and, furthermore, reflect the complexity of cell-to-neuron signaling in chronic pain states.
Collapse
Affiliation(s)
- Andi Wangzhou
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Candler Paige
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Sanjay V Neerukonda
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Dhananjay K Naik
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Moeno Kume
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Eric T David
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Gregory Dussor
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA
| | - Pradipta R Ray
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA.
| | - Theodore J Price
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Rd., Richardson, TX 75080, USA.
| |
Collapse
|
35
|
Kumar M, Rainville JR, Williams K, Lile JA, Hodes GE, Vassoler FM, Turner JR. Sexually dimorphic neuroimmune response to chronic opioid treatment and withdrawal. Neuropharmacology 2021; 186:108469. [PMID: 33485944 PMCID: PMC7988821 DOI: 10.1016/j.neuropharm.2021.108469] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/12/2021] [Accepted: 01/16/2021] [Indexed: 12/30/2022]
Abstract
Opioid use disorder is a leading cause of morbidity and mortality in the United States. Increasing pre-clinical and clinical evidence demonstrates sex differences in opioid use and dependence. However, the underlying molecular mechanisms contributing to these effects, including neuroinflammation, are still obscure. Therefore, in this study, we investigated the effect of oxycodone exposure and withdrawal on sex- and region-specific neuroimmune response. Real-time PCR and multiplex cytokine array analysis demonstrated elevated neuroinflammation with increased pro-inflammatory cytokine levels, and aberrant oligodendroglial response in reward neurocircuitry, following withdrawal from chronic oxycodone treatment. Chronic oxycodone and withdrawal treated male mice had lower mRNA expression of TMEM119 along with elevated protein levels of pro-inflammatory cytokines/chemokines and growth factors (IL-1β, IL-2, IL-7, IL-9, IL-12, IL-15, IL17, M-CSF, VEGF) in the prefrontal cortex (PFC) as compared to their female counterparts. In contrast, reduced levels of pro-inflammatory cytokines/chemokines (IL-1β, IL-6, IL-9, IL-12, CCL11) was observed in the nucleus accumbens (NAc) of oxycodone and withdrawal-treated males as compared to female mice. No treatment specific effects were observed on the mRNA expression of putative microglial activation markers (Iba1, CD68), but an overall sex specific decrease in the mRNA expression of Iba1 and CD68 was found in the PFC and NAc of male mice as compared to females. Moreover, a sex and region-specific increase in the mRNA levels of oligodendrocyte lineage markers (NG2, Sox10) was also observed in oxycodone and withdrawal treated animals. These findings may open a new avenue for the development of sex-specific precision therapeutics for opioid dependence by targeting region-specific neuroimmune signaling.
Collapse
Affiliation(s)
- Mohit Kumar
- University of Kentucky, College of Pharmacy, KY, USA
| | - Jennifer R Rainville
- Virginia Polytechnic Institute and State University, School of Neuroscience, VA, USA
| | - Kori Williams
- University of Kentucky, College of Pharmacy, KY, USA
| | - Joshua A Lile
- University of Kentucky, College of Medicine, KY, USA
| | - Georgia E Hodes
- Virginia Polytechnic Institute and State University, School of Neuroscience, VA, USA
| | - Fair M Vassoler
- Tufts University, Cummings School of Veterinary Medicine, MA, USA
| | - Jill R Turner
- University of Kentucky, College of Pharmacy, KY, USA.
| |
Collapse
|
36
|
Midavaine É, Côté J, Marchand S, Sarret P. Glial and neuroimmune cell choreography in sexually dimorphic pain signaling. Neurosci Biobehav Rev 2021; 125:168-192. [PMID: 33582232 DOI: 10.1016/j.neubiorev.2021.01.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/03/2020] [Accepted: 01/25/2021] [Indexed: 12/17/2022]
Abstract
Chronic pain is a major global health issue that affects all populations regardless of sex, age, ethnicity/race, or country of origin, leading to persistent physical and emotional distress and to the loss of patients' autonomy and quality of life. Despite tremendous efforts in the elucidation of the mechanisms contributing to the pathogenesis of chronic pain, the identification of new potential pain targets, and the development of novel analgesics, the pharmacological treatment options available for pain management remain limited, and most novel pain medications have failed to achieve advanced clinical development, leaving many patients with unbearable and undermanaged pain. Sex-specific susceptibility to chronic pain conditions as well as sex differences in pain sensitivity, pain tolerance and analgesic efficacy are increasingly recognized in the literature and have thus prompted scientists to seek mechanistic explanations. Hence, recent findings have highlighted that the signaling mechanisms underlying pain hypersensitivity are sexually dimorphic, which sheds light on the importance of conducting preclinical and clinical pain research on both sexes and of developing sex-specific pain medications. This review thus focuses on the clinical and preclinical evidence supporting the existence of sex differences in pain neurobiology. Attention is drawn to the sexually dimorphic role of glial and immune cells, which are both recognized as key players in neuroglial maladaptive plasticity at the origin of the transition from acute pain to chronic pathological pain. Growing evidence notably attributes to microglial cells a pivotal role in the sexually dimorphic pain phenotype and in the sexually dimorphic analgesic efficacy of opioids. This review also summarizes the recent advances in understanding the pathobiology underpinning the development of pain hypersensitivity in both males and females in different types of pain conditions, with particular emphasis on the mechanistic signaling pathways driving sexually dimorphic pain responses.
Collapse
Affiliation(s)
- Élora Midavaine
- Department of Pharmacology-Physiology, Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Centre de recherche du Centre hospitalier universitaire de Sherbrooke, CIUSSS de l'Estrie - CHUS, Sherbrooke, Québec, Canada.
| | - Jérôme Côté
- Department of Pharmacology-Physiology, Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Centre de recherche du Centre hospitalier universitaire de Sherbrooke, CIUSSS de l'Estrie - CHUS, Sherbrooke, Québec, Canada
| | - Serge Marchand
- Department of Pharmacology-Physiology, Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Centre de recherche du Centre hospitalier universitaire de Sherbrooke, CIUSSS de l'Estrie - CHUS, Sherbrooke, Québec, Canada
| | - Philippe Sarret
- Department of Pharmacology-Physiology, Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Centre de recherche du Centre hospitalier universitaire de Sherbrooke, CIUSSS de l'Estrie - CHUS, Sherbrooke, Québec, Canada.
| |
Collapse
|
37
|
Liu JA, Yu J, Cheung CW. Immune Actions on the Peripheral Nervous System in Pain. Int J Mol Sci 2021; 22:ijms22031448. [PMID: 33535595 PMCID: PMC7867183 DOI: 10.3390/ijms22031448] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 02/07/2023] Open
Abstract
Pain can be induced by tissue injuries, diseases and infections. The interactions between the peripheral nervous system (PNS) and immune system are primary actions in pain sensitizations. In response to stimuli, nociceptors release various mediators from their terminals that potently activate and recruit immune cells, whereas infiltrated immune cells further promote sensitization of nociceptors and the transition from acute to chronic pain by producing cytokines, chemokines, lipid mediators and growth factors. Immune cells not only play roles in pain production but also contribute to PNS repair and pain resolution by secreting anti-inflammatory or analgesic effectors. Here, we discuss the distinct roles of four major types of immune cells (monocyte/macrophage, neutrophil, mast cell, and T cell) acting on the PNS during pain process. Integration of this current knowledge will enhance our understanding of cellular changes and molecular mechanisms underlying pain pathogenies, providing insights for developing new therapeutic strategies.
Collapse
Affiliation(s)
- Jessica Aijia Liu
- Correspondence: (J.A.L.); (C.W.C.); Tel.: +852-2255-3303 (J.A.L. & C.W.C.); Fax: +852-2855-1654 (J.A.L. & C.W.C.)
| | | | - Chi Wai Cheung
- Correspondence: (J.A.L.); (C.W.C.); Tel.: +852-2255-3303 (J.A.L. & C.W.C.); Fax: +852-2855-1654 (J.A.L. & C.W.C.)
| |
Collapse
|
38
|
Linher-Melville K, Shah A, Singh G. Sex differences in neuro(auto)immunity and chronic sciatic nerve pain. Biol Sex Differ 2020; 11:62. [PMID: 33183347 PMCID: PMC7661171 DOI: 10.1186/s13293-020-00339-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/20/2020] [Indexed: 01/13/2023] Open
Abstract
Chronic pain occurs with greater frequency in women, with a parallel sexually dimorphic trend reported in sufferers of many autoimmune diseases. There is a need to continue examining neuro-immune-endocrine crosstalk in the context of sexual dimorphisms in chronic pain. Several phenomena in particular need to be further explored. In patients, autoantibodies to neural antigens have been associated with sensory pathway hyper-excitability, and the role of self-antigens released by damaged nerves remains to be defined. In addition, specific immune cells release pro-nociceptive cytokines that directly influence neural firing, while T lymphocytes activated by specific antigens secrete factors that either support nerve repair or exacerbate the damage. Modulating specific immune cell populations could therefore be a means to promote nerve recovery, with sex-specific outcomes. Understanding biological sex differences that maintain, or fail to maintain, neuroimmune homeostasis may inform the selection of sex-specific treatment regimens, improving chronic pain management by rebalancing neuroimmune feedback. Given the significance of interactions between nerves and immune cells in the generation and maintenance of neuropathic pain, this review focuses on sex differences and possible links with persistent autoimmune activity using sciatica as an example.
Collapse
Affiliation(s)
- Katja Linher-Melville
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada
| | - Anita Shah
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Gurmit Singh
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
39
|
Abboud C, Duveau A, Bouali-Benazzouz R, Massé K, Mattar J, Brochoire L, Fossat P, Boué-Grabot E, Hleihel W, Landry M. Animal models of pain: Diversity and benefits. J Neurosci Methods 2020; 348:108997. [PMID: 33188801 DOI: 10.1016/j.jneumeth.2020.108997] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 11/03/2020] [Accepted: 11/08/2020] [Indexed: 12/15/2022]
Abstract
Chronic pain is a maladaptive neurological disease that remains a major health problem. A deepening of our knowledge on mechanisms that cause pain is a prerequisite to developing novel treatments. A large variety of animal models of pain has been developed that recapitulate the diverse symptoms of different pain pathologies. These models reproduce different pain phenotypes and remain necessary to examine the multidimensional aspects of pain and understand the cellular and molecular basis underlying pain conditions. In this review, we propose an overview of animal models, from simple organisms to rodents and non-human primates and the specific traits of pain pathologies they model. We present the main behavioral tests for assessing pain and investing the underpinning mechanisms of chronic pathological pain. The validity of animal models is analysed based on their ability to mimic human clinical diseases and to predict treatment outcomes. Refine characterization of pathological phenotypes also requires to consider pain globally using specific procedures dedicated to study emotional comorbidities of pain. We discuss the limitations of pain models when research findings fail to be translated from animal models to human clinics. But we also point to some recent successes in analgesic drug development that highlight strategies for improving the predictive validity of animal models of pain. Finally, we emphasize the importance of using assortments of preclinical pain models to identify pain subtype mechanisms, and to foster the development of better analgesics.
Collapse
Affiliation(s)
- Cynthia Abboud
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000 Bordeaux, France; Univ. Bordeaux, CNRS, Institute for Neurodegenerative Diseases, IMN, UMR 5293, F-33000 Bordeaux, France; Faculty of Arts and Sciences, Holy Spirit University of Kaslik (USEK), Lebanon
| | - Alexia Duveau
- Univ. Bordeaux, CNRS, Institute for Neurodegenerative Diseases, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Rabia Bouali-Benazzouz
- Univ. Bordeaux, CNRS, Institute for Neurodegenerative Diseases, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Karine Massé
- Univ. Bordeaux, CNRS, Institute for Neurodegenerative Diseases, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Joseph Mattar
- School of Medicine and Medical Sciences, Holy Spirit University of Kaslik (USEK), Lebanon
| | - Louison Brochoire
- Univ. Bordeaux, CNRS, Institute for Neurodegenerative Diseases, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Pascal Fossat
- Univ. Bordeaux, CNRS, Institute for Neurodegenerative Diseases, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Eric Boué-Grabot
- Univ. Bordeaux, CNRS, Institute for Neurodegenerative Diseases, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Walid Hleihel
- School of Medicine and Medical Sciences, Holy Spirit University of Kaslik (USEK), Lebanon; Faculty of Arts and Sciences, Holy Spirit University of Kaslik (USEK), Lebanon
| | - Marc Landry
- Univ. Bordeaux, CNRS, Institute for Neurodegenerative Diseases, IMN, UMR 5293, F-33000 Bordeaux, France.
| |
Collapse
|
40
|
Tavares-Ferreira D, Ray PR, Sankaranarayanan I, Mejia GL, Wangzhou A, Shiers S, Uttarkar R, Megat S, Barragan-Iglesias P, Dussor G, Akopian AN, Price TJ. Sex Differences in Nociceptor Translatomes Contribute to Divergent Prostaglandin Signaling in Male and Female Mice. Biol Psychiatry 2020; 91:129-140. [PMID: 33309016 PMCID: PMC8019688 DOI: 10.1016/j.biopsych.2020.09.022] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND There are clinically relevant sex differences in acute and chronic pain mechanisms, but we are only beginning to understand their mechanistic basis. Transcriptome analyses of rodent whole dorsal root ganglion (DRG) have revealed sex differences, mostly in immune cells. We examined the transcriptome and translatome of the mouse DRG with the goal of identifying sex differences. METHODS We used translating ribosome affinity purification sequencing and behavioral pharmacology to test the hypothesis that in Nav1.8-positive neurons, most of which are nociceptors, translatomes would differ by sex. RESULTS We found 80 genes with sex differential expression in the whole DRG transcriptome and 66 genes whose messenger RNAs were sex differentially actively translated (translatome). We also identified different motifs in the 3' untranslated region of messenger RNAs that were sex differentially translated. In further validation studies, we focused on Ptgds, which was increased in the translatome of female mice. The messenger RNA encodes the prostaglandin PGD2 synthesizing enzyme. We observed increased PTGDS protein and PGD2 in female mouse DRG. The PTGDS inhibitor AT-56 caused intense pain behaviors in male mice but was only effective at high doses in female mice. Conversely, female mice responded more robustly to another major prostaglandin, PGE2, than did male mice. PTGDS protein expression was also higher in female cortical neurons, suggesting that DRG findings may be generalizable to other nervous system structures. CONCLUSIONS Our results demonstrate sex differences in nociceptor-enriched translatomes and reveal unexpected sex differences in one of the oldest known nociceptive signaling molecule families, the prostaglandins.
Collapse
Affiliation(s)
- Diana Tavares-Ferreira
- University of Texas at Dallas, Department of Neuroscience and Center for Advanced Pain Studies
| | - Pradipta R. Ray
- University of Texas at Dallas, Department of Neuroscience and Center for Advanced Pain Studies
| | | | - Galo L. Mejia
- University of Texas at Dallas, Department of Neuroscience and Center for Advanced Pain Studies
| | - Andi Wangzhou
- University of Texas at Dallas, Department of Neuroscience and Center for Advanced Pain Studies
| | - Stephanie Shiers
- University of Texas at Dallas, Department of Neuroscience and Center for Advanced Pain Studies
| | - Ruta Uttarkar
- University of Texas at Dallas, Department of Neuroscience and Center for Advanced Pain Studies
| | - Salim Megat
- University of Texas at Dallas, Department of Neuroscience and Center for Advanced Pain Studies
| | | | - Gregory Dussor
- University of Texas at Dallas, Department of Neuroscience and Center for Advanced Pain Studies
| | - Armen N. Akopian
- University of Texas Health San Antonio, Department of Endodontics
| | - Theodore J. Price
- University of Texas at Dallas, Department of Neuroscience and Center for Advanced Pain Studies,correspondence to Theodore J Price – , 800 W Campbell Rd, Richardson TX 75080, USA, 972-883-4311
| |
Collapse
|
41
|
Wei D, Hou J, Zheng K, Jin X, Xie Q, Cheng L, Sun X. Suicide Gene Therapy Against Malignant Gliomas by the Local Delivery of Genetically Engineered Umbilical Cord Mesenchymal Stem Cells as Cellular Vehicles. Curr Gene Ther 2020; 19:330-341. [PMID: 31657679 DOI: 10.2174/1566523219666191028103703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 10/13/2019] [Accepted: 10/18/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Glioblastoma (GBM) is a malignant tumor that is difficult to eliminate, and new therapies are thus strongly desired. Mesenchymal stem cells (MSCs) have the ability to locate to injured tissues, inflammation sites and tumors and are thus good candidates for carrying antitumor genes for the treatment of tumors. Treating GBM with MSCs that have been transduced with the herpes simplex virus thymidine kinase (HSV-TK) gene has brought significant advances because MSCs can exert a bystander effect on tumor cells upon treatment with the prodrug ganciclovir (GCV). OBJECTIVE In this study, we aimed to determine whether HSV-TK-expressing umbilical cord mesenchymal stem cells (MSCTKs) together with prodrug GCV treatment could exert a bystander killing effect on GBM. METHODS AND RESULTS Compared with MSCTK: U87 ratio at 1:10,1:100 and 1:100, GCV concentration at 2.5µM or 250µM, when MSCTKs were cocultured with U87 cells at a ratio of 1:1, 25 µM GCV exerted a more stable killing effect. Higher amounts of MSCTKs cocultured with U87 cells were correlated with a better bystander effect exerted by the MSCTK/GCV system. We built U87-driven subcutaneous tumor models and brain intracranial tumor models to evaluate the efficiency of the MSCTK/GCV system on subcutaneous and intracranial tumors and found that MSCTK/GCV was effective in both models. The ratio of MSCTKs and tumor cells played a critical role in this therapeutic effect, with a higher MSCTK/U87 ratio exerting a better effect. CONCLUSION This research suggested that the MSCTK/GCV system exerts a strong bystander effect on GBM tumor cells, and this system may be a promising assistant method for GBM postoperative therapy.
Collapse
Affiliation(s)
- Dan Wei
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China.,National Engineering and Research Center of Human Stem Cell, Changsha, Hunan, China
| | - JiaLi Hou
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China.,National Engineering and Research Center of Human Stem Cell, Changsha, Hunan, China
| | - Ke Zheng
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China.,National Engineering and Research Center of Human Stem Cell, Changsha, Hunan, China
| | - Xin Jin
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China.,National Engineering and Research Center of Human Stem Cell, Changsha, Hunan, China
| | - Qi Xie
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China.,National Engineering and Research Center of Human Stem Cell, Changsha, Hunan, China
| | - Lamei Cheng
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China.,National Engineering and Research Center of Human Stem Cell, Changsha, Hunan, China
| | - Xuan Sun
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China.,National Engineering and Research Center of Human Stem Cell, Changsha, Hunan, China
| |
Collapse
|
42
|
Neuroendocrine Mechanisms Governing Sex Differences in Hyperalgesic Priming Involve Prolactin Receptor Sensory Neuron Signaling. J Neurosci 2020; 40:7080-7090. [PMID: 32801151 DOI: 10.1523/jneurosci.1499-20.2020] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 01/17/2023] Open
Abstract
Many clinical and preclinical studies report higher prevalence and severity of chronic pain in females. We used hyperalgesic priming with interleukin 6 (IL-6) priming and PGE2 as a second stimulus as a model for pain chronicity. Intraplantar IL-6 induced hypersensitivity was similar in magnitude and duration in both males and females, while both paw and intrathecal PGE2 hypersensitivity was more persistent in females. This difference in PGE2 response was dependent on both circulating estrogen and translation regulation signaling in the spinal cord. In males, the duration of hypersensitivity was regulated by testosterone. Since the prolactin receptor (Prlr) is regulated by reproductive hormones and is female-selectively activated in sensory neurons, we evaluated whether Prlr signaling contributes to hyperalgesic priming. Using ΔPRL, a competitive Prlr antagonist, and a mouse line with ablated Prlr in the Nav1.8 sensory neuronal population, we show that Prlr in sensory neurons is necessary for the development of hyperalgesic priming in female, but not male, mice. Overall, sex-specific mechanisms in the initiation and maintenance of chronic pain are regulated by the neuroendocrine system and, specifically, sensory neuronal Prlr signaling.SIGNIFICANCE STATEMENT Females are more likely to experience chronic pain than males, but the mechanisms that underlie this sex difference are not completely understood. Here, we demonstrate that the duration of mechanical hypersensitivity is dependent on circulating sex hormones in mice, where estrogen caused an extension of sensitivity and testosterone was responsible for a decrease in the duration of the hyperalgesic priming model of chronic pain. Additionally, we demonstrated that prolactin receptor expression in Nav1.8+ neurons was necessary for hyperalgesic priming in female, but not male, mice. Our work demonstrates a female-specific mechanism for the promotion of chronic pain involving the neuroendrocrine system and mediated by sensory neuronal prolactin receptor.
Collapse
|
43
|
Baptista-de-Souza D, Tavares-Ferreira D, Megat S, Sankaranarayanan I, Shiers S, Flores CM, Ghosh S, Luiz Nunes-de-Souza R, Canto-de-Souza A, Price TJ. Sex differences in the role of atypical PKC within the basolateral nucleus of the amygdala in a mouse hyperalgesic priming model. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2020; 8:100049. [PMID: 32548337 PMCID: PMC7284072 DOI: 10.1016/j.ynpai.2020.100049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/07/2020] [Accepted: 06/01/2020] [Indexed: 04/15/2023]
Abstract
Though sex differences in chronic pain have been consistently described in the literature, their underlying neural mechanisms are poorly understood. Previous work in humans has demonstrated that men and women differentially invoke distinct brain regions and circuits in coping with subjective pain unpleasantness. The goal of the present work was to elucidate the molecular mechanisms in the basolateral nucleus of the amygdala (BLA) that modulate hyperalgesic priming, a pain plasticity model, in males and females. We used plantar incision as the first, priming stimulus and prostaglandin E2 (PGE2) as the second stimulus. We sought to assess whether hyperalgesic priming can be prevented or reversed by pharmacologically manipulating molecular targets in the BLA of male or female mice. We found that administering ZIP, a cell-permeable inhibitor of aPKC, into the BLA attenuated aspects of hyperalgesic priming induced by plantar incision in males and females. However, incision only upregulated PKCζ/PKMζ immunoreactivity in the BLA of male mice, and deficits in hyperalgesic priming were seen only when we restricted our analysis to male Prkcz-/- mice. On the other hand, intra-BLA microinjections of pep2m, a peptide that interferes with the trafficking and function of GluA2-containing AMPA receptors, a downstream target of aPKC, reduced mechanical hypersensitivity after plantar incision and disrupted the development of hyperalgesic priming in both male and female mice. In addition, pep2m treatment reduced facial grimacing and restored aberrant behavioral responses in the sucrose splash test in male and female primed mice. Immunofluorescence results demonstrated upregulation of GluA2 expression in the BLA of male and female primed mice, consistent with pep2m findings. We conclude that, in a model of incision-induced hyperalgesic priming, PKCζ/PKMζ in the BLA is critical for the development of hyperalgesic priming in males, while GluA2 in the BLA is crucial for the expression of both reflexive and affective pain-related behaviors in both male and female mice in this model. Our findings add to a growing body of evidence of sex differences in molecular pain mechanisms in the brain.
Collapse
Affiliation(s)
- Daniela Baptista-de-Souza
- Dept. Psychology, Federal University of Sao Carlos-UFSCar, Sao Carlos, SP 13565-905, Brazil
- University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, United States
| | - Diana Tavares-Ferreira
- University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, United States
| | - Salim Megat
- University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, United States
| | - Ishwarya Sankaranarayanan
- University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, United States
| | - Stephanie Shiers
- University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, United States
| | - Christopher M. Flores
- Janssen Research & Development, Neuroscience Therapeutic Area, San Diego, CA, United States
| | - Sourav Ghosh
- Yale University School of Medicine, Department of Neurology, United States
| | - Ricardo Luiz Nunes-de-Souza
- Joint Graduate Program in Physiological Sciences UFSCar/UNESP, São Carlos, SP 13565-905, Brazil
- Lab. Pharmacology, School of Pharmaceutical Sciences, Univ. Estadual Paulista – UNESP, Araraquara, SP 14800-903, Brazil
| | - Azair Canto-de-Souza
- Dept. Psychology, Federal University of Sao Carlos-UFSCar, Sao Carlos, SP 13565-905, Brazil
- Joint Graduate Program in Physiological Sciences UFSCar/UNESP, São Carlos, SP 13565-905, Brazil
- Graduate Program in Psychology UFSCar, São Carlos, SP 13565-905, Brazil
| | - Theodore J. Price
- University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, United States
- Corresponding author at: University of Texas at Dallas, School of Behavioral and Brain Sciences, 800 W Campbell Rd., BSB 14.102, Richardson, TX 75080, United States.
| |
Collapse
|
44
|
Tawfik VL, Huck NA, Baca QJ, Ganio EA, Haight ES, Culos A, Ghaemi S, Phongpreecha T, Angst MS, Clark JD, Aghaeepour N, Gaudilliere B. Systematic Immunophenotyping Reveals Sex-Specific Responses After Painful Injury in Mice. Front Immunol 2020; 11:1652. [PMID: 32849569 PMCID: PMC7403191 DOI: 10.3389/fimmu.2020.01652] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/22/2020] [Indexed: 01/24/2023] Open
Abstract
Many diseases display unequal prevalence between sexes. The sex-specific immune response to both injury and persistent pain remains underexplored and would inform treatment paradigms. We utilized high-dimensional mass cytometry to perform a comprehensive analysis of phenotypic and functional immune system differences between male and female mice after orthopedic injury. Multivariate modeling of innate and adaptive immune cell responses after injury using an elastic net algorithm, a regularized regression method, revealed sex-specific divergence at 12 h and 7 days after injury with a stronger immune response to injury in females. At 12 h, females upregulated STAT3 signaling in neutrophils but downregulated STAT1 and STAT6 signals in T regulatory cells, suggesting a lack of engagement of immune suppression pathways by females. Furthermore, at 7 days females upregulated MAPK pathways (p38, ERK, NFkB) in CD4T memory cells, setting up a possible heightened immune memory of painful injury. Taken together, our findings provide the first comprehensive and functional analysis of sex-differences in the immune response to painful injury.
Collapse
Affiliation(s)
- Vivianne L Tawfik
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, United States
| | - Nolan A Huck
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, United States
| | - Quentin J Baca
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, United States
| | - Edward A Ganio
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, United States
| | - Elena S Haight
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, United States
| | - Anthony Culos
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, United States
| | - Sajjad Ghaemi
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, United States.,Digital Technologies Research Centre, National Research Council Canada, Toronto, ON, Canada
| | - Thanaphong Phongpreecha
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, United States.,Department of Biomedical Data Sciences, Stanford University, Stanford, CA, United States.,Department of Pathology, Stanford University, Stanford, CA, United States
| | - Martin S Angst
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, United States
| | - J David Clark
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, United States
| | - Nima Aghaeepour
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, United States.,Department of Biomedical Data Sciences, Stanford University, Stanford, CA, United States.,Department of Pediatrics, Stanford University, Stanford, CA, United States
| | - Brice Gaudilliere
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, United States.,Department of Pediatrics, Stanford University, Stanford, CA, United States
| |
Collapse
|
45
|
Qualitative sex differences in pain processing: emerging evidence of a biased literature. Nat Rev Neurosci 2020; 21:353-365. [PMID: 32440016 DOI: 10.1038/s41583-020-0310-6] [Citation(s) in RCA: 389] [Impact Index Per Article: 77.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2020] [Indexed: 02/07/2023]
Abstract
Although most patients with chronic pain are women, the preclinical literature regarding pain processing and the pathophysiology of chronic pain has historically been derived overwhelmingly from the study of male rodents. This Review describes how the recent adoption by a number of funding agencies of policies mandating the incorporation of sex as a biological variable into preclinical research has correlated with an increase in the number of studies investigating sex differences in pain and analgesia. Trends in the field are analysed, with a focus on newly published findings of qualitative sex differences: that is, those findings that are suggestive of differential processing mechanisms in each sex. It is becoming increasingly clear that robust differences exist in the genetic, molecular, cellular and systems-level mechanisms of acute and chronic pain processing in male and female rodents and humans.
Collapse
|
46
|
Smith JC. A Review of Strain and Sex Differences in Response to Pain and Analgesia in Mice. Comp Med 2019; 69:490-500. [PMID: 31822324 DOI: 10.30802/aalas-cm-19-000066] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pain and its alleviation are currently a highly studied issue in human health. Research on pain and response to analgesia has evolved to include the effects of genetics, heritability, and sex as important components in both humans and animals. The laboratory mouse is the major animal studied in the field of pain and analgesia. Studying the inbred mouse to understand how genetic heritable traits and/or sex influence pain and analgesia has added valuable information to the complex nature of pain as a human disease. In the context of biomedical research, identifying pain and ensuring its control through analgesia in research animals remains one of the hallmark responsibilities of the research community. Advancements in both human and mouse genomic research shed light not only on the need to understand how both strain and sex affect the mouse pain response but also on how these research achievements can be used to improve the humane use of all research animal species. A better understanding of how strain and sex affect the response to pain may allow researchers to improve study design and thereby the reproducibility of animal research studies. The need to use both sexes, along with an improved understanding of how genetic heritability affects nociception and analgesic sensitivity, remains a key priority for pain researchers working with mice. This review summarizes the current literature on how strain and sex alter the response to pain and analgesia in the modern research mouse, and highlights the importance of both strain and sex selection in pain research.
Collapse
Affiliation(s)
- Jennifer C Smith
- Department of Bioresources, Henry Ford Health System, Detroit, Michigan;,
| |
Collapse
|
47
|
Culbreth MJ, Biryukov SS, Shoe JL, Dankmeyer JL, Hunter M, Klimko CP, Rosario-Acevedo R, Fetterer DP, Moreau AM, Welkos SL, Cote CK. The Use of Analgesics during Vaccination with a Live Attenuated Yersinia pestis Vaccine Alters the Resulting Immune Response in Mice. Vaccines (Basel) 2019; 7:vaccines7040205. [PMID: 31816945 PMCID: PMC6963655 DOI: 10.3390/vaccines7040205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/25/2019] [Accepted: 11/28/2019] [Indexed: 02/06/2023] Open
Abstract
The administration of antipyretic analgesics prior to, in conjunction with, or due to sequelae associated with vaccination is a common yet somewhat controversial practice. In the context of human vaccination, it is unclear if even short-term analgesic regimens can significantly alter the resulting immune response, as literature exists to support several scenarios including substantial immune interference. In this report, we used a live attenuated Yersinia pestis vaccine to examine the impact of analgesic administration on the immune response elicited by a single dose of a live bacterial vaccine in mice. Mice were assessed by evaluating natural and provoked behavior, as well as food and water consumption. The resulting immune responses were assessed by determining antibody titers against multiple antigens and assaying cellular responses in stimulated splenocytes collected from vaccinated animals. We observed no substantial benefit to the mice associated with the analgesic administration. Splenocytes from both C57BL/6 and BALB/c vaccinated mice receiving acetaminophen have a significantly reduced interferon-gamma (IFN-γ) recall response. Additionally, there is a significantly lower immunoglobulin (Ig)G2a/IgG1 ratio in vaccinated BALB/c mice treated with either acetaminophen or meloxicam and a significantly lower IgG2c/IgG1 ratio in vaccinated C57BL/6 mice treated with acetaminophen. Taken together, our data indicate that the use of analgesics, while possibly ethically warranted, may hinder the accurate characterization and evaluation of novel vaccine strategies with little to no appreciable benefits to the vaccinated mice.
Collapse
Affiliation(s)
- Marilynn J. Culbreth
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Comparative Medicine Division, Fort Detrick, Frederick, MD 21702, USA;
| | - Sergei S. Biryukov
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Bacteriology Division, Fort Detrick, Frederick, MD 21702, USA; (S.S.B.); (J.L.S.); (J.L.D.); (M.H.); (C.P.K.); (R.R.-A.); (S.L.W.)
| | - Jennifer L. Shoe
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Bacteriology Division, Fort Detrick, Frederick, MD 21702, USA; (S.S.B.); (J.L.S.); (J.L.D.); (M.H.); (C.P.K.); (R.R.-A.); (S.L.W.)
| | - Jennifer L. Dankmeyer
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Bacteriology Division, Fort Detrick, Frederick, MD 21702, USA; (S.S.B.); (J.L.S.); (J.L.D.); (M.H.); (C.P.K.); (R.R.-A.); (S.L.W.)
| | - Melissa Hunter
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Bacteriology Division, Fort Detrick, Frederick, MD 21702, USA; (S.S.B.); (J.L.S.); (J.L.D.); (M.H.); (C.P.K.); (R.R.-A.); (S.L.W.)
| | - Christopher P. Klimko
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Bacteriology Division, Fort Detrick, Frederick, MD 21702, USA; (S.S.B.); (J.L.S.); (J.L.D.); (M.H.); (C.P.K.); (R.R.-A.); (S.L.W.)
| | - Raysa Rosario-Acevedo
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Bacteriology Division, Fort Detrick, Frederick, MD 21702, USA; (S.S.B.); (J.L.S.); (J.L.D.); (M.H.); (C.P.K.); (R.R.-A.); (S.L.W.)
| | - David P. Fetterer
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Biostatistics Medicine Division, Fort Detrick, Frederick, MD 21702, USA;
| | - Alicia M. Moreau
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Pathology Division, Fort Detrick, Frederick, MD 21702, USA;
| | - Susan L. Welkos
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Bacteriology Division, Fort Detrick, Frederick, MD 21702, USA; (S.S.B.); (J.L.S.); (J.L.D.); (M.H.); (C.P.K.); (R.R.-A.); (S.L.W.)
| | - Christopher K. Cote
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Bacteriology Division, Fort Detrick, Frederick, MD 21702, USA; (S.S.B.); (J.L.S.); (J.L.D.); (M.H.); (C.P.K.); (R.R.-A.); (S.L.W.)
- Correspondence:
| |
Collapse
|
48
|
Calvo M, Davies AJ, Hébert HL, Weir GA, Chesler EJ, Finnerup NB, Levitt RC, Smith BH, Neely GG, Costigan M, Bennett DL. The Genetics of Neuropathic Pain from Model Organisms to Clinical Application. Neuron 2019; 104:637-653. [PMID: 31751545 PMCID: PMC6868508 DOI: 10.1016/j.neuron.2019.09.018] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/05/2019] [Accepted: 09/12/2019] [Indexed: 12/14/2022]
Abstract
Neuropathic pain (NeuP) arises due to injury of the somatosensory nervous system and is both common and disabling, rendering an urgent need for non-addictive, effective new therapies. Given the high evolutionary conservation of pain, investigative approaches from Drosophila mutagenesis to human Mendelian genetics have aided our understanding of the maladaptive plasticity underlying NeuP. Successes include the identification of ion channel variants causing hyper-excitability and the importance of neuro-immune signaling. Recent developments encompass improved sensory phenotyping in animal models and patients, brain imaging, and electrophysiology-based pain biomarkers, the collection of large well-phenotyped population cohorts, neurons derived from patient stem cells, and high-precision CRISPR generated genetic editing. We will discuss how to harness these resources to understand the pathophysiological drivers of NeuP, define its relationship with comorbidities such as anxiety, depression, and sleep disorders, and explore how to apply these findings to the prediction, diagnosis, and treatment of NeuP in the clinic.
Collapse
Affiliation(s)
- Margarita Calvo
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexander J Davies
- Neural Injury Group, Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Harry L Hébert
- Chronic Pain Research Group, Division of Population Health and Genomics, Mackenzie Building, Ninewells Hospital & Medical School, University of Dundee, Dundee, UK
| | - Greg A Weir
- Neural Injury Group, Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | | | - Nanna B Finnerup
- Department of Clinical Medicine, Danish Pain Research Center, Aarhus University, Aarhus 8000, Denmark
| | - Roy C Levitt
- Department of Anesthesiology, Perioperative Medicine and Pain Management, and John T. MacDonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Blair H Smith
- Chronic Pain Research Group, Division of Population Health and Genomics, Mackenzie Building, Ninewells Hospital & Medical School, University of Dundee, Dundee, UK
| | - G Gregory Neely
- Dr. John and Anne Chong Lab for Functional Genomics, Camperdown, University of Sydney, Sydney, NSW, Australia
| | - Michael Costigan
- Departments of Anesthesia and Neurobiology, Children's Hospital Boston and Harvard Medical School, Boston, MA, USA.
| | - David L Bennett
- Neural Injury Group, Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, University of Oxford, Oxford, UK.
| |
Collapse
|
49
|
Farkhondeh T, Ashrafizadeh M, Mehrpour O, Roshanravan B, Samarghandian S. Low toxicity in hematological and biomedical parameters caused by bupernorphine in lactating female rats and their newborns. TOXIN REV 2019. [DOI: 10.1080/15569543.2019.1681002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
- Innovative Medical Research Center, Islamic Azad University, Mashhad, Iran
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Omid Mehrpour
- Rocky Mountain Poison and Drug Safety, Denver Health, Denver, CO, USA
| | - Babak Roshanravan
- Medical Student, Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
50
|
Patil M, Belugin S, Mecklenburg J, Wangzhou A, Paige C, Barba-Escobedo PA, Boyd JT, Goffin V, Grattan D, Boehm U, Dussor G, Price TJ, Akopian AN. Prolactin Regulates Pain Responses via a Female-Selective Nociceptor-Specific Mechanism. iScience 2019; 20:449-465. [PMID: 31627131 PMCID: PMC6818331 DOI: 10.1016/j.isci.2019.09.039] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/26/2019] [Accepted: 09/26/2019] [Indexed: 02/07/2023] Open
Abstract
Many clinical and preclinical studies report an increased prevalence and severity of chronic pain among females. Here, we identify a sex-hormone-controlled target and mechanism that regulates dimorphic pain responses. Prolactin (PRL), which is involved in many physiologic functions, induces female-specific hyperalgesia. A PRL receptor (Prlr) antagonist in the hind paw or spinal cord substantially reduced hyperalgesia in inflammatory models. This effect was mimicked by sensory neuronal ablation of Prlr. Although Prlr mRNA is expressed equally in female and male peptidergic nociceptors and central terminals, Prlr protein was found only in females and PRL-induced excitability was detected only in female DRG neurons. PRL-induced excitability was reproduced in male Prlr+ neurons after prolonged treatment with estradiol but was prevented with addition of a translation inhibitor. We propose a novel mechanism for female-selective regulation of pain responses, which is mediated by Prlr signaling in sensory neurons via sex-dependent control of Prlr mRNA translation. Local or spinal PRL injection induces hyperalgesia in a female-selective manner Sensory neuron Prlr regulates tissue injury-induced pain only in females PRL regulates excitability in Prlr+ neurons depending on sex and estrogen Regulation of Prlr translation defines female-selective neuronal excitability
Collapse
Affiliation(s)
- Mayur Patil
- Department of Endodontics, The School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA; Department of Molecular Pharmacology and Physiology, University South Florida (USF), Tampa, FL 33612, USA
| | - Sergei Belugin
- Department of Endodontics, The School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Jennifer Mecklenburg
- Department of Endodontics, The School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Andi Wangzhou
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX 75080, USA
| | - Candler Paige
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX 75080, USA
| | - Priscilla A Barba-Escobedo
- Department of Endodontics, The School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | - Jacob T Boyd
- Department of Endodontics, The School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA; Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | - David Grattan
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago School of Biomedical Sciences, Dunedin, New Zealand
| | - Ulrich Boehm
- Department of Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, Homburg, Germany
| | - Gregory Dussor
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX 75080, USA
| | - Theodore J Price
- School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, University of Texas at Dallas, 800 W Campbell Road, Richardson, TX 75080, USA.
| | - Armen N Akopian
- Department of Endodontics, The School of Dentistry, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA; Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| |
Collapse
|