1
|
Chen L, Zou X, Liu CC, Yan P, Deng J, Wang C, Chen MY, Tang XQ, Shi JM, Xin WJ, Zhang XZ, Feng X, Xu T, Xie JD. Earlier onset of chemotherapy-induced neuropathic pain in females by ICAM-1-mediated accumulation of perivascular macrophages. SCIENCE ADVANCES 2025; 11:eadu2159. [PMID: 40238872 PMCID: PMC12002127 DOI: 10.1126/sciadv.adu2159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/14/2025] [Indexed: 04/18/2025]
Abstract
Sex differences in the pathogenesis of a variety of diseases have drawn increasing attention. However, it remains unclear whether such differences exist in chemotherapy-induced neuropathic pain. Here, we conducted a retrospective analysis of clinical case data and found that peripheral sensory disorders occurred earlier in females than in males following bortezomib (BTZ) treatment in patients with multiple myeloma. BTZ treatment led to an early elevation of intercellular adhesion molecule-1, which triggered the infiltration of peripheral monocytes into the perivascular region of the spinal cord in female mice. The CC-chemokine ligand 1 released by infiltrating macrophages directly activated neurons or indirectly activated neurons by enhancing the astrocyte activity, ultimately leading to the earlier onset of BTZ-induced neuropathic pain in females. Together, clarifying the mechanism underlying the earlier onset of BTZ-induced neuropathic pain will contribute to the precise treatment of multiple myeloma in females.
Collapse
Affiliation(s)
- Li Chen
- Guangdong Province Key Laboratory of Brain Function and Disease, Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Xin Zou
- Guangdong Province Key Laboratory of Brain Function and Disease, Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Cui-Cui Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, China
| | - Pu Yan
- Department of Hematology, Shenzhen Longgang District People’s Hospital, Shenzhen, Guangdong 518172, China
| | - Jie Deng
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Chen Wang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Mu-Yang Chen
- Guangdong Province Key Laboratory of Brain Function and Disease, Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Xiao-Qing Tang
- Department of Neurology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jing-Ming Shi
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xian Yang, Shaanxi Province 712082, China
| | - Wen-Jun Xin
- Guangdong Province Key Laboratory of Brain Function and Disease, Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xian Yang, Shaanxi Province 712082, China
| | - Xiang-Zhong Zhang
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510010, China
| | - Xia Feng
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Ting Xu
- Guangdong Province Key Laboratory of Brain Function and Disease, Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Jing-Dun Xie
- Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| |
Collapse
|
2
|
Li Y, Squillace S, Schafer R, Giancotti LA, Chen Z, Egan TM, Hoft SG, DiPaolo RJ, Salvemini D. Contribution of S1pr1 -featured astrocyte subpopulation to cisplatin-induced neuropathic pain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.03.642851. [PMID: 40236155 PMCID: PMC11996491 DOI: 10.1101/2025.04.03.642851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Chemotherapy-induced peripheral neuropathy accompanied by neuropathic pain (CIPN) is a major neurotoxicity of cisplatin, a platinum-based drug widely used for lung, ovarian, and testicular cancer treatment. CIPN causes drug discontinuation and severely impacts life quality with no FDA-approved interventions. We previously reported that platinum-based drugs increase levels of sphingosine 1-phosphate (S1P) in the spinal cord and drive CIPN through activating the S1P receptor subtype 1 (S1PR1). However, the mechanisms engaged downstream of S1PR1 remain poorly understood. Using single cell transcriptomics on male mouse spinal cord, our findings uncovered subpopulation-specific responses to cisplatin associated with CIPN. Particularly, cisplatin increased the proportion of astrocytes with high expression levels of S1pr1 ( S1pr1 high astrocytes), specific to which a Wnt signaling pathway was identified. To this end, several genes involved in Wnt signaling, such as the fibroblast growth factor receptor 3 gene ( Fgfr3 ), were highly expressed in S1pr1 high astrocytes. The functional S1PR1 antagonist, ozanimod, prevented cisplatin-induced neuropathic pain and astrocytic upregulation of the Wnt signaling pathway genes. FGFR3 belongs to the FGF/FGFR family which often signals to activate Wnt signaling. Intrathecal injection of the FGFR3 antagonist, PD173074, prevented the development of CIPN in male mice. These data not only highlight FGFR3 as one of the astrocytic targets of S1PR1 but raise the possibility that S1PR1-induced engagement of Wnt signaling in S1pr1 high astrocytes may contribute to CIPN. Overall, our results provide a comprehensive mapping of cellular and molecular changes engaged in cisplatin-induced neuropathic pain and decipher novel S1PR1-based mechanisms of action.
Collapse
|
3
|
Thomsen MB, Singh A, Thebeau CN, Gao VD, Schulze NF, Avraham O, Yang SX, Koneru S, Geier SS, Landon SM, Pelea A, Cavalli V, Geisler S. Macrophage depletion restores the DRG microenvironment and prevents axon degeneration in bortezomib-induced neuropathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.22.634362. [PMID: 39896673 PMCID: PMC11785175 DOI: 10.1101/2025.01.22.634362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Peripheral neuropathy is a common and debilitating side effect of the chemotherapeutic bortezomib (BTZ). To explore the mechanisms underlying BTZ-induced neuropathy (BIPN), we developed a mouse model that replicates the route of administration and approximates the prolonged BTZ exposure experienced by patients. We find that male mice treated with BTZ experience more severe sensorimotor dysfunction and axon loss compared to females and observed similar results when analyzing human data. Using single cell RNA-sequencing, we reveal that BTZ significantly alters the dorsal root ganglia (DRG) microenvironment in mice, producing pronounced sex-specific changes in satellite glial cells (SGCs) in males and females and dysregulation of the extracellular matrix (ECM), particularly in males. These changes are accompanied by expansion of macrophages, which is more pronounced in males. We identify four macrophage subtypes in the DRG, including a pro-fibrotic population that is exclusively associated with BIPN. Depletion of macrophages via anti-CSF1R treatment in male mice prevents BTZ-induced SGC activation and aberrant collagen deposition in DRGs, potently preserves peripheral axons, and improves functional outcomes. These findings highlight SGCs, neuroinflammation and dysregulation of the ECM as drivers of sex-specific differences in BIPN and suggest that targeting neuroinflammation is a promising therapeutic strategy to treat this disease.
Collapse
Affiliation(s)
| | - Abhishek Singh
- Department of Neurology, Washington University School of Medicine in St. Louis; St. Louis, USA
| | - Christina N. Thebeau
- Department of Neurology, Washington University School of Medicine in St. Louis; St. Louis, USA
| | - Vivian D. Gao
- Department of Neurology, Washington University School of Medicine in St. Louis; St. Louis, USA
| | - Nicholas F. Schulze
- Department of Neurology, Washington University School of Medicine in St. Louis; St. Louis, USA
| | - Oshri Avraham
- Department of Neuroscience, Washington University School of Medicine in St. Louis; St. Louis, USA
| | - Sarah X. Yang
- Department of Neurology, Washington University School of Medicine in St. Louis; St. Louis, USA
| | - Shriya Koneru
- Department of Neurology, Washington University School of Medicine in St. Louis; St. Louis, USA
| | - Sami S. Geier
- Department of Neurology, Washington University School of Medicine in St. Louis; St. Louis, USA
| | - Shannon M. Landon
- Department of Neurology, Washington University School of Medicine in St. Louis; St. Louis, USA
| | - Aidan Pelea
- Department of Neurology, Washington University School of Medicine in St. Louis; St. Louis, USA
| | - Valeria Cavalli
- Department of Neuroscience, Washington University School of Medicine in St. Louis; St. Louis, USA
- Hope Center for Neurological Diseases, Washington University School of Medicine in St. Louis; St. Louis, USA
- Center of Regenerative Medicine, Washington University School of Medicine in St. Louis; St. Louis, USA
| | - Stefanie Geisler
- Department of Neurology, Washington University School of Medicine in St. Louis; St. Louis, USA
- Hope Center for Neurological Diseases, Washington University School of Medicine in St. Louis; St. Louis, USA
- Siteman Cancer Center; St. Louis, USA
| |
Collapse
|
4
|
Doyle TM, Janes K, Xiao WH, Kolar GR, Luecke HF, Gratton MA, Tosh DK, Jacobson KA, Bennett GJ, Salvemini D. Mitochondrial A 3 Adenosine Receptor as a Mechanism for the Protective Effects of A 3AR Agonists on Chemotherapy-Induced Neuropathic Pain. J Neurosci 2025; 45:e1268242024. [PMID: 39653498 PMCID: PMC11735668 DOI: 10.1523/jneurosci.1268-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/11/2024] [Accepted: 10/29/2024] [Indexed: 01/18/2025] Open
Abstract
Alterations in mitochondrial function are the linchpin in numerous disease states including in the development of chemotherapy-induced neuropathic pain (CIPN), a major dose-limiting toxicity of widely used chemotherapeutic cytotoxins. In CIPN, mitochondrial dysfunction is characterized by deficits in mitochondrial bioenergetics (e.g., decreased ATP production) that are thought to drive the degeneration of the peripheral nerve sensory axon terminal sensory arbors in the skin (the intraepidermal nerve fibers; IENFs) and induce abnormal spontaneous discharge in peripheral nerve sensory axons. Preserving mitochondrial function is anticipated to prevent CIPN. We have now discovered that the G-protein-coupled receptor, A3 adenosine receptor subtype (A3AR), is expressed on the mitochondrial outer membrane. Ex vivo application of a highly selective A3AR agonist, MRS5980, to saphenous nerve microfilaments harvested from male oxaliplatin-treated rats reversed the loss in ATP production underscoring mitoprotective effects resulting from A3AR activation on mitochondria. Moreover, in vivo administration of A3AR agonists to rats during oxaliplatin treatment was associated with reduced IENF loss and a lower incidence of spontaneous discharge in peripheral afferent axons. These effects are accompanied by improved mitochondrial ATP production in primary afferent sensory axons and overall inhibition of the development of neuropathic pain. These data identify for the first time mitochondrial A3AR and indicate that activation of A3AR protects mitochondrial function in primary afferent sensory axons against chemotherapy-induced neurotoxicity. Repurposing A3AR agonists that are already in clinical trials as anticancer agents as adjunct to chemotherapeutics will address a major unmet medical need for which there are no FDA-approved drugs.
Collapse
Affiliation(s)
- Timothy M Doyle
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104
- Institute for Translational Neuroscience, Saint Louis University, Saint Louis, Missouri 63104
| | - Kali Janes
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104
| | - Wen Hua Xiao
- Department of Anesthesiology, University of California San Diego, San Diego, California 92103
| | - Grant R Kolar
- Institute for Translational Neuroscience, Saint Louis University, Saint Louis, Missouri 63104
- Department of Pathology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104
| | - Hans F Luecke
- Chemical Proteomics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Michael Anne Gratton
- Center for Sensory Neuroscience, Boys Town National Research Hospital, Boys Town, Nebraska 68010
| | - Dilip K Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Gary J Bennett
- Department of Anesthesiology, University of California San Diego, San Diego, California 92103
| | - Daniela Salvemini
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, Saint Louis, Missouri 63104
- Institute for Translational Neuroscience, Saint Louis University, Saint Louis, Missouri 63104
| |
Collapse
|
5
|
Kiani FA, Li H, Nan S, Li Q, Lei Q, Yin R, Cao S, Ding M, Ding Y. Electroacupuncture Relieves Neuropathic Pain via Adenosine 3 Receptor Activation in the Spinal Cord Dorsal Horn of Mice. Int J Mol Sci 2024; 25:10242. [PMID: 39408573 PMCID: PMC11475944 DOI: 10.3390/ijms251910242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 10/20/2024] Open
Abstract
Neuropathic pain (NPP) is a devastating and unbearable painful condition. As prevailing treatment strategies have failed to mitigate its complications, there remains a demand for effective therapies. Electroacupuncture (EA) has proved a potent remedial strategy in NPP management in humans and mammals. However, past studies have investigated the underlying mechanism of the analgesic effects of EA on NPP, focusing primarily on adenosine receptors in peripheral tissues. Herein, we elucidate the role of the adenosine (Adora-3) signaling pathway in mediating pain relief through EA in the central nervous system, which is obscure in the literature and needs exploration. Specific pathogen-free (SPF) male adult mice (C57BL/6 J) were utilized to investigate the effect of EA on adenosine metabolism (CD73, ADA) and its receptor activation (Adora-3), as potential mechanisms to mitigate NPP in the central nervous system. NPP was induced via spared nerve injury (SNI). EA treatment was administered seven times post-SNI surgery, and lumber (L4-L6) spinal cord was collected to determine the molecular expression of mRNA and protein levels. In the spinal cord of mice, following EA application, the expression results revealed that EA upregulated (p < 0.05) Adora-3 and CD73 by inhibiting ADA expression. In addition, EA triggered the release of adenosine (ADO), which modulated the nociceptive responses and enhanced neuronal activation. Meanwhile, the interplay between ADO levels and EA-induced antinociception, using an Adora-3 agonist and antagonist, showed that the Adora-3 agonist IB-MECA significantly increased (p < 0.05) nociceptive thresholds and expression levels. In contrast, the antagonist MRS1523 exacerbated neuropathic pain. Furthermore, an upregulated effect of EA on Adora-3 expression was inferred when the Adora-3 antagonist was administered, and the EA treatment increased the fluorescent intensity of Adora-3 in the spinal cord. Taken together, EA effectively modulates NPP by regulating the Adora-3 signaling pathway under induced pain conditions. These findings enhance our understanding of NPP management and offer potential avenues for innovative therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yi Ding
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (F.A.K.); (H.L.)
| |
Collapse
|
6
|
Mattar M, Umutoni F, Hassan MA, Wamburu MW, Turner R, Patton JS, Chen X, Lei W. Chemotherapy-Induced Peripheral Neuropathy: A Recent Update on Pathophysiology and Treatment. Life (Basel) 2024; 14:991. [PMID: 39202733 PMCID: PMC11355765 DOI: 10.3390/life14080991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/29/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a major long-lasting side effect of some chemotherapy drugs, which threatens cancer survival rate. CIPN mostly affects sensory neurons and occasionally motor neurons, causing numbness, tingling, discomfort, and burning pain in the upper and lower extremities. The pathophysiology of CIPN is not completely understood; however, it is believed that chemotherapies induce peripheral neuropathy via directly damaging mitochondria, impairing the function of ion channels, triggering immunological mechanisms, and disrupting microtubules. The treatment of CIPN is a medical challenge, and there are no approved pharmacological options. Currently, duloxetine and other antidepressants, antioxidant, anti-inflammatory, and ion-channel targeted therapies are commonly used in clinics to relieve the symptoms of CIPN. Several other types of drugs, such as cannabinoids, sigma-1 receptor antagonists, and nicotinamides ribose, are being evaluated in preclinical and clinical studies. This paper summarizes the information related to the physiology of CIPN and medicines that could be used for treating this condition.
Collapse
Affiliation(s)
- Marina Mattar
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, SC 29325, USA; (M.M.); (M.A.H.)
| | - Florence Umutoni
- Department of Pharmaceutical and Graduate Life Sciences, College of Health Sciences, Nursing, and Pharmacy, Manchester University, Fort Wayne, IN 46845, USA; (F.U.); (J.S.P.)
| | - Marwa A. Hassan
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, SC 29325, USA; (M.M.); (M.A.H.)
| | - M. Wambui Wamburu
- Department of Pharmacy Practice, College of Health Sciences, Nursing, and Pharmacy, Manchester University, Fort Wayne, IN 46845, USA;
| | - Reagan Turner
- Department of Biology, Presbyterian College, Clinton, SC 29325, USA;
| | - James S. Patton
- Department of Pharmaceutical and Graduate Life Sciences, College of Health Sciences, Nursing, and Pharmacy, Manchester University, Fort Wayne, IN 46845, USA; (F.U.); (J.S.P.)
| | - Xin Chen
- Department of Pharmaceutical and Clinical Sciences, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, NC 27506, USA;
| | - Wei Lei
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, SC 29325, USA; (M.M.); (M.A.H.)
- Department of Pharmaceutical and Graduate Life Sciences, College of Health Sciences, Nursing, and Pharmacy, Manchester University, Fort Wayne, IN 46845, USA; (F.U.); (J.S.P.)
| |
Collapse
|
7
|
Mogil JS, Parisien M, Esfahani SJ, Diatchenko L. Sex differences in mechanisms of pain hypersensitivity. Neurosci Biobehav Rev 2024; 163:105749. [PMID: 38838876 DOI: 10.1016/j.neubiorev.2024.105749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/23/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
The introduction of sex-as-a-biological-variable policies at funding agencies around the world has led to an explosion of very recent observations of sex differences in the biology underlying pain. This review considers evidence of sexually dimorphic mechanisms mediating pain hypersensitivity, derived from modern assays of persistent pain in rodent animal models. Three well-studied findings are described in detail: the male-specific role of spinal cord microglia, the female-specific role of calcitonin gene-related peptide (CGRP), and the female-specific role of prolactin and its receptor. Other findings of sex-specific molecular involvement in pain are subjected to pathway analyses and reveal at least one novel hypothesis: that females may preferentially use Th1 and males Th2 T cell activity to mediate chronic pain.
Collapse
Affiliation(s)
- Jeffrey S Mogil
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3A 1B1, Canada.
| | - Marc Parisien
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3A 1B1, Canada
| | - Sahel J Esfahani
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3A 1B1, Canada
| | - Luda Diatchenko
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC H3A 1B1, Canada
| |
Collapse
|
8
|
Krishnan P, Bobak CA, Hill JE. Sex-specific blood-derived RNA biomarkers for childhood tuberculosis. Sci Rep 2024; 14:16859. [PMID: 39039071 PMCID: PMC11263679 DOI: 10.1038/s41598-024-66946-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024] Open
Abstract
Confirmatory diagnosis of childhood tuberculosis (TB) remains a challenge mainly due to its dependence on sputum samples and the paucibacillary nature of the disease. Thus, only ~ 30% of suspected cases in children are diagnosed and the need for minimally invasive, non-sputum-based biomarkers remains unmet. Understanding host molecular changes by measuring blood-based transcriptomic markers has shown promise as a diagnostic tool for TB. However, the implication of sex contributing to disease heterogeneity and therefore diagnosis remains to be understood. Using publicly available gene expression data (GSE39939, GSE39940; n = 370), we report a sex-specific RNA biomarker signature that could improve the diagnosis of TB disease in children. We found four gene biomarker signatures for male (SLAMF8, GBP2, WARS, and FCGR1C) and female pediatric patients (GBP6, CELSR3, ALDH1A1, and GBP4) from Kenya, South Africa, and Malawi. Both signatures achieved a sensitivity of 85% and a specificity of 70%, which approaches the WHO-recommended target product profile for a triage test. Our gene signatures outperform most other gene signatures reported previously for childhood TB diagnosis.
Collapse
Affiliation(s)
- Preethi Krishnan
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, V6T 1Z3, Canada
| | - Carly A Bobak
- Department of Biomedical Data Science, Dartmouth College, Hanover, NH, 03755, USA
| | - Jane E Hill
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, V6T 1Z3, Canada.
| |
Collapse
|
9
|
Yang Y, Zhao B, Lan H, Sun J, Wei G. Bortezomib-induced peripheral neuropathy: Clinical features, molecular basis, and therapeutic approach. Crit Rev Oncol Hematol 2024; 197:104353. [PMID: 38615869 DOI: 10.1016/j.critrevonc.2024.104353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 03/01/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024] Open
Abstract
Bortezomib is the first-line standard and most effective chemotherapeutic for multiple myeloma; however, bortezomib-induced peripheral neuropathy (BIPN) severely affects the chemotherapy regimen and has long-term impact on patients under maintenance therapy. The pathogenesis of BIPN is poorly understood, and basic research and development of BIPN management drugs are in early stages. Besides chemotherapy dose reduction and regimen modification, no recommended prevention and treatment approaches are available for BIPN apart from the International Myeloma Working Group guidelines for peripheral neuropathy in myeloma. An in-depth exploration of the pathogenesis of BIPN, development of additional therapeutic approaches, and identification of risk factors are needed. Optimizing effective and standardized BIPN treatment plans and providing more decision-making evidence for clinical diagnosis and treatment of BIPN are necessary. This article reviews the recent advances in BIPN research; provides an overview of clinical features, underlying molecular mechanisms, and therapeutic approaches; and highlights areas for future studies.
Collapse
Affiliation(s)
- Yang Yang
- Department of Oncology, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Department of General Surgery, Changshu No. 1 People's Hospital, Affiliated Changshu Hospital of Soochow University, Changshu, China; Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Bing Zhao
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hongli Lan
- Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jinbing Sun
- Department of General Surgery, Changshu No. 1 People's Hospital, Affiliated Changshu Hospital of Soochow University, Changshu, China.
| | - Guoli Wei
- Department of Oncology, Nanjing Lishui District Hospital of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Provincial Medical Innovation Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China; Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
10
|
Zhao G, Zhang T, Li J, Li L, Chen P, Zhang C, Li K, Cui C. Parkin-mediated mitophagy is a potential treatment for oxaliplatin-induced peripheral neuropathy. Am J Physiol Cell Physiol 2024; 326:C214-C228. [PMID: 38073486 PMCID: PMC11192483 DOI: 10.1152/ajpcell.00276.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/17/2023] [Accepted: 10/29/2023] [Indexed: 01/06/2024]
Abstract
Oxaliplatin-induced peripheral nerve pain (OIPNP) is a common chemotherapy-related complication, but the mechanism is complex. Mitochondria are vital for cellular homeostasis and regulating oxidative stress. Parkin-mediated mitophagy is a cellular process that removes damaged mitochondria, exhibiting a protective effect in various diseases; however, its role in OIPNP remains unclear. In this study, we found that Parkin-mediated mitophagy was decreased, and reactive oxygen species (ROS) was upregulated in OIPNP rat dorsal root ganglion (DRG) in vivo and in PC12 cells stimulated with oxaliplatin (OXA) in vitro. Overexpression of Parkin indicated that OXA might cause mitochondrial and cell damage by inhibiting mitophagy. We also showed that salidroside (SAL) upregulated Parkin-mediated mitophagy to eliminate damaged mitochondria and promote PC12 cell survival. Knockdown of Parkin indicated that mitophagy is crucial for apoptosis and mitochondrial homeostasis in PC12 cells. In vivo study also demonstrated that SAL enhances Parkin-mediated mitophagy in the DRG and alleviates peripheral nerve injury and pain. These results suggest that Parkin-mediated mitophagy is involved in the pathogenesis of OIPNP and may be a potential therapeutic target for OIPNP.NEW & NOTEWORTHY This article discusses the effects and mechanisms of Parkin-mediated mitophagy in oxaliplatin-induced peripheral nerve pain (OIPNP) from both in vivo and in vitro. We believe that our study makes a significant contribution to the literature because OIPNP has always been the focus of clinical medicine, and mitochondrial quality regulation mechanisms especially Parkin-mediated mitophagy, have been deeply studied in recent years. We use a variety of molecular biological techniques and animal experiments to support our argument.
Collapse
Affiliation(s)
- Guoqing Zhao
- Anesthesiology Department, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Te Zhang
- Anesthesiology Department, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Jiannan Li
- Department of Plastic and Reconstructive Microsurgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Longyun Li
- Anesthesiology Department, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Peng Chen
- Anesthesiology Department, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Chunlu Zhang
- Anesthesiology Department, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Kai Li
- Anesthesiology Department, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| | - Cancan Cui
- Radiology Department, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|
11
|
Ghazisaeidi S, Muley MM, Salter MW. Neuropathic Pain: Mechanisms, Sex Differences, and Potential Therapies for a Global Problem. Annu Rev Pharmacol Toxicol 2023; 63:565-583. [PMID: 36662582 DOI: 10.1146/annurev-pharmtox-051421-112259] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The study of chronic pain continues to generate ever-increasing numbers of publications, but safe and efficacious treatments for chronic pain remain elusive. Recognition of sex-specific mechanisms underlying chronic pain has resulted in a surge of studies that include both sexes. A predominant focus has been on identifying sex differences, yet many newly identified cellular mechanisms and alterations in gene expression are conserved between the sexes. Here we review sex differences and similarities in cellular and molecular signals that drive the generation and resolution of neuropathic pain. The mix of differences and similarities reflects degeneracy in peripheral and central signaling processes by which neurons, immune cells, and glia codependently drive pain hypersensitivity. Recent findings identifying critical signaling nodes foreshadow the development of rationally designed, broadly applicable analgesic strategies. However, the paucity of effective, safe pain treatments compels targeted therapies as well to increase therapeutic options that help reduce the global burden of suffering.
Collapse
Affiliation(s)
- Shahrzad Ghazisaeidi
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada;
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- University of Toronto Centre for the Study of Pain, Toronto, Ontario, Canada
| | - Milind M Muley
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada;
- University of Toronto Centre for the Study of Pain, Toronto, Ontario, Canada
| | - Michael W Salter
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada;
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- University of Toronto Centre for the Study of Pain, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Cabañero D, Villalba-Riquelme E, Fernández-Ballester G, Fernández-Carvajal A, Ferrer-Montiel A. ThermoTRP channels in pain sexual dimorphism: new insights for drug intervention. Pharmacol Ther 2022; 240:108297. [PMID: 36202261 DOI: 10.1016/j.pharmthera.2022.108297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/25/2022] [Accepted: 09/29/2022] [Indexed: 11/30/2022]
Abstract
Chronic pain is a major burden for the society and remains more prevalent and severe in females. The presence of chronic pain is linked to persistent alterations in the peripheral and the central nervous system. One of the main types of peripheral pain transducers are the transient receptor potential channels (TRP), also known as thermoTRP channels, which intervene in the perception of hot and cold external stimuli. These channels, and especially TRPV1, TRPA1 and TRPM8, have been subjected to profound investigation because of their role as thermosensors and also because of their implication in acute and chronic pain. Surprisingly, their sensitivity to endogenous signaling has been far less studied. Cumulative evidence suggests that the function of these channels may be differently modulated in males and females, in part through sexual hormones, and this could constitute a significant contributor to the sex differences in chronic pain. Here, we review the exciting advances in thermoTRP pharmacology for males and females in two paradigmatic types of chronic pain with a strong peripheral component: chronic migraine and chemotherapy-induced peripheral neuropathy (CIPN). The possibilities of peripheral druggability offered by these channels and the differential exploitation for men and women represent a development opportunity that will lead to a significant increment of the armamentarium of analgesic medicines for personalized chronic pain treatment.
Collapse
Affiliation(s)
- David Cabañero
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, 03202 Elche, Spain
| | - Eva Villalba-Riquelme
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, 03202 Elche, Spain
| | - Gregorio Fernández-Ballester
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, 03202 Elche, Spain
| | - Asia Fernández-Carvajal
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, 03202 Elche, Spain
| | - Antonio Ferrer-Montiel
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, 03202 Elche, Spain.
| |
Collapse
|
13
|
Cao J, Liu X, Liu JX, Zhao S, Guo YX, Wang GY, Wang XL. Inhibition of glutamatergic neurons in layer II/III of the medial prefrontal cortex alleviates paclitaxel-induced neuropathic pain and anxiety. Eur J Pharmacol 2022; 936:175351. [DOI: 10.1016/j.ejphar.2022.175351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 10/14/2022] [Accepted: 10/21/2022] [Indexed: 11/29/2022]
|
14
|
Lauro F, Giancotti LA, Kolar G, Harada CM, Harmon TA, Garrett TJ, Salvemini D. Role of Adenosine Kinase in Sphingosine-1-Phosphate Receptor 1-Induced Mechano-Hypersensitivities. Cell Mol Neurobiol 2022; 42:2909-2918. [PMID: 34773542 PMCID: PMC9098694 DOI: 10.1007/s10571-021-01162-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/22/2021] [Indexed: 12/21/2022]
Abstract
Emerging evidence implicates the sphingosine-1-phosphate receptor subtype 1 (S1PR1) in the development of neuropathic pain. Continued investigation of the signaling pathways downstream of S1PR1 are needed to support development of S1PR1 antagonists. In rodents, intrathecal (i.th.) injection of SEW2871, a selective S1PR1 agonist, activates the nod-like receptor family, pyrin domain containing 3 inflammasome, increases interleukin-1β (IL-1β) and causes behavioral hypersensitivity. I.th. injection of a IL-1β receptor antagonist blocks SEW2871-induced hypersensitivity, suggesting that IL-1β contributes to S1PR1's actions. Interestingly, previous studies have suggested that IL-1β increases the expression/activity of adenosine kinase (ADK), a key regulator of adenosine signaling at its receptors (ARs). Increased ADK expression reduces adenosine signaling whereas inhibiting ADK restores the action of adenosine. Here, we show that SEW287-induced behavioral hypersensitivity is associated with increased expression of ADK in astrocytes of the dorsal horn of the spinal cord. Moreover, the ADK inhibitor, ABT702, blocks SEW2871-induced hypersensitivity. These findings link ADK activation to S1PR1. If SEW2871-induced pain is mediated by IL-1β, which in turn activates ADK and leads to mechano-allodynia, then blocking ADK should attenuate IL-1β effects. In support of this idea, recombinant rat (rrIL-1β)-induced allodynia was blocked by at least 90% with ABT702, functionally linking ADK to IL-1β. Moreover, the selective A3AR antagonist, MRS1523, prevents the ability of ABT702 to block SEW2871 and IL-1β-induced allodynia, implicating A3AR signaling in the beneficial effects exerted by ABT702. Our findings provide novel mechanistic insight into how S1PR1 signaling in the spinal cord produces hypersensitivity through IL1-β and ADK activation.
Collapse
Affiliation(s)
- Filomena Lauro
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 South Grand Blvd., St. Louis, MO, 63104, USA
- Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Blvd., St. Louis, MO, 63104, USA
| | - Luigino Antonio Giancotti
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 South Grand Blvd., St. Louis, MO, 63104, USA
- Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Blvd., St. Louis, MO, 63104, USA
| | - Grant Kolar
- Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Blvd., St. Louis, MO, 63104, USA
- Department of Pathology, Saint Louis University School of Medicine, 1402 South Grand Blvd., St. Louis, MO, 63104, USA
| | - Caron Mitsue Harada
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 South Grand Blvd., St. Louis, MO, 63104, USA
- Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Blvd., St. Louis, MO, 63104, USA
| | - Taylor A Harmon
- Department of Chemistry, University of Florida, Gainesville, FL, 32610, USA
| | - Timothy J Garrett
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Daniela Salvemini
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 South Grand Blvd., St. Louis, MO, 63104, USA.
- Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Blvd., St. Louis, MO, 63104, USA.
| |
Collapse
|
15
|
Feng Y, Lu JJ, Ouyang ZY, Xue LX, Li T, Chen Y, Gao ZR, Zhang SH, Zhao J, Zhao YQ, Ye Q, Hu J, Feng YZ, Guo Y. The Chinese version of the Oral Health Impact Profile-14 (OHIP-14) questionnaire among college students: factor structure and measurement invariance across genders. BMC Oral Health 2022; 22:405. [PMID: 36115994 PMCID: PMC9482739 DOI: 10.1186/s12903-022-02441-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/07/2022] [Indexed: 11/28/2022] Open
Abstract
Background The Oral Health-related Quality of Life (OHRQoL) is a multi-dimensional concept commonly used to examine the impact of health status on quality of life, and the Oral Health Impact Profile-14 (OHIP-14) questionnaire is a good self-assessment tool. This study was designed to investigate the factor structure of the OHIP-14 scale Chinese version, measurement invariance and latent mean differences across genders among college students. Methods The online survey was completed by 919 college students. This study used confirmatory factor analysis (CFA) to check the structural models of the OHIP-14 scale, The correlation of each item with the scale total score could test homogeneity, and Cronbach’s alpha (Cronbach’s α) could evaluate internal consistency. Multi-group CFA was used to explore whether the Chinese version of the OHIP-14 scale was used in male and female populations for measurement consistency. T-test compared scores between men and women. Regression analyses were used to evaluate the relationship between age, gender, education, subject, and the score on the OHIP-14 scale. Results We found that the 7-factor structure had the best fit index in the sample. According to Cronbach’s α, the overall score of OHIP was 0.958, and Cronbach’s α for 7 factors was: functional limitation was 0.800, physical pain was 0.854, psychological discomfort was 0.902, physical disability was 0.850, psychological disability was 0.768, social disability was 0.862, social handicap was 0.819 and the test–retest reliability interval was 0.723. Multi-group confirmatory factor analysis supported residual measurement invariance across gender. T-test for scores showed that females scored higher significantly than men as did the overall score, in terms of physical pain (p<0.001), physical disability (p<0.001), and psychological disability (p<0.001). Conclusions This study found the OHIP-14 Chinese version to be a good tool for assessing the college students' OHRQoL in China, allowing people to conduct self-assessments. Supplementary Information The online version contains supplementary material available at 10.1186/s12903-022-02441-6.
Collapse
|
16
|
Coppi E, Cherchi F, Venturini M, Lucarini E, Corradetti R, Di Cesare Mannelli L, Ghelardini C, Pedata F, Pugliese AM. Therapeutic Potential of Highly Selective A 3 Adenosine Receptor Ligands in the Central and Peripheral Nervous System. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061890. [PMID: 35335254 PMCID: PMC8952202 DOI: 10.3390/molecules27061890] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 11/24/2022]
Abstract
Ligands of the Gi protein-coupled adenosine A3 receptor (A3R) are receiving increasing interest as attractive therapeutic tools for the treatment of a number of pathological conditions of the central and peripheral nervous systems (CNS and PNS, respectively). Their safe pharmacological profiles emerging from clinical trials on different pathologies (e.g., rheumatoid arthritis, psoriasis and fatty liver diseases) confer a realistic translational potential to these compounds, thus encouraging the investigation of highly selective agonists and antagonists of A3R. The present review summarizes information on the effect of latest-generation A3R ligands, not yet available in commerce, obtained by using different in vitro and in vivo models of various PNS- or CNS-related disorders. This review places particular focus on brain ischemia insults and colitis, where the prototypical A3R agonist, Cl-IB-MECA, and antagonist, MRS1523, have been used in research studies as reference compounds to explore the effects of latest-generation ligands on this receptor. The advantages and weaknesses of these compounds in terms of therapeutic potential are discussed.
Collapse
|
17
|
da Motta KP, Santos BF, Domingues NLDC, Luchese C, Wilhelm EA. Target enzymes in oxaliplatin-induced peripheral neuropathy in Swiss mice: A new acetylcholinesterase inhibitor as therapeutic strategy. Chem Biol Interact 2021; 352:109772. [PMID: 34896366 DOI: 10.1016/j.cbi.2021.109772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/10/2021] [Accepted: 12/03/2021] [Indexed: 11/03/2022]
Abstract
In the present study it was hypothesized that 5-((4-methoxyphenyl)thio)benzo[c][1,2,5] thiodiazole (MTDZ), a new acetylcholinesterase inhibitor, exerts antinociceptive action and reduces the oxaliplatin (OXA)-induced peripheral neuropathy and its comorbidities (anxiety and cognitive deficits). Indeed, the acute antinociceptive activity of MTDZ (1 and 10 mg/kg; per oral route) was observed for the first time in male Swiss mice in formalin and hot plate tests and on mechanical withdrawal threshold induced by Complete Freund's Adjuvant (CFA). To evaluate the MTDZ effect on OXA-induced peripheral neuropathy and its comorbidities, male and female Swiss mice received OXA (10 mg/kg) or vehicle intraperitoneally, on days 0 and 2 of the experimental protocol. Oral administration of MTDZ (1 mg/kg) or vehicle was performed on days 2-14. OXA caused cognitive impairment, anxious-like behaviour, mechanical and thermal hypersensitivity in animals, with females more susceptible to thermal sensitivity. MTDZ reversed the hypersensitivity, cognitive impairment and anxious-like behaviour induced by OXA. Here, the negative correlation between the paw withdrawal threshold caused by OXA and acetylcholinesterase (AChE) activity was demonstrated in the cortex, hippocampus, and spinal cord. OXA inhibited the activity of total ATPase, Na+ K+ - ATPase, Ca2+ - ATPase and altered Mg2+ - ATPase in the cortex, hippocampus, and spinal cord. OXA exposure increased reactive species (RS) levels and superoxide dismutase (SOD) activity in the cortex, hippocampus, and spinal cord. MTDZ modulated ion pumps and reduced the oxidative stress induced by OXA. In conclusion, MTDZ is an antinociceptive molecule promising to treat OXA-induced neurotoxicity since it reduced nociceptive and anxious-like behaviours, and cognitive deficit in male and female mice.
Collapse
Affiliation(s)
- Ketlyn P da Motta
- Laboratório de Pesquisa em Farmacologia Bioquímica - LaFarBio, CCQFA - Universidade Federal de Pelotas, UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Beatriz F Santos
- Laboratório de Catálise Orgânica e Biocatálise - LACOB - Universidade Federal de Grande Dourados, UFGD, P.O., Dourados, MS, Brazil
| | - Nelson Luís De C Domingues
- Laboratório de Catálise Orgânica e Biocatálise - LACOB - Universidade Federal de Grande Dourados, UFGD, P.O., Dourados, MS, Brazil
| | - Cristiane Luchese
- Laboratório de Pesquisa em Farmacologia Bioquímica - LaFarBio, CCQFA - Universidade Federal de Pelotas, UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil.
| | - Ethel A Wilhelm
- Laboratório de Pesquisa em Farmacologia Bioquímica - LaFarBio, CCQFA - Universidade Federal de Pelotas, UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil.
| |
Collapse
|
18
|
|
19
|
Uncovering the Mechanisms of Adenosine Receptor-Mediated Pain Control: Focus on the A 3 Receptor Subtype. Int J Mol Sci 2021; 22:ijms22157952. [PMID: 34360719 PMCID: PMC8347395 DOI: 10.3390/ijms22157952] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/22/2022] Open
Abstract
Agonists of the Gi protein-coupled A3 adenosine receptor (A3AR) have shown important pain-relieving properties in preclinical settings of several pain models. Active as a monotherapy against chronic pain, A3AR agonists can also be used in combination with classic opioid analgesics. Their safe pharmacological profile, as shown by clinical trials for other pathologies, i.e., rheumatoid arthritis, psoriasis and fatty liver diseases, confers a realistic translational potential, thus encouraging research studies on the molecular mechanisms underpinning their antinociceptive actions. A number of pathways, involving central and peripheral mechanisms, have been proposed. Recent evidence showed that the prototypical A3AR agonist Cl-IB-MECA and the new, highly selective, A3AR agonist MRS5980 inhibit neuronal (N-type) voltage-dependent Ca2+ currents in dorsal root ganglia, a known pain-related mechanism. Other proposed pathways involve reduced cytokine production, immune cell-mediated responses, as well as reduced microglia and astrocyte activation in the spinal cord. The aim of this review is to summarize up-to-date information on A3AR in the context of pain, including cellular and molecular mechanisms underlying this effect. Based on their safety profile shown in clinical trials for other pathologies, A3AR agonists are proposed as novel, promising non-narcotic agents for pain control.
Collapse
|
20
|
Abstract
Extracellular nucleosides and nucleotides have widespread functions in responding to physiological stress. The "purinome" encompasses 4 G-protein-coupled receptors (GPCRs) for adenosine, 8 GPCRs activated by nucleotides, 7 adenosine 5'-triphosphate-gated P2X ion channels, as well as the associated enzymes and transporters that regulate native agonist levels. Purinergic signaling modulators, such as receptor agonists and antagonists, have potential for treating chronic pain. Adenosine and its analogues potently suppress nociception in preclinical models by activating A1 and/or A3 adenosine receptors (ARs), but safely harnessing this pathway to clinically treat pain has not been achieved. Both A2AAR agonists and antagonists are efficacious in pain models. Highly selective A3AR agonists offer a novel approach to treat chronic pain. We have explored the structure activity relationship of nucleoside derivatives at this subtype using a computational structure-based approach. Novel A3AR agonists for pain control containing a bicyclic ring system (bicyclo [3.1.0] hexane) in place of ribose were designed and screened using an in vivo phenotypic model, which reflected both pharmacokinetic and pharmacodynamic parameters. High specificity (>10,000-fold selective for A3AR) was achieved with the aid of receptor homology models based on related GPCR structures. These A3AR agonists are well tolerated in vivo and highly efficacious in models of chronic neuropathic pain. Furthermore, signaling molecules acting at P2X3, P2X4, P2X7, and P2Y12Rs play critical roles in maladaptive pain neuroplasticity, and their antagonists reduce chronic or inflammatory pain, and, therefore, purine receptor modulation is a promising approach for future pain therapeutics. Structurally novel antagonists for these nucleotide receptors were discovered recently.
Collapse
|
21
|
Luongo L, Guida F, Maione S, Jacobson KA, Salvemini D. Adenosine Metabotropic Receptors in Chronic Pain Management. Front Pharmacol 2021; 12:651038. [PMID: 33935761 PMCID: PMC8085424 DOI: 10.3389/fphar.2021.651038] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Livio Luongo
- Division of Pharmacology, Department of Experimental Medicine, Università della Campania "L. Vanvitelli", Caserta, Italy.,IRCSS, Neuromed, Pozzilli, Italy
| | - Francesca Guida
- Division of Pharmacology, Department of Experimental Medicine, Università della Campania "L. Vanvitelli", Caserta, Italy
| | - Sabatino Maione
- Division of Pharmacology, Department of Experimental Medicine, Università della Campania "L. Vanvitelli", Caserta, Italy.,IRCSS, Neuromed, Pozzilli, Italy
| | - Kenneth A Jacobson
- Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Bethesda, MD, United States
| | - Daniela Salvemini
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
22
|
Midavaine É, Côté J, Marchand S, Sarret P. Glial and neuroimmune cell choreography in sexually dimorphic pain signaling. Neurosci Biobehav Rev 2021; 125:168-192. [PMID: 33582232 DOI: 10.1016/j.neubiorev.2021.01.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/03/2020] [Accepted: 01/25/2021] [Indexed: 12/17/2022]
Abstract
Chronic pain is a major global health issue that affects all populations regardless of sex, age, ethnicity/race, or country of origin, leading to persistent physical and emotional distress and to the loss of patients' autonomy and quality of life. Despite tremendous efforts in the elucidation of the mechanisms contributing to the pathogenesis of chronic pain, the identification of new potential pain targets, and the development of novel analgesics, the pharmacological treatment options available for pain management remain limited, and most novel pain medications have failed to achieve advanced clinical development, leaving many patients with unbearable and undermanaged pain. Sex-specific susceptibility to chronic pain conditions as well as sex differences in pain sensitivity, pain tolerance and analgesic efficacy are increasingly recognized in the literature and have thus prompted scientists to seek mechanistic explanations. Hence, recent findings have highlighted that the signaling mechanisms underlying pain hypersensitivity are sexually dimorphic, which sheds light on the importance of conducting preclinical and clinical pain research on both sexes and of developing sex-specific pain medications. This review thus focuses on the clinical and preclinical evidence supporting the existence of sex differences in pain neurobiology. Attention is drawn to the sexually dimorphic role of glial and immune cells, which are both recognized as key players in neuroglial maladaptive plasticity at the origin of the transition from acute pain to chronic pathological pain. Growing evidence notably attributes to microglial cells a pivotal role in the sexually dimorphic pain phenotype and in the sexually dimorphic analgesic efficacy of opioids. This review also summarizes the recent advances in understanding the pathobiology underpinning the development of pain hypersensitivity in both males and females in different types of pain conditions, with particular emphasis on the mechanistic signaling pathways driving sexually dimorphic pain responses.
Collapse
Affiliation(s)
- Élora Midavaine
- Department of Pharmacology-Physiology, Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Centre de recherche du Centre hospitalier universitaire de Sherbrooke, CIUSSS de l'Estrie - CHUS, Sherbrooke, Québec, Canada.
| | - Jérôme Côté
- Department of Pharmacology-Physiology, Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Centre de recherche du Centre hospitalier universitaire de Sherbrooke, CIUSSS de l'Estrie - CHUS, Sherbrooke, Québec, Canada
| | - Serge Marchand
- Department of Pharmacology-Physiology, Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Centre de recherche du Centre hospitalier universitaire de Sherbrooke, CIUSSS de l'Estrie - CHUS, Sherbrooke, Québec, Canada
| | - Philippe Sarret
- Department of Pharmacology-Physiology, Institut de pharmacologie de Sherbrooke, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada; Centre de recherche du Centre hospitalier universitaire de Sherbrooke, CIUSSS de l'Estrie - CHUS, Sherbrooke, Québec, Canada.
| |
Collapse
|
23
|
Geisler S. Vincristine- and bortezomib-induced neuropathies - from bedside to bench and back. Exp Neurol 2021; 336:113519. [PMID: 33129841 PMCID: PMC11160556 DOI: 10.1016/j.expneurol.2020.113519] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/21/2020] [Accepted: 10/25/2020] [Indexed: 12/11/2022]
Abstract
Vincristine and bortezomib are effective chemotherapeutics widely used to treat hematological cancers. Vincristine blocks tubulin polymerization, whereas bortezomib is a proteasome inhibitor. Despite different mechanisms of action, the main non-hematological side effect of both is peripheral neuropathy that can last long after treatment has ended and cause permanent disability. Many different cellular and animal models of various aspects of vincristine and bortezomib-induced neuropathies have been generated to investigate underlying molecular mechanisms and serve as platforms to develop new therapeutics. These models revealed that bortezomib induces several transcriptional programs in dorsal root ganglia that result in the activation of different neuroinflammatory pathways and secondary central sensitization. In contrast, vincristine has direct toxic effects on the axon, which are accompanied by changes similar to those observed after nerve cut. Axon degeneration following both vincristine and bortezomib is mediated by a phylogenetically ancient, genetically encoded axon destruction program that leads to the activation of the Toll-like receptor adaptor SARM1 (sterile alpha and TIR motif containing protein 1) and local decrease of nicotinamide dinucleotide (NAD+). Here, I describe current in vitro and in vivo models of vincristine- and bortezomib induced neuropathies, present discoveries resulting from these models in the context of clinical findings and discuss how increased understanding of molecular mechanisms underlying different aspects of neuropathies can be translated to effective treatments to prevent, attenuate or reverse vincristine- and bortezomib-induced neuropathies. Such treatments could improve the quality of life of patients both during and after cancer therapy and, accordingly, have enormous societal impact.
Collapse
Affiliation(s)
- Stefanie Geisler
- Department of Neurology, Washington University School of Medicine in St. Louis, MO, USA.
| |
Collapse
|
24
|
Yamamoto S, Egashira N. Pathological Mechanisms of Bortezomib-Induced Peripheral Neuropathy. Int J Mol Sci 2021; 22:ijms22020888. [PMID: 33477371 PMCID: PMC7830235 DOI: 10.3390/ijms22020888] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Bortezomib, a first-generation proteasome inhibitor widely used in chemotherapy for hematologic malignancy, has effective anti-cancer activity but often causes severe peripheral neuropathy. Although bortezomib-induced peripheral neuropathy (BIPN) is a dose-limiting toxicity, there are no recommended therapeutics for its prevention or treatment. One of the most critical problems is a lack of knowledge about pathological mechanisms of BIPN. Here, we summarize the known mechanisms of BIPN based on preclinical evidence, including morphological abnormalities, involvement of non-neuronal cells, oxidative stress, and alterations of transcriptional programs in both the peripheral and central nervous systems. Moreover, we describe the necessity of advancing studies that identify the potential efficacy of approved drugs on the basis of pathological mechanisms, as this is a convincing strategy for rapid translation to patients with cancer and BIPN.
Collapse
Affiliation(s)
- Shota Yamamoto
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo 162-8655, Japan;
| | - Nobuaki Egashira
- Department of Pharmacy, Kyushu University Hospital, Fukuoka 812-8582, Japan
- Correspondence: ; Tel.: +81-92-642-5920
| |
Collapse
|
25
|
Kim HK, Bae J, Lee SH, Hwang SH, Kim MS, Kim MJ, Jun S, Cervantes CL, Jung YS, Back S, Lee H, Lee SE, Dougherty PM, Lee SW, Park JI, Abdi S. Blockers of Wnt3a, Wnt10a, or β-Catenin Prevent Chemotherapy-Induced Neuropathic Pain In Vivo. Neurotherapeutics 2021; 18:601-614. [PMID: 33128175 PMCID: PMC8116404 DOI: 10.1007/s13311-020-00956-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2020] [Indexed: 12/20/2022] Open
Abstract
Although chemotherapy is a key cancer treatment, many chemotherapeutic drugs produce chronic neuropathic pain, called chemotherapy-induced neuropathic pain (CINP), which is a dose-limiting adverse effect. To date, there is no medicine that prevents CINP in cancer patients and survivors. We determined whether blockers of the canonical Wnt signaling pathway prevent CINP. Neuropathic pain was induced by intraperitoneal injection of paclitaxel (PAC) on four alternate days in male Sprague-Dawley rats or male Axin2-LacZ knock-in mice. XAV-939, LGK-974, and iCRT14, Wnt/β-catenin blockers, were administered intraperitoneally as a single or multiple doses before or after injury. Mechanical allodynia, phosphoproteome profiling, Wnt ligands, and inflammatory mediators were measured by von Frey filament, phosphoproteomics, reverse transcription-polymerase chain reaction, and Western blot analysis. Localization of β-catenin was determined by immunohistochemical analysis in the dorsal root ganglia (DRGs) in rats and human. Our phosphoproteome profiling of CINP rats revealed significant phosphorylation changes in Wnt signaling components. Importantly, repeated systemic injections of XAV-939 or LGK-974 prevented the development of CINP in rats. In addition, XAV-939, LGK-974, and iCRT14 ameliorated CINP. PAC increased Wnt3a and Wnt10a, activated β-catenin in DRG, and increased monocyte chemoattractant protein-1 and interleukin-1β in DRG. PAC also upregulated rAxin2 in mice. Furthermore, β-catenin was expressed in neurons, including calcitonin gene-related protein-expressing neurons and satellite cells in rat and human DRG. In conclusion, chemotherapy increases Wnt3a, Wnt10a, and β-catenin in DRG and their pharmacological blockers prevent and ameliorate CINP, suggesting a target for the prevention and treatment of CINP.
Collapse
Affiliation(s)
- Hee Kee Kim
- Department of Pain Medicine, Division of Anesthesiology, Critical Care & Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Jingi Bae
- Department of Chemistry, Center for Proteogenome Research, Korea University, Seoul, 02841, Republic of Korea
| | - Sung Ho Lee
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Seon-Hee Hwang
- Department of Pain Medicine, Division of Anesthesiology, Critical Care & Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Min-Sik Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Moon Jong Kim
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sohee Jun
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Chris L Cervantes
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Youn-Sang Jung
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Seunghoon Back
- Department of Chemistry, Center for Proteogenome Research, Korea University, Seoul, 02841, Republic of Korea
| | - Hangyeore Lee
- Department of Chemistry, Center for Proteogenome Research, Korea University, Seoul, 02841, Republic of Korea
| | - Seung-Eun Lee
- Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Patrick M Dougherty
- Department of Pain Medicine, Division of Anesthesiology, Critical Care & Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sang-Won Lee
- Department of Chemistry, Center for Proteogenome Research, Korea University, Seoul, 02841, Republic of Korea
| | - Jae-Il Park
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Program in Genetics and Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Salahadin Abdi
- Department of Pain Medicine, Division of Anesthesiology, Critical Care & Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
26
|
Gabapentin and Duloxetine Prevent Oxaliplatin- and Paclitaxel-Induced Peripheral Neuropathy by Inhibiting Extracellular Signal-Regulated Kinase 1/2 (ERK1/2) Phosphorylation in Spinal Cords of Mice. Pharmaceuticals (Basel) 2020; 14:ph14010030. [PMID: 33396362 PMCID: PMC7824557 DOI: 10.3390/ph14010030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 12/14/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy is a common factor in limiting therapy which can result in therapy cessation or dose reduction. Gabapentin, a calcium channel inhibitor, and duloxetine, a serotonin noradrenaline reuptake inhibitor, are used to treat a variety of pain conditions such as chronic low back pain, postherpetic neuralgia, and diabetic neuropathy. It has been reported that administration of gabapentin suppressed oxaliplatin- and paclitaxel-induced mechanical hyperalgesia in rats. Moreover, duloxetine has been shown to suppress oxaliplatin-induced cold allodynia in rats. However, the mechanisms by which these drugs prevent oxaliplatin- and paclitaxel-induced neuropathy remain unknown. Behavioral assays were performed using cold plate and the von Frey test. The expression levels of proteins were examined using western blot analysis. In this study, we investigated the mechanisms by which gabapentin and duloxetine prevent oxaliplatin- and paclitaxel-induced neuropathy in mice. We found that gabapentin and duloxetine prevented the development of oxaliplatin- and paclitaxel-induced cold and mechanical allodynia. In addition, our results revealed that gabapentin and duloxetine suppressed extracellular signal-regulated protein kinase 1/2 (ERK1/2) phosphorylation in the spinal cord of mice. Moreover, PD0325901 prevented the development of oxaliplatin- and paclitaxel-induced neuropathic-like pain behavior by inhibiting ERK1/2 activation in the spinal cord of mice. In summary, our findings suggest that gabapentin, duloxetine, and PD0325901 prevent the development of oxaliplatin- and paclitaxel-induced neuropathic-like pain behavior by inhibiting ERK1/2 phosphorylation in mice. Therefore, inhibiting ERK1/2 phosphorylation could be an effective preventive strategy against oxaliplatin- and paclitaxel-induced neuropathy.
Collapse
|
27
|
Squillace S, Spiegel S, Salvemini D. Targeting the Sphingosine-1-Phosphate Axis for Developing Non-narcotic Pain Therapeutics. Trends Pharmacol Sci 2020; 41:851-867. [PMID: 33010954 DOI: 10.1016/j.tips.2020.09.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/02/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023]
Abstract
Chronic pain is a life-altering condition affecting millions of people. Current treatments are inadequate and prolonged therapies come with severe side effects, especially dependence and addiction to opiates. Identification of non-narcotic analgesics is of paramount importance. Preclinical and clinical studies suggest that sphingolipid metabolism alterations contribute to neuropathic pain development. Functional sphingosine-1-phosphate (S1P) receptor 1 (S1PR1) antagonists, such as FTY720/fingolimod, used clinically for non-pain conditions, are emerging as non-narcotic analgesics, supporting the repurposing of fingolimod for chronic pain treatment and energizing drug discovery focused on S1P signaling. Here, we summarize the role of S1P in pain to highlight the potential of targeting the S1P axis towards development of non-narcotic therapeutics, which, in turn, will hopefully help lessen misuse of opioid pain medications and address the ongoing opioid epidemic.
Collapse
Affiliation(s)
- Silvia Squillace
- Department of Pharmacology and Physiology and the Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298, USA
| | - Daniela Salvemini
- Department of Pharmacology and Physiology and the Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.
| |
Collapse
|
28
|
Langeslag M, Kress M. The ceramide-S1P pathway as a druggable target to alleviate peripheral neuropathic pain. Expert Opin Ther Targets 2020; 24:869-884. [PMID: 32589067 DOI: 10.1080/14728222.2020.1787989] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: Neuropathic pain disorders are diverse, and the currently available therapies are ineffective in the majority of cases. Therefore, there is a major need for gaining novel mechanistic insights and developing new treatment strategies for neuropathic pain. Areas covered: We performed an in-depth literature search on the molecular mechanisms and systemic importance of the ceramide-to-S1P rheostat regulating neuron function and neuroimmune interactions in the development of neuropathic pain. Expert opinion: The S1P receptor modulator FTY720 (fingolimod, Gilenya®), LPA receptor antagonists and several mechanistically related compounds in clinical development raise great expectations for treating neuropathic pain disorders. Research on S1P receptors, S1P receptor modulators or SPHK inhibitors with distinct selectivity, pharmacokinetics and safety must provide more mechanistic insight into whether they may qualify as useful treatment options for neuropathic pain disorders. The functional relevance of genetic variations within the ceramide-to-S1P rheostat should be explored for an enhanced understanding of neuropathic pain pathogenesis. The ceramide-to-S1P rheostat is emerging as a critically important regulator hub of neuroimmune interactions along the pain pathway, and improved mechanistic insight is required to develop more precise and effective drug treatment options for patients suffering from neuropathic pain disorders.
Collapse
Affiliation(s)
- Michiel Langeslag
- Institute of Physiology, DPMP, Medical University Innsbruck , Austria
| | - Michaela Kress
- Institute of Physiology, DPMP, Medical University Innsbruck , Austria
| |
Collapse
|
29
|
Behavioral, Electrophysiological, and Histological Characterization of a New Rat Model for Neoadjuvant Chemotherapy–Induced Neuropathic Pain: Therapeutic Potential of Duloxetine and Allopregnanolone Concomitant Treatment. Neurotox Res 2020; 38:145-162. [DOI: 10.1007/s12640-020-00176-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 01/12/2020] [Accepted: 02/06/2020] [Indexed: 12/13/2022]
|