1
|
Ding Y, Yu C, Chi Q, Deng M, Duan D, Wei J, Xi Y, Li Q, Ma L. Spinal ultrasound imaging implied the vascular dynamics in chronic and acute pain. MethodsX 2025; 14:103273. [PMID: 40207067 PMCID: PMC11981766 DOI: 10.1016/j.mex.2025.103273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/14/2025] [Indexed: 04/11/2025] Open
Abstract
Neurovascular coupling links local neural activity to cerebral blood flow changes, crucial for pain transduction. In this undertaking, we present an advanced spinal functional ultrasound imaging that exhibits precise observation capabilities of the influence of analgesic medications on spinal cord blood flow, encompassing both acute and chronic pain scenarios. Utilizing gabapentin as the primary analgesic agent, we have observed that intrathecal administration of gabapentin notably augments the blood flow intensity in neuropathic rats while exerting minimal influence on the blood flow of the sham rats. Furthermore, subcutaneous formalin injection increases spinal cord blood flow, but gabapentin pretreatment prevents those effects. These findings demonstrated the analgesic effect of gabapentin exhibits a synergistic interaction with the intensity of blood flow around neurons, which is crucial for understanding the mechanisms underlying the occurrence of pain. In this article, we show: • A simple method to build the spinal cord ligation-induced chronic pain model. • A generic way to build the formalin-induced acute pain model. • An optimized functional ultrasound imaging technique in chronic and acute pain.
Collapse
Affiliation(s)
- Yingzhuo Ding
- Shanghai Eye Diseases Prevention &Treatment Center/ Shanghai Eye Hospital, School of Medicine, Tongji University, National Clinical Research Center for Eye Diseases, Shanghai Engineering Research Center of Precise Diagnosis and Treatment of Eye Diseases, NO.1440 Hongqiao Road, 200336 Shanghai, China
| | - Chunxia Yu
- Shanghai Eye Diseases Prevention &Treatment Center/ Shanghai Eye Hospital, School of Medicine, Tongji University, National Clinical Research Center for Eye Diseases, Shanghai Engineering Research Center of Precise Diagnosis and Treatment of Eye Diseases, NO.1440 Hongqiao Road, 200336 Shanghai, China
| | - Qingqing Chi
- Shanghai Eye Diseases Prevention &Treatment Center/ Shanghai Eye Hospital, School of Medicine, Tongji University, National Clinical Research Center for Eye Diseases, Shanghai Engineering Research Center of Precise Diagnosis and Treatment of Eye Diseases, NO.1440 Hongqiao Road, 200336 Shanghai, China
| | - Mengjiao Deng
- Shanghai Pulmonary Hospital, Tongji University of Medicine, 507 Zhengmin Road, 200433 Shanghai, China
| | - Dongxia Duan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 201108 Shanghai, China
| | - Jinbao Wei
- Department of Pharmacy, Xiamen Haicang Hospital, 361026 Xiamen, China
| | - Yufei Xi
- Shanghai Eye Diseases Prevention &Treatment Center/ Shanghai Eye Hospital, School of Medicine, Tongji University, National Clinical Research Center for Eye Diseases, Shanghai Engineering Research Center of Precise Diagnosis and Treatment of Eye Diseases, NO.1440 Hongqiao Road, 200336 Shanghai, China
| | - Qin Li
- Shanghai Eye Diseases Prevention &Treatment Center/ Shanghai Eye Hospital, School of Medicine, Tongji University, National Clinical Research Center for Eye Diseases, Shanghai Engineering Research Center of Precise Diagnosis and Treatment of Eye Diseases, NO.1440 Hongqiao Road, 200336 Shanghai, China
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No.100 Haining Road, 200080 Shanghai, PR China
| | - Le Ma
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 201108 Shanghai, China
| |
Collapse
|
2
|
Vert M, Zhang G, Bertolo A, Ialy-Radio N, Pezet S, Osmanski B, Deffieux T, Nouhoum M, Tanter M. Transcranial brain-wide functional ultrasound and ultrasound localization microscopy in mice using multi-array probes. Sci Rep 2025; 15:12042. [PMID: 40199928 PMCID: PMC11978944 DOI: 10.1038/s41598-025-96647-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/31/2025] [Indexed: 04/10/2025] Open
Abstract
Functional ultrasound imaging (fUS) and ultrasound localization microscopy (ULM) are advanced ultrasound imaging modalities for assessing both functional and anatomical characteristics of the brain. However, the application of these techniques at a whole-brain scale has been limited by technological challenges. While conventional linear acoustic probes provide a narrow 2D field of view and matrix probes lack sufficient sensitivity for 3D transcranial fUS, multi-array probes have been developed to combine high sensitivity to blood flow with fast 3D acquisitions. In this study, we present a novel approach for the combined implementation of transcranial whole-brain fUS and ULM in mice using a motorized multi-array probe. This technique provides high-resolution, non-invasive imaging of neurovascular dynamics across the entire brain. Our findings reveal a significant correlation between absolute cerebral blood volume (ΔCBV) increases and microbubble speed, indicating vessel-level dependency of the evoked response. However, the lack of correlation with relative CBV (rCBV) suggests that fUS cannot distinguish functional responses alterations across different arterial vascular compartments. This methodology holds promise for advancing our understanding of neurovascular coupling and could be applied in brain disease diagnostics and therapeutic monitoring.
Collapse
Affiliation(s)
- Mathis Vert
- Physics for Medicine Paris, INSERM U1273, ESPCI Paris, PSL University, CNRS, Paris, France
- Iconeus, Paris, France
| | - Ge Zhang
- Physics for Medicine Paris, INSERM U1273, ESPCI Paris, PSL University, CNRS, Paris, France
| | - Adrien Bertolo
- Physics for Medicine Paris, INSERM U1273, ESPCI Paris, PSL University, CNRS, Paris, France
- Iconeus, Paris, France
| | - Nathalie Ialy-Radio
- Physics for Medicine Paris, INSERM U1273, ESPCI Paris, PSL University, CNRS, Paris, France
| | - Sophie Pezet
- Physics for Medicine Paris, INSERM U1273, ESPCI Paris, PSL University, CNRS, Paris, France
| | | | - Thomas Deffieux
- Physics for Medicine Paris, INSERM U1273, ESPCI Paris, PSL University, CNRS, Paris, France
| | | | - Mickael Tanter
- Physics for Medicine Paris, INSERM U1273, ESPCI Paris, PSL University, CNRS, Paris, France.
| |
Collapse
|
3
|
Huang Y, van Sloun R, Mischi M. Adaptive multilevel thresholding for SVD-based clutter filtering in ultrafast transthoracic coronary flow imaging. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2025; 260:108542. [PMID: 39653000 DOI: 10.1016/j.cmpb.2024.108542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 11/24/2024] [Accepted: 11/29/2024] [Indexed: 02/09/2025]
Abstract
BACKGROUND AND OBJECTIVE The integration of ultrafast Doppler imaging with singular value decomposition clutter filtering has demonstrated notable enhancements in flow measurement and Doppler sensitivity, surpassing conventional Doppler techniques. However, in the context of transthoracic coronary flow imaging, additional challenges arise due to factors such as the utilization of unfocused diverging waves, constraints in spatial and temporal resolution for achieving deep penetration, and rapid tissue motion. These challenges pose difficulties for ultrafast Doppler imaging and singular value decomposition in determining optimal tissue-blood (TB) and blood-noise (BN) thresholds, thereby limiting their ability to deliver high-contrast Doppler images. METHODS This study introduces a novel local blood subspace detection method that utilizes multilevel thresholding by the valley-emphasized Otsu's method to estimate the TB and BN thresholds on a pixel-based level, operating under the assumption that the magnitude of the spatial singular vector curve of each pixel resembles the shape of a trimodal Gaussian. Upon obtaining the local TB and BN thresholds, a weighted mask (WM) is generated to assess the blood content in each pixel. To enhance the computational efficiency of this pixel-based algorithm, a dedicated tree-structure k-means clustering approach, further enhanced by noise rejection (NR) at each singular vector order, is proposed to group pixels with similar spatial singular vector curves, subsequently applying local thresholding (LT) on a cluster-based (CB) level. RESULTS The effectiveness of the proposed method was evaluated using an ex-vivo setup featuring a Langendorff swine heart. Comparative analysis with power Doppler images filtered using the conventional global thresholding method, which uniformly applies TB and BN thresholds to all pixels, revealed noteworthy enhancements. Specifically, our proposed CBLT+NR+WM approach demonstrated an average 10.8-dB and 11.2-dB increase in Contrast-to-Noise ratio and Contrast in suppressing the tissue signal, paralleled by an average 5-dB (Contrast-to-Noise ratio) and 9-dB (Contrast) increase in suppressing the noise signal. CONCLUSIONS These results clearly indicate the capability of our method to attenuate residual tissue and noise signals compared to the global thresholding method, suggesting its promising utility in challenging transthoracic settings for coronary flow measurement.
Collapse
Affiliation(s)
- Yizhou Huang
- Lab. of Biomedical Diagnostics, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Ruud van Sloun
- Lab. of Biomedical Diagnostics, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Massimo Mischi
- Lab. of Biomedical Diagnostics, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
4
|
Lim K, Slee SJ, Kibler A, Falowski S, Amirdelfan K. Functional Ultrasound Imaging Reveals Activation Properties of Clinical Spinal Cord Stimulation Therapy Programming. J Pain Res 2025; 18:849-867. [PMID: 40018024 PMCID: PMC11866937 DOI: 10.2147/jpr.s502432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/24/2025] [Indexed: 03/01/2025] Open
Abstract
Objective Spinal cord stimulation (SCS) therapy is an established treatment for chronic neuropathic pain, but methodological limitations have prohibited detailed investigation of activation patterns it produces in the SC. Functional ultrasound imaging (fUS) is an emerging technology that monitors local hemodynamic changes in the brain with high sensitivity and spatiotemporal resolution that are tightly coupled to neural functional activity. In this study, fUS was used to investigate neuromodulation patterns produced by clinical SCS paradigms in an ovine model that enabled testing with implanted clinical hardware. Materials and Methods Activation of local superficial dorsal horn (SDH) regions during SCS therapy was evaluated using fUS to detect hemodynamic changes in spinal blood volume (∆SBV). Standard SCS leads were percutaneously implanted midline overlying the dura of the exposed cord (T12-L1) to enable stimulation and recording evoked compound action potentials (eCAPs). Hemodynamic activation patterns were mapped across two vertebral segments at amplitudes between 100-200% eCAP threshold for conventional tonic, multiphase, burst, high frequency and multi-frequency SCS paradigms. Results SCS stimulation resulted in significant activation of the SDH in differing patterns across two vertebral segments. The magnitude and volume of ∆SBV increased at higher amplitudes and was typically maximal in the SDH regions underlying the active electrodes. Therapy mode significantly influenced total area and depth of ∆SBV. Multiphase therapy produced the largest area of ∆SBV followed by multi-frequency and other SCS modes. Multiphase therapy also produced the greatest depth of ∆SBV followed by multi-frequency and burst therapies. Conclusion This work demonstrates that fUS can effectively measure SCS neural response patterns in the pain processing laminae of a large animal model implanted with a clinical SCS system. Hemodynamic responses in the SC varied significantly across SCS therapy modes, with multiphase stimulation providing a greater area of coverage and depth of response versus other common stimulation types.
Collapse
Affiliation(s)
- Koeun Lim
- BIOTRONIK NRO Inc., Lake Oswego, OR, USA
| | | | | | | | | |
Collapse
|
5
|
Naidu RK, Kapural L, Li S, Tourjé C, Rutledge J, Dickerson D, Lubenow TR. A Review of the Prospera Spinal Cord Stimulation System with Multiphase Stimulation and Proactive Care. Curr Pain Headache Rep 2025; 29:25. [PMID: 39804395 PMCID: PMC11729204 DOI: 10.1007/s11916-024-01318-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2024] [Indexed: 01/16/2025]
Abstract
PURPOSE OF REVIEW The purpose of this review is to describe the development and key features of the Prospera™ Spinal Cord Stimulation (SCS) System, as well as the clinical evidence supporting its use. Prospera delivers therapy using a proprietary multiphase stimulation paradigm and is the first SCS system to offer proactive care through automatic, objective, daily, remote device monitoring and remote programming capabilities. RECENT FINDINGS Results from the recently published BENEFIT-02 trial support the short-term safety and efficacy of multiphase stimulation in patients with chronic pain. BENEFIT-03 is an ongoing, multicenter, single-arm study with 24-month follow-up; interim analyses suggest that multiphase therapy is safe and effective and that patients and clinicians have positive experiences with remote device management. Preliminary evidence suggests that the Prospera SCS System represents an opportunity to improve patient care by combining an effective multiphase stimulation paradigm with an efficient proactive care model.
Collapse
Affiliation(s)
- Ramana K Naidu
- MarinHealth Spine Institute, a UCSF Affiliate, 2 Bon Air Rd #120, Larkspur, CA, 94939, USA.
| | | | - Sean Li
- Premier Pain Centers (an affiliate of National Spine and Pain Centers), Shrewsbury, NJ, USA
| | - Caitlin Tourjé
- Spanish Hills Interventional Pain Specialists Inc, Camarillo, CA, USA
| | | | - David Dickerson
- Department of Anesthesiology, Critical Care and Pain Medicine, Endeavor Health, Evanston, IL, USA
- Pritzker School of Medicine, University of Chicago, Chicago, IL, USA
| | - Timothy R Lubenow
- Department of Anesthesiology, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
6
|
Combes BF, Kalva SK, Benveniste PL, Tournant A, Law MH, Newton J, Krüger M, Weber RZ, Dias I, Noain D, Dean-Ben XL, Konietzko U, Baumann CR, Gillberg PG, Hock C, Nitsch RM, Cohen-Adad J, Razansky D, Ni R. Spiral volumetric optoacoustic tomography of reduced oxygen saturation in the spinal cord of M83 mouse model of Parkinson's disease. Eur J Nucl Med Mol Imaging 2025; 52:427-443. [PMID: 39382580 PMCID: PMC11732882 DOI: 10.1007/s00259-024-06938-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024]
Abstract
PURPOSE Metabolism and bioenergetics in the central nervous system play important roles in the pathophysiology of Parkinson's disease (PD). Here, we employed a multimodal imaging approach to assess oxygenation changes in the spinal cord of the transgenic M83 murine model of PD overexpressing the mutated A53T alpha-synuclein form in comparison with non-transgenic littermates. METHODS In vivo spiral volumetric optoacoustic tomography (SVOT) was performed to assess oxygen saturation (sO2) in the spinal cords of M83 mice and non-transgenic littermates. Ex vivo high-field T1-weighted (T1w) magnetic resonance imaging (MRI) at 9.4T was used to assess volumetric alterations in the spinal cord. 3D SVOT analysis and deep learning-based automatic segmentation of T1w MRI data for the mouse spinal cord were developed for quantification. Immunostaining for phosphorylated alpha-synuclein (pS129 α-syn), as well as vascular organization (CD31 and GLUT1), was performed after MRI scan. RESULTS In vivo SVOT imaging revealed a lower sO2SVOT in the spinal cord of M83 mice compared to non-transgenic littermates at sub-100 μm spatial resolution. Ex vivo MRI-assisted by in-house developed deep learning-based automatic segmentation (validated by manual analysis) revealed no volumetric atrophy in the spinal cord of M83 mice compared to non-transgenic littermates at 50 μm spatial resolution. The vascular network was not impaired in the spinal cord of M83 mice in the presence of pS129 α-syn accumulation. CONCLUSION We developed tools for deep-learning-based analysis for the segmentation of mouse spinal cord structural MRI data, and volumetric analysis of sO2SVOT data. We demonstrated non-invasive high-resolution imaging of reduced sO2SVOT in the absence of volumetric structural changes in the spinal cord of PD M83 mouse model.
Collapse
Affiliation(s)
- Benjamin F Combes
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Sandeep Kumar Kalva
- Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Pierre-Louis Benveniste
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
- Mila - Quebec AI Institute, Montreal, QC, Canada
| | - Agathe Tournant
- Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Man Hoi Law
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Joshua Newton
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Maik Krüger
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Rebecca Z Weber
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Inês Dias
- Department of Neurology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Daniela Noain
- Department of Neurology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland
- Center of Competence Sleep and Health Zurich, University of Zurich, Zurich, Switzerland
| | - Xose Luis Dean-Ben
- Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Uwe Konietzko
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Christian R Baumann
- Department of Neurology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland
- Center of Competence Sleep and Health Zurich, University of Zurich, Zurich, Switzerland
| | - Per-Göran Gillberg
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | - Christoph Hock
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Neurimmune, Schlieren, Switzerland
| | - Roger M Nitsch
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Neurimmune, Schlieren, Switzerland
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
- Mila - Quebec AI Institute, Montreal, QC, Canada
| | - Daniel Razansky
- Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland.
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland.
- Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland.
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| |
Collapse
|
7
|
Wang Q, Duan D, Luo C, Huang J, Wei J, Zhang Y, Zhang K, Zhou T, Wang W, Yang S, Ma L. Astilbin exerts anti-hypersensitivity by regulating metabolic demand and neuronal activity in rodent model of neuropathic pain. Ann Med 2024; 56:2396561. [PMID: 39624967 PMCID: PMC11616750 DOI: 10.1080/07853890.2024.2396561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 05/22/2024] [Accepted: 07/26/2024] [Indexed: 12/06/2024] Open
Abstract
OBJECTIVE Astilbe chinensis, is a traditional Chinese medicine commonly employed for pain management. However, its primary active ingredient remains a subject of debate. METHODS Spinal nerve ligation (SNL) and formalin-induced pain models were employed. Network pharmacology and bioinformatics were utilized to identify targets. Verification was performed through spinal cord double immunofluorescence staining, quantitative PCR and whole-cell recording techniques. RESULTS In experiments conducted on neuropathic rats, both systemic and intrathecal administration of astilbin, an essential constituent, exhibited a noteworthy and dose-dependently decrease in chronic and acute pain behaviours. The ED50 value, which represents the dose at which 50% effectiveness is achieved, was measure at 7.59 μg, while the Emax value, indicating the maximum attainable effect, was found to be 60% of the maximal possible effect (% MPE). Forty-two shared targets were identified, enriching the metabolic and synaptic pathways in the network pharmacology analysis, as confirmed by transcriptomic analysis. Weighted gene co-expression network analysis (WGCNA) revealed a strong correlation between the anti-nociceptive effects of astilbin and neuronal metabolic processes. Spinal functional ultrasound (FUS) analysis indicated increased spinal blood flow intensity and changes in metabolism-related enzyme activity, including stearoyl-CoA desaturase (Scd), 17beta-hydroxysteroid dehydrogenase (Hsd17b7) and sterol 14alpha-demethylase (Cyp51) in neuropathic rats, pretreatment with astilbin decreased formalin-induced blood flow in acute pain. Bath application of astilbin dose-dependently inhibited neuronal activity by reducing the frequency and amplitude of miniature excitatory postsynaptic currents (mEPSCs) without affecting miniature inhibitory postsynaptic currents (mIPSCs). CONCLUSIONS In summary, this study provides evidence that astilbin alleviates pain by modulating neuronal metabolic processes and synaptic homeostasis.
Collapse
Affiliation(s)
- Qiru Wang
- Department of Pharmacy, Shanghai Cancer Center, Fudan University, Minhang Branch, Shanghai, China
| | - Dongxia Duan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - Chao Luo
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinlu Huang
- Department of Pharmacy, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinbao Wei
- Department of Pharmacy, Xiamen Haicang Hospital, Xiamen, China
| | - Yang Zhang
- Shanghai Jiao Tong University Hospital, Shanghai, China
| | - Ke Zhang
- Department of Pharmacy, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tong Zhou
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - Shaoxin Yang
- Shanghai Jiao Tong University School of Medicine, Shanghai Ninth People’s Hospital, Shanghai, China
| | - Le Ma
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| |
Collapse
|
8
|
Coudert A, Denis L, Chavignon A, Bodard S, Naveau M, Sistiaga PP, Saulnier R, Orset C, Vivien D, Chappard C, Couture O. 3-D Transcranial Ultrasound Localization Microscopy Reveals Major Arteries in the Sheep Brain. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:1666-1676. [PMID: 39052461 DOI: 10.1109/tuffc.2024.3432998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Cerebral circulation ensures the proper functioning of the entire human body, and its interruption, i.e., stroke, leads to irreversible damage. However, tools for observing cerebral circulation are still lacking. Although MRI and computed tomography (CT) scans serve as conventional methods, their accessibility remains a challenge, prompting exploration into alternative, portable, and nonionizing imaging solutions like ultrasound with reduced costs. While ultrasound localization microscopy (ULM) displays potential in high-resolution vessel imaging, its 2-D constraints limit its emergency utility. This study delves into the feasibility of 3-D ULM with multiplexed probe for transcranial vessel imaging in sheep brains, emulating human skull characteristics. Three sheep underwent 3-D ULM imaging, compared with angiographic MRI, while skull characterization was conducted in vivo using ultrashort bone MRI sequences and ex vivo via micro-CT. The study showcased 3-D ULM's ability to highlight vessels, down to the circle of Willis, yet within a confined 3-D field of view. Future enhancements in signal, aberration correction, and human trials hold promise for a portable, volumetric, transcranial ultrasound angiography system.
Collapse
|
9
|
Lin H, Wang Z, Liao Y, Yu Z, Xu H, Qin T, Tang J, Yang X, Chen S, Chen X, Zhang X, Shen Y. Super-resolution ultrasound imaging reveals temporal cerebrovascular changes with disease progression in female 5×FAD mouse model of Alzheimer's disease: correlation with pathological impairments. EBioMedicine 2024; 108:105355. [PMID: 39293213 PMCID: PMC11424966 DOI: 10.1016/j.ebiom.2024.105355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/20/2024] Open
Abstract
BACKGROUND Vascular dysfunction is closely associated with the progression of Alzheimer's disease (AD). A critical research gap exists that no studies have explored the in vivo temporal changes of cerebrovascular alterations with AD progression in mouse models, encompassing both structure and flow dynamics at micron-scale resolution across the early, middle, and late stages of the disease. METHODS In this study, ultrasound localisation microscopy (ULM) was applied to image the cerebrovascular alterations of the transgenic female 5×FAD mouse model across different stages of disease progression: early (4 months), moderate (7 months), and late (12 months). Age-matched non-transgenic (non-Tg) littermates were used as controls. Immunohistology examinations were performed to evaluate the influence of disease progression on the β-amyloid (Aβ) load and microvascular alterations, including morphological changes and the blood-brain barrier (BBB) leakage. FINDINGS Our findings revealed a significant decline in both vascular density and flow velocity in the retrosplenial cortex of 5×FAD mice at an early stage, which subsequently became more pronounced in the visual cortex and hippocampus as the disease progressed. Additionally, we observed a reduction in vascular length preceding diminished flow velocities in cortical penetrating arterioles during the early stages. The quantification of vascular metrics derived from ULM imaging showed significant correlations with those obtained from vascular histological images. Immunofluorescence staining identified early vascular abnormalities in the retrosplenial cortex. As the disease advanced, there was an exacerbation of Aβ accumulation and BBB disruption in a regionally variable manner. The vascular changes observed through ULM imaging exhibited a negative correlation with amyloid load and were associated with the compromise of the BBB integrity. INTERPRETATION Through high-resolution, in vivo imaging of cerebrovasculature, this study reveals significant spatiotemporal dysfunction in cerebrovascular dynamics accompanying disease progression in a mouse model of AD, enhancing our understanding of its pathophysiology. FUNDING This study is supported by grants from National Key Research and Development Program of China (2020YFA0908800), National Natural Science Foundation of China (12074269, 82272014, 82327804, 62071310), Shenzhen Basic Science Research (20220808185138001, JCYJ20220818095612027, JCYJ20210324093006017), STI 2030-Major Projects (2021ZD0200500) and Guangdong Natural Science Foundation (2024A1515012591, 2024A1515011342).
Collapse
Affiliation(s)
- Haoming Lin
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518071, China
| | - Zidan Wang
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518071, China
| | - Yingtao Liao
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518071, China; Department of Radiation Oncology, Huizhou Central People's Hospital, Huizhou, 516001, Guangdong, China
| | - Zhifan Yu
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518071, China
| | - Huiqin Xu
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518071, China
| | - Ting Qin
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518071, China
| | - Jianbo Tang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518071, China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Centre for Disease Control and Prevention, Shenzhen, 518055, China
| | - Siping Chen
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518071, China
| | - Xin Chen
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518071, China
| | - Xinyu Zhang
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518071, China
| | - Yuanyuan Shen
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Medical School, Shenzhen University, Shenzhen, 518071, China.
| |
Collapse
|
10
|
Agyeman KA, Lee DJ, Russin J, Kreydin EI, Choi W, Abedi A, Lo YT, Cavaleri J, Wu K, Edgerton VR, Liu C, Christopoulos VN. Functional ultrasound imaging of the human spinal cord. Neuron 2024; 112:1710-1722.e3. [PMID: 38458198 DOI: 10.1016/j.neuron.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/03/2023] [Accepted: 02/15/2024] [Indexed: 03/10/2024]
Abstract
Utilizing the first in-human functional ultrasound imaging (fUSI) of the spinal cord, we demonstrate the integration of spinal functional responses to electrical stimulation. We record and characterize the hemodynamic responses of the spinal cord to a neuromodulatory intervention commonly used for treating pain and increasingly used for the restoration of sensorimotor and autonomic function. We found that the hemodynamic response to stimulation reflects a spatiotemporal modulation of the spinal cord circuitry not previously recognized. Our analytical capability offers a mechanism to assess blood flow changes with a new level of spatial and temporal precision in vivo and demonstrates that fUSI can decode the functional state of spinal networks in a single trial, which is of fundamental importance for developing real-time closed-loop neuromodulation systems. This work is a critical step toward developing a vital technique to study spinal cord function and effects of clinical neuromodulation.
Collapse
Affiliation(s)
- K A Agyeman
- Department of Bioengineering, University of California Riverside, Riverside, CA, USA
| | - D J Lee
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Rancho Los Amigos National Rehabilitation Center, Downey, CA, USA; Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - J Russin
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Rancho Los Amigos National Rehabilitation Center, Downey, CA, USA; Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - E I Kreydin
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Rancho Los Amigos National Rehabilitation Center, Downey, CA, USA; Institute of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - W Choi
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - A Abedi
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Y T Lo
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Neurosurgery, National Neuroscience Institute, Singapore, Singapore
| | - J Cavaleri
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - K Wu
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - V R Edgerton
- Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Rancho Los Amigos National Rehabilitation Center, Downey, CA, USA.
| | - C Liu
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Rancho Los Amigos National Rehabilitation Center, Downey, CA, USA; Institute of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA.
| | - V N Christopoulos
- Department of Bioengineering, University of California Riverside, Riverside, CA, USA; Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Neuroscience Graduate Program, University of California Riverside, Riverside, CA, USA.
| |
Collapse
|
11
|
Florence TJ, Bari A, Vivas AC. Functional Stimulation and Imaging to Predict Neuromodulation of Chronic Low Back Pain. Neurosurg Clin N Am 2024; 35:191-197. [PMID: 38423734 DOI: 10.1016/j.nec.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Back pain is one of the most common aversive sensations in human experience. Pain is not limited to the sensory transduction of tissue damage; rather, it encompasses a range of nervous system activities including lateral modulation, long-distance transmission, encoding, and decoding. Although spine surgery may address peripheral pain generators directly, aberrant signals along canonical aversive pathways and maladaptive influence of affective and cognitive states can result in persistent subjective pain refractory to classical surgical intervention. The clinical identification of who will benefit from surgery-and who will not-is increasingly grounded in neurophysiology.
Collapse
Affiliation(s)
- Timothy J Florence
- UCLA Neurosurgery, 300 Stein Plaza Driveway, Suite 562, Los Angeles, CA 90095, USA
| | - Ausaf Bari
- UCLA Neurosurgery, 300 Stein Plaza Driveway, Suite 562, Los Angeles, CA 90095, USA
| | - Andrew C Vivas
- UCLA Neurosurgery, 300 Stein Plaza Driveway, Suite 562, Los Angeles, CA 90095, USA.
| |
Collapse
|
12
|
Zhang K, Ren YQ, Xue Y, Duan D, Zhou T, Ding YZ, Li X, Gong WK, Guan JQ, Ma L. Alpha 2-adrenoceptor participates in anti-hyperalgesia by regulating metabolic demand. Front Pharmacol 2024; 15:1359319. [PMID: 38584597 PMCID: PMC10996398 DOI: 10.3389/fphar.2024.1359319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/20/2024] [Indexed: 04/09/2024] Open
Abstract
The α2-adrenoceptor agonist dexmedetomidine is a commonly used drug for sedatives in clinics and has analgesic effects; however, its mechanism of analgesia in the spine remains unclear. In this study, we systematically used behavioural and transcriptomic sequencing, pharmacological intervention, electrophysiological recording and ultrasound imaging to explore the analgesic effects of the α2-adrenoceptor and its molecular mechanism. Firstly, we found that spinal nerve injury changed the spinal transcriptome expression, and the differential genes were mainly related to calcium signalling and tissue metabolic pathways. In addition, α2-adrenoceptor mRNA expression was significantly upregulated, and α2-adrenoceptor was significantly colocalised with markers, particularly neuronal markers. Intrathecal dexmedetomidine suppressed neuropathic pain and acute inflammatory pain in a dose-dependent manner. The transcriptome results demonstrated that the analgesic effect of dexmedetomidine may be related to the modulation of neuronal metabolism. Weighted gene correlation network analysis indicated that turquoise, brown, yellow and grey modules were the most correlated with dexmedetomidine-induced analgesic effects. Bioinformatics also annotated the involvement of metabolic processes and neural plasticity. A cardiovascular-mitochondrial interaction was found, and ultrasound imaging revealed that injection of dexmedetomidine significantly enhanced spinal cord perfusion in rats with neuropathic pain, which might be regulated by pyruvate dehydrogenase kinase 4 (pdk4), cholesterol 25-hydroxylase (ch25 h) and GTP cyclohydrolase 1 (gch1). Increasing the perfusion doses of dexmedetomidine significantly suppressed the frequency and amplitude of spinal nerve ligation-induced miniature excitatory postsynaptic currents. Overall, dexmedetomidine exerts analgesic effects by restoring neuronal metabolic processes through agonism of the α2-adrenoceptor and subsequently inhibiting changes in synaptic plasticity.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Anesthesiology, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Qing Ren
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Xue
- Department of Anesthesiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongxia Duan
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tong Zhou
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying-Zhuo Ding
- Shanghai Eye Disease Prevention and Treatment Center/Shanghai Eye Hospital, Department of Pharmacy, Shanghai, China
| | - Xiang Li
- Department of Orthopedics, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Wan-Kun Gong
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiao-Qiong Guan
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Le Ma
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Nozdriukhin D, Kalva SK, Özsoy C, Reiss M, Li W, Razansky D, Deán‐Ben XL. Multi-Scale Volumetric Dynamic Optoacoustic and Laser Ultrasound (OPLUS) Imaging Enabled by Semi-Transparent Optical Guidance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306087. [PMID: 38115760 PMCID: PMC10953719 DOI: 10.1002/advs.202306087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/05/2023] [Indexed: 12/21/2023]
Abstract
Major biological discoveries are made by interrogating living organisms with light. However, the limited penetration of un-scattered photons within biological tissues limits the depth range covered by optical methods. Deep-tissue imaging is achieved by combining light and ultrasound. Optoacoustic imaging exploits the optical generation of ultrasound to render high-resolution images at depths unattainable with optical microscopy. Recently, laser ultrasound has been suggested as a means of generating broadband acoustic waves for high-resolution pulse-echo ultrasound imaging. Herein, an approach is proposed to simultaneously interrogate biological tissues with light and ultrasound based on layer-by-layer coating of silica optical fibers with a controlled degree of transparency. The time separation between optoacoustic and ultrasound signals collected with a custom-made spherical array transducer is exploited for simultaneous 3D optoacoustic and laser ultrasound (OPLUS) imaging with a single laser pulse. OPLUS is shown to enable large-scale anatomical characterization of tissues along with functional multi-spectral imaging of chromophores and assessment of cardiac dynamics at ultrafast rates only limited by the pulse repetition frequency of the laser. The suggested approach provides a flexible and scalable means for developing a new generation of systems synergistically combining the powerful capabilities of optoacoustics and ultrasound imaging in biology and medicine.
Collapse
Affiliation(s)
- Daniil Nozdriukhin
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringFaculty of MedicineUniversity of ZürichWinterthurerstrasse 190Zürich8057Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical EngineeringETH ZürichWolfgang‐Pauli‐Strasse 27Zürich8093Switzerland
| | - Sandeep Kumar Kalva
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringFaculty of MedicineUniversity of ZürichWinterthurerstrasse 190Zürich8057Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical EngineeringETH ZürichWolfgang‐Pauli‐Strasse 27Zürich8093Switzerland
| | - Cagla Özsoy
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringFaculty of MedicineUniversity of ZürichWinterthurerstrasse 190Zürich8057Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical EngineeringETH ZürichWolfgang‐Pauli‐Strasse 27Zürich8093Switzerland
| | - Michael Reiss
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringFaculty of MedicineUniversity of ZürichWinterthurerstrasse 190Zürich8057Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical EngineeringETH ZürichWolfgang‐Pauli‐Strasse 27Zürich8093Switzerland
| | - Weiye Li
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringFaculty of MedicineUniversity of ZürichWinterthurerstrasse 190Zürich8057Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical EngineeringETH ZürichWolfgang‐Pauli‐Strasse 27Zürich8093Switzerland
| | - Daniel Razansky
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringFaculty of MedicineUniversity of ZürichWinterthurerstrasse 190Zürich8057Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical EngineeringETH ZürichWolfgang‐Pauli‐Strasse 27Zürich8093Switzerland
| | - Xosé Luís Deán‐Ben
- Institute of Pharmacology and Toxicology and Institute for Biomedical EngineeringFaculty of MedicineUniversity of ZürichWinterthurerstrasse 190Zürich8057Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical EngineeringETH ZürichWolfgang‐Pauli‐Strasse 27Zürich8093Switzerland
| |
Collapse
|
14
|
Routkevitch D, Soulé Z, Kats N, Baca E, Hersh AM, Kempski-Leadingham KM, Menta AK, Bhimreddy M, Jiang K, Davidar AD, Smit C, Theodore N, Thakor NV, Manbachi A. Non-contrast ultrasound image analysis for spatial and temporal distribution of blood flow after spinal cord injury. Sci Rep 2024; 14:714. [PMID: 38184676 PMCID: PMC10771432 DOI: 10.1038/s41598-024-51281-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 01/03/2024] [Indexed: 01/08/2024] Open
Abstract
Ultrasound technology can provide high-resolution imaging of blood flow following spinal cord injury (SCI). Blood flow imaging may improve critical care management of SCI, yet its duration is limited clinically by the amount of contrast agent injection required for high-resolution, continuous monitoring. In this study, we aim to establish non-contrast ultrasound as a clinically translatable imaging technique for spinal cord blood flow via comparison to contrast-based methods and by measuring the spatial distribution of blood flow after SCI. A rodent model of contusion SCI at the T12 spinal level was carried out using three different impact forces. We compared images of spinal cord blood flow taken using both non-contrast and contrast-enhanced ultrasound. Subsequently, we processed the images as a function of distance from injury, yielding the distribution of blood flow through space after SCI, and found the following. (1) Both non-contrast and contrast-enhanced imaging methods resulted in similar blood flow distributions (Spearman's ρ = 0.55, p < 0.0001). (2) We found an area of decreased flow at the injury epicenter, or umbra (p < 0.0001). Unexpectedly, we found increased flow at the periphery, or penumbra (rostral, p < 0.05; caudal, p < 0.01), following SCI. However, distal flow remained unchanged, in what is presumably unaffected tissue. (3) Finally, tracking blood flow in the injury zones over time revealed interesting dynamic changes. After an initial decrease, blood flow in the penumbra increased during the first 10 min after injury, while blood flow in the umbra and distal tissue remained constant over time. These results demonstrate the viability of non-contrast ultrasound as a clinical monitoring tool. Furthermore, our surprising observations of increased flow in the injury periphery pose interesting new questions about how the spinal cord vasculature reacts to SCI, with potentially increased significance of the penumbra.
Collapse
Affiliation(s)
- Denis Routkevitch
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- HEPIUS Innovation Laboratory, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Zoe Soulé
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Nicholas Kats
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Emily Baca
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Andrew M Hersh
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- HEPIUS Innovation Laboratory, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Kelley M Kempski-Leadingham
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- HEPIUS Innovation Laboratory, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Arjun K Menta
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- HEPIUS Innovation Laboratory, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Meghana Bhimreddy
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- HEPIUS Innovation Laboratory, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Kelly Jiang
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- HEPIUS Innovation Laboratory, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - A Daniel Davidar
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- HEPIUS Innovation Laboratory, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Constantin Smit
- HEPIUS Innovation Laboratory, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Nicholas Theodore
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- HEPIUS Innovation Laboratory, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Nitish V Thakor
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- HEPIUS Innovation Laboratory, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Amir Manbachi
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Neurosurgery, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- HEPIUS Innovation Laboratory, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Anesthesiology and Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
15
|
Zhou R, Li J, Wang R, Chen Z, Zhou F. The neurovascular unit in healthy and injured spinal cord. J Cereb Blood Flow Metab 2023; 43:1437-1455. [PMID: 37190756 PMCID: PMC10414016 DOI: 10.1177/0271678x231172008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 02/09/2023] [Accepted: 03/24/2023] [Indexed: 05/17/2023]
Abstract
The neurovascular unit (NVU) reflects the close temporal and spatial link between neurons and blood vessels. However, the understanding of the NVU in the spinal cord is far from clear and largely based on generalized knowledge obtained from the brain. Herein, we review the present knowledge of the NVU and highlight candidate approaches to investigate the NVU, particularly focusing on the spinal cord. Several unique features maintain the highly regulated microenvironment in the NVU. Autoregulation and neurovascular coupling ensure regional blood flow meets the metabolic demand according to the blood supply or local neural activation. The blood-central nervous system barrier partitions the circulating blood from neural parenchyma and facilitates the selective exchange of substances. Furthermore, we discuss spinal cord injury (SCI) as a common injury from the perspective of NVU dysfunction. Hopefully, this review will help expand the understanding of the NVU in the spinal cord and inspire new insights into SCI.
Collapse
Affiliation(s)
- Rubing Zhou
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Junzhao Li
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ruideng Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Zhengyang Chen
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Fang Zhou
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| |
Collapse
|
16
|
Song P, Rubin JM, Lowerison MR. Super-resolution ultrasound microvascular imaging: Is it ready for clinical use? Z Med Phys 2023; 33:309-323. [PMID: 37211457 PMCID: PMC10517403 DOI: 10.1016/j.zemedi.2023.04.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 05/23/2023]
Abstract
The field of super-resolution ultrasound microvascular imaging has been rapidly growing over the past decade. By leveraging contrast microbubbles as point targets for localization and tracking, super-resolution ultrasound pinpoints the location of microvessels and measures their blood flow velocity. Super-resolution ultrasound is the first in vivo imaging modality that can image micron-scale vessels at a clinically relevant imaging depth without tissue destruction. These unique capabilities of super-resolution ultrasound provide structural (vessel morphology) and functional (vessel blood flow) assessments of tissue microvasculature on a global and local scale, which opens new doors for many enticing preclinical and clinical applications that benefit from microvascular biomarkers. The goal of this short review is to provide an update on recent advancements in super-resolution ultrasound imaging, with a focus on summarizing existing applications and discussing the prospects of translating super-resolution imaging to clinical practice and research. In this review, we also provide brief introductions of how super-resolution ultrasound works, how does it compare with other imaging modalities, and what are the tradeoffs and limitations for an audience who is not familiar with the technology.
Collapse
Affiliation(s)
- Pengfei Song
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, United States; Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, United States; Department of Bioengineering, University of Illinois Urbana-Champaign, United States; Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, United States.
| | - Jonathan M Rubin
- Department of Radiology, University of Michigan, Ann Arbor, United States
| | - Matthew R Lowerison
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, United States; Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, United States
| |
Collapse
|
17
|
Renaudin N, Pezet S, Ialy-Radio N, Demene C, Tanter M. Backscattering amplitude in ultrasound localization microscopy. Sci Rep 2023; 13:11477. [PMID: 37455266 DOI: 10.1038/s41598-023-38531-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023] Open
Abstract
In the last decade, Ultrafast ultrasound localisation microscopy has taken non-invasive deep vascular imaging down to the microscopic level. By imaging diluted suspensions of circulating microbubbles in the blood stream at kHz frame rate and localizing the center of their individual point spread function with a sub-resolution precision, it enabled to break the unvanquished trade-off between depth of imaging and resolution by microscopically mapping the microbubbles flux and velocities deep into tissue. However, ULM also suffers limitations. Many small vessels are not visible in the ULM images due to the noise level in areas dimly explored by the microbubbles. Moreover, as the vast majority of studies are performed using 2D imaging, quantification is limited to in-plane velocity or flux measurements which hinders the accurate velocity determination and quantification. Here we show that the backscattering amplitude of each individual microbubble can also be exploited to produce backscattering images of the vascularization with a higher sensitivity compared to conventional ULM images. By providing valuable information about the relative distance of the microbubble to the 2D imaging plane in the out-of-plane direction, backscattering ULM images introduces a physically relevant 3D rendering perception in the vascular maps. It also retrieves the missing information about the out-of-plane motion of microbubbles and provides a way to improve 3D flow and velocity quantification using 2D ULM. These results pave the way to improved visualization and quantification for 2D and 3D ULM.
Collapse
Affiliation(s)
- Noemi Renaudin
- Institute Physics for Medicine Paris, Inserm U1273, ESPCI Paris-PSL, Cnrs UMR8063, 75012, Paris, France
| | - Sophie Pezet
- Institute Physics for Medicine Paris, Inserm U1273, ESPCI Paris-PSL, Cnrs UMR8063, 75012, Paris, France
| | - Nathalie Ialy-Radio
- Institute Physics for Medicine Paris, Inserm U1273, ESPCI Paris-PSL, Cnrs UMR8063, 75012, Paris, France
| | - Charlie Demene
- Institute Physics for Medicine Paris, Inserm U1273, ESPCI Paris-PSL, Cnrs UMR8063, 75012, Paris, France
| | - Mickael Tanter
- Institute Physics for Medicine Paris, Inserm U1273, ESPCI Paris-PSL, Cnrs UMR8063, 75012, Paris, France.
| |
Collapse
|
18
|
Yu J, Dong H, Ta D, Xie R, Xu K. Super-resolution Ultrasound Microvascular Angiography for Spinal Cord Penumbra Imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2023:S0301-5629(23)00202-8. [PMID: 37451953 DOI: 10.1016/j.ultrasmedbio.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 06/02/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023]
Abstract
OBJECTIVE After spinal cord injury (SCI) or ischemia, timely intervention in the penumbra, such as recanalization and tissue reperfusion, is essential for preservation of its function. However, limited by imaging resolution and micro-blood flow sensitivity, golden standard angiography modalities, including magnetic resonance angiography (MRA) and digital subtraction angiography (DSA), are still not applicable for spinal cord microvascular imaging. Regarding spinal cord penumbra, to the best of authors' knowledge, currently, there is no efficient in vivo imaging modality for its evaluation. With tens-of-micrometer resolution and deep penetration, advanced ultrasound localization microscopy (ULM) could potentially meet the needs of emergent diagnosis and long-term monitoring of spinal cord penumbra. METHODS ULM microvasculature imaging was performed on rats with all laminae removed to obtain the blood supply in major spinal cord segments (C5-L5). For adult rats with spinal cord penumbra induced by compression injury (1 s, 10 s and 15 s), ULM imaging was conducted. The corresponding angiography results are investigated in terms of microvessel saturation, morphology, and flow velocity. The Basso/Beattie/Bresnahan (BBB) locomotor rating scale and hematoxylin and eosin staining were utilized for model validation and comparison. RESULTS The feasibility of ULM enabling spinal cord penumbra imaging and development monitoring was demonstrated. The focal injury core and penumbra can be clearly identified using the proposed method. Significant difference of perfusion can be observed after 1 s, 10 s and 15 s compression. Quantitative results show a high correlation between in vivo ultrasonic angiography, BBB functional evaluation and ex vivo histology assessment under different compression duration. CONCLUSION It is demonstrated that the super-resolution ULM micro-vasculature imaging can be used to evaluate the penumbra in spinal cord at acute and early stage of chronic phase, providing an efficient modality for micro-hemodynamics monitoring of the spinal cord.
Collapse
Affiliation(s)
- Junjin Yu
- Center for Biomedical Engineering, Fudan University, Shanghai, China; State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai, China
| | - Haoru Dong
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Dean Ta
- Center for Biomedical Engineering, Fudan University, Shanghai, China; State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai, China
| | - Rong Xie
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Kailiang Xu
- Center for Biomedical Engineering, Fudan University, Shanghai, China; State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai, China.
| |
Collapse
|
19
|
Soloukey S, Verhoef L, Generowicz BS, De Zeeuw CI, Koekkoek SKE, Vincent AJPE, Dirven CMF, Harhangi BS, Kruizinga P. Case report: High-resolution, intra-operative µDoppler-imaging of spinal cord hemangioblastoma. Front Surg 2023; 10:1153605. [PMID: 37342792 PMCID: PMC10277559 DOI: 10.3389/fsurg.2023.1153605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/19/2023] [Indexed: 06/23/2023] Open
Abstract
Surgical resection of spinal cord hemangioblastomas remains a challenging endeavor: the neurosurgeon's aim to reach total tumor resections directly endangers their aim to minimize post-operative neurological deficits. The currently available tools to guide the neurosurgeon's intra-operative decision-making consist mostly of pre-operative imaging techniques such as MRI or MRA, which cannot cater to intra-operative changes in field of view. For a while now, spinal cord surgeons have adopted ultrasound and its submodalities such as Doppler and CEUS as intra-operative techniques, given their many benefits such as real-time feedback, mobility and ease of use. However, for highly vascularized lesions such as hemangioblastomas, which contain up to capillary-level microvasculature, having access to higher-resolution intra-operative vascular imaging could potentially be highly beneficial. µDoppler-imaging is a new imaging modality especially fit for high-resolution hemodynamic imaging. Over the last decade, µDoppler-imaging has emerged as a high-resolution, contrast-free sonography-based technique which relies on High-Frame-Rate (HFR)-ultrasound and subsequent Doppler processing. In contrast to conventional millimeter-scale (Doppler) ultrasound, the µDoppler technique has a higher sensitivity to detect slow flow in the entire field-of-view which allows for unprecedented visualization of blood flow down to sub-millimeter resolution. In contrast to CEUS, µDoppler is able to image high-resolution details continuously, without being contrast bolus-dependent. Previously, our team has demonstrated the use of this technique in the context of functional brain mapping during awake brain tumor resections and surgical resections of cerebral arteriovenous malformations (AVM). However, the application of µDoppler-imaging in the context of the spinal cord has remained restricted to a handful of mostly pre-clinical animal studies. Here we describe the first application of µDoppler-imaging in the case of a patient with two thoracic spinal hemangioblastomas. We demonstrate how µDoppler is able to identify intra-operatively and with high-resolution, hemodynamic features of the lesion. In contrast to pre-operative MRA, µDoppler could identify intralesional vascular details, in real-time during the surgical procedure. Additionally, we show highly detailed post-resection images of physiological human spinal cord anatomy. Finally, we discuss the necessary future steps to push µDoppler to reach actual clinical maturity.
Collapse
Affiliation(s)
- Sadaf Soloukey
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
- Department of Neurosurgery, Erasmus MC, Rotterdam, Netherlands
| | - Luuk Verhoef
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | | - Chris I. De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
- Royal Dutch Academy for Arts and Sciences, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | | | | | | | - Biswadjiet S. Harhangi
- Department of Neurosurgery, Erasmus MC, Rotterdam, Netherlands
- Department of Neurosurgery, Park MC, Rotterdam, Netherlands
| | | |
Collapse
|
20
|
Claron J, Provansal M, Salardaine Q, Tissier P, Dizeux A, Deffieux T, Picaud S, Tanter M, Arcizet F, Pouget P. Co-variations of cerebral blood volume and single neurons discharge during resting state and visual cognitive tasks in non-human primates. Cell Rep 2023; 42:112369. [PMID: 37043356 DOI: 10.1016/j.celrep.2023.112369] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 01/11/2023] [Accepted: 03/22/2023] [Indexed: 04/13/2023] Open
Abstract
To better understand how the brain allows primates to perform various sets of tasks, the ability to simultaneously record neural activity at multiple spatiotemporal scales is challenging but necessary. However, the contribution of single-unit activities (SUAs) to neurovascular activity remains to be fully understood. Here, we combine functional ultrasound imaging of cerebral blood volume (CBV) and SUA recordings in visual and fronto-medial cortices of behaving macaques. We show that SUA provides a significant estimate of the neurovascular response below the typical fMRI spatial resolution of 2mm3. Furthermore, our results also show that SUAs and CBV activities are statistically uncorrelated during the resting state but correlate during tasks. These results have important implications for interpreting functional imaging findings while one constructs inferences of SUA during resting state or tasks.
Collapse
Affiliation(s)
- Julien Claron
- Stem Cell and Brain Research Institute, INSERM U1208, Bron, France; Paris Brain Institute, Institut du Cerveau, INSERM 1127, CNRS 7225 Sorbonne Université, Paris, France
| | | | - Quentin Salardaine
- Paris Brain Institute, Institut du Cerveau, INSERM 1127, CNRS 7225 Sorbonne Université, Paris, France
| | - Pierre Tissier
- Paris Brain Institute, Institut du Cerveau, INSERM 1127, CNRS 7225 Sorbonne Université, Paris, France
| | - Alexandre Dizeux
- Physics for Medicine, ESPCI, INSERM, CNRS, PSL Research University, Paris, France
| | - Thomas Deffieux
- Physics for Medicine, ESPCI, INSERM, CNRS, PSL Research University, Paris, France
| | - Serge Picaud
- Institut de la Vision, CNRS, INSERM, Sorbonne Université, Paris, France
| | - Mickael Tanter
- Physics for Medicine, ESPCI, INSERM, CNRS, PSL Research University, Paris, France.
| | - Fabrice Arcizet
- Institut de la Vision, CNRS, INSERM, Sorbonne Université, Paris, France.
| | - Pierre Pouget
- Paris Brain Institute, Institut du Cerveau, INSERM 1127, CNRS 7225 Sorbonne Université, Paris, France.
| |
Collapse
|
21
|
Paquette T, Eskandari N, Leblond H, Piché M. Spinal neurovascular coupling is preserved despite time-dependent alterations of spinal cord blood flow responses in a rat model of chronic back pain: implications for functional spinal cord imaging. Pain 2023; 164:758-770. [PMID: 36036900 DOI: 10.1097/j.pain.0000000000002762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/15/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT Functional magnetic resonance imaging has been used to investigate nociceptive processes in patients with chronic pain. However, the results may be confounded with changes in neurovascular coupling induced by chronic pain. The objective of this study was to examine spinal neurovascular coupling in a rat model of chronic back pain induced by muscle inflammation. Rats received 150 µL intramuscular injections of either complete Freund adjuvant (CFA: n = 18) or saline (control [CTL]: n = 18) in L5-L6 paravertebral muscles. Under 1.2% isoflurane anesthesia, spinal cord blood flow (SCBF) and local field potentials evoked by electrical stimulation of the sciatic nerve were recorded simultaneously in the lumbar enlargement of the spinal cord, 14 or 28 days after the injections. Mechanical hypersensitivity was observed in CFA rats compared with CTL rats for the back ( P < 0.001) and hind paws ( P < 0.01). Spinal cord blood flow response amplitude and local field potential amplitude were not significantly different between groups (day 14: P > 0.5; day 28: P > 0.6). However, the time course of SCBF responses was different between groups on day 14 ( P < 0.001) and day 28 ( P < 0.001). Nevertheless, neurovascular coupling was comparable between groups on days 14 and 28, whether neurovascular coupling was calculated with the amplitude or the area under the curve of SCBF responses (all P > 0.2). These results indicate that spinal hemodynamic changes reflect neuronal activity in this animal model, although the time course of SCBF responses is affected by chronic inflammatory back pain. This warrants a careful use of spinal functional magnetic resonance imaging in animal models and patients with chronic back pain.
Collapse
Affiliation(s)
- Thierry Paquette
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
- CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Nasim Eskandari
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
- CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Hugues Leblond
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
- CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Mathieu Piché
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
- CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| |
Collapse
|
22
|
Pialot B, Lachambre C, Mur AL, Augeul L, Petrusca L, Basarab A, Varray F. Adaptive noise reduction for power Doppler imaging using SVD filtering in the channel domain and coherence weighting of pixels. Phys Med Biol 2023; 68. [PMID: 36595318 DOI: 10.1088/1361-6560/acac5d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Objective. Ultrafast power Doppler (UPD) is an ultrasound method that can image blood flow at several thousands of frames per second. In particular, the high number of data provided by UPD enables the use of singular value decomposition (SVD) as a clutter filter for suppressing tissue signal. Notably, is has been demonstrated in various applications that SVD filtering increases significantly the sensitivity of UPD to microvascular flows. However, UPD is subjected to significant depth-dependent electronic noise and an optimal denoising approach is still being sought.Approach. In this study, we propose a new denoising method for UPD imaging: the Coherence Factor Mask (CFM). This filter is first based on filtering the ultrasound time-delayed data using SVD in the channel domain to remove clutter signal. Then, a spatiotemporal coherence mask that exploits coherence information between channels for identifying noisy pixels is computed. The mask is finally applied to beamformed images to decrease electronic noise before forming the power Doppler image. We describe theoretically how to filter channel data using a single SVD. Then, we evaluate the efficiency of the CFM filter for denoisingin vitroandin vivoimages and compare its performances with standard UPD and with three existing denoising approaches.Main results. The CFM filter gives gains in signal-to-noise ratio and contrast-to-noise ratio of up to 22 dB and 20 dB, respectively, compared to standard UPD and globally outperforms existing methods for reducing electronic noise. Furthermore, the CFM filter has the advantage over existing approaches of being adaptive and highly efficient while not requiring a cut-off for discriminating noise and blood signals nor for determining an optimal coherence lag.Significance. The CFM filter has the potential to help establish UPD as a powerful modality for imaging microvascular flows.
Collapse
Affiliation(s)
- Baptiste Pialot
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, CREATIS UMR 5220, U1294, F-69621, Lyon, France
| | - Célestine Lachambre
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, CREATIS UMR 5220, U1294, F-69621, Lyon, France
| | - Antonio Lorente Mur
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, CREATIS UMR 5220, U1294, F-69621, Lyon, France
| | - Lionel Augeul
- INSERM UMR-1060, Laboratoire CarMeN, Université Lyon 1, Faculté de Médecine, Rockefeller, Lyon, France
| | - Lorena Petrusca
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, CREATIS UMR 5220, U1294, F-69621, Lyon, France
| | - Adrian Basarab
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, CREATIS UMR 5220, U1294, F-69621, Lyon, France
| | - François Varray
- Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, CNRS, Inserm, CREATIS UMR 5220, U1294, F-69621, Lyon, France
| |
Collapse
|
23
|
Routkevitch D, Hersh AM, Kempski KM, Kerensky M, Theodore N, Thakor NV, Manbachi A. FlowMorph: Morphological Segmentation of Ultrasound-Monitored Spinal Cord Microcirculation. IEEE BIOMEDICAL CIRCUITS AND SYSTEMS CONFERENCE : HEALTHCARE TECHNOLOGY : [PROCEEDINGS]. IEEE BIOMEDICAL CIRCUITS AND SYSTEMS CONFERENCE 2022; 2022:610-614. [PMID: 36695674 PMCID: PMC9870043 DOI: 10.1109/biocas54905.2022.9948639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Imaging of spinal cord microvasculature holds great potential in directing critical care management of spinal cord injury (SCI). Traditionally, contrast agents are preferred for imaging of the spinal cord vasculature, which is disadvantageous for long-term monitoring of injury. Here, we present FlowMorph, an algorithm that uses mathematical morphology techniques to segment non-contrast Doppler-based videos of rat spinal cord. Using the segmentation, it measures single-vessel parameters such as flow velocity, rate, and radius, with visible cardiac cycles in individual vessels showcasing the spatiotemporal resolution. The segmentation outlines vessels well with little extraneous labeling, and outlines are smooth through time. Radius measurements of perforating vessels are similar to what is seen in the literature through other methods. Verification of the algorithm through comparison to manual measurement and in vitro microphantom standards highlights points of future improvement. This method will be vital for future work studying the vascular effects of SCI and can be adopted to other species as well.
Collapse
Affiliation(s)
| | | | | | - Max Kerensky
- Johns Hopkins University,Baltimore,Maryland,21205
| | | | | | | |
Collapse
|
24
|
Abstract
Functional ultrasound (fUS) is a neuroimaging method that uses ultrasound to track changes in cerebral blood volume as an indirect readout of neuronal activity at high spatiotemporal resolution. fUS is capable of imaging head-fixed or freely behaving rodents and of producing volumetric images of the entire mouse brain. It has been applied to many species, including primates and humans. Now that fUS is reaching maturity, it is being adopted by the neuroscience community. However, the nature of the fUS signal and the different implementations of fUS are not necessarily accessible to nonspecialists. This review aims to introduce these ultrasound concepts to all neuroscientists. We explain the physical basis of the fUS signal and the principles of the method, present the state of the art of its hardware implementation, and give concrete examples of current applications in neuroscience. Finally, we suggest areas for improvement during the next few years.
Collapse
Affiliation(s)
- Gabriel Montaldo
- Neuro-Electronics Research Flanders, Vlaams Instituut voor Biotechnologie, and Interuniversity Microelectronics Centre, Leuven, Belgium;
| | - Alan Urban
- Neuro-Electronics Research Flanders, Vlaams Instituut voor Biotechnologie, and Interuniversity Microelectronics Centre, Leuven, Belgium; .,Department of Neuroscience, Faculty of Medicine, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Emilie Macé
- Brain-Wide Circuits for Behavior Research Group, Max Planck Institute of Neurobiology, Martinsried, Germany.,Current address: Max Planck Institute for Biological Intelligence, In Foundation, Martinsried, Germany;
| |
Collapse
|
25
|
Beliard B, Ahmanna C, Tiran E, Kanté K, Deffieux T, Tanter M, Nothias F, Soares S, Pezet S. Ultrafast Doppler imaging and ultrasound localization microscopy reveal the complexity of vascular rearrangement in chronic spinal lesion. Sci Rep 2022; 12:6574. [PMID: 35449222 PMCID: PMC9023600 DOI: 10.1038/s41598-022-10250-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/30/2022] [Indexed: 12/16/2022] Open
Abstract
Acute spinal cord injury (SCI) leads to severe damage to the microvascular network. The process of spontaneous repair is accompanied by formation of new blood vessels; their functionality, however, presumably very important for functional recovery, has never been clearly established, as most studies so far used fixed tissues. Here, combining ultrafast Doppler imaging and ultrasound localization microscopy (ULM) on the same animals, we proceeded at a detailed analysis of structural and functional vascular alterations associated with the establishment of chronic SCI, both at macroscopic and microscopic scales. Using a standardized animal model of SCI, our results demonstrate striking hemodynamic alterations in several subparts of the spinal cord: a reduced blood velocity in the lesion site, and an asymmetrical hypoperfusion caudal but not rostral to the lesion. In addition, the worsening of many evaluated parameters at later time points suggests that the neoformed vascular network is not yet fully operational, and reveals ULM as an efficient in vivo readout for spinal cord vascular alterations. Finally, we show statistical correlations between the diverse biomarkers of vascular dysfunction and SCI severity. The imaging modality developed here will allow evaluating recovery of vascular function over time in pre-clinical models of SCI. Also, used on SCI patients in combination with other quantitative markers of neural tissue damage, it may help classifying lesion severity and predict possible treatment outcomes in patients.
Collapse
Affiliation(s)
- Benoit Beliard
- Institute of Physics for Medicine Paris, Inserm U1273, ESPCI PSL Paris, CNRS UMR8361, PSL Research University - Paris, 17 rue Moreau, 75012, Paris, France
| | - Chaimae Ahmanna
- Neuroscience Paris Seine NPS, CNRS UMR8246, INSERM U1130, UM119, Institut de Biologie Paris Seine IBPS, Sorbonne Université Sciences, Campus UPMC, 75005, Paris, France
| | - Elodie Tiran
- Institute of Physics for Medicine Paris, Inserm U1273, ESPCI PSL Paris, CNRS UMR8361, PSL Research University - Paris, 17 rue Moreau, 75012, Paris, France
| | - Kadia Kanté
- Neuroscience Paris Seine NPS, CNRS UMR8246, INSERM U1130, UM119, Institut de Biologie Paris Seine IBPS, Sorbonne Université Sciences, Campus UPMC, 75005, Paris, France
| | - Thomas Deffieux
- Institute of Physics for Medicine Paris, Inserm U1273, ESPCI PSL Paris, CNRS UMR8361, PSL Research University - Paris, 17 rue Moreau, 75012, Paris, France
| | - Mickael Tanter
- Institute of Physics for Medicine Paris, Inserm U1273, ESPCI PSL Paris, CNRS UMR8361, PSL Research University - Paris, 17 rue Moreau, 75012, Paris, France
| | - Fatiha Nothias
- Neuroscience Paris Seine NPS, CNRS UMR8246, INSERM U1130, UM119, Institut de Biologie Paris Seine IBPS, Sorbonne Université Sciences, Campus UPMC, 75005, Paris, France
| | - Sylvia Soares
- Neuroscience Paris Seine NPS, CNRS UMR8246, INSERM U1130, UM119, Institut de Biologie Paris Seine IBPS, Sorbonne Université Sciences, Campus UPMC, 75005, Paris, France.
| | - Sophie Pezet
- Institute of Physics for Medicine Paris, Inserm U1273, ESPCI PSL Paris, CNRS UMR8361, PSL Research University - Paris, 17 rue Moreau, 75012, Paris, France.
| |
Collapse
|
26
|
Réaux-Le-Goazigo A, Beliard B, Delay L, Rahal L, Claron J, Renaudin N, Rivals I, Thibaut M, Nouhoum M, Deffieux T, Tanter M, Pezet S. Ultrasound localization microscopy and functional ultrasound imaging reveal atypical features of the trigeminal ganglion vasculature. Commun Biol 2022; 5:330. [PMID: 35393515 PMCID: PMC8989975 DOI: 10.1038/s42003-022-03273-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 03/15/2022] [Indexed: 12/26/2022] Open
Abstract
The functional imaging within the trigeminal ganglion (TG) is highly challenging due to its small size and deep localization. This study combined a methodological framework able to dive into the rat trigeminal nociceptive system by jointly providing 1) imaging of the TG blood vasculature at microscopic resolution, and 2) the measurement of hemodynamic responses evoked by orofacial stimulations in anesthetized rats. Despite the small number of sensory neurons within the TG, functional ultrasound imaging was able to image and quantify a strong and highly localized hemodynamic response in the ipsilateral TG, evoked not only by mechanical or chemical stimulations of corneal nociceptive fibers, but also by cutaneous mechanical stimulations of the ophthalmic and maxillary orofacial regions using a von Frey hair. The in vivo quantitative imaging of the TG’s vasculature using ultrasound localization microscopy combined with in toto labelling reveals particular features of the vascularization of the area containing the sensory neurons, that are likely the origin of this strong vaso-trigeminal response. This innovative imaging approach opens the path for future studies on the mechanisms underlying changes in trigeminal local blood flow and evoked hemodynamic responses, key mechanisms for the understanding and treatment of debilitating trigeminal pain conditions. Visualisation of rat trigeminal ganglia activation during ophthalmic or maxillary nociceptive stimulations shows atypical tortuous vascularisation and a somatotopic hemodynamic response.
Collapse
Affiliation(s)
| | - Benoit Beliard
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, 17 rue Moreau, 75012, Paris, France
| | - Lauriane Delay
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, 17 rue Moreau, 75012, Paris, France
| | - Line Rahal
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, 17 rue Moreau, 75012, Paris, France
| | - Julien Claron
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, 17 rue Moreau, 75012, Paris, France
| | - Noémi Renaudin
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, 17 rue Moreau, 75012, Paris, France
| | - Isabelle Rivals
- Equipe de Statistique Appliquée, ESPCI Paris, PSL Research University, UMRS 1158, 10 rue Vauquelin, 75005, Paris, France
| | - Miguel Thibaut
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, 17 rue Moreau, 75012, Paris, France
| | - Mohamed Nouhoum
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, 17 rue Moreau, 75012, Paris, France.,Iconeus, 27 Rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Thomas Deffieux
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, 17 rue Moreau, 75012, Paris, France
| | - Mickael Tanter
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, 17 rue Moreau, 75012, Paris, France
| | - Sophie Pezet
- Physics for Medicine Paris, Inserm, ESPCI Paris, CNRS, PSL Research University, 17 rue Moreau, 75012, Paris, France.
| |
Collapse
|
27
|
Functional ultrasound imaging: A useful tool for functional connectomics? Neuroimage 2021; 245:118722. [PMID: 34800662 DOI: 10.1016/j.neuroimage.2021.118722] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/15/2021] [Accepted: 11/10/2021] [Indexed: 12/28/2022] Open
Abstract
Functional ultrasound (fUS) is a hemodynamic-based functional neuroimaging technique, primarily used in animal models, that combines a high spatiotemporal resolution, a large field of view, and compatibility with behavior. These assets make fUS especially suited to interrogating brain activity at the systems level. In this review, we describe the technical capabilities offered by fUS and discuss how this technique can contribute to the field of functional connectomics. First, fUS can be used to study intrinsic functional connectivity, namely patterns of correlated activity between brain regions. In this area, fUS has made the most impact by following connectivity changes in disease models, across behavioral states, or dynamically. Second, fUS can also be used to map brain-wide pathways associated with an external event. For example, fUS has helped obtain finer descriptions of several sensory systems, and uncover new pathways implicated in specific behaviors. Additionally, combining fUS with direct circuit manipulations such as optogenetics is an attractive way to map the brain-wide connections of defined neuronal populations. Finally, technological improvements and the application of new analytical tools promise to boost fUS capabilities. As brain coverage and the range of behavioral contexts that can be addressed with fUS keep on increasing, we believe that fUS-guided connectomics will only expand in the future. In this regard, we consider the incorporation of fUS into multimodal studies combining diverse techniques and behavioral tasks to be the most promising research avenue.
Collapse
|
28
|
Mujtaba J, Liu J, Dey KK, Li T, Chakraborty R, Xu K, Makarov D, Barmin RA, Gorin DA, Tolstoy VP, Huang G, Solovev AA, Mei Y. Micro-Bio-Chemo-Mechanical-Systems: Micromotors, Microfluidics, and Nanozymes for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007465. [PMID: 33893682 DOI: 10.1002/adma.202007465] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/27/2020] [Indexed: 06/12/2023]
Abstract
Wireless nano-/micromotors powered by chemical reactions and/or external fields generate motive forces, perform tasks, and significantly extend short-range dynamic responses of passive biomedical microcarriers. However, before micromotors can be translated into clinical use, several major problems, including the biocompatibility of materials, the toxicity of chemical fuels, and deep tissue imaging methods, must be solved. Nanomaterials with enzyme-like characteristics (e.g., catalase, oxidase, peroxidase, superoxide dismutase), that is, nanozymes, can significantly expand the scope of micromotors' chemical fuels. A convergence of nanozymes, micromotors, and microfluidics can lead to a paradigm shift in the fabrication of multifunctional micromotors in reasonable quantities, encapsulation of desired subsystems, and engineering of FDA-approved core-shell structures with tuneable biological, physical, chemical, and mechanical properties. Microfluidic methods are used to prepare stable bubbles/microbubbles and capsules integrating ultrasound, optoacoustic, fluorescent, and magnetic resonance imaging modalities. The aim here is to discuss an interdisciplinary approach of three independent emerging topics: micromotors, nanozymes, and microfluidics to creatively: 1) embrace new ideas, 2) think across boundaries, and 3) solve problems whose solutions are beyond the scope of a single discipline toward the development of micro-bio-chemo-mechanical-systems for diverse bioapplications.
Collapse
Affiliation(s)
- Jawayria Mujtaba
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Jinrun Liu
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Krishna K Dey
- Discipline of Physics, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382355, India
| | - Tianlong Li
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, P. R. China
| | - Rik Chakraborty
- Discipline of Physics, Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat, 382355, India
| | - Kailiang Xu
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
- School of Information Science and Technology, Fudan University, Shanghai, 200433, P. R. China
| | - Denys Makarov
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Roman A Barmin
- Center of Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 3 Nobelya Str, Moscow, 121205, Russia
| | - Dmitry A Gorin
- Center of Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 3 Nobelya Str, Moscow, 121205, Russia
| | - Valeri P Tolstoy
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii Prospect, Petergof, St. Petersburg, 198504, Russia
| | - Gaoshan Huang
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Alexander A Solovev
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yongfeng Mei
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|