1
|
Bian Y, Yang Y, Chen J, Liu J, Tao Y, Liu Z, Huang L. Defective PINK1-dependent mitophagy is involved in high glucose-induced neurotoxicity. Neuroscience 2025; 573:286-299. [PMID: 40139643 DOI: 10.1016/j.neuroscience.2025.03.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 03/19/2025] [Accepted: 03/22/2025] [Indexed: 03/29/2025]
Abstract
Neuropathic pain often complicates diabetes progression, yet the pathogenic mechanisms are poorly understood. Defective mitophagy is linked to various diabetic complications like nephropathy, cardiomyopathy, and retinopathy. To investigate the molecular basis of hyperglycemia-induced painful diabetic neuropathy (PDN), we examined the effect of high glucose on the PTEN-induced kinase 1 (PINK1)/Parkin RBR E3 ubiquitin protein ligase (Parkin)-mediated mitophagy pathway in ND7/23 cells. Cells were treated with different glucose concentrations (25, 50, 75 mM) for various durations (24, 48, 72 h). Additionally, cells were exposed to high glucose (50 mM) with or without 100 nM rapamycin (a mitophagy enhancer) for 48 h, or transfected with PINK1 siRNA. We assessed protein levels of mitophagy-related genes (PINK1, Parkin, P62, LC3B) and apoptotic markers (cleaved-Caspase3) via Western blotting. High glucose significantly reduced the expression of autophagy-related proteins PINK1 and Parkin in a time- and concentration-dependent manner compared to controls. Rapamycin counteracted the inhibitory effects of high glucose on PINK1/Parkin-mediated mitophagy, while PINK1 siRNA transfection showed similar outcomes, confirming the inhibitory impact of high glucose on mitophagy. Moreover, high glucose induced apoptosis by suppressing PINK1/Parkin-mediated mitophagy, causing cytotoxic effects in ND7/23 cells which is derived from the fusion of mouse neuroblastoma cells and rat dorsal root ganglion (DRG) cells. Our findings suggest that hyperglycemia-induced disruption of the PINK1/Parkin mitophagy pathway impairs mitochondrial homeostasis, leading to apoptosis. Therefore, targeting PINK1 pathway activation or restoring mitophagy might be a promising therapeutic strategy for PDN treatment.
Collapse
Affiliation(s)
- Yongsheng Bian
- Department of Neurosurgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province 510660, People's Republic of China
| | - Yimei Yang
- Department of Neurosurgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510030, People's Republic of China
| | - Jun Chen
- Department of Neurosurgery, Zhongshan Hospital of Traditional Chinese Medicine, Zhongshan, Guangdong Province 528400, People's Republic of China
| | - Jian Liu
- Department of Anesthesiology, Zhongshan Hospital of Traditional Chinese Medicine, Zhongshan, Guangdong Province 528400, People's Republic of China
| | - Yan Tao
- Department of Ultrasound Medicine, Guangzhou First People's Hospital, The First People's Hospital Affiliated to Guangzhou Medical University, The Second Affiliated Hospital of South China University of Technology, Guangzhou, Guangdong Province 510180, People's Republic of China.
| | - Zhongjie Liu
- Department of Anesthesiology, Shenzhen Children's Hospital, Shenzhen, Guangdong Province 518000, People's Republic of China.
| | - Lijin Huang
- Department of Neurosurgery, Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province 510030, People's Republic of China.
| |
Collapse
|
2
|
Shinouchi R, Shibata K, Nagatsuka T, Hasumi K, Nobe K. Antioxidant and anti-inflammatory effects of SMTP-44D in a streptozotocin-induced diabetic neuropathy mouse model. J Diabetes Complications 2025; 39:109061. [PMID: 40318460 DOI: 10.1016/j.jdiacomp.2025.109061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/14/2025] [Accepted: 04/27/2025] [Indexed: 05/07/2025]
Abstract
BACKGROUND Diabetic neuropathy (DN) is a debilitating complication of diabetes, driven by oxidative stress, inflammation, and advanced glycation end products (AGE) signaling through its receptor (RAGE). Soluble epoxide hydrolase (sEH) metabolizes anti-inflammatory epoxyeicosatrienoic acids (EETs) into pro-inflammatory dihydroxyeicosatrienoic acids (DHETs), exacerbating DN pathology. SMTP-44D, an sEH inhibitor, has demonstrated antioxidant and anti-inflammatory effects in vitro; however, its in vivo efficacy remains unclear. AIM To investigate the antioxidant and anti-inflammatory activities of SMTP-44D in relation to sEH inhibition and AGE/RAGE signaling in a streptozotocin (STZ)-induced DN mouse model. METHODOLOGY STZ-induced diabetic mice were treated with SMTP-44D (30 mg/kg) from days 8 to 28 post STZ injection (200 mg/kg). Oxidative stress markers, inflammatory factors, AGE in the sciatic nerve, and RAGE in serum were assessed via ELISA. DHET levels in serum were measured using LC-MS/MS, and apoptosis in the sciatic nerve was assessed via TUNEL staining and fluorescent immunohistochemistry for cleaved caspase-3. RESULTS Our findings indicated that SMTP-44D inhibited sEH, reducing DHET levels and sustaining anti-inflammatory effects. It attenuated the migration of nuclear factor-kappa B, decreased AGE and RAGE levels, and suppressed oxidative stress and inflammatory markers in the sciatic nerve. Moreover, SMTP-44D inhibited apoptosis, potentially mitigating the axonal damage associated with DN. CONCLUSION Our findings suggest that SMTP-44D is a promising therapeutic agent for DN, acting through sEH inhibition and reducing AGE/RAGE levels.
Collapse
Affiliation(s)
- Ryosuke Shinouchi
- Department of Pharmacology, Showa Medical University Graduate School of Pharmacy (R.S.; K.S.; K.N.), 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Pharmacological Research Center, Showa Medical University (R.S.; K.S.; K.N.), 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
| | - Keita Shibata
- Department of Pharmacology, Showa Medical University Graduate School of Pharmacy (R.S.; K.S.; K.N.), 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Pharmacological Research Center, Showa Medical University (R.S.; K.S.; K.N.), 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Taiju Nagatsuka
- Division of Pharmacology, Department of Pharmacology, Toxicology and Therapeutics, School of Pharmacy, Showa Medical University (T.N.), 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| | - Keiji Hasumi
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology (K.H.), 3-5-8 Saiwaicho, Fuchu-shi, Tokyo 183-8509, Japan; TMS Co., Ltd. (K.H.), 1-9-11F Fuchucho, Fuchu-shi, Tokyo 183-0055, Japan
| | - Koji Nobe
- Department of Pharmacology, Showa Medical University Graduate School of Pharmacy (R.S.; K.S.; K.N.), 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan; Pharmacological Research Center, Showa Medical University (R.S.; K.S.; K.N.), 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan
| |
Collapse
|
3
|
Goller SS, Feuerriegel GC, Marth AA, Germann C, Schubert M, Hubli M, Waibel FWA, Sutter R. MRI evaluation of Pacinian corpuscle number and distribution in the forefoot in diabetic sensorimotor polyneuropathy. Insights Imaging 2025; 16:52. [PMID: 40053155 DOI: 10.1186/s13244-025-01932-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 02/06/2025] [Indexed: 03/10/2025] Open
Abstract
OBJECTIVES To evaluate Pacinian corpuscles (PC) in the forefoot of patients with type 2 diabetes-derived sensorimotor polyneuropathy (DSP) with MRI. MATERIALS AND METHODS This single-center study compared 20 DSP patients who underwent clinical forefoot 3-T MRI to healthy volunteers matched for age and gender. Two radiologists independently assessed the number and distribution of PC. In addition, one radiologist determined PC size. Correlations between PC number, duration of diabetes, and Hemoglobin A1c (HbA1c) were assessed. RESULTS In DSP patients, the number of PC in the forefoot was significantly reduced compared to healthy volunteers (82.7 ± 46.1 vs. 265.3 ± 49.3, p < 0.001). In contrast to the typical "chain-like" pattern of PC in healthy volunteers, their arrangement was heterogeneous in DSP patients and showed a more isolated "spot-like" pattern. Volunteers exhibited the highest PC number along the proximal phalanges, followed by the metatarsophalangeal (MTP) joints, while in patients, no such predominance was found. In DSP patients, the maximum diameter of PC was 3 mm (range 1-3 mm) compared to 5 mm (1-5 mm) in healthy volunteers. In patients, the mean duration of diabetes was 234.8 ± 130.4 months, and the mean HbA1c was 7.6 ± 1.1%. There was no significant correlation between PC number, duration of diabetes, and HbA1c. CONCLUSION DSP patients had threefold lower PC numbers in the forefoot and exhibited a "spot-like" PC distribution pattern rather than the typical "chain-like" pattern observed in healthy volunteers. The exact depiction of PC and their distribution in the forefoot opens up the possibility of using MRI as a noninvasive diagnostic tool to assess DSP. CRITICAL RELEVANCE STATEMENT MRI may serve as a noninvasive diagnostic tool for assessing patients with diabetic sensorimotor polyneuropathy as it allows for evaluating Pacinian corpuscle number and distribution in the forefoot. KEY POINTS DSP patients showed three times lower forefoot PC numbers than healthy volunteers. PC distribution was altered in DSP patients and termed a "spot-like" pattern. Reduced PC (n < 9 along each MTP joint II-V) might be suspicious for DSP.
Collapse
Affiliation(s)
- Sophia S Goller
- Department of Radiology, Balgrist University Hospital, Faculty of Medicine, University of Zurich, Zurich, Switzerland.
| | - Georg C Feuerriegel
- Department of Radiology, Balgrist University Hospital, Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Adrian A Marth
- Department of Radiology, Balgrist University Hospital, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Swiss Center for Musculoskeletal Imaging, Balgrist Campus AG, Zurich, Switzerland
| | - Christoph Germann
- Department of Radiology, Balgrist University Hospital, Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Martin Schubert
- Spinal Cord Injury Center, Balgrist University Hospital, Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Michèle Hubli
- Spinal Cord Injury Center, Balgrist University Hospital, Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Felix W A Waibel
- Department of Orthopaedics, Balgrist University Hospital, Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Reto Sutter
- Department of Radiology, Balgrist University Hospital, Faculty of Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Gao T, Luo J, Fan J, Gong G, Yang H. Epigenetic modifications associated to diabetic peripheral neuropathic pain (Review). Mol Med Rep 2025; 31:28. [PMID: 39540354 PMCID: PMC11579833 DOI: 10.3892/mmr.2024.13394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
The present review aimed to provide an update on the scientific progress of the role of epigenetic modifications on diabetic peripheral neuropathic pain (DPNP). DPNP is a devastating and troublesome complication of diabetes mellitus (DM), which affects one third of patients with DM and causes severe hyperalgesia and allodynia, leading to challenges in the treatment of these patients. The pathophysiology of DPNP is multifactorial and is not yet fully understood and treatment options for this disease are currently unsatisfactory. The underlying mechanisms and pathophysiology of DPNP have largely been explored in animal models and a mechanism‑derived approach might offer a potential therapeutic‑target for attenuating certain phenotypes of DPNP. Altered gene expression levels within the peripheral or central nervous systems (CNS) are a crucial mechanism of DPNP, however, the transcriptional mechanisms of these genes have not been fully elucidated. Epigenetic modifications, such as DNA methylation and histone modifications (methylation, acetylation, or phosphorylation), can alter gene expression levels via chromatin remodeling. Moreover, it has been reported that altering gene expression via epigenetic modifications within the peripheral or CNS, contributes to the changes in both pain sensitivity and pharmacological efficacy in DPNP. Therefore, the present review summarized the findings of relevant literature on the epigenetic alterations in DPNP and the therapeutic potential for targeting these alterations in the future treatment of this disease.
Collapse
Affiliation(s)
- Tangqing Gao
- College of Medicine, Southwest Jiaotong University, Chengdu, Chengdu, Sichuan 610031, P.R. China
- Department of Anesthesiology, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Jingya Luo
- College of Medicine, Southwest Jiaotong University, Chengdu, Chengdu, Sichuan 610031, P.R. China
- Department of Anesthesiology, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Juanning Fan
- Department of Geriatrics, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Gu Gong
- Department of Anesthesiology, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| | - Haihong Yang
- College of Medicine, Southwest Jiaotong University, Chengdu, Chengdu, Sichuan 610031, P.R. China
- Department of Anesthesiology, The General Hospital of Western Theater Command, Chengdu, Sichuan 610083, P.R. China
| |
Collapse
|
5
|
Casaril AM, Gaffney CM, Shepherd AJ. Animal models of neuropathic pain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 179:339-401. [PMID: 39580217 DOI: 10.1016/bs.irn.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Animal models continue to be crucial to developing our understanding of the molecular, cellular, and neurophysiological mechanisms that lead to neuropathic pain. The overwhelming majority of animal studies use rodent models, ranging from surgical and trauma-induced models to those induced by metabolic diseases, genetic mutations, viruses, neurotoxic drugs, and cancer. We discuss the clinical relevance of the available models and the pain behavior tests commonly used as outcome measures. Finally, we summarize the refinements that have been proposed to improve the ability of animal model studies to predict clinical efficacy.
Collapse
Affiliation(s)
- Angela M Casaril
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Caitlyn M Gaffney
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Andrew J Shepherd
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| |
Collapse
|
6
|
Sierra-Silvestre E, Smith RE, Andrade RJ, Kennedy B, Coppieters MW. Microstructural changes in the median and ulnar nerve in people with and without diabetic neuropathy in their hands: A cross-sectional diffusion MRI study. Eur J Radiol 2024; 181:111721. [PMID: 39260209 DOI: 10.1016/j.ejrad.2024.111721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/29/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
PURPOSE Diffusion weighted imaging (DWI) has revealed microstructural changes in lower limb nerves in people with diabetic neuropathy. Microstructural changes in upper limb nerves using DWI in people with diabetes have not yet been explored. METHODS This cross-sectional study aimed to quantify and compare the microstructure of the median and ulnar nerve in people without diabetes (n = 10), people with diabetes without distal symmetrical polyneuropathy (DSPN; n = 10), people with DSPN in the lower limbs only (DSPN FEET ONLY; n = 12), and people with DSPN in the upper and lower limbs (DSPN HANDS & FEET; n = 9). DSPN diagnosis included electrodiagnosis and corneal confocal microscopy. Tensor metrics, such as fractional anisotropy, radial diffusivity and axial diffusivity, and constrained spherical deconvolution metrics, such as dispersion and complexity, were calculated. Linear mixed-models were used to quantify DWI metrics from multiple models in median and ulnar nerves across the groups, and to evaluate potential differences in metrics at the wrist and elbow based on the principle of a distal-to-proximal disease progression. RESULTS Tensor metrics revealed microstructural abnormalities in the median and ulnar nerve in people with DSPN HANDS & FEET, and also already in DSPN FEET ONLY. There were significant negative correlations between electrodiagnostic parameters and tensor metrics. A distal-to-proximal pattern was more pronounced in the median nerve. Non-tensor metrics showed early microstructural changes in people with diabetes without DSPN. CONCLUSION Compared to people without diabetes, microstructural changes in upper limb nerves can be identified in people with diabetes with and without DSPN, even before symptoms occur.
Collapse
Affiliation(s)
- Eva Sierra-Silvestre
- School of Health Sciences and Social Work, Griffith University, Brisbane, Australia; Amsterdam Movement Sciences - Program Musculoskeletal Health, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK. https://twitter.com/esiesil
| | - Robert E Smith
- The Florey Institute of Neuroscience and Mental Health, Heidelberg, Australia; The Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia
| | - Ricardo J Andrade
- School of Health Sciences and Social Work, Griffith University, Brisbane, Australia; Movement - Interactions - Performance (MIP), Nantes University, Nantes, France. https://twitter.com/jacobofhume
| | - Ben Kennedy
- Mermaid Beach Radiology, Gold Coast, Australia
| | - Michel W Coppieters
- School of Health Sciences and Social Work, Griffith University, Brisbane, Australia; Amsterdam Movement Sciences - Program Musculoskeletal Health, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands. https://twitter.com/michelcoppie
| |
Collapse
|
7
|
Mizukami H. Pathological evaluation of the pathogenesis of diabetes mellitus and diabetic peripheral neuropathy. Pathol Int 2024; 74:438-453. [PMID: 38888200 PMCID: PMC11551828 DOI: 10.1111/pin.13458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/29/2024] [Accepted: 06/02/2024] [Indexed: 06/20/2024]
Abstract
Currently, there are more than 10 million patients with diabetes mellitus in Japan. Therefore, the need to explore the pathogenesis of diabetes and the complications leading to its cure is becoming increasingly urgent. Pathological examination of pancreatic tissues from patients with type 2 diabetes reveals a decrease in the volume of beta cells because of a combination of various stresses. In human type 2 diabetes, islet amyloid deposition is a unique pathological change characterized by proinflammatory macrophage (M1) infiltration into the islets. The pathological changes in the pancreas with islet amyloid were different according to clinical factors, which suggests that type 2 diabetes can be further subclassified based on islet pathology. On the other hand, diabetic peripheral neuropathy is the most frequent diabetic complication. In early diabetic peripheral neuropathy, M1 infiltration in the sciatic nerve evokes oxidative stress or attenuates retrograde axonal transport, as clearly demonstrated by in vitro live imaging. Furthermore, islet parasympathetic nerve density and beta cell volume were inversely correlated in type 2 diabetic Goto-Kakizaki rats, suggesting that diabetic peripheral neuropathy itself may contribute to the decrease in beta cell volume. These findings suggest that the pathogenesis of diabetes mellitus and diabetic peripheral neuropathy may be interrelated.
Collapse
Affiliation(s)
- Hiroki Mizukami
- Department of Pathology and Molecular Medicine, Biomedical Research CenterHirosaki University Graduate School of MedicineHirosakiAomoriJapan
| |
Collapse
|
8
|
Fan K, Liao Q, Yuan P, Xu R, Liu Z. Defective autophagy contributes to bupivacaine-induced aggravation of painful diabetic neuropathy in db/db mice. Neuropharmacology 2024; 245:109814. [PMID: 38104768 DOI: 10.1016/j.neuropharm.2023.109814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/08/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
Current evidence suggests that hyperactivated or impaired autophagy can lead to neuronal death. The effect of local anesthetics on painful diabetic neuropathy (PDN) and the role of autophagy in the above pathological process remain unclear, warranting further studies. So, PDN models were established by assessing the paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) in leptin gene-mutation (db/db) mice. Wild type (WT) and PDN mice received intrathecal 0.75% bupivacaine or/with intraperitoneal drug treatment (rapamycin or bafilomycin A1). Subsequently, the PWT and PWL were measured to assess hyperalgesia at 6 h, 24 h, 30 h, and 48 h after intrathecal bupivacaine. Also, sensory nerve conduction velocity (SNCV) and motor nerve conduction velocity (MNCV) were measured before and 48 h after intrathecal bupivacaine treatment. The spinal cord tissue of L4-L6 segments and serum were harvested to evaluate the change of autophagy, oxidative stress, oxidative injury, and apoptosis. We found that bupivacaine induced the activation of autophagy but did not affect the pain threshold, SNCV and MNCV in WT mice at predefined time points. Conversely, bupivacaine lowered autophagosome generation and degradation, slowed SNCV and aggravated spinal dorsal horn neuron oxidative injury and hyperalgesia in PDN mice. The autophagy activator (rapamycin) could decrease spinal dorsal horn neuron oxidative injury, alleviate the alterations in SNCV and hyperalgesia in bupivacaine-treated PDN mice. Meanwhile, the autophagy inhibitor (bafilomycin A1) could exacerbate spinal dorsal horn neuron oxidative injury, the alterations in SNCV and hyperalgesia in bupivacaine-treated PDN mice. Our results showed that bupivacaine could induce defective autophagy, slowed SNCV and aggravate spinal dorsal horn neuron oxidative injury and hyperalgesia in PDN mice. Restoring autophagy may represent a potential therapeutic approach against nerve injury in PDN patients with local anesthesia and analgesia.
Collapse
Affiliation(s)
- Keke Fan
- Department of Anesthesiology, Shenzhen Children's Hospital, Yantian Road 7019, Shenzhen, 518000, Guangdong Province, China.
| | - Qinming Liao
- Department of Neurosurgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong Province, China.
| | - Pengfei Yuan
- Department of Anesthesiology, South China Hospital of Shenzhen University, Fuxin Road 1, ShenZhen, 518116, Guangdong Province, China.
| | - Rui Xu
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Industrial Avenue Central 253, Guangzhou, 510282, Guangdong Province, China.
| | - Zhongjie Liu
- Department of Anesthesiology, Shenzhen Children's Hospital, Yantian Road 7019, Shenzhen, 518000, Guangdong Province, China; Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Industrial Avenue Central 253, Guangzhou, 510282, Guangdong Province, China.
| |
Collapse
|
9
|
Jin R, Wang J, Li M, Tang T, Feng Y, Zhou S, Xie H, Feng H, Guo J, Fu R, Liu J, Tang Y, Shi Y, Guo H, Wang Y, Nie F, Li J. Discovery of a Novel Benzothiadiazine-Based Selective Aldose Reductase Inhibitor as Potential Therapy for Diabetic Peripheral Neuropathy. Diabetes 2024; 73:497-510. [PMID: 38127948 DOI: 10.2337/db23-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Aldose reductase 2 (ALR2), an activated enzyme in the polyol pathway by hyperglycemia, has long been recognized as one of the most promising targets for complications of diabetes, especially in diabetic peripheral neuropathy (DPN). However, many of the ALR2 inhibitors have shown serious side effects due to poor selectivity over aldehyde reductase (ALR1). Herein, we describe the discovery of a series of benzothiadiazine acetic acid derivatives as potent and selective inhibitors against ALR2 and evaluation of their anti-DPN activities in vivo. Compound 15c, carrying a carbonyl group at the 3-position of the thiadiazine ring, showed high potent inhibition against ALR2 (IC50 = 33.19 nmol/L) and ∼16,109-fold selectivity for ALR2 over ALR1. Cytotoxicity assays ensured the primary biosafety of 15c. Further pharmacokinetic assay in rats indicated that 15c had a good pharmacokinetic feature (t1/2 = 5.60 h, area under the plasma concentration time curve [AUC(0-t)] = 598.57 ± 216.5 μg/mL * h), which was superior to epalrestat (t1/2 = 2.23 h, AUC[0-t] = 20.43 ± 3.7 μg/mL * h). Finally, in a streptozotocin-induced diabetic rat model, 15c significantly increased the nerve conduction velocities of impaired sensory and motor nerves, achieved potent inhibition of d-sorbitol production in the sciatic nerves, and significantly increased the paw withdrawal mechanical threshold. By combining the above investigations, we propose that 15c might represent a promising lead compound for the discovery of an antidiabetic peripheral neuropathy drug.
Collapse
Affiliation(s)
- Ruyi Jin
- Shaanxi Key Lab Basic & New Herbal Medicament Research Center, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
- Shenzhen Neptunus Pharmaceutical Research Institute Co., Ltd., Shenzhen, China
| | - Jin Wang
- Shenzhen Neptunus Pharmaceutical Research Institute Co., Ltd., Shenzhen, China
- Shenzhen Huahong Marine Biomedicine Co. Ltd., Shenzhen, China
| | - Mingyue Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China
| | - Tian Tang
- Shenzhen Neptunus Pharmaceutical Research Institute Co., Ltd., Shenzhen, China
- Cali Biosciences, Shenzhen, China
| | - Yidong Feng
- Shenzhen Neptunus Pharmaceutical Research Institute Co., Ltd., Shenzhen, China
| | - Sha Zhou
- State Key Laboratory of Elemento-Organic Chemistry, Institute of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin, China
| | - Honglei Xie
- School of Pharmacy, Shandong First Medical University and Shandong Academy of Medical Sciences, Yantai, China
| | - Haiyu Feng
- Shaanxi Key Lab Basic & New Herbal Medicament Research Center, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jianshuang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China
| | - Ruijia Fu
- Shaanxi Key Lab Basic & New Herbal Medicament Research Center, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jiping Liu
- Shaanxi Key Lab Basic & New Herbal Medicament Research Center, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yuping Tang
- Shaanxi Key Lab Basic & New Herbal Medicament Research Center, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yajun Shi
- Shaanxi Key Lab Basic & New Herbal Medicament Research Center, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Hui Guo
- Shaanxi Key Lab Basic & New Herbal Medicament Research Center, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yuwei Wang
- Shaanxi Key Lab Basic & New Herbal Medicament Research Center, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Fayi Nie
- Shaanxi Key Laboratory of Acupuncture and Medicine, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jing Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China
- State Key Laboratory of Elemento-Organic Chemistry, Institute of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, College of Chemistry, Nankai University, Tianjin, China
| |
Collapse
|
10
|
Hu X, Buhl CS, Sjogaard MB, Schousboe K, Mizrak HI, Kufaishi H, Jensen TS, Hansen CS, Yderstræde KB, Zhang MD, Ernfors P, Nyengaard JR, Karlsson P. Structural changes in Schwann cells and nerve fibres in type 1 diabetes: relationship with diabetic polyneuropathy. Diabetologia 2023; 66:2332-2345. [PMID: 37728731 PMCID: PMC10627903 DOI: 10.1007/s00125-023-06009-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/01/2023] [Indexed: 09/21/2023]
Abstract
AIMS/HYPOTHESIS Our aim was to investigate structural changes of cutaneous Schwann cells (SCs), including nociceptive Schwann cells (nSCs) and axons, in individuals with diabetic polyneuropathy. We also aimed to investigate the relationship between these changes and peripheral neuropathic symptoms in type 1 diabetes. METHODS Skin biopsies (3 mm) taken from carefully phenotyped participants with type 1 diabetes without polyneuropathy (T1D, n=25), type 1 diabetes with painless diabetic polyneuropathy (T1DPN, n=30) and type 1 diabetes with painful diabetic polyneuropathy (P-T1DPN, n=27), and from healthy control individuals (n=25) were immunostained with relevant antibodies to visualise SCs and nerve fibres. Stereological methods were used to quantify the expression of cutaneous SCs and nerve fibres. RESULTS There was a difference in the number density of nSCs not abutting to nerve fibres between the groups (p=0.004) but not in the number density of nSCs abutting to nerve fibres, nor in solitary or total subepidermal SC soma number density. The overall dermal SC expression (measured by dermal SC area fraction and subepidermal SC process density) and peripheral nerve fibre expression (measured by intraepidermal nerve fibre density, dermal nerve fibre area fraction and subepidermal nerve fibre density) differed between the groups (all p<0.05): significant differences were seen in participants with T1DPN and P-T1DPN compared with those without diabetic polyneuropathy (healthy control and T1D groups) (all p<0.05). No difference was found between participants in the T1DPN and P-T1DPN group, nor between participants in the T1D and healthy control group (all p>0.05). Correlational analysis showed that cutaneous SC processes and nerve fibres were highly associated, and they were weakly negatively correlated with different neuropathy measures. CONCLUSIONS/INTERPRETATION Cutaneous SC processes and nerves, but not SC soma, are degenerated and interdependent in individuals with diabetic polyneuropathy. However, an increase in structurally damaged nSCs was seen in individuals with diabetic polyneuropathy. Furthermore, dermal SC processes and nerve fibres correlate weakly with clinical measures of neuropathy and may play a partial role in the pathophysiology of diabetic polyneuropathy in type 1 diabetes.
Collapse
Affiliation(s)
- Xiaoli Hu
- Core Center for Molecular Morphology, Section for Stereology and Microscopy, Aarhus University, Aarhus, Denmark
| | | | - Marie Balle Sjogaard
- Core Center for Molecular Morphology, Section for Stereology and Microscopy, Aarhus University, Aarhus, Denmark
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Karoline Schousboe
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
| | | | | | - Troels Staehelin Jensen
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Ming-Dong Zhang
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, Stockholm, Sweden
| | - Patrik Ernfors
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institutet, Stockholm, Sweden
| | - Jens Randel Nyengaard
- Core Center for Molecular Morphology, Section for Stereology and Microscopy, Aarhus University, Aarhus, Denmark
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Pall Karlsson
- Core Center for Molecular Morphology, Section for Stereology and Microscopy, Aarhus University, Aarhus, Denmark.
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark.
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
11
|
Micheli L, Rajamoni J, Di Cesare Mannelli L, Rajagopalan P, Ghelardini C, Rajagopalan R. DDD-028: A potent, neuroprotective, non-opioid compound for the treatment of diabetic neuropathy. Bioorg Med Chem Lett 2023; 95:129472. [PMID: 37690597 DOI: 10.1016/j.bmcl.2023.129472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Diabetic neuropathy (DN) is a painful, chronic ailment that affects a large segment of diabetic population worldwide. Current medications such as pregabalin or duloxetine treat only the pain symptom associated with DN, but not the underlying nerve damage. DDD-028 (1) is a small molecule that displays potent pain-relieving activity in streptozotocin (STZ)-induced rodent model of DN. Combined with other studies indicating that DDD-028 suppresses astrogliosis and nerve damage induced by the anti-cancer drug, paclitaxel, the present study suggests that DDD-028 would be useful as a disease modifying therapeutic in the treatment of DN. The 3-dimensional structure of DDD-028 was confirmed by single crystal X-ray crystallography.
Collapse
Affiliation(s)
- Laura Micheli
- Department of Neuroscience, Psychology, Drug Research and Child Health, NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | - Jagan Rajamoni
- Department of Chemistry and Biochemistry, University of Missouri, St. Louis, One University Blvd., St. Louis, MO 63121, USA
| | - Lorenzo Di Cesare Mannelli
- Department of Neuroscience, Psychology, Drug Research and Child Health, NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | | | - Carla Ghelardini
- Department of Neuroscience, Psychology, Drug Research and Child Health, NEUROFARBA-Pharmacology and Toxicology Section, University of Florence, Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | | |
Collapse
|
12
|
Hu X, Buhl CS, Sjogaard MB, Schousboe K, Mizrak HI, Kufaishi H, Hansen CS, Yderstræde KB, Jensen TS, Nyengaard JR, Karlsson P. Structural Changes of Cutaneous Immune Cells in Patients With Type 1 Diabetes and Their Relationship With Diabetic Polyneuropathy. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2023; 10:e200144. [PMID: 37527931 PMCID: PMC10393274 DOI: 10.1212/nxi.0000000000200144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/01/2023] [Indexed: 08/03/2023]
Abstract
BACKGROUND AND OBJECTIVES Diabetic polyneuropathy (DPN) is a complication of diabetes characterized by pain or lack of peripheral sensation, but the underlying mechanisms are not yet fully understood. Recent evidence showed increased cutaneous macrophage infiltration in patients with type 2 diabetes and painful DPN, and this study aimed to understand whether the same applies to type 1 diabetes. METHODS The study included 104 participants: 26 healthy controls and 78 participants with type 1 diabetes (participants without DPN [n = 24], participants with painless DPN [n = 29], and participants with painful DPN [n = 25]). Two immune cells, dermal IBA1+ macrophages and epidermal Langerhans cells (LCs, CD207+), were visualized and quantified using immunohistological labeling and stereological counting methods on skin biopsies from the participants. The IBA1+ macrophage infiltration, LC number density, LC soma cross-sectional area, and LC processes were measured in this study. RESULTS Significant difference in IBA1+ macrophage expression was seen between the groups (p = 0.003), with lower expression of IBA1 in participants with DPN. No differences in LC morphologies (LC number density, soma cross-sectional area, and process level) were found between the groups (all p > 0.05). In addition, IBA1+ macrophages, but not LCs, correlated with intraepidermal nerve fiber density, Michigan neuropathy symptom inventory, (questionnaire and total score), severity of neuropathy as assessed by the Toronto clinical neuropathy score, and vibration detection threshold in the whole study cohort. DISCUSSION This study showed expressional differences of cutaneous IBA1+ macrophages but not LC in participants with type 1 diabetes-induced DPN compared with those in controls. The study suggests that a reduction in macrophages may play a role in the development and progression of autoimmune-induced diabetic neuropathy.
Collapse
Affiliation(s)
- Xiaoli Hu
- From the Core Centre for Molecular Morphology, Section for Stereology and Microscopy, Aarhus University (X.H., M.B.S., J.R.N., P.K.); Steno Diabetes Center Copenhagen (H.I.M., H.K., C.S.H.); Steno Diabetes Center Aarhus (C.B., P.K.); Steno Diabetes Center Odense (K.S., K.B.Y.); Aarhus University Hospital (T.S.J., J.R.N.), Denmark
| | - Christian S Buhl
- From the Core Centre for Molecular Morphology, Section for Stereology and Microscopy, Aarhus University (X.H., M.B.S., J.R.N., P.K.); Steno Diabetes Center Copenhagen (H.I.M., H.K., C.S.H.); Steno Diabetes Center Aarhus (C.B., P.K.); Steno Diabetes Center Odense (K.S., K.B.Y.); Aarhus University Hospital (T.S.J., J.R.N.), Denmark
| | - Marie B Sjogaard
- From the Core Centre for Molecular Morphology, Section for Stereology and Microscopy, Aarhus University (X.H., M.B.S., J.R.N., P.K.); Steno Diabetes Center Copenhagen (H.I.M., H.K., C.S.H.); Steno Diabetes Center Aarhus (C.B., P.K.); Steno Diabetes Center Odense (K.S., K.B.Y.); Aarhus University Hospital (T.S.J., J.R.N.), Denmark
| | - Karoline Schousboe
- From the Core Centre for Molecular Morphology, Section for Stereology and Microscopy, Aarhus University (X.H., M.B.S., J.R.N., P.K.); Steno Diabetes Center Copenhagen (H.I.M., H.K., C.S.H.); Steno Diabetes Center Aarhus (C.B., P.K.); Steno Diabetes Center Odense (K.S., K.B.Y.); Aarhus University Hospital (T.S.J., J.R.N.), Denmark
| | - Hatice I Mizrak
- From the Core Centre for Molecular Morphology, Section for Stereology and Microscopy, Aarhus University (X.H., M.B.S., J.R.N., P.K.); Steno Diabetes Center Copenhagen (H.I.M., H.K., C.S.H.); Steno Diabetes Center Aarhus (C.B., P.K.); Steno Diabetes Center Odense (K.S., K.B.Y.); Aarhus University Hospital (T.S.J., J.R.N.), Denmark
| | - Huda Kufaishi
- From the Core Centre for Molecular Morphology, Section for Stereology and Microscopy, Aarhus University (X.H., M.B.S., J.R.N., P.K.); Steno Diabetes Center Copenhagen (H.I.M., H.K., C.S.H.); Steno Diabetes Center Aarhus (C.B., P.K.); Steno Diabetes Center Odense (K.S., K.B.Y.); Aarhus University Hospital (T.S.J., J.R.N.), Denmark
| | - Christian S Hansen
- From the Core Centre for Molecular Morphology, Section for Stereology and Microscopy, Aarhus University (X.H., M.B.S., J.R.N., P.K.); Steno Diabetes Center Copenhagen (H.I.M., H.K., C.S.H.); Steno Diabetes Center Aarhus (C.B., P.K.); Steno Diabetes Center Odense (K.S., K.B.Y.); Aarhus University Hospital (T.S.J., J.R.N.), Denmark
| | - Knud B Yderstræde
- From the Core Centre for Molecular Morphology, Section for Stereology and Microscopy, Aarhus University (X.H., M.B.S., J.R.N., P.K.); Steno Diabetes Center Copenhagen (H.I.M., H.K., C.S.H.); Steno Diabetes Center Aarhus (C.B., P.K.); Steno Diabetes Center Odense (K.S., K.B.Y.); Aarhus University Hospital (T.S.J., J.R.N.), Denmark
| | - Troels S Jensen
- From the Core Centre for Molecular Morphology, Section for Stereology and Microscopy, Aarhus University (X.H., M.B.S., J.R.N., P.K.); Steno Diabetes Center Copenhagen (H.I.M., H.K., C.S.H.); Steno Diabetes Center Aarhus (C.B., P.K.); Steno Diabetes Center Odense (K.S., K.B.Y.); Aarhus University Hospital (T.S.J., J.R.N.), Denmark
| | - Jens R Nyengaard
- From the Core Centre for Molecular Morphology, Section for Stereology and Microscopy, Aarhus University (X.H., M.B.S., J.R.N., P.K.); Steno Diabetes Center Copenhagen (H.I.M., H.K., C.S.H.); Steno Diabetes Center Aarhus (C.B., P.K.); Steno Diabetes Center Odense (K.S., K.B.Y.); Aarhus University Hospital (T.S.J., J.R.N.), Denmark
| | - Pall Karlsson
- From the Core Centre for Molecular Morphology, Section for Stereology and Microscopy, Aarhus University (X.H., M.B.S., J.R.N., P.K.); Steno Diabetes Center Copenhagen (H.I.M., H.K., C.S.H.); Steno Diabetes Center Aarhus (C.B., P.K.); Steno Diabetes Center Odense (K.S., K.B.Y.); Aarhus University Hospital (T.S.J., J.R.N.), Denmark.
| |
Collapse
|
13
|
Brusco I, Fialho MFP, Becker G, Brum ES, Favarin A, Marquezin LP, Serafini PT, Oliveira SM. Kinins and their B 1 and B 2 receptors as potential therapeutic targets for pain relief. Life Sci 2023; 314:121302. [PMID: 36535404 DOI: 10.1016/j.lfs.2022.121302] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Kinins are endogenous peptides that belong to the kallikrein-kinin system, which has been extensively studied for over a century. Their essential role in multiple physiological and pathological processes is demonstrated by activating two transmembrane G-protein-coupled receptors, the kinin B1 and B2 receptors. The attention is mainly given to the pathological role of kinins in pain transduction mechanisms. In the past years, a wide range of preclinical studies has amounted to the literature reinforcing the need for an updated review about the participation of kinins and their receptors in pain disorders. Here, we performed an extensive literature search since 2004, describing the historical progress and the current understanding of the kinin receptors' participation and its potential therapeutic in several acute and chronic painful conditions. These include inflammatory (mainly arthritis), neuropathic (caused by different aetiologies, such as cancer, multiple sclerosis, antineoplastic toxicity and diabetes) and nociplastic (mainly fibromyalgia) pain. Moreover, we highlighted the pharmacological actions and possible clinical applications of the kinin B1 and B2 receptor antagonists, kallikrein inhibitors or kallikrein-kinin system signalling pathways-target molecules in these different painful conditions. Notably, recent findings sought to elucidate mechanisms for guiding new and better drug design targeting kinin B1 and B2 receptors to treat a disease diversity. Since the kinin B2 receptor antagonist, Icatibant, is clinically used and well-tolerated by patients with hereditary angioedema gives us hope kinin receptors antagonists could be more robustly tested for a possible clinical application in the treatment of pathological pains, which present limited pharmacology management.
Collapse
Affiliation(s)
- Indiara Brusco
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Maria Fernanda Pessano Fialho
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Gabriela Becker
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Evelyne Silva Brum
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Amanda Favarin
- Laboratory of Neurotoxicity and Psychopharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Lara Panazzolo Marquezin
- Laboratory of Neurotoxicity and Psychopharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Patrick Tuzi Serafini
- Laboratory of Neurotoxicity and Psychopharmacology, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Sara Marchesan Oliveira
- Graduate Program in Biological Sciences: Biochemistry Toxicology, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
14
|
Tsai NW, Lin CC, Yeh TY, Chiu YA, Chiu HH, Huang HP, Hsieh ST. An induced pluripotent stem cell-based model identifies molecular targets of vincristine neurotoxicity. Dis Model Mech 2022; 15:dmm049471. [PMID: 36518084 PMCID: PMC10655812 DOI: 10.1242/dmm.049471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 09/29/2022] [Indexed: 11/19/2023] Open
Abstract
To model peripheral nerve degeneration and investigate molecular mechanisms of neurodegeneration, we established a cell system of induced pluripotent stem cell (iPSC)-derived sensory neurons exposed to vincristine, a drug that frequently causes chemotherapy-induced peripheral neuropathy. Sensory neurons differentiated from iPSCs exhibit distinct neurochemical patterns according to the immunocytochemical phenotypes, and gene expression of peripherin (PRPH, hereafter referred to as Peri) and neurofilament heavy chain (NEFH, hereafter referred to as NF). The majority of iPSC-derived sensory neurons were PRPH positive/NEFH negative, i.e. Peri(+)/NF(-) neurons, whose somata were smaller than those of Peri(+)/NF(+) neurons. On exposure to vincristine, projections from the cell body of a neuron, i.e. neurites, were degenerated quicker than somata, the lethal concentration to kill 50% (LC50) of neurites being below the LC50 for somata, consistent with the clinical pattern of length-dependent neuropathy. We then examined the molecular expression in the MAP kinase signaling pathways of, extracellular signal-regulated kinases 1/2 (MAPK1/3, hereafter referred to as ERK), p38 mitogen-activated protein kinases (MAPK11/12/13/14, hereafter referred to as p38) and c-Jun N-terminal kinases (MAPK8/9/10, hereafter referred to as JNK). Regarding these three cascades, only phosphorylation of JNK was upregulated but not that of p38 or ERK1/2. Furthermore, vincristine-treatment resulted in impaired autophagy and reduced autophagic flux. Rapamycin-treatment reversed the effect of impaired autophagy and JNK activation. These results not only established a platform to study peripheral degeneration of human neurons but also provide molecular mechanisms for neurodegeneration with the potential for therapeutic targets.
Collapse
Affiliation(s)
- Neng-Wei Tsai
- Department of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Cheng-Chen Lin
- Department of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Ti-Yen Yeh
- Department of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Yu-An Chiu
- Department of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Hsin-Hui Chiu
- Department of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei 100, Taiwan
| | - Hsiang-Po Huang
- Department of Medical Genomics and Proteomics, National Taiwan University College of Medicine, Taipei 100, Taiwan
- Department of Pediatrics, National Taiwan University Children's Hospital, Taipei 100, Taiwan
| | - Sung-Tsang Hsieh
- Department of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei 100, Taiwan
- Department of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei 100, Taiwan
- Department of Neurology, National Taiwan University Hospital, Taipei 100, Taiwan
| |
Collapse
|
15
|
Xie YK, Luo H, Zhang SX, Chen XY, Guo R, Qiu XY, Liu S, Wu H, Chen WB, Zhen XH, Ma Q, Tian JL, Li S, Chen X, Han Q, Duan S, Shen C, Yang F, Xu ZZ. GPR177 in A-fiber sensory neurons drives diabetic neuropathic pain via WNT-mediated TRPV1 activation. Sci Transl Med 2022; 14:eabh2557. [PMID: 35385340 DOI: 10.1126/scitranslmed.abh2557] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Diabetic neuropathic pain (DNP) is a common and devastating complication in patients with diabetes. The mechanisms mediating DNP are not completely elucidated, and effective treatments are lacking. A-fiber sensory neurons have been shown to mediate the development of mechanical allodynia in neuropathic pain, yet the molecular basis underlying the contribution of A-fiber neurons is still unclear. Here, we report that the orphan G protein-coupled receptor 177 (GPR177) in A-fiber neurons drives DNP via WNT5a-mediated activation of transient receptor potential vanilloid receptor-1 (TRPV1) ion channel. GPR177 is mainly expressed in large-diameter A-fiber dorsal root ganglion (DRG) neurons and required for the development of DNP in mice. Mechanistically, we found that GPR177 mediated the secretion of WNT5a from A-fiber DRG neurons into cerebrospinal fluid (CSF), which was necessary for the maintenance of DNP. Extracellular perfusion of WNT5a induced rapid currents in both TRPV1-expressing heterologous cells and nociceptive DRG neurons. Computer simulations revealed that WNT5a has the potential to bind the residues at the extracellular S5-S6 loop of TRPV1. Using a peptide able to disrupt the predicted WNT5a/TRPV1 interaction suppressed DNP- and WNT5a-induced neuropathic pain symptoms in rodents. We confirmed GPR177/WNT5A coexpression in human DRG neurons and WNT5A secretion in CSF from patients with DNP. Thus, our results reveal a role for WNT5a as an endogenous and potent TRPV1 agonist, and the GPR177-WNT5a-TRPV1 axis as a driver of DNP pathogenesis in rodents. Our findings identified a potential analgesic target that might relieve neuropathic pain in patients with diabetes.
Collapse
Affiliation(s)
- Ya-Kai Xie
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hao Luo
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shan-Xin Zhang
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xiao-Ying Chen
- Department of Biophysics, and Kidney Disease Center of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Ran Guo
- Department of Pain, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Xiao-Yun Qiu
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shuai Liu
- State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200433, China
| | - Hui Wu
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Wen-Bo Chen
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xing-Hua Zhen
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qiang Ma
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jin-Lan Tian
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shun Li
- Department of Pain, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Xinzhong Chen
- Department of Anesthesia, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Qingjian Han
- State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200433, China
| | - Shumin Duan
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Chengyong Shen
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Fan Yang
- Department of Biophysics, and Kidney Disease Center of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Zhen-Zhong Xu
- Department of Neurobiology and Department of Anesthesiology of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.,NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
16
|
Yuan P, Song F, Zhu P, Fan K, Liao Q, Huang L, Liu Z. Poly (ADP-ribose) polymerase 1-mediated defective mitophagy contributes to painful diabetic neuropathy in the db/db model. J Neurochem 2022; 162:276-289. [PMID: 35263449 DOI: 10.1111/jnc.15606] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 11/29/2022]
Abstract
Studies have shown that poly (ADP-ribose) polymerase 1 (PARP1) was involved in the pathological process of diabetes. Mitophagy is widely acknowledged to be a key regulatory process in maintaining reactive oxygen species homeostasis via lysosome degradation of damaged mitochondria. However, the regulatory role of PARP1 in mitophagy-related mitochondrial oxidative injury and progression of painful diabetic neuropathy (PDN) is unclear. In this study, we studied the in vitro and in vivo mechanisms of PARP1-mediated mitophagy blockade in a leptin gene-mutation (db/db) mouse model of PDN. Db/db mice models of PDN were established by assessing the sciatic nerve conduction velocity (SNCV), mechanical withdrawal threshold (MWT), and thermal withdrawal latency (TWL). The results showed that PARP1 activity and mitochondrial injury of dorsal root ganglion (DRG) neurons were increased, and mitophagy was impaired in PDN mice. PARP1 was found to mediate the impairment of mitophagy in DRG neurons isolated from PDN mice. PARP1 inhibitors (PJ34 or AG14361) attenuated diabetes-induced peripheral nerve hyperalgesia, restored DRG neuron mitophagy function and decreased mitochondrial oxidative injury. Mitophagy impairment induced by lysosome deacidificant (DC661) aggravated diabetes-induced DRG neuron mitochondrial oxidative stress and injury. Taken together, our data revealed that PARP1 induced defective mitophagy of DRG neurons is a key mechanism in diabetes-induced peripheral neuropathic injury. Inhibition of PARP1 and restoration of mitophagy function are potential therapeutic targets for PDN.
Collapse
Affiliation(s)
- Pengfei Yuan
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Industrial Avenue Central 253, Guangzhou, 510282, Guangdong Province, China
| | - Fuhu Song
- Department of Anesthesiology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong Province, China
| | - Pian Zhu
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Industrial Avenue Central 253, Guangzhou, 510282, Guangdong Province, China
| | - Keke Fan
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Industrial Avenue Central 253, Guangzhou, 510282, Guangdong Province, China
| | - Qinming Liao
- Department of Neurosurgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong Province, China
| | - Lijin Huang
- Department of Neurosurgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510630, Guangdong Province, China
| | - Zhongjie Liu
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Industrial Avenue Central 253, Guangzhou, 510282, Guangdong Province, China
| |
Collapse
|
17
|
Cao Y, Wang W, Zhan X, Zhang Y. PRDX6: A protein bridging S-palmitoylation and diabetic neuropathy. Front Endocrinol (Lausanne) 2022; 13:992875. [PMID: 36120430 PMCID: PMC9478578 DOI: 10.3389/fendo.2022.992875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetic neuropathy is regarded as one of the most debilitating outcomes of diabetes. It can affect both the peripheral and central nervous systems, leading to pain, decreased motility, cognitive decline, and dementia. S-palmitoylation is a reversible posttranslational lipid modification, and its dysregulation has been implicated in metabolic syndrome, cancers, neurological disorders, and infections. However, the role of S-palmitoylation in diabetic neuropathy remains unclear. Here we demonstrate a potential association between activating protein palmitoylation and diabetic neuropathy. We compared the proteomic data of lumbar dorsal root ganglia (DRG) of diabetes mice and palmitoylome profiling data of the HUVEC cell line. The mapping results identified peroxiredoxin-6 (PRDX6) as a novel target in diabetic neuropathy, whose biological mechanism was associated with S-palmitoylation. Bioinformatic prediction revealed that PRDX6 had two palmitoylation sites, Cys47 and Cys91. Immunofluorescence results indicated PRDX6 translocating between the cytoplasm and cell membrane. Protein function analysis proposed that increased palmitoylation could competitively inhibit the formation of disulfide-bond between Cys47 and Cys91 and change the spatial topology of PRDX6 protein. Cl-HCO3- anion exchanger 3 (AE3) was one of the AE family members, which was proved to express in DRG. AE3 activity evoked Cl- influx in neurons which was generally associated with increased excitability and susceptibility to pain. We demonstrated that the S-palmitoylation status of Cys47 could affect the interaction between PRDX6 and the C-terminal domain of AE3, thereby regulating the activity of AE3 anion exchanger enzyme in the nervous system. The results highlight a central role for PRDX6 palmitoylation in protection against diabetic neuropathy.
Collapse
Affiliation(s)
- Yan Cao
- Department of Anesthesiology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Wantao Wang
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaorong Zhan
- Department of Endocrinology, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Yitong Zhang
- School of Life Science, Beijing Institute of Technology, Beijing, China
- *Correspondence: Yitong Zhang,
| |
Collapse
|
18
|
Chen W, Wu X, Li S, Zhang Y, Huang Y, Zhuang Y, Bai X, Chen X, Lin X. Optical coherence tomography of the retina combined with color Doppler ultrasound of the tibial nerve in the diagnosis of diabetic peripheral neuropathy. Front Endocrinol (Lausanne) 2022; 13:938659. [PMID: 36339439 PMCID: PMC9634106 DOI: 10.3389/fendo.2022.938659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 10/03/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE To investigate the value of the retinal nerve fiber layer (RNFL) thickness in the optic disc and the cross-sectional area (CSA) of lower limb nerves in the diagnosis of diabetic peripheral neuropathy (DPN) separately and in combination. METHODS A total of 140 patients with type 2 diabetes were enrolled, including 51 patients with DPN (DPN group) and 89 patients without DPN (NDPN group). Clinical data and biochemical parameters were collected. Electromyography/evoked potential instrument was performed for nerve conduction study. Optical coherence tomography was performed to measure the RNFL thickness of the optic disc. Color Doppler ultrasound was performed to measure CSA of lower limb nerves. RESULTS The RNFL thickness was lower and the CSA of the tibial nerve (TN) in the DPN group was larger than that in the NDPN group. The album/urine creatinine ratio, diabetic retinopathy, and CSA of TN at 3 cm were positively correlated with DPN. The RNFL thickness in the superior quadrant of the optic disc was negatively correlated with DPN. For RNFL thickness to diagnose DPN, the area under the curve (AUC) of the superior quadrant was the largest, which was 0.723 (95% confidence interval [CI]: 0.645-0.805), and the best cutoff value was 127.5 μm (70.5% sensitivity, 72.1% specificity). For CSA of TN to diagnose DPN, the AUC of the distance of 5 cm was the largest, which was 0.660 (95% CI: 0.575-0.739), and the best cutoff value was 13.50 mm2 (82.0% sensitivity, 41.6% specificity). For the combined index, the AUC was greater than that of the above two indicators, which was 0.755 (95% CI: 0.664-0.846), and the best cutoff value was 0.376 (64.3% sensitivity, 83.0% specificity). CONCLUSIONS Patients with DPN have a reduction of the RNFL thickness and an increase in the CSA of TN, and these two changes are related to DPN. The RNFL thickness of the optic disc and the CSA of TN can be used as diagnostic indicators of DPN, and the combination of the two indicators has a higher diagnostic value.
Collapse
Affiliation(s)
- Weimiao Chen
- Department of Clinical Nutrition, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- *Correspondence: Xiahong Lin, ; ; Weimiao Chen,
| | - Xiaohong Wu
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shilin Li
- Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yan Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yinqiong Huang
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yong Zhuang
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Xuefeng Bai
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Xiaoyu Chen
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Xiahong Lin
- Department of Endocrinology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Department of Geriatric Medicine, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- *Correspondence: Xiahong Lin, ; ; Weimiao Chen,
| |
Collapse
|
19
|
Stucky CL, Mikesell AR. Cutaneous pain in disorders affecting peripheral nerves. Neurosci Lett 2021; 765:136233. [PMID: 34506882 PMCID: PMC8579816 DOI: 10.1016/j.neulet.2021.136233] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 08/16/2021] [Accepted: 09/02/2021] [Indexed: 02/08/2023]
Abstract
Our ability to quickly detect and respond to harmful environmental stimuli is vital for our safety and survival. This inherent acute pain detection is a "gift" because it both protects our body from harm and allows healing of damaged tissues [1]. Damage to tissues from trauma or disease can result in distorted or amplified nociceptor signaling and sensitization of the spinal cord and brain (Central Nervous System; CNS) pathways to normal input from light touch mechanoreceptors. Together, these processes can result in nagging to unbearable chronic pain and extreme sensitivity to light skin touch (allodynia). Unlike acute protective pain, chronic pain and allodynia serve no useful purpose and can severely reduce the quality of life of an affected person. Chronic pain can arise from impairment to peripheral neurons, a phenomenon called "peripheral neuropathic pain." Peripheral neuropathic pain can be caused by many insults that directly affect peripheral sensory neurons, including mechanical trauma, metabolic imbalance (e.g., diabetes), autoimmune diseases, chemotherapeutic agents, viral infections (e.g., shingles). These insults cause "acquired" neuropathies such as small-fiber neuropathies, diabetic neuropathy, chemotherapy-induced peripheral neuropathy, and post herpetic neuralgia. Peripheral neuropathic pain can also be caused by genetic factors and result in hereditary neuropathies that include Charcot-Marie-Tooth disease, rare channelopathies and Fabry disease. Many acquired and hereditary neuropathies affect the skin, our largest organ and protector of nearly our entire body. Here we review how cutaneous nociception (pain perceived from the skin) is altered following diseases that affect peripheral nerves that innervate the skin. We provide an overview of how noxious stimuli are detected and encoded by molecular transducers on subtypes of cutaneous afferent endings and conveyed to the CNS. Next, we discuss several acquired and hereditary diseases and disorders that cause painful or insensate (lack of sensation) cutaneous peripheral neuropathies, the symptoms and percepts patients experience, and how cutaneous afferents and other peripheral cell types are altered in function in these disorders. We highlight exciting new research areas that implicate non-neuronal skin cells, particularly keratinocytes, in cutaneous nociception and peripheral neuropathies. Finally, we conclude with ideas for innovative new directions, areas of unmet need, and potential opportunities for novel cutaneous therapeutics that may avoid CNS side effects, as well as ideas for improved translation of mechanisms identified in preclinical models to patients.
Collapse
Affiliation(s)
- Cheryl L Stucky
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States.
| | - Alexander R Mikesell
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| |
Collapse
|
20
|
García-Mesa Y, Feito J, González-Gay M, Martínez I, García-Piqueras J, Martín-Cruces J, Viña E, Cobo T, García-Suárez O. Involvement of Cutaneous Sensory Corpuscles in Non-Painful and Painful Diabetic Neuropathy. J Clin Med 2021; 10:jcm10194609. [PMID: 34640627 PMCID: PMC8509589 DOI: 10.3390/jcm10194609] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 12/18/2022] Open
Abstract
Distal diabetic sensorimotor polyneuropathy (DDSP) is the most prevalent form of diabetic neuropathy, and some of the patients develop gradual pain. Specialized sensory structures present in the skin encode different modalities of somatosensitivity such as temperature, touch, and pain. The cutaneous sensory structures responsible for the qualities of mechanosensitivity (fine touch, vibration) are collectively known as cutaneous mechanoreceptors (Meissner corpuscles, Pacinian corpuscles, and Merkel cell-axonal complexes), which results are altered during diabetes. Here, we used immunohistochemistry to analyze the density, localization within the dermis, arrangement of corpuscular components (axons and Schwann-like cells), and expression of putative mechanoproteins (PIEZO2, ASIC2, and TRPV4) in cutaneous mechanoreceptors of subjects suffering clinically diagnosed non-painful and painful distal diabetic sensorimotor polyneuropathy. The number of Meissner corpuscles, Pacinian corpuscles, and Merkel cells was found to be severely decreased in the non-painful presentation of the disease, and almost disappeared in the painful presentation. Furthermore, there was a marked reduction in the expression of axonal and Schwann-like cell markers (with are characteristics of corpuscular denervation) as well as of all investigated mechanoproteins in the non-painful distal diabetic sensorimotor polyneuropathy, and these were absent in the painful form. Taken together, these alterations might explain, at least partly, the impairment of mechanosensitivity system associated with distal diabetic sensorimotor polyneuropathy. Furthermore, our results support that an increasing severity of DDSP may increase the risk of developing painful neuropathic symptoms. However, why the absence of cutaneous mechanoreceptors is associated with pain remains to be elucidated.
Collapse
Affiliation(s)
- Yolanda García-Mesa
- Grupo SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, 33006 Oviedo, Spain; (Y.G.-M.); (J.F.); (J.G.-P.); (J.M.-C.); (E.V.)
| | - Jorge Feito
- Grupo SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, 33006 Oviedo, Spain; (Y.G.-M.); (J.F.); (J.G.-P.); (J.M.-C.); (E.V.)
- Servicio de Anatomía Patológica, Complejo Asistencial Universitario de Salamanca, 37007 Salamanca, Spain
| | - Mario González-Gay
- Sercivio de Angiología y Cirugía Vascular, Fundación Hospital de Jove, 33290 Gijón, Spain;
| | - Irene Martínez
- Sercivio de Cirugía Plástica y Reparadora, Fundación Hospital de Jove, 33290 Gijón, Spain;
| | - Jorge García-Piqueras
- Grupo SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, 33006 Oviedo, Spain; (Y.G.-M.); (J.F.); (J.G.-P.); (J.M.-C.); (E.V.)
| | - José Martín-Cruces
- Grupo SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, 33006 Oviedo, Spain; (Y.G.-M.); (J.F.); (J.G.-P.); (J.M.-C.); (E.V.)
| | - Eliseo Viña
- Grupo SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, 33006 Oviedo, Spain; (Y.G.-M.); (J.F.); (J.G.-P.); (J.M.-C.); (E.V.)
- Servicio de Cardiología, Unidad de Hemodinámica y Cardiología Intervencionista, Hospital de Cabueñes, 33206 Gijón, Spain
| | - Teresa Cobo
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Universidad de Oviedo, 33006 Oviedo, Spain;
| | - Olivia García-Suárez
- Grupo SINPOS, Departamento de Morfología y Biología Celular, Universidad de Oviedo, 33006 Oviedo, Spain; (Y.G.-M.); (J.F.); (J.G.-P.); (J.M.-C.); (E.V.)
- Correspondence:
| |
Collapse
|
21
|
Qian Y, Zeng Y, Lin Q, Huang H, Zhang W, Yu H, Deng B. Association of platelet count and plateletcrit with nerve conduction function and peripheral neuropathy in patients with type 2 diabetes mellitus. J Diabetes Investig 2021; 12:1835-1844. [PMID: 33650778 PMCID: PMC8504918 DOI: 10.1111/jdi.13535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/12/2021] [Accepted: 02/25/2021] [Indexed: 12/20/2022] Open
Abstract
AIMS/INTRODUCTION Diabetes has been considered as a 'pro-thrombotic state' with enhanced platelet reactivity. Abnormality in platelet aggregation has been found in patients with its most common chronic complication - diabetic peripheral neuropathy (DPN). The purpose of this study was to investigate the potential association of platelet indices with nerve conduction function and the presence of DPN in Chinese patients with type 2 diabetes mellitus. MATERIALS AND METHODS This study involved a total of 211 inpatients with type 2 diabetes mellitus and 55 healthy individuals for whom nerve conduction studies were carried out. DPN was diagnosed according to the American Diabetes Association recommendation. Clinical data were retrospectively collected. RESULTS Patients with diabetes in whom neuropathy developed had lower levels of platelet count (PLT) and plateletcrit (PCT) than healthy controls (P < 0.05). Statistically significant associations of low PLT and PCT levels with the reduction of summed amplitude/velocity Z-score, and the prolongation of F-wave minimum latency in nerve conduction studies were found. Furthermore, after multivariate adjustment, logistic regression analysis showed that low levels of PLT (odds ratio 2.268, 95% confidence interval 1.072-4.797; P < 0.05; PLT <226 vs PLT ≥226) and PCT (odds ratio 2.050, 95% confidence interval 1.001-4.201; P < 0.05; PCT <0.222 vs PCT ≥0.222) in type 2 diabetes mellitus patients were risk factors for the presence of DPN. CONCLUSIONS Lower PLT and PCT levels are closely associated with poorer peripheral nerve conduction functions and the presence of neuropathy in patients with type 2 diabetes mellitus, which suggests that PLT and PCT might be potential biomarkers for showing DPN.
Collapse
Affiliation(s)
- Yuqin Qian
- Department of NeurologyInstitute of NeurologyRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yaying Zeng
- First School of Clinical MedicineWenzhou Medical UniversityWenzhouChina
| | - Qingxia Lin
- Department of PsychiatryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Huanjie Huang
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Wanli Zhang
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Huan Yu
- Department of PediatricsTianjin Children's HospitalTianjinChina
| | - Binbin Deng
- Department of NeurologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| |
Collapse
|
22
|
Biet M, Dansereau M, Sarret P, Dumaine R. The neuronal potassium current I A is a potential target for pain during chronic inflammation. Physiol Rep 2021; 9:e14975. [PMID: 34405579 PMCID: PMC8371350 DOI: 10.14814/phy2.14975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/10/2021] [Accepted: 06/25/2021] [Indexed: 11/24/2022] Open
Abstract
Voltage-gated ion channels play a key role in the action potential (AP) initiation and its propagation in sensory neurons. Modulation of their activity during chronic inflammation creates a persistent pain state. In this study, we sought to determine how peripheral inflammation caused by complete Freund's adjuvant (CFA) alters the fast sodium (INa ), L-type calcium (ICaL ), and potassium (IK ) currents in primary afferent fibers to increase nociception. In our model, intraplantar administration of CFA induced mechanical allodynia and thermal hyperalgesia at day 14 post-injection. Using whole-cell patch-clamp recording in dissociated small (C), medium (Aδ), and large-sized (Aβ) rat dorsal root ganglion (DRG) neurons, we found that CFA prolonged the AP duration and increased the amplitude of the tetrodotoxin-resistant (TTX-r) INa in Aβ fibers. In addition, CFA accelerated the recovery of INa from inactivation in C and Aδ nociceptive fibers but enhanced the late sodium current (INaL ) only in Aδ and Aβ neurons. Inflammation similarly reduced the amplitude of ICaL in each neuronal cell type. Fourteen days after injection, CFA reduced both components of IK (IKdr and IA ) in Aδ fibers. We also found that IA was significantly larger in C and Aδ neurons in normal conditions and during chronic inflammation. Our data, therefore, suggest that targeting the transient potassium current IA represents an efficient way to shift the balance toward antinociception during inflammation, since its activation will selectively decrease the AP duration in nociceptive fibers. Altogether, our data indicate that complex interactions between IK , INa , and ICaL reduce pain threshold by concomitantly enhancing the activity of nociceptive neurons and reducing the inhibitory action of Aβ fibers during chronic inflammation.
Collapse
MESH Headings
- Action Potentials
- Animals
- Calcium Channels, L-Type/metabolism
- Cells, Cultured
- Ganglia, Spinal/cytology
- Ganglia, Spinal/metabolism
- Ganglia, Spinal/physiology
- Male
- Neurons, Afferent/drug effects
- Neurons, Afferent/metabolism
- Neurons, Afferent/physiology
- Nociception
- Nociceptive Pain/metabolism
- Nociceptive Pain/physiopathology
- Potassium Channels, Voltage-Gated/metabolism
- Rats
- Rats, Sprague-Dawley
- Sodium Channel Blockers/pharmacology
- Sodium Channels/metabolism
- Tetrodotoxin/pharmacology
Collapse
Affiliation(s)
- Michael Biet
- Département de Pharmacologie et PhysiologieInstitut de pharmacologie de SherbrookeCentre de Recherche du Centre Hospitalier Universitaire de SherbrookeFaculté de médecine et des Sciences de la SantéUniversité de SherbrookeSherbrookeQuébecCanada
| | - Marc‐André Dansereau
- Département de Pharmacologie et PhysiologieInstitut de pharmacologie de SherbrookeCentre de Recherche du Centre Hospitalier Universitaire de SherbrookeFaculté de médecine et des Sciences de la SantéUniversité de SherbrookeSherbrookeQuébecCanada
| | - Philippe Sarret
- Département de Pharmacologie et PhysiologieInstitut de pharmacologie de SherbrookeCentre de Recherche du Centre Hospitalier Universitaire de SherbrookeFaculté de médecine et des Sciences de la SantéUniversité de SherbrookeSherbrookeQuébecCanada
| | - Robert Dumaine
- Département de Pharmacologie et PhysiologieInstitut de pharmacologie de SherbrookeCentre de Recherche du Centre Hospitalier Universitaire de SherbrookeFaculté de médecine et des Sciences de la SantéUniversité de SherbrookeSherbrookeQuébecCanada
| |
Collapse
|
23
|
Bali KK, Gandla J, Rangel DR, Castaldi L, Mouritzen P, Agarwal N, Schmelz M, Heppenstall P, Kuner R. A genome-wide screen reveals microRNAs in peripheral sensory neurons driving painful diabetic neuropathy. Pain 2021; 162:1334-1351. [PMID: 33492037 DOI: 10.1097/j.pain.0000000000002159] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 11/23/2020] [Indexed: 12/25/2022]
Abstract
ABSTRACT Diabetes is a leading cause of peripheral neuropathy (diabetic peripheral neuropathy, DPN), and uncontrolled long-lasting hyperglycemia leads to severe complications. A major proportion of diabetics develop excruciating pain with a variable course. Mechanisms leading to painful DPN are not completely understood and treatment options limited. We hypothesized that epigenetic modulation at the level of microRNA (miRNA) expression triggered by metabolic imbalance and nerve damage regulates the course of pain development. We used clinically relevant preclinical models, genome-wide screening, in silico analyses, cellular assays, miRNA fluorescent in situ hybridization, in vivo molecular manipulations, and behavioral analyses in the current study. We identified miRNAs and their targets that critically impact on nociceptive hypersensitivity in painful DPN. Our analyses identify miR-33 and miR-380 expressed in nociceptive neurons as critical denominators of diabetic pain and miR-124-1 as a mediator of physiological nociception. Our comprehensive analyses on the putative mRNA targets for miR-33 or miR-124-1 identified a set of mRNAs that are regulated after miR-33 or miR-124-1 overexpression in dorsal root ganglia in vivo. Our results shed light on the regulation of DPN pathophysiology and implicate specific miRNAs as novel therapeutic targets for treating painful DPN.
Collapse
Affiliation(s)
- Kiran Kumar Bali
- Department of Molecular Pharmacology, Pharmacology Institute, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany . Dr. Bali is now with the Department of Experimental Pain Research, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jagadeesh Gandla
- Department of Molecular Pharmacology, Pharmacology Institute, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany . Dr. Bali is now with the Department of Experimental Pain Research, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Daniel Rojas Rangel
- Department of Molecular Pharmacology, Pharmacology Institute, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany . Dr. Bali is now with the Department of Experimental Pain Research, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | | | - Nitin Agarwal
- Department of Molecular Pharmacology, Pharmacology Institute, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany . Dr. Bali is now with the Department of Experimental Pain Research, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Martin Schmelz
- Department of Experimental Pain Research, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Rohini Kuner
- Department of Molecular Pharmacology, Pharmacology Institute, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany . Dr. Bali is now with the Department of Experimental Pain Research, Mannheim Center for Translational Neuroscience (MCTN), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
24
|
Deshpande D, Agarwal N, Fleming T, Gaveriaux-Ruff C, Klose CSN, Tappe-Theodor A, Kuner R, Nawroth P. Loss of POMC-mediated antinociception contributes to painful diabetic neuropathy. Nat Commun 2021; 12:426. [PMID: 33462216 PMCID: PMC7814083 DOI: 10.1038/s41467-020-20677-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 12/10/2020] [Indexed: 02/06/2023] Open
Abstract
Painful neuropathy is a frequent complication in diabetes. Proopiomelanocortin (POMC) is an endogenous opioid precursor peptide, which plays a protective role against pain. Here, we report dysfunctional POMC-mediated antinociception in sensory neurons in diabetes. In streptozotocin-induced diabetic mice the Pomc promoter is repressed due to increased binding of NF-kB p50 subunit, leading to a loss in basal POMC level in peripheral nerves. Decreased POMC levels are also observed in peripheral nervous system tissue from diabetic patients. The antinociceptive pathway mediated by POMC is further impaired due to lysosomal degradation of μ-opioid receptor (MOR). Importantly, the neuropathic phenotype of the diabetic mice is rescued upon viral overexpression of POMC and MOR in the sensory ganglia. This study identifies an antinociceptive mechanism in the sensory ganglia that paves a way for a potential therapy for diabetic neuropathic pain.
Collapse
Affiliation(s)
- Divija Deshpande
- grid.5253.10000 0001 0328 4908Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, INF 410 Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Institute of Pharmacology, Heidelberg University, INF 366, Heidelberg, 69120 Germany ,grid.6363.00000 0001 2218 4662Department of Microbiology, Infectious Diseases and Immunology, Charité -Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Nitin Agarwal
- grid.7700.00000 0001 2190 4373Institute of Pharmacology, Heidelberg University, INF 366, Heidelberg, 69120 Germany
| | - Thomas Fleming
- grid.5253.10000 0001 0328 4908Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, INF 410 Heidelberg, Germany ,grid.452622.5German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Claire Gaveriaux-Ruff
- grid.420255.40000 0004 0638 2716Institut de Génétique et de Biologie Moléculaire et Cellulaire, Department of Translational Medicine and Neurogenetics, Illkirch, France ,grid.420255.40000 0004 0638 2716Université de Strasbourg, Illkirch, France ,grid.4444.00000 0001 2112 9282Centre National de la Recherche Scientifique, UMR7104 Illkirch, France ,Institut National de la Santé et de la Recherche Médicale, U1258 Illkirch, France ,grid.418692.00000 0004 0610 0264Ecole Supérieure de Biotechnologie de Strasbourg, Illkirch, France
| | - Christoph S. N. Klose
- grid.6363.00000 0001 2218 4662Department of Microbiology, Infectious Diseases and Immunology, Charité -Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Anke Tappe-Theodor
- grid.7700.00000 0001 2190 4373Institute of Pharmacology, Heidelberg University, INF 366, Heidelberg, 69120 Germany
| | - Rohini Kuner
- grid.7700.00000 0001 2190 4373Institute of Pharmacology, Heidelberg University, INF 366, Heidelberg, 69120 Germany
| | - Peter Nawroth
- grid.5253.10000 0001 0328 4908Department of Medicine I and Clinical Chemistry, University Hospital of Heidelberg, INF 410 Heidelberg, Germany ,grid.452622.5German Center for Diabetes Research (DZD), Neuherberg, Germany ,Joint Heidelberg-IDC Translational Diabetes Program, Helmholtz Zentrum, 85764 Neuherberg, Germany
| |
Collapse
|
25
|
Li F, Zhang Y, Li H, Lu J, Jiang L, Vigersky RA, Zhou J, Wang C, Bao Y, Jia W. TIR generated by continuous glucose monitoring is associated with peripheral nerve function in type 2 diabetes. Diabetes Res Clin Pract 2020; 166:108289. [PMID: 32615278 DOI: 10.1016/j.diabres.2020.108289] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/07/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023]
Abstract
AIMS Continuous glucose monitoring (CGM)-derived time-in-range (TIR) of 3.9-10 mmol/L is associated with diabetic retinopathy in type 2 diabetes (T2DM), but its relationship to peripheral nerve function has not been previously investigated. To explore the association between the TIR and nerve conduction study parameters in patients with T2DM, we performed a cross-sectional analysis. METHODS A total of 740 patients with T2DM were enrolled in this study. All of the participants were divided into tertiles according to the TIR (TIR low: ≤53%; TIR medium: 54-76%; TIR high: ≥77%). Composite Z-scores of nerve conduction velocity (CV), latency, and amplitude were calculated. The linear correlation between the TIR and composite nerve function Z-score was evaluated and risk assessment was analysed using binary logistic regression. RESULTS The composite Z-score of the CV and amplitude increased with higher TIR and the composite Z-score of latency significantly decreased as the TIR tertiles increased (all P trend < 0.05). After adjusting for age, diabetes duration, height, weight and other confounding factors, higher TIR was associated with a higher composite Z-score of CV (β = 0.230, P < 0.001), amplitude (β = 0.099, P = 0.010), and lower composite Z-score of latency (β = -0.172, P < 0.001). The risk of TIR tertiles and low composite Z-score of CV remained significant even after adjustment of HbA1c (TIR medium: OR = 0.48, P = 0.001; TIR high: OR = 0.41, P < 0.001). CONCLUSIONS Higher TIR tertiles were independently associated with better peripheral nerve function. CGM-derived TIR may be a promising approach to screen patients for further assessment of possible diabetic peripheral neuropathy.
Collapse
Affiliation(s)
- Fengwen Li
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai 200233, China
| | - Yinan Zhang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, The Metabolic Diseases Biobank, Center for Translational Medicine, Shanghai Key Laboratory of Diabetes, Shanghai 200233, China
| | - Huizhi Li
- Department of Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jingyi Lu
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai 200233, China
| | - Lan Jiang
- Department of Electrophysiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Robert A Vigersky
- Diabetes Institute of the Walter Reed National Military Medical Center, Bethesda, MD, United States
| | - Jian Zhou
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai 200233, China
| | - Congrong Wang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, The Metabolic Diseases Biobank, Center for Translational Medicine, Shanghai Key Laboratory of Diabetes, Shanghai 200233, China; Department of Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Shanghai East Hospital, Tongji University School of Medicine, Translational Medical Center for Stem Cell Therapy, Shanghai 200120, China.
| | - Yuqian Bao
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai 200233, China
| | - Weiping Jia
- Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Center for Diabetes, Shanghai 200233, China.
| |
Collapse
|
26
|
Asif A, Zeeshan N, Mehmood S. Antioxidant and antiglycation activities of traditional plants and identification of bioactive compounds from extracts of Hordeum vulgare by LC-MS and GC-MS. J Food Biochem 2020; 44:e13381. [PMID: 32696536 DOI: 10.1111/jfbc.13381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023]
Abstract
Glycation has been involved in Schiff base reaction lead to hyperglycemia at cellular level. The current study aimed to identify the bioactive compounds from selected folkloric plants for their antiglycation and antioxidant potential. Methanol extracts demonstrated the highest activities, therefore, it was further fractionated using n-hexane, dichloromethane, ethyl acetate, and methanol solvents to isolate the nonpolar compounds from the Hordeum vulgare. Moreover, n-hexane and dichloromethane fractions of H. vulgare demonstrated the best antioxidant (61.58% and 62.89%) and antiglycation activities (72.52% and 61.52%) at 2 mg/ml, respectively. Analytical techniques of LC-MS and GC-MS were employed for identification of bioactive compounds; Biochanin A in dichloromethane (DCM) and Vitamin E in n-hexane fractions. There was a strong correlation between antioxidant and antiglycation activities (r = 0.97 and r = 0.96) of DCM & n-hexane fractions of H. vulgare. Findings of this study established the role of Biochanin A and Vit E from H. vulgare as potent antiglycation agents. PRACTICAL APPLICATIONS: The results of this study confirmed the potential role of Black Barley has involved in the inhibition of protein glycation, which can be the potential treatment to reduce the complications of Diabetic Patients. The Black Barley has a rich source of identified compounds Biochanin A and Vitamin E. We can use this plant as a staple food in curing the severity of diabetes. The other practical approach is to use this plant as an ingredient of different food products. The extraction of identified bioactive compounds from the plant will be a good and cheap source of the treatment.
Collapse
Affiliation(s)
- Awais Asif
- Department of Biochemistry, Nawaz Sharif Medical College, University of Gujrat, Gujrat, Pakistan.,Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat, Pakistan
| | - Nadia Zeeshan
- Department of Biochemistry and Biotechnology, University of Gujrat, Gujrat, Pakistan
| | - Sajid Mehmood
- Department of Biochemistry, Islam Medical and Dental College, Sialkot, Pakistan
| |
Collapse
|
27
|
Abstract
Neuropathic pain caused by a lesion or disease of the somatosensory nervous system is a common chronic pain condition with major impact on quality of life. Examples include trigeminal neuralgia, painful polyneuropathy, postherpetic neuralgia, and central poststroke pain. Most patients complain of an ongoing or intermittent spontaneous pain of, for example, burning, pricking, squeezing quality, which may be accompanied by evoked pain, particular to light touch and cold. Ectopic activity in, for example, nerve-end neuroma, compressed nerves or nerve roots, dorsal root ganglia, and the thalamus may in different conditions underlie the spontaneous pain. Evoked pain may spread to neighboring areas, and the underlying pathophysiology involves peripheral and central sensitization. Maladaptive structural changes and a number of cell-cell interactions and molecular signaling underlie the sensitization of nociceptive pathways. These include alteration in ion channels, activation of immune cells, glial-derived mediators, and epigenetic regulation. The major classes of therapeutics include drugs acting on α2δ subunits of calcium channels, sodium channels, and descending modulatory inhibitory pathways.
Collapse
Affiliation(s)
- Nanna Brix Finnerup
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Neurology, Aarhus University Hospital, Aarhus, Denmark; and Department of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Rohini Kuner
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Neurology, Aarhus University Hospital, Aarhus, Denmark; and Department of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Troels Staehelin Jensen
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Neurology, Aarhus University Hospital, Aarhus, Denmark; and Department of Pharmacology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
28
|
Reinhold AK, Rittner HL. Characteristics of the nerve barrier and the blood dorsal root ganglion barrier in health and disease. Exp Neurol 2020; 327:113244. [PMID: 32057794 DOI: 10.1016/j.expneurol.2020.113244] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/17/2020] [Accepted: 02/09/2020] [Indexed: 12/14/2022]
Abstract
A variety of barriers ensures the protection of the peripheral nervous system from noxious blood-borne or surrounding stimuli. In this review, anatomy and functioning of the blood nerve barrier (BNB) and the blood DRG barrier (BDB) will be presented and key tight junction proteins described: ZO-1, claudin-1, -3, -5, -11, -12, -19, occludin, and tricellulin. Different diseases can lead to or be accompanied by nerve barrier disruption; impairment of nerve barriers in turn worsens pathology. Peripheral nerve injury, diabetic neuropathy and inflammatory polyneuropathy cause an increased permeability of BNB and BDB. Knowledge and understanding of these mechanisms might ultimately lead to the invention of drugs to control barrier function and help ameliorating neurological diseases.
Collapse
Affiliation(s)
- A K Reinhold
- Dept Anesthesiology, Center for Interdisciplinary Pain Medicine, University Hospitals Wuerzburg, Germany
| | - H L Rittner
- Dept Anesthesiology, Center for Interdisciplinary Pain Medicine, University Hospitals Wuerzburg, Germany.
| |
Collapse
|
29
|
Nakagawa T, Akimoto N, Hakozaki A, Noma T, Nakamura A, Hayashi Y, Sasaki E, Ozaki N, Furue H. Responsiveness of lumbosacral superficial dorsal horn neurons during the voiding reflex and functional loss of spinal urethral-responsive neurons in streptozotocin-induced diabetic rats. Neurourol Urodyn 2019; 39:144-157. [PMID: 31663175 DOI: 10.1002/nau.24198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/23/2019] [Indexed: 12/20/2022]
Abstract
AIMS Sensory information from the lower urinary tract (LUT) is conveyed to the spinal cord to trigger and co-ordinate micturition. However, it is not fully understood how spinal dorsal horn neurons are excited during the voiding reflex. In this study, we developed an in vivo technique allowing recording of superficial dorsal horn (SDH) neurons concurrent with intravesical pressure (IVP) during the micturition cycle in both normal and diabetic rats. METHODS Lumbosacral dorsal horn neuronal activity and IVP were recorded from urethane-anesthetized naive and streptozotocin (STZ)-induced diabetic rats. Saline was continuously perfused into the urinary bladder through a cannula to induce micturition. RESULTS We classified SDH neurons into bladder- and urethral-responsive neurons, based on their responsiveness during the voiding reflex. Bladder-responsive SDH neurons responded to the rapid increase in IVP at the start of voiding. In contrast, urethral-responsive SDH neuronal firing increased at the peak IVP and their firing lasted during the voiding phase (the high-frequency oscillations). Urethral-responsive SDH neurons were more sensitive to capsaicin, received C afferent fiber inputs, and were rarely detected in STZ-diabetes rats. Administration of a cyclohexenoic long-chain fatty alcohol (TAC-302), which is reported to promote neurite outgrowth of peripheral nerves in STZ-diabetic rats, prevented the functional loss of spinal urethral response. CONCLUSIONS Sensory information from the bladder and urethra is conveyed separately to different groups of SDH neurons. Functional loss of spinal urethral sensory information through unmyelinated C afferent fibers may contribute to diabetic bladder dysfunction.
Collapse
Affiliation(s)
- Tatsuki Nakagawa
- Department of Neurophysiology, Hyogo College of Medicine, Nishinomiya, Japan.,Department of Functional Anatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan.,Department of Information Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| | - Nozomi Akimoto
- Department of Information Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| | - Atsushi Hakozaki
- Department of Information Physiology, National Institute for Physiological Sciences, Okazaki, Japan.,Drug Discovery and Development II, Taiho Pharmaceutical Co. Ltd, Tsukuba, Japan
| | - Takahisa Noma
- Drug Discovery and Development II, Taiho Pharmaceutical Co. Ltd, Tsukuba, Japan
| | - Ayumi Nakamura
- Department of Neurophysiology, Hyogo College of Medicine, Nishinomiya, Japan.,Department of Information Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| | - Yukio Hayashi
- Drug Discovery and Development II, Taiho Pharmaceutical Co. Ltd, Tsukuba, Japan
| | - Eiji Sasaki
- Drug Discovery and Development II, Taiho Pharmaceutical Co. Ltd, Tsukuba, Japan
| | - Noriyuki Ozaki
- Department of Functional Anatomy, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hidemasa Furue
- Department of Neurophysiology, Hyogo College of Medicine, Nishinomiya, Japan.,Department of Information Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| |
Collapse
|