1
|
Sgro M, Kodila Z, Salberg S, Li CN, Smith MJ, Freeman J, Vlassopoulos E, Harris S, Shultz SR, Yamakawa GR, Noel M, Mychasiuk R. Exposure to perinatal trauma modifies nociception and gene expression in the prefrontal cortex and hypothalamus of adolescent rats. THE JOURNAL OF PAIN 2025; 28:104762. [PMID: 39730020 DOI: 10.1016/j.jpain.2024.104762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 12/29/2024]
Abstract
The perinatal period encompasses a critical window for neurodevelopment that renders the brain highly responsive to experience. Trauma, such as intimate partner violence (IPV) and early life stress/neglect, during this period negatively affects physical and mental health outcomes, including increasing ones risk for chronic pain. Although epigenetic programming likely contributes, the mechanisms that drive the relationship between perinatal trauma and adverse health outcomes, are not fully understood. Therefore, we explored the relationship between perinatal trauma (in utero exposure to IPV and/or early life neglect) and socio-emotional functioning, nociceptive sensitivity, and transcriptomic changes within the prefrontal cortex (PFC) and hypothalamus in dams and their adolescent offspring. Rat dams were randomly assigned to an IPV (i.e., combined mild traumatic brain injury and strangulation) or sham procedure during pregnancy. Following birth, offspring were subsequently assigned the early life neglect or control paradigm. In adolescence, offspring received a plantar incision or sham injury. Perinatal trauma altered nociception and emotional functioning in a sex-dependent manner when combined with the surgical procedure. We identified transcriptomic changes related to DNA transcription and expression within the PFC and hypothalamus of the dams. Examination of the offspring transcriptome highlighted impairment in immune regulation, dysfunction in stress-reactivity, as well as microglia activation. We also identified altered expression of genes associated with chronic pain. This demonstrates that perinatal trauma modifies offspring behaviour, including nociceptive sensitivity. We provide insight into the mechanisms that contribute to the chronification of pain, thereby informing future research targeted at the generation of prevention and therapeutic strategies. PERSPECTIVE: Perinatal trauma impaired cognitive, socio-emotional, and pain processing in offspring, while also inducing changes in gene expression, in both mothers and offspring. The findings highlight possible mechanisms responsible for intergenerational transmission of risk for chronic pain and provide targets for therapeutics which could potentially reverse perinatal-trauma induced epigenetic change.
Collapse
Affiliation(s)
- Marissa Sgro
- Department of Neuroscience, School of Translational Medicine, Monash University,Melbourne, Victoria, Australia
| | - Zoe Kodila
- Department of Neuroscience, School of Translational Medicine, Monash University,Melbourne, Victoria, Australia
| | - Sabrina Salberg
- Department of Neuroscience, School of Translational Medicine, Monash University,Melbourne, Victoria, Australia
| | - Crystal N Li
- Department of Neuroscience, School of Translational Medicine, Monash University,Melbourne, Victoria, Australia
| | - Madeleine J Smith
- Department of Neuroscience, School of Translational Medicine, Monash University,Melbourne, Victoria, Australia
| | - James Freeman
- Department of Neuroscience, School of Translational Medicine, Monash University,Melbourne, Victoria, Australia
| | - Elaina Vlassopoulos
- Department of Neuroscience, School of Translational Medicine, Monash University,Melbourne, Victoria, Australia
| | - Sydney Harris
- Department of Neuroscience, School of Translational Medicine, Monash University,Melbourne, Victoria, Australia
| | - Sandy R Shultz
- Department of Neuroscience, School of Translational Medicine, Monash University,Melbourne, Victoria, Australia; Centre for Trauma and Mental Health Research, Vancouver Island University, Nanaimo, B.C., Canada
| | - Glenn R Yamakawa
- Department of Neuroscience, School of Translational Medicine, Monash University,Melbourne, Victoria, Australia
| | - Melanie Noel
- Department of Psychology, Alberta Children's Hospital, Hotchkiss Brain Institute, University of Calgary,AB, Canada
| | - Richelle Mychasiuk
- Department of Neuroscience, School of Translational Medicine, Monash University,Melbourne, Victoria, Australia.
| |
Collapse
|
2
|
Xiong HY, Wyns A, Campenhout JV, Hendrix J, De Bruyne E, Godderis L, Schabrun S, Nijs J, Polli A. Epigenetic Landscapes of Pain: DNA Methylation Dynamics in Chronic Pain. Int J Mol Sci 2024; 25:8324. [PMID: 39125894 PMCID: PMC11312850 DOI: 10.3390/ijms25158324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/19/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Chronic pain is a prevalent condition with a multifaceted pathogenesis, where epigenetic modifications, particularly DNA methylation, might play an important role. This review delves into the intricate mechanisms by which DNA methylation and demethylation regulate genes associated with nociception and pain perception in nociceptive pathways. We explore the dynamic nature of these epigenetic processes, mediated by DNA methyltransferases (DNMTs) and ten-eleven translocation (TET) enzymes, which modulate the expression of pro- and anti-nociceptive genes. Aberrant DNA methylation profiles have been observed in patients with various chronic pain syndromes, correlating with hypersensitivity to painful stimuli, neuronal hyperexcitability, and inflammatory responses. Genome-wide analyses shed light on differentially methylated regions and genes that could serve as potential biomarkers for chronic pain in the epigenetic landscape. The transition from acute to chronic pain is marked by rapid DNA methylation reprogramming, suggesting its potential role in pain chronicity. This review highlights the importance of understanding the temporal dynamics of DNA methylation during this transition to develop targeted therapeutic interventions. Reversing pathological DNA methylation patterns through epigenetic therapies emerges as a promising strategy for pain management.
Collapse
Affiliation(s)
- Huan-Yu Xiong
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (A.W.); (J.V.C.); (J.H.); (A.P.)
| | - Arne Wyns
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (A.W.); (J.V.C.); (J.H.); (A.P.)
| | - Jente Van Campenhout
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (A.W.); (J.V.C.); (J.H.); (A.P.)
| | - Jolien Hendrix
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (A.W.); (J.V.C.); (J.H.); (A.P.)
- Department of Public Health and Primary Care, Centre for Environment & Health, KU Leuven, 3000 Leuven, Belgium;
- Research Foundation—Flanders (FWO), 1000 Brussels, Belgium
| | - Elke De Bruyne
- Translational Oncology Research Center (TORC), Team Hematology and Immunology (HEIM), Vrije Universiteit Brussel, 1090 Brussels, Belgium;
| | - Lode Godderis
- Department of Public Health and Primary Care, Centre for Environment & Health, KU Leuven, 3000 Leuven, Belgium;
| | - Siobhan Schabrun
- The School of Physical Therapy, University of Western Ontario, London, ON N6A 3K7, Canada;
- The Gray Centre for Mobility and Activity, Parkwood Institute, St. Joseph’s Healthcare, London, ON N6A 4V2, Canada
| | - Jo Nijs
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (A.W.); (J.V.C.); (J.H.); (A.P.)
- Chronic Pain Rehabilitation, Department of Physical Medicine and Physiotherapy, University Hospital Brussels, 1090 Brussels, Belgium
- Department of Health and Rehabilitation, Unit of Physiotherapy, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 41390 Göterbog, Sweden
| | - Andrea Polli
- Pain in Motion Research Group (PAIN), Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education & Physiotherapy, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (H.-Y.X.); (A.W.); (J.V.C.); (J.H.); (A.P.)
- Department of Public Health and Primary Care, Centre for Environment & Health, KU Leuven, 3000 Leuven, Belgium;
- Research Foundation—Flanders (FWO), 1000 Brussels, Belgium
| |
Collapse
|
3
|
Liu J, Zhang K, Zhang Y, Ji F, Shi H, Lou Y, Xu H. Perioperative Transcutaneous Electrical Acupoint Stimulation Reduces Postoperative Pain in Patients Undergoing Thoracoscopic Surgery: A Randomized Controlled Trial. Pain Res Manag 2024; 2024:5365456. [PMID: 38974755 PMCID: PMC11227941 DOI: 10.1155/2024/5365456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/16/2024] [Accepted: 06/08/2024] [Indexed: 07/09/2024]
Abstract
Objectives This study aimed to determine the effects of perioperative transcutaneous electrical acupoint stimulation (TEAS) on postoperative pain management in patients undergoing thoracic surgery. Methods In the prospective, randomized, controlled study, a total of 84 patients undergoing video-assisted thoracoscopic surgery (VATS) were randomly allocated to the TEAS group (Group T) or control group (Group C). Patients in the Group T received TEAS at Neiguan (PC6) and Hegu (LI4) acupoints for 30 min before anesthesia induction and 30 min after thoracoscopic surgery. Patients in the Group C received the same placement of electrodes but without electrical stimulation. The numeric rating scale (NRS) pain score, remifentanil consumption, demand for rescue analgesics and incidence of postoperative nausea and vomiting (PONV), patient satisfaction, and the levels of plasma β-endorphin (EP) and IL-6 were recorded. Results Patients in the Group T had significantly lower NRS pain scores at 6 h, 12 h, 24 h, and 48 h after surgery than those in the Group C. Compared with Group C, patients in Group T had lower remifentanil consumption during operation, lower demand for rescue analgesics and lower rate of PONV within 24 h after surgery. Patients in Group T also had lower IL-6 content, higher β-EP content and higher satisfaction degree than those in the Group C. Conclusions Perioperative TEAS significantly decreased postoperative pain and rescued analgesia requirements and the incidence of PONV in patients undergoing thoracoscopic surgery, with a higher patient satisfaction. This trial is registered with ChiCTR2100051841.
Collapse
Affiliation(s)
- Jianming Liu
- Department of AnesthesiologyYueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Department of AnesthesiologyPulmonary HospitalTongji University, Shanghai 200433, China
| | - Keqin Zhang
- Department of AnesthesiologyYueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yongyan Zhang
- Department of AnesthesiologyYueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Feng Ji
- Department of AnesthesiologyYueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Haifeng Shi
- Department of AnesthesiologyYueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yi Lou
- Department of AnesthesiologyYueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Hua Xu
- Department of AnesthesiologyYueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| |
Collapse
|
4
|
James JG, McCall NM, Hsu AI, Oswell CS, Salimando GJ, Mahmood M, Wooldridge LM, Wachira M, Jo A, Sandoval Ortega RA, Wojick JA, Beattie K, Farinas SA, Chehimi SN, Rodrigues A, Ejoh LSL, Kimmey BA, Lo E, Azouz G, Vasquez JJ, Banghart MR, Creasy KT, Beier KT, Ramakrishnan C, Crist RC, Reiner BC, Deisseroth K, Yttri EA, Corder G. Mimicking opioid analgesia in cortical pain circuits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591113. [PMID: 38746090 PMCID: PMC11092437 DOI: 10.1101/2024.04.26.591113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The anterior cingulate cortex plays a pivotal role in the cognitive and affective aspects of pain perception. Both endogenous and exogenous opioid signaling within the cingulate mitigate cortical nociception, reducing pain unpleasantness. However, the specific functional and molecular identities of cells mediating opioid analgesia in the cingulate remain elusive. Given the complexity of pain as a sensory and emotional experience, and the richness of ethological pain-related behaviors, we developed a standardized, deep-learning platform for deconstructing the behavior dynamics associated with the affective component of pain in mice-LUPE (Light aUtomated Pain Evaluator). LUPE removes human bias in behavior quantification and accelerated analysis from weeks to hours, which we leveraged to discover that morphine altered attentional and motivational pain behaviors akin to affective analgesia in humans. Through activity-dependent genetics and single-nuclei RNA sequencing, we identified specific ensembles of nociceptive cingulate neuron-types expressing mu-opioid receptors. Tuning receptor expression in these cells bidirectionally modulated morphine analgesia. Moreover, we employed a synthetic opioid receptor promoter-driven approach for cell-type specific optical and chemical genetic viral therapies to mimic morphine's pain-relieving effects in the cingulate, without reinforcement. This approach offers a novel strategy for precision pain management by targeting a key nociceptive cortical circuit with on-demand, non-addictive, and effective analgesia.
Collapse
Affiliation(s)
- Justin G. James
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nora M. McCall
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alex I. Hsu
- Dept. of Biobehavioral Health Sciences, School of Nursing, and Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Corinna S. Oswell
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gregory J. Salimando
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Malaika Mahmood
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lisa M. Wooldridge
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Meghan Wachira
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Adrienne Jo
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Jessica A. Wojick
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katherine Beattie
- Dept. of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sofia A. Farinas
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Samar N. Chehimi
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amrith Rodrigues
- Dept. of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lind-say L. Ejoh
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Blake A. Kimmey
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Emily Lo
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ghalia Azouz
- Dept. of Physiology and Biophysics, University of California Irvine, CA, USA
| | - Jose J. Vasquez
- Dept. of Physiology and Biophysics, University of California Irvine, CA, USA
| | - Matthew R. Banghart
- Dept. of Neurobiology, School of Biological Sciences, University of California San Diego, CA, USA
| | - Kate Townsend Creasy
- Dept. of Biobehavioral Health Sciences, School of Nursing, and Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kevin T. Beier
- Dept. of Physiology and Biophysics, University of California Irvine, CA, USA
| | | | - Richard C. Crist
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin C. Reiner
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Karl Deisseroth
- CNC Program, Stanford University, Stanford, CA, USA
- Dept. of Bioengineering, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
- Dept. of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Eric A. Yttri
- Dept. of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Gregory Corder
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
5
|
Wilson GN, Tonk VS. Clinical-Genomic Analysis of 1261 Patients with Ehlers-Danlos Syndrome Outlines an Articulo-Autonomic Gene Network (Entome). Curr Issues Mol Biol 2024; 46:2620-2643. [PMID: 38534782 DOI: 10.3390/cimb46030166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/08/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
Systematic evaluation of 80 history and 40 history findings diagnosed 1261 patients with Ehlers-Danlos syndrome (EDS) by direct or online interaction, and 60 key findings were selected for their relation to clinical mechanisms and/or management. Genomic testing results in 566 of these patients supported EDS relevance by their differences from those in 82 developmental disability patients and by their association with general rather than type-specific EDS findings. The 437 nuclear and 79 mitochondrial DNA changes included 71 impacting joint matrix (49 COL5), 39 bone (30 COL1/2/9/11), 22 vessel (12 COL3/8VWF), 43 vessel-heart (17FBN1/11TGFB/BR), 59 muscle (28 COL6/12), 56 neural (16 SCN9A/10A/11A), and 74 autonomic (13 POLG/25porphyria related). These genes were distributed over all chromosomes but the Y, a network analogized to an 'entome' where DNA change disrupts truncal mechanisms (skin constraint, neuromuscular support, joint vessel flexibility) and produces a mirroring cascade of articular and autonomic symptoms. The implied sequences of genes from nodal proteins to hypermobility to branching tissue laxity or dysautonomia symptoms would be ideal for large language/artificial intelligence analyses.
Collapse
Affiliation(s)
- Golder N Wilson
- Department of Pediatrics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- KinderGenome Genetics Private Practice, 5347 W Mockingbird, Dallas, TX 75209, USA
| | - Vijay S Tonk
- Director of Medical Genetics and the Cytogenomic Laboratory, Department of Pediatrics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
6
|
Pethő G, Kántás B, Horváth Á, Pintér E. The Epigenetics of Neuropathic Pain: A Systematic Update. Int J Mol Sci 2023; 24:17143. [PMID: 38138971 PMCID: PMC10743356 DOI: 10.3390/ijms242417143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Epigenetics deals with alterations to the gene expression that occur without change in the nucleotide sequence in the DNA. Various covalent modifications of the DNA and/or the surrounding histone proteins have been revealed, including DNA methylation, histone acetylation, and methylation, which can either stimulate or inhibit protein expression at the transcriptional level. In the past decade, an exponentially increasing amount of data has been published on the association between epigenetic changes and the pathomechanism of pain, including its most challenging form, neuropathic pain. Epigenetic regulation of the chromatin by writer, reader, and eraser proteins has been revealed for diverse protein targets involved in the pathomechanism of neuropathic pain. They include receptors, ion channels, transporters, enzymes, cytokines, chemokines, growth factors, inflammasome proteins, etc. Most work has been invested in clarifying the epigenetic downregulation of mu opioid receptors and various K+ channels, two types of structures mediating neuronal inhibition. Conversely, epigenetic upregulation has been revealed for glutamate receptors, growth factors, and lymphokines involved in neuronal excitation. All these data cannot only help better understand the development of neuropathic pain but outline epigenetic writers, readers, and erasers whose pharmacological inhibition may represent a novel option in the treatment of pain.
Collapse
Affiliation(s)
- Gábor Pethő
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti Str. 12., H-7624 Pécs, Hungary; (B.K.); (E.P.)
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus Str. 2., H-7624 Pécs, Hungary;
| | - Boglárka Kántás
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti Str. 12., H-7624 Pécs, Hungary; (B.K.); (E.P.)
- Department of Obstetrics and Gynecology, University of Pécs, Édesanyák Str. 17., H-7624 Pécs, Hungary
| | - Ádám Horváth
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, Rókus Str. 2., H-7624 Pécs, Hungary;
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti Str. 12., H-7624 Pécs, Hungary; (B.K.); (E.P.)
| |
Collapse
|
7
|
Lax E, Do Carmo S, Enuka Y, Sapozhnikov DM, Welikovitch LA, Mahmood N, Rabbani SA, Wang L, Britt JP, Hancock WW, Yarden Y, Szyf M. Methyl-CpG binding domain 2 (Mbd2) is an epigenetic regulator of autism-risk genes and cognition. Transl Psychiatry 2023; 13:259. [PMID: 37443311 PMCID: PMC10344909 DOI: 10.1038/s41398-023-02561-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
The Methyl-CpG-Binding Domain Protein family has been implicated in neurodevelopmental disorders. The Methyl-CpG-binding domain 2 (Mbd2) binds methylated DNA and was shown to play an important role in cancer and immunity. Some evidence linked this protein to neurodevelopment. However, its exact role in neurodevelopment and brain function is mostly unknown. Here we show that Mbd2-deficiency in mice (Mbd2-/-) results in deficits in cognitive, social and emotional functions. Mbd2 binds regulatory DNA regions of neuronal genes in the hippocampus and loss of Mbd2 alters the expression of hundreds of genes with a robust down-regulation of neuronal gene pathways. Further, a genome-wide DNA methylation analysis found an altered DNA methylation pattern in regulatory DNA regions of neuronal genes in Mbd2-/- mice. Differentially expressed genes significantly overlap with gene-expression changes observed in brains of Autism Spectrum Disorder (ASD) individuals. Notably, downregulated genes are significantly enriched for human ortholog ASD risk genes. Observed hippocampal morphological abnormalities were similar to those found in individuals with ASD and ASD rodent models. Hippocampal Mbd2 knockdown partially recapitulates the behavioral phenotypes observed in Mbd2-/- mice. These findings suggest that Mbd2 is a novel epigenetic regulator of genes that are associated with ASD in humans. Mbd2 loss causes behavioral alterations that resemble those found in ASD individuals.
Collapse
Affiliation(s)
- Elad Lax
- Department of Molecular Biology, Ariel University, Ariel, Israel.
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.
| | - Sonia Do Carmo
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Yehoshua Enuka
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Daniel M Sapozhnikov
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Lindsay A Welikovitch
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Niaz Mahmood
- Department of Medicine, McGill University Health Center, Montreal, QC, Canada
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Shafaat A Rabbani
- Department of Medicine, McGill University Health Center, Montreal, QC, Canada
| | - Liqing Wang
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, and Biesecker Center for Pediatric Liver Diseases, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan P Britt
- Department of Psychology, McGill University, Montreal, QC, Canada
| | - Wayne W Hancock
- Division of Transplant Immunology, Department of Pathology and Laboratory Medicine, and Biesecker Center for Pediatric Liver Diseases, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yosef Yarden
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| |
Collapse
|
8
|
Lambert DG. Opioids and opioid receptors; understanding pharmacological mechanisms as a key to therapeutic advances and mitigation of the misuse crisis. BJA OPEN 2023; 6:100141. [PMID: 37588171 PMCID: PMC10430815 DOI: 10.1016/j.bjao.2023.100141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 08/18/2023]
Abstract
Opioids are a mainstay in acute pain management and produce their effects and side effects (e.g., tolerance, opioid-use disorder and immune suppression) by interaction with opioid receptors. I will discuss opioid pharmacology in some controversial areas of enquiry of anaesthetic relevance. The main opioid target is the µ (mu,MOP) receptor but other members of the opioid receptor family, δ (delta; DOP) and κ (kappa; KOP) opioid receptors also produce analgesic actions. These are naloxone-sensitive. There is important clinical development relating to the Nociceptin/Orphanin FQ (NOP) receptor, an opioid receptor that is not naloxone-sensitive. Better understanding of the drivers for opioid effects and side effects may facilitate separation of side effects and production of safer drugs. Opioids bind to the receptor orthosteric site to produce their effects and can engage monomer or homo-, heterodimer receptors. Some ligands can drive one intracellular pathway over another. This is the basis of biased agonism (or functional selectivity). Opioid actions at the orthosteric site can be modulated allosterically and positive allosteric modulators that enhance opioid action are in development. As well as targeting ligand-receptor interaction and transduction, modulating receptor expression and hence function is also tractable. There is evidence for epigenetic associations with different types of pain and also substance misuse. As long as the opioid narrative is defined by the 'opioid crisis' the drive to remove them could gather pace. This will deny use where they are effective, and access to morphine for pain relief in low income countries.
Collapse
|
9
|
Schulte A, Lohner H, Degenbeck J, Segebarth D, Rittner HL, Blum R, Aue A. Unbiased analysis of the dorsal root ganglion after peripheral nerve injury: no neuronal loss, no gliosis, but satellite glial cell plasticity. Pain 2023; 164:728-740. [PMID: 35969236 PMCID: PMC10026836 DOI: 10.1097/j.pain.0000000000002758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/13/2022] [Accepted: 07/26/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT Pain syndromes are often accompanied by complex molecular and cellular changes in dorsal root ganglia (DRG). However, the evaluation of cellular plasticity in the DRG is often performed by heuristic manual analysis of a small number of representative microscopy image fields. In this study, we introduce a deep learning-based strategy for objective and unbiased analysis of neurons and satellite glial cells (SGCs) in the DRG. To validate the approach experimentally, we examined serial sections of the rat DRG after spared nerve injury (SNI) or sham surgery. Sections were stained for neurofilament, glial fibrillary acidic protein (GFAP), and glutamine synthetase (GS) and imaged using high-resolution large-field (tile) microscopy. After training of deep learning models on consensus information of different experts, thousands of image features in DRG sections were analyzed. We used known (GFAP upregulation), controversial (neuronal loss), and novel (SGC phenotype switch) changes to evaluate the method. In our data, the number of DRG neurons was similar 14 d after SNI vs sham. In GFAP-positive subareas, the percentage of neurons in proximity to GFAP-positive cells increased after SNI. In contrast, GS-positive signals, and the percentage of neurons in proximity to GS-positive SGCs decreased after SNI. Changes in GS and GFAP levels could be linked to specific DRG neuron subgroups of different size. Hence, we could not detect gliosis but plasticity changes in the SGC marker expression. Our objective analysis of DRG tissue after peripheral nerve injury shows cellular plasticity responses of SGCs in the whole DRG but neither injury-induced neuronal death nor gliosis.
Collapse
Affiliation(s)
- Annemarie Schulte
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Hannah Lohner
- Department of Anesthesiology, Center for Interdisciplinary Pain Medicine, Intensive Care, Emergency Medicine and Pain Therapy, University Hospital of Würzburg, Würzburg, Germany
| | - Johannes Degenbeck
- Department of Anesthesiology, Center for Interdisciplinary Pain Medicine, Intensive Care, Emergency Medicine and Pain Therapy, University Hospital of Würzburg, Würzburg, Germany
| | - Dennis Segebarth
- Institute of Clinical Neurobiology, University Hospital of Würzburg, Würzburg, Germany
| | - Heike L. Rittner
- Department of Anesthesiology, Center for Interdisciplinary Pain Medicine, Intensive Care, Emergency Medicine and Pain Therapy, University Hospital of Würzburg, Würzburg, Germany
| | - Robert Blum
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Annemarie Aue
- Department of Anesthesiology, Center for Interdisciplinary Pain Medicine, Intensive Care, Emergency Medicine and Pain Therapy, University Hospital of Würzburg, Würzburg, Germany
| |
Collapse
|
10
|
Li X, Liu D, Dai Z, You Y, Chen Y, Lei C, Lv Y, Wang Y. Intraperitoneal 5-Azacytidine Alleviates Nerve Injury-Induced Pain in Rats by Modulating DNA Methylation. Mol Neurobiol 2023; 60:2186-2199. [PMID: 36627549 DOI: 10.1007/s12035-022-03196-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/23/2022] [Indexed: 01/12/2023]
Abstract
To investigate the role of DNA methylation in modulating chronic neuropathic pain (NPP), identify possible target genes of DNA methylation involved in this process, and preliminarily confirm the medicinal value of the DNA methyltransferases (DNMTs) inhibitor 5-azacytidine (5-AZA) in NPP by targeting gene methylation. Two rat NPP models, chronic constriction injury (CCI) and spinal nerve ligation (SNL), were used. The DNA methylation profiles in the lumbar spinal cord were assayed using an Arraystar Rat RefSeq Promoter Array. The underlying genes with differential methylation were then identified and submitted to Gene Ontology and pathway analysis. Methyl-DNA immunoprecipitation quantitative PCR (MeDIP-qPCR) and quantitative reverse transcription-PCR (RT-qPCR) were used to confirm gene methylation and expression. The protective function of 5-AZA in NPP and gene expression were evaluated via behavioral assays and RT-qPCR, respectively. Analysis of the DNA methylation patterns in the lumbar spinal cord indicated that 1205 differentially methylated fragments in CCI rats were located within DNA promoter regions, including 638 hypermethylated fragments and 567 hypomethylated fragments. The methylation levels of Grm4, Htr4, Adrb2, Kcnf1, Gad2, and Pparg, which are associated with long-term potentiation (LTP) and glutamatergic synapse pathways, were increased with a corresponding decrease in their mRNA expression, in the spinal cords of CCI rats. Moreover, we found that the intraperitoneal injection of 5-AZA (4 mg/kg) attenuated CCI- or SNL-induced mechanical allodynia and thermal hyperalgesia. Finally, the mRNA expression of hypermethylated genes such as Grm4, Htr4, Adrb2, Kcnf1, and Gad2 was reversed after 5-AZA treatment. CCI induced widespread methylation changes in the DNA promoter regions in the lumbar spinal cord. Intraperitoneal 5-AZA alleviated hyperalgesia in CCI and SNL rats, an effect accompanied by the reversed expression of hypermethylated genes. Thus, DNA methylation inhibition represents a promising epigenetic strategy for protection against chronic NPP following nerve injury. Our study lays a theoretical foundation for 5-AZA to become a clinical targeted drug.
Collapse
Affiliation(s)
- Xuan Li
- Department of Anesthesiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - DeZhao Liu
- Department of Anesthesiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - ZhiSen Dai
- Department of Anesthesiology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - YiSheng You
- Department of Anesthesiology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Yan Chen
- Department of Anesthesiology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - ChenXing Lei
- Department of Anesthesiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - YouYou Lv
- Department of Anesthesiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Ying Wang
- Department of Anesthesiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China. .,Department of Anesthesiology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, Fujian, China.
| |
Collapse
|
11
|
Millecamps M, Sotocinal SG, Austin JS, Stone LS, Mogil JS. Sex-specific effects of neuropathic pain on long-term pain behavior and mortality in mice. Pain 2023; 164:577-586. [PMID: 35916733 DOI: 10.1097/j.pain.0000000000002742] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/15/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT Human epidemiological studies suggest that chronic pain can increase mortality risk. We investigated whether this was true in mice so that underlying mechanisms might be identified. At 10 weeks of age, C57BL/6 mice of both sexes received sham or spared nerve injury (SNI) surgery producing neuropathic pain. Mice were weighed monthly, tested behaviorally for mechanical and cold sensitivity and guarding behavior every 3 months postsurgery, and otherwise left undisturbed in their cages until death by natural causes. Evidence of pain over the lifespan displayed a strikingly sex-specific pattern. Male mice displayed largely stable mechanical and cold hypersensitivity and guarding at 6 to 30 months post-SNI. By contrast, female mice displayed a biphasic temporal pattern of mechanical hypersensitivity and guarding behavior, with a complete resolution of SNI-induced pain behavior at 6 to 9 months post-SNI followed by the return of pain thereafter. Mouse lifespan was not significantly altered by SNI in either sex nor was frailty as assessed by cage inspection in the last 6 months of life. However, in male mice with SNI, we observe a significant correlation between average lifetime mechanical hypersensitivity and lifespan, such that death occurred sooner in male mice exhibiting more evidence of chronic pain. This relationship was not observed in female SNI mice nor in sham-operated mice of either sex. This experiment is the first to investigate pain behavior over an entire adult lifetime and suggests that biology of relevance to human chronic pain is being ignored by the very short timespans of most extant preclinical pain research.
Collapse
Affiliation(s)
- Magali Millecamps
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | - Susana G Sotocinal
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| | | | - Laura S Stone
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Department of Anesthesiology, University of Minnesota, Minneapolis, MN, United States
| | - Jeffrey S Mogil
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
- Departments of Psychology and Anesthesia, McGill University, Montreal, QC, Canada
| |
Collapse
|
12
|
Patterson DR, Drever S, Soltani M, Sharar SR, Wiechman S, Meyer WJ, Hoffman HG. A comparison of interactive immersive virtual reality and still nature pictures as distraction-based analgesia in burn wound care. Burns 2023; 49:182-192. [PMID: 35305845 PMCID: PMC9363532 DOI: 10.1016/j.burns.2022.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/25/2022] [Accepted: 02/03/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE Non-pharmacologic adjuncts to opioid analgesics for burn wound debridement enhance safety and cost effectiveness in care. The current study explored the feasibility of using a custom portable water-friendly immersive VR hardware during burn debridement in adults, and tested whether interactive VR would reduce pain more effectively than nature stimuli viewed in the same VR goggles. METHODS Forty-eight patients with severe burn injuries (44 adults and 4 children) had their burn injuries debrided and dressed in a wet wound care environment on Study Day 1, and 13 also participated in Study Day 2. INTERVENTION The study used a within-subject design to test two hypotheses (one hypothesis per study day) with the condition order randomized. On Study Day 1, each individual (n = 44 participants) spent 5 min of wound care in an interactive immersive VR environment designed for burn care, and 5 min looking at still nature photos and sounds of nature in the same VR goggles. On Study Day 2 (n = 12 adult participants and one adolescent from Day 1), each participant spent 5 min of burn wound care with no distraction and 5 min of wound care in VR, using a new water-friendly VR system. On both days, during a post-wound care assessment, participants rated and compared the pain they had experienced in each condition. OUTCOME MEASURES ON STUDY DAYS 1 AND 2: Worst pain during burn wound care was the primary dependent variable. Secondary measures were ratings of time spent thinking about pain during wound care, pain unpleasantness, and positive affect during wound care. RESULTS On Study Day 1, no significant differences in worst pain ratings during wound care were found between the computer-generated world (Mean = 71.06, SD = 26.86) vs. Nature pictures conditions (Mean = 68.19, SD = 29.26; t < 1, NS). On secondary measures, positive affect (fun) was higher, and realism was lower during computer-generated VR. No significant differences in pain unpleasantness or "presence in VR" between the two conditions were found, however. VR VS. NO VR. (STUDY DAY 2): Participants reported significantly less worst pain when distracted with adjunctive computer generated VR than during standard wound care without distraction (Mean = 54.23, SD = 26.13 vs 63.85, SD = 31.50, t(11) = 1.91, p < .05, SD = 17.38). In addition, on Study Day 2, "time spent thinking about pain during wound care" was significantly less during the VR condition, and positive affect was significantly greater during VR, compared to the No VR condition. CONCLUSION The current study is innovative in that it is the first to show the feasibility of using a custom portable water-friendly immersive VR hardware during burn debridement in adults. However, contrary to predictions, interactive VR did not reduce pain more effectively than nature stimuli viewed in the same VR goggles.
Collapse
Affiliation(s)
- David R Patterson
- Department of Rehabilitation Medicine, University of Washington, 1959 NE Pacific St, Seattle, WA 98195, United States
| | - Sydney Drever
- Department of Rehabilitation Medicine, University of Washington, 1959 NE Pacific St, Seattle, WA 98195, United States
| | - Maryam Soltani
- Department of Rehabilitation Medicine, University of Washington, 1959 NE Pacific St, Seattle, WA 98195, United States
| | - Sam R Sharar
- University of Washington School of Medicine, Harborview Medical Center, 325 9th Ave., Seattle, WA 98104, United States; Department of Anesthesiology & Pain Medicine, School of Medicine, University of Washington, 325 9th Ave., Seattle, WA 98104, United States
| | - Shelley Wiechman
- Department of Rehabilitation Medicine, University of Washington, 1959 NE Pacific St, Seattle, WA 98195, United States
| | - Walter J Meyer
- University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX 77555, United States; Shriners Children's Texas, 815 Market St, Galveston, TX 77550, United States
| | - Hunter G Hoffman
- Department of Mechanical Engineering, College of Engineering, University of Washington, Box 352142, Seattle, WA 98195, United States; Department of Psychology, University of Washington, Box 352142, Seattle, WA, United States; Department of Computer Science, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
13
|
Qian C, Fan Y, Zong L, Miao C, Ji LL, Wan L, Jia R, Qin X, Wang Y, Wu Q, Tao XY, Hao L, Hu L, Liu WT. Opening K ATP channels induces inflammatory tolerance and prevents chronic pain. Brain Behav Immun 2023; 107:76-86. [PMID: 36198341 DOI: 10.1016/j.bbi.2022.09.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 08/30/2022] [Accepted: 09/30/2022] [Indexed: 02/09/2023] Open
Abstract
Current treatments for chronic pain are unsatisfactory, therefore, new therapeutics are urgently needed. Our previous study indicated that KATP channel openers have analgesic effects, but the underlying mechanism has not been elucidated. We speculated that KATP channel openers might increase suppressor of cytokine signaling (SOCS)-3 expression to induce inflammatory tolerance and attenuate chronic pain. Postoperative pain was induced by plantar incision to establish a chronic pain model. Growth arrest-specific 6 (Gas6)-/- and Axl-/- mice were used for signaling studies. The microglia cell line BV-2 was cultured for the in vitro experiments. The KATP channel opener significantly attenuated incision-induced mechanical allodynia in mice associated with the upregulated expression of SOCS3. Opening KATP channels induced the expression of SOCS3 in the Gas6/Axl signaling pathway in microglia, inhibited incision-induced mechanical allodynia by activating the Gas6/Axl-SOCS3 signaling pathway, and induced inflammatory tolerance to relieve neuroinflammation and postoperative pain. We demonstrated that opening of the KATP channel opening activated Gas6/Axl/SOCS3 signaling to induce inflammatory tolerance and relieve chronic pain. We explored a new target for anti-inflammatory and analgesic effects by regulating the innate immune system and provided a theoretical basis for clinical preemptive analgesia.
Collapse
Affiliation(s)
- Cheng Qian
- Department of Pathology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China; Sir Run Run Hospital, Nanjing Medical University, Nanjing 211100, Jiangsu, China
| | - Yixin Fan
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing 211166, Jiangsu, China; Sir Run Run Hospital, Nanjing Medical University, Nanjing 211100, Jiangsu, China
| | - Lijuan Zong
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Chen Miao
- Department of Pathology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Lu-Lu Ji
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Li Wan
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Rumeng Jia
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Xinmiao Qin
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Yu Wang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Qi Wu
- Department of Pathology, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Xue-You Tao
- Department of Anesthesiology, Yangzhou Maternal and Child Health Hospital Affiliated to Medical College of Yangzhou University, Yangzhou 225001, Jiangsu, China.
| | - Lanxiang Hao
- The Yancheng Clinical College of Xuzhou Medical University, The First People's Hospital of Yancheng, 224005 Jiangsu, China.
| | - Liang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing 211166, Jiangsu, China.
| | - Wen-Tao Liu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing 211166, Jiangsu, China.
| |
Collapse
|
14
|
Francés R, Mata-Garrido J, de la Fuente R, Carcelén M, Lafarga M, Berciano MT, García R, Hurlé MA, Tramullas M. Identification of Epigenetic Interactions between MicroRNA-30c-5p and DNA Methyltransferases in Neuropathic Pain. Int J Mol Sci 2022; 23:13994. [PMID: 36430472 PMCID: PMC9694031 DOI: 10.3390/ijms232213994] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Neuropathic pain is a prevalent and severe chronic syndrome, often refractory to treatment, whose development and maintenance may involve epigenetic mechanisms. We previously demonstrated a causal relationship between miR-30c-5p upregulation in nociception-related neural structures and neuropathic pain in rats subjected to sciatic nerve injury. Furthermore, a short course of an miR-30c-5p inhibitor administered into the cisterna magna exerts long-lasting antiallodynic effects via a TGF-β1-mediated mechanism. Herein, we show that miR-30c-5p inhibition leads to global DNA hyper-methylation of neurons in the lumbar dorsal root ganglia and spinal dorsal horn in rats subjected to sciatic nerve injury. Specifically, the inhibition of miR-30-5p significantly increased the expression of the novo DNA methyltransferases DNMT3a and DNMT3b in those structures. Furthermore, we identified the mechanism and found that miR-30c-5p targets the mRNAs of DNMT3a and DNMT3b. Quantitative methylation analysis revealed that the promoter region of the antiallodynic cytokine TGF-β1 was hypomethylated in the spinal dorsal horn of nerve-injured rats treated with the miR-30c-5p inhibitor, while the promoter of Nfyc, the host gene of miR-30c-5p, was hypermethylated. These results are consistent with long-term protection against neuropathic pain development after nerve injury. Altogether, our results highlight the key role of miR-30c-5p in the epigenetic mechanisms' underlying neuropathic pain and provide the basis for miR-30c-5p as a therapeutic target.
Collapse
Affiliation(s)
- Raquel Francés
- Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, 39011 Santander, Spain
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Jorge Mata-Garrido
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
- Departamento de Anatomía y Biología Celular, Universidad de Cantabria, 39011 Santander, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28029 Madrid, Spain
| | - Roberto de la Fuente
- Servicio de Anestesiología, Hospital Universitario Marqués de Valdecilla, 39008 Santander, Spain
| | - María Carcelén
- Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, 39011 Santander, Spain
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Miguel Lafarga
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
- Departamento de Anatomía y Biología Celular, Universidad de Cantabria, 39011 Santander, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28029 Madrid, Spain
| | - María Teresa Berciano
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28029 Madrid, Spain
- Departamento de Biología Molecular, Universidad de Cantabria, 39011 Santander, Spain
| | - Raquel García
- Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, 39011 Santander, Spain
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | - María A. Hurlé
- Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, 39011 Santander, Spain
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| | - Mónica Tramullas
- Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, 39011 Santander, Spain
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), 39011 Santander, Spain
| |
Collapse
|
15
|
Li X, Wang W, Zhang X, Gong Z, Tian M, Zhang Y, You X, Wu J. Neuroinflammation in the medial prefrontal cortex exerts a crucial role in bone cancer pain. Front Mol Neurosci 2022; 15:1026593. [PMID: 36385763 PMCID: PMC9642970 DOI: 10.3389/fnmol.2022.1026593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/03/2022] [Indexed: 12/10/2023] Open
Abstract
Bone cancer pain (BCP) is one of the most common types of pain in cancer patients which compromises the patient's functional status, quality of life, and survival. Central hyperalgesia has increasingly been identified as a crucial factor of BCP, especially in the medial prefrontal cortex (mPFC) which is the main cortical area involved in the process of pain and consequent negative emotion. To explore the genetic changes in the mPFC during BCP occurrence and find possible targets for prediction, we performed transcriptome sequencing of mPFC in the BCP rat model and found a total of 147 differentially expressed mRNAs (DEmRNAs). A protein-protein interaction (PPI) network revealed that the DEmRNAs mainly participate in the inflammatory response. Meanwhile, microglia and astrocytes were activated in the mPFC of BCP rats, further confirming the presence of neuroinflammation. In addition, Gene Ontology (GO) analysis showed that DEmRNAs in the mPFC are mainly involved in antigen processing, presentation of peptide antigen, and immune response, occurring in the MHC protein complex. Besides, the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that DEmRNAs are mainly enriched in the pathways of phagosome, staphylococcus aureus infection, and antigen processing, in which MHCII participate. Furthermore, immunostaining showed that MHCII is mainly located in the microglia. Microglia are believed to be involved in antigen processing, a key cause of BCP. In vivo, minocycline (MC) treatment inhibits the activation of microglia and reduces the expression of MHCII and proinflammatory cytokines, thereby alleviating BCP and pain-related anxiety. Taken together, our study identified differentially expressed genes in the BCP process and demonstrated that the activation of microglia participates in the inflammatory response and antigen process, which may contribute to BCP.
Collapse
Affiliation(s)
- Xin Li
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
- School of Medicine, Shanghai University, Shanghai, China
| | - Wei Wang
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoxuan Zhang
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
- School of Medicine, Shanghai University, Shanghai, China
| | - Zhihao Gong
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Mi Tian
- Department of Critical Care Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuxin Zhang
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xingji You
- School of Medicine, Shanghai University, Shanghai, China
| | - Jingxiang Wu
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
16
|
Back to the Future: A Report From the 16th International Forum for Back and Neck Pain Research in Primary Care and Updated Research Agenda. Spine (Phila Pa 1976) 2022; 47:E595-E605. [PMID: 35797529 DOI: 10.1097/brs.0000000000004408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/23/2022] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN The 16th meeting of the International Forum for Back and Neck Pain Research in Primary Care was held in Québec City in July 2019 under the theme of innovation. This paper addresses the state of research in the field. OBJECTIVE To ascertain the evolution of knowledge and clinical application in back and neck pain and identify shifting research priorities. MATERIALS AND METHODS After a brief presentation of the Forum and its history, the current state of the field was depicted from the scientific program and the recordings of the plenary and parallel oral and poster communications of Forum XVI. Research agendas established in 1995 and 1997 were updated from a survey of a multidisciplinary group of experts in the field. A discussion of the progress made and challenges ahead follows. RESULTS While much progress has been made at improving knowledge at managing back pain in the past 25 years, most research priorities from earlier decades are still pertinent. The need for integration of physical and psychological interventions represents a key challenge, as is the need to better understand the biological mechanisms underlying back and neck pain to develop more effective interventions. Stemming the tide of back and neck pain in low and middle-income countries and avoiding the adoption of low-value interventions appear particularly important. The Lancet Low Back Pain Series initiative, arising from the previous fora, and thoughts on implementing best practices were extensively discussed, recognizing the challenges to evidence-based knowledge and practice given competing interests and incentives. CONCLUSION With the quantity and quality of research on back and neck pain increasing over the years, an update of research priorities helped to identify key issues in primary care.
Collapse
|
17
|
Guida F, Iannotta M, Misso G, Ricciardi F, Boccella S, Tirino V, Falco M, Desiderio V, Infantino R, Pieretti G, de Novellis V, Papaccio G, Luongo L, Caraglia M, Maione S. Long-term neuropathic pain behaviors correlate with synaptic plasticity and limbic circuit alteration: a comparative observational study in mice. Pain 2022; 163:1590-1602. [PMID: 34862336 PMCID: PMC9341227 DOI: 10.1097/j.pain.0000000000002549] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/04/2021] [Accepted: 11/18/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Neuropathic pain has long-term consequences in affective and cognitive disturbances, suggesting the involvement of supraspinal mechanisms. In this study, we used the spared nerve injury (SNI) model to characterize the development of sensory and aversive components of neuropathic pain and to determine their electrophysiological impact across prefrontal cortex and limbic regions. Moreover, we evaluated the regulation of several genes involved in immune response and inflammation triggered by SNI. We showed that SNI led to sensorial hypersensitivity (cold and mechanical stimuli) and depressive-like behavior lasting 12 months after nerve injury. Of interest, changes in nonemotional cognitive tasks (novel object recognition and Y maze) showed in 1-month SNI mice were not evident normal in the 12-month SNI animals. In vivo electrophysiology revealed an impaired long-term potentiation at prefrontal cortex-nucleus accumbens core pathway in both the 1-month and 12-month SNI mice. On the other hand, a reduced neural activity was recorded in the lateral entorhinal cortex-dentate gyrus pathway in the 1-month SNI mice, but not in the 12-month SNI mice. Finally, we observed the upregulation of specific genes involved in immune response in the hippocampus of 1-month SNI mice, but not in the 12-month SNI mice, suggesting a neuroinflammatory response that may contribute to the SNI phenotype. These data suggest that distinct brain circuits may drive the psychiatric components of neuropathic pain and pave the way for better investigation of the long-term consequences of peripheral nerve injury for which most of the available drugs are to date unsatisfactory.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Gorizio Pieretti
- Plastic Surgery, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | | | | | - Livio Luongo
- Departments of Experimental Medicine
- IRCSS, Neuromed, Neuropharmacology Division, Pozzilli, Italy
| | | | - Sabatino Maione
- Departments of Experimental Medicine
- IRCSS, Neuromed, Neuropharmacology Division, Pozzilli, Italy
| |
Collapse
|
18
|
Irfan J, Febrianto MR, Sharma A, Rose T, Mahmudzade Y, Di Giovanni S, Nagy I, Torres-Perez JV. DNA Methylation and Non-Coding RNAs during Tissue-Injury Associated Pain. Int J Mol Sci 2022; 23:ijms23020752. [PMID: 35054943 PMCID: PMC8775747 DOI: 10.3390/ijms23020752] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 02/01/2023] Open
Abstract
While about half of the population experience persistent pain associated with tissue damages during their lifetime, current symptom-based approaches often fail to reduce such pain to a satisfactory level. To provide better patient care, mechanism-based analgesic approaches must be developed, which necessitates a comprehensive understanding of the nociceptive mechanism leading to tissue injury-associated persistent pain. Epigenetic events leading the altered transcription in the nervous system are pivotal in the maintenance of pain in tissue injury. However, the mechanisms through which those events contribute to the persistence of pain are not fully understood. This review provides a summary and critical evaluation of two epigenetic mechanisms, DNA methylation and non-coding RNA expression, on transcriptional modulation in nociceptive pathways during the development of tissue injury-associated pain. We assess the pre-clinical data and their translational implication and evaluate the potential of controlling DNA methylation and non-coding RNA expression as novel analgesic approaches and/or biomarkers of persistent pain.
Collapse
Affiliation(s)
- Jahanzaib Irfan
- Nociception Group, Department of Surgery and Cancer, Division of Anaesthetics, Pain Medicine and Intensive Care, Chelsea and Westminster Hospital Campus, Imperial College London, 369 Fulham Road, London SW10 9FJ, UK; (J.I.); (M.R.F.); (A.S.); (T.R.); (Y.M.)
| | - Muhammad Rizki Febrianto
- Nociception Group, Department of Surgery and Cancer, Division of Anaesthetics, Pain Medicine and Intensive Care, Chelsea and Westminster Hospital Campus, Imperial College London, 369 Fulham Road, London SW10 9FJ, UK; (J.I.); (M.R.F.); (A.S.); (T.R.); (Y.M.)
| | - Anju Sharma
- Nociception Group, Department of Surgery and Cancer, Division of Anaesthetics, Pain Medicine and Intensive Care, Chelsea and Westminster Hospital Campus, Imperial College London, 369 Fulham Road, London SW10 9FJ, UK; (J.I.); (M.R.F.); (A.S.); (T.R.); (Y.M.)
| | - Thomas Rose
- Nociception Group, Department of Surgery and Cancer, Division of Anaesthetics, Pain Medicine and Intensive Care, Chelsea and Westminster Hospital Campus, Imperial College London, 369 Fulham Road, London SW10 9FJ, UK; (J.I.); (M.R.F.); (A.S.); (T.R.); (Y.M.)
| | - Yasamin Mahmudzade
- Nociception Group, Department of Surgery and Cancer, Division of Anaesthetics, Pain Medicine and Intensive Care, Chelsea and Westminster Hospital Campus, Imperial College London, 369 Fulham Road, London SW10 9FJ, UK; (J.I.); (M.R.F.); (A.S.); (T.R.); (Y.M.)
| | - Simone Di Giovanni
- Department of Brain Sciences, Division of Neuroscience, Imperial College London, E505, Burlington Danes, Du Cane Road, London W12 ONN, UK;
| | - Istvan Nagy
- Nociception Group, Department of Surgery and Cancer, Division of Anaesthetics, Pain Medicine and Intensive Care, Chelsea and Westminster Hospital Campus, Imperial College London, 369 Fulham Road, London SW10 9FJ, UK; (J.I.); (M.R.F.); (A.S.); (T.R.); (Y.M.)
- Correspondence: (I.N.); (J.V.T.-P.)
| | - Jose Vicente Torres-Perez
- Department of Brain Sciences, Dementia Research Institute, Imperial College London, 86 Wood Ln, London W12 0BZ, UK
- Departament de Biologia Cellular, Biologia Funcional i Antropologia Física, Facultat de Ciències Biològiques, Universitat de València, C/Dr. Moliner 50, 46100 Burjassot, Spain
- Correspondence: (I.N.); (J.V.T.-P.)
| |
Collapse
|
19
|
Torres-Perez JV, Irfan J, Febrianto MR, Di Giovanni S, Nagy I. Histone post-translational modifications as potential therapeutic targets for pain management. Trends Pharmacol Sci 2021; 42:897-911. [PMID: 34565578 DOI: 10.1016/j.tips.2021.08.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 11/26/2022]
Abstract
Effective pharmacological management of pain associated with tissue pathology is an unmet medical need. Transcriptional modifications in nociceptive pathways are pivotal for the development and the maintenance of pain associated with tissue damage. Accumulating evidence has shown the importance of the epigenetic control of transcription in nociceptive pathways via histone post-translational modifications (PTMs). Hence, histone PTMs could be targets for novel effective analgesics. Here, we discuss the current understanding of histone PTMs in the modulation of gene expression affecting nociception and pain phenotypes following tissue injury. We also provide a critical view of the translational implications of preclinical models and discuss opportunities and challenges of targeting histone PTMs to relieve pain in clinically relevant tissue injuries.
Collapse
Affiliation(s)
- Jose V Torres-Perez
- UK Dementia Research Institute at Imperial College London and Department of Brain Sciences, Imperial College London, 86 Wood Lane, London W12 0BZ, UK.
| | - Jahanzaib Irfan
- Nociception Group, Division of Anaesthesia, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital Campus, 369 Fulham Road, London SW10 9FJ, UK
| | - Muhammad Rizki Febrianto
- Nociception Group, Division of Anaesthesia, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital Campus, 369 Fulham Road, London SW10 9FJ, UK
| | - Simone Di Giovanni
- Division of Neuroscience, Department of Brain Sciences, Imperial College London, E505, Burlington Danes, Du Cane Road, London W12 ONN, UK.
| | - Istvan Nagy
- Nociception Group, Division of Anaesthesia, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital Campus, 369 Fulham Road, London SW10 9FJ, UK.
| |
Collapse
|
20
|
Application of Bioinformatics Methods to Identify Key Genes and Functions in Chronic Pelvic Pain. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:7257405. [PMID: 34381521 PMCID: PMC8352682 DOI: 10.1155/2021/7257405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/19/2021] [Indexed: 11/17/2022]
Abstract
Neuropathologic pain (NPP) occurs in most patients with chronic pelvic pain (CPP), and the unique physiological characteristics of visceral sensory neurons make the current analgesic effect of CPP patients not optimistic. Therefore, this study explored the possible biological characteristics of key genes in CPP through the bioinformatics method. CPP-related dataset GSE131619 was downloaded from Gene Expression Omnibus to investigate the differentially expressed genes (DEGs) between lumbar dorsal root ganglia (DRG) and sacral DRG, and the functional enrichment analysis was performed. A protein-protein interaction (PPI) network was constructed to search subnet modules of specific biological processes, and then, the genes in the subnet were enriched by single gene set analysis. A CPP mouse model was established, and the expression of key genes were identified by qPCR. The results showed that 127 upregulated DEGs and 103 downregulated DEGs are identified. Functional enrichment analysis showed that most of the genes involved in signal transduction were involved in the pathway of receptor interaction. A subnet module related to neural signal regulation was identified in PPI, including CHRNB4, CHRNA3, and CHRNB2. All three genes were associated with neurological or inflammatory activity and are downregulated in the sacral spinal cord of CPP mice. This study provided three key candidate genes for CPP: CHRNB4, CHRNA3, and CHRNB2, which may be involved in the occurrence and development of CPP, and provided a powerful molecular target for the clinical diagnosis and treatment of CPP.
Collapse
|
21
|
The methyl donor S-adenosyl methionine reverses the DNA methylation signature of chronic neuropathic pain in mouse frontal cortex. Pain Rep 2021; 6:e944. [PMID: 34278163 PMCID: PMC8280078 DOI: 10.1097/pr9.0000000000000944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/16/2021] [Accepted: 05/19/2021] [Indexed: 01/10/2023] Open
Abstract
Supplemental Digital Content is Available in the Text. Chronic administration of S-adenosylmethionine reverses neuropathic pain–induced changes in DNA methylation in the mouse frontal cortex. Chronic pain is associated with persistent but reversible structural and functional changes in the prefrontal cortex (PFC). This stable yet malleable plasticity implicates epigenetic mechanisms, including DNA methylation, as a potential mediator of chronic pain–induced cortical pathology. We previously demonstrated that chronic oral administration of the methyl donor S-adenosyl methionine (SAM) attenuates long-term peripheral neuropathic pain and alters global frontal cortical DNA methylation. However, the specific genes and pathways associated with the resolution of chronic pain by SAM remain unexplored.
Collapse
|
22
|
Mahurkar-Joshi S, Rankin CR, Videlock EJ, Soroosh A, Verma A, Khandadash A, Iliopoulos D, Pothoulakis C, Mayer EA, Chang L. The Colonic Mucosal MicroRNAs, MicroRNA-219a-5p, and MicroRNA-338-3p Are Downregulated in Irritable Bowel Syndrome and Are Associated With Barrier Function and MAPK Signaling. Gastroenterology 2021; 160:2409-2422.e19. [PMID: 33617890 PMCID: PMC8169529 DOI: 10.1053/j.gastro.2021.02.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 02/03/2021] [Accepted: 02/17/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Alterations in microRNA (miRNA) and in the intestinal barrier are putative risk factors for irritable bowel syndrome (IBS). We aimed to identify differentially expressed colonic mucosal miRNAs, their targets in IBS compared to healthy controls (HCs), and putative downstream pathways. METHODS Twenty-nine IBS patients (15 IBS with constipation [IBS-C], 14 IBS with diarrhea [IBS-D]), and 15 age-matched HCs underwent sigmoidoscopy with biopsies. A nCounter array was used to assess biopsy specimen-associated miRNA levels. A false discovery rate (FDR) < 10% was considered significant. Real-time polymerase chain reaction (PCR) was used to validate differentially expressed genes. To assess barrier function, trans-epithelial electrical resistance (TEER) and dextran flux assays were performed on Caco-2 intestinal epithelial cells that were transfected with miRNA-inhibitors or control inhibitors. Protein expression of barrier function associated genes was confirmed using western blots. RESULTS Four out of 247 miRNAs tested were differentially expressed in IBS compared to HCs (FDR < 10%). Real-time PCR validation suggested decreased levels of miR-219a-5p and miR-338-3p in IBS (P = .026 and P = .004), and IBS-C (P = .02 and P = .06) vs. HCs as the strongest associations. Inhibition of miR-219a-5p resulted in altered expression of proteasome/barrier function genes. Functionally, miR-219a-5p inhibition enhanced the permeability of intestinal epithelial cells as TEER was reduced (25-50%, P < .05) and dextran flux was increased (P < .01). Additionally, inhibition of miR-338-3p in cells caused alterations in the mitogen-activated protein kinase (MAPK) signaling pathway genes. CONCLUSION Two microRNAs that potentially affect permeability and visceral nociception were identified to be altered in IBS patients. MiR-219a-5p and miR-338-3p potentially alter barrier function and visceral hypersensitivity via neuronal and MAPK signaling and could be therapeutic targets in IBS.
Collapse
Affiliation(s)
- Swapna Mahurkar-Joshi
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Division of Digestive Diseases, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Carl Robert Rankin
- UCLA Center for Inflammatory Bowel Diseases, Division of Digestive Diseases, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Elizabeth Jane Videlock
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Division of Digestive Diseases, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Artin Soroosh
- UCLA Center for Inflammatory Bowel Diseases, Division of Digestive Diseases, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Abhishek Verma
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Division of Digestive Diseases, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Ariela Khandadash
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Division of Digestive Diseases, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Dimitrios Iliopoulos
- UCLA Center for Inflammatory Bowel Diseases, Division of Digestive Diseases, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Charalabos Pothoulakis
- UCLA Center for Inflammatory Bowel Diseases, Division of Digestive Diseases, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Emeran A Mayer
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Division of Digestive Diseases, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Lin Chang
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, Division of Digestive Diseases, Department of Medicine, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
23
|
Hoffman HG. Interacting with virtual objects via embodied avatar hands reduces pain intensity and diverts attention. Sci Rep 2021; 11:10672. [PMID: 34021173 PMCID: PMC8140079 DOI: 10.1038/s41598-021-89526-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/16/2021] [Indexed: 11/17/2022] Open
Abstract
The current study introduces a new paradigm for exploring cognitive factors in pain. Interacting with virtual objects via embodied avatar hands increased the illusion of “being there” in the virtual world, increased VR analgesia for acute pain, and reduced accuracy on an attention demanding task. Twenty-four healthy volunteer college students participated in this within-subject randomized crossover design study. During Phase 1, each participant received brief thermal pain stimuli during interactive embodied avatar VR vs. passive VR (no avatar and no interactivity), VR treatment order randomized. After each pain stimulus, participants provided subjective 0–10 ratings of pain. Compared to the passive VR condition, during the interactive avatar VR, participants reported significant reductions in (1) worst pain, (2) pain unpleasantness, (3) time thinking about pain and (4). they had significantly more fun during the pain stimulus (p = .000 for each). During Phase 2, participants performed a divided attention task in each of the two VR conditions. Participants made significantly more errors on the divided attention task during the interactive avatar VR condition, compared to passive VR, implicating an attention mechanism for how virtual reality reduces pain and helping understand how VR influences pain perception. Trial registration: NCT04245475. Date of registration: 29/01/2020.
Collapse
Affiliation(s)
- Hunter G Hoffman
- The Virtual Reality Analgesia Research Center at the Human Photonics Lab, University of Washington, Box 352142, Seattle, WA, USA. .,Computer Science, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
24
|
Smith PA. K + Channels in Primary Afferents and Their Role in Nerve Injury-Induced Pain. Front Cell Neurosci 2020; 14:566418. [PMID: 33093824 PMCID: PMC7528628 DOI: 10.3389/fncel.2020.566418] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Sensory abnormalities generated by nerve injury, peripheral neuropathy or disease are often expressed as neuropathic pain. This type of pain is frequently resistant to therapeutic intervention and may be intractable. Numerous studies have revealed the importance of enduring increases in primary afferent excitability and persistent spontaneous activity in the onset and maintenance of peripherally induced neuropathic pain. Some of this activity results from modulation, increased activity and /or expression of voltage-gated Na+ channels and hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. K+ channels expressed in dorsal root ganglia (DRG) include delayed rectifiers (Kv1.1, 1.2), A-channels (Kv1.4, 3.3, 3.4, 4.1, 4.2, and 4.3), KCNQ or M-channels (Kv7.2, 7.3, 7.4, and 7.5), ATP-sensitive channels (KIR6.2), Ca2+-activated K+ channels (KCa1.1, 2.1, 2.2, 2.3, and 3.1), Na+-activated K+ channels (KCa4.1 and 4.2) and two pore domain leak channels (K2p; TWIK related channels). Function of all K+ channel types is reduced via a multiplicity of processes leading to altered expression and/or post-translational modification. This also increases excitability of DRG cell bodies and nociceptive free nerve endings, alters axonal conduction and increases neurotransmitter release from primary afferent terminals in the spinal dorsal horn. Correlation of these cellular changes with behavioral studies provides almost indisputable evidence for K+ channel dysfunction in the onset and maintenance of neuropathic pain. This idea is underlined by the observation that selective impairment of just one subtype of DRG K+ channel can produce signs of pain in vivo. Whilst it is established that various mediators, including cytokines and growth factors bring about injury-induced changes in DRG function and excitability, evidence presently available points to a seminal role for interleukin 1β (IL-1β) in control of K+ channel function. Despite the current state of knowledge, attempts to target K+ channels for therapeutic pain management have met with limited success. This situation may change with the advent of personalized medicine. Identification of specific sensory abnormalities and genetic profiling of individual patients may predict therapeutic benefit of K+ channel activators.
Collapse
Affiliation(s)
- Peter A. Smith
- Department of Pharmacology and Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|