1
|
Yao CH, Zhang ZM, Zhang S, Jiang H, Wang R, Liu JH, Xie H, Dai WL. Berbamine alleviates neuropathic pain via suppressing spinal TMEM34/SGK1/FOXO3 axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156619. [PMID: 40088745 DOI: 10.1016/j.phymed.2025.156619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/05/2025] [Accepted: 03/05/2025] [Indexed: 03/17/2025]
Abstract
BACKGROUND The pathologic mechanism of neuropathic pain (NP) is still not fully understood, and efficient and safe therapeutic options are limited. PURPOSE Seeking new treatment options for neuropathic pain. STUDY DESIGN Exploring new therapeutic target for NP and finding analgesic medications derived from traditional Chinese medicines against the target is urgent. METHODS Chronic constriction injury (CCI) model was used for behavioral assays. In vitro assay was conducted by using primary neurons, glial cells, as well as PC12, C6, and BV2 cells. The mechanical and thermal withdrawal threshold was assessed using Von Frey filaments and Hargreaves method. RNA sequencing (RNA-Seq), immunofluorescence, western blot, and quantitative RT-PCR were also used. RESULTS Spinal transmembrane34 (TMEM34) was firstly found to be elevated in CCI induced NP. Knocking-down spinal TMEM34 obviously alleviated NP, while overexpressing TMEM34 promoted NP and induced allodynia in naïve rats. Furthermore, TMEM34 was expressed in spinal neurons and astrocytes but not in microglia to activate them in CCI rats. Serum and glucocorticoid inducible kinase-1 (SGK1) was similarly expressed in astrocytes and neurons, and its expression trend is compatible with that of TMEM34. p-SGK1 expression was also suppressed by blocking TMEM34 in CCI rats. In addition, TMEM34/SGK1 was found to prevent Forkhead box O3 (FOXO3) from activating neurons and astrocytes and promoting NP. Berbamine (BBM), an active compound in Stephania epigaea H. S. Lo, was screened to block the TMEM34/SGK1/FOXO3 axis, hence relieving NP. CONCLUSIONS Our findings highlighted the significance of TMEM34 as a critical factor in NP and found a prospective medication that inhibited TMEM34 to reduce NP.
Collapse
Affiliation(s)
- Chang-Heng Yao
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Zi-Meng Zhang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Shen Zhang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Han Jiang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Rui Wang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Ji-Hua Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China; State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China.
| | - Hao Xie
- College of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Wen-Ling Dai
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, China.
| |
Collapse
|
2
|
Wright EB, Larsen EG, Padilla-Rodriguez M, Langlais PR, Bhattacharya MRC. Neuronal endolysosomal acidification relies on interactions between transmembrane protein 184B (TMEM184B) and the vesicular proton pump. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.01.635992. [PMID: 39975166 PMCID: PMC11838497 DOI: 10.1101/2025.02.01.635992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Disruption of endolysosomal acidification is a hallmark of several neurodevelopmental and neurodegenerative disorders. Impaired acidification causes accumulation of toxic protein aggregates and disrupts neuronal homeostasis, yet the molecular mechanisms regulating endolysosomal pH in neurons remain poorly understood. A critical regulator of lumenal acidification is the vacuolar ATPase (V-ATPase), a proton pump whose activity depends on dynamic assembly of its V0 and V1 subdomains. In this study, we identify transmembrane protein 184B (TMEM184B) as a novel regulator of endolysosomal acidification in neurons. TMEM184B is an evolutionarily conserved 7-pass transmembrane protein required for synaptic structure and function, and sequence variation in TMEM184B causes neurodevelopmental disorders, but the mechanism for this effect is unknown. We performed proteomic analysis of TMEM184B-interacting proteins and identified enrichment of components involved in endosomal trafficking and function, including the V-ATPase. TMEM184B localizes to early and late endosomes, further supporting a role in the endosomal system. Loss of TMEM184B results in significant reductions in endolysosomal acidification within cultured mouse cortical neurons. This alteration in pH is associated with impaired assembly of the V-ATPase V0 and V1 subcomplexes in the TMEM184B mutant mouse brain, suggesting a mechanism by which TMEM184B promotes flux through the endosomal pathway. Overall, these findings identify a new contributor in maintaining endosomal function and provide a mechanistic basis for disrupted neuronal function in human TMEM184B-associated nervous system disorders. Significance Statement Endolysosomal acidification is essential for neuronal protein homeostasis, yet its regulation in neurons remains poorly understood. Here, we identify TMEM184B as a key regulator of this process, establishing its first known cellular role. We show that TMEM184B interacts with vacuolar ATPase (V-ATPase) components and promotes the assembly of its V0 and V1 subdomains, facilitating lumenal acidification. Loss of TMEM184B disrupts endolysosomal pH in neurons, potentially impairing proteostasis. These findings reveal a critical function for TMEM184B in neuronal maintenance and provide mechanistic insight into its link to neurological disorders. This work advances our understanding of endolysosomal regulation and suggests TMEM184B regulation could improve outcomes in diseases involving lysosomal dysfunction.
Collapse
|
3
|
Liu G, Liu T, Tan J, Jiang X, Fan Y, Sun K, Liu W, Liu X, Yang Y, Zhu X. Deletion of Transmembrane protein 184b leads to retina degeneration in mice. Cell Prolif 2025; 58:e13751. [PMID: 39375958 PMCID: PMC11839198 DOI: 10.1111/cpr.13751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/10/2024] [Accepted: 09/09/2024] [Indexed: 10/09/2024] Open
Abstract
Transmembrane protein 184b (Tmem184b) has been implicated in axon degeneration and neuromuscular junction dysfunction. Notably, Tmem184b exhibits high expression levels in the retina; however, its specific function within this tissue remains poorly understood. To elucidate the role of Tmem184b in the mammalian visual system, we developed a Tmem184b knockout (KO) model for further investigation. Loss of Tmem184b led to significant decreases in both a and b wave amplitudes of scotopic electroretinogram (ERG) and reduced b wave amplitudes of photopic ERG, respectively, reflecting damage to both the photoreceptors and secondary neuronal cells of the retina. Histologic analyses showed a progressive retinal thinning accompanied by the significantly loss of retinal cells including cone, rod, bipolar, horizontal and retinal ganglion cells. The expression levels of photo-transduction-related proteins were down-regulated in KO retina. TUNEL (terminal deoxynucleotidyl transferase-mediated biotinylated Uridine-5'-triphosphate [UTP] nick end labelling) and glial fibrillary acidic protein (GFAP)-labelling results suggested the increased cell death and inflammation in the KO mice. RNA-sequencing analysis and GO enrichment analysis revealed that Tmem184b deletion resulted in down-regulated genes involved in various biological processes such as visual perception, response to hypoxia, regulation of transmembrane transporter activity. Taken together, our study revealed essential roles of Tmem184b in the mammalian retina and confirmed the underlying mechanisms including cell death, inflammation and hypoxia pathway in the absence of Tmem184b, providing a potential target for therapeutic and diagnostic development.
Collapse
Affiliation(s)
- Guo Liu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Center for Medical Genetics, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
- Henan Branch of National Clinical Research Center for Ocular Diseases, Henan Eye HospitalPeople's Hospital of Zhengzhou University, Henan Provincial People's HospitalZhengzhouHenanChina
| | - Tiannan Liu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Center for Medical Genetics, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Junkai Tan
- Xiamen Eye Center, Xiamen Research Center for Eye Diseases and Key Laboratory of OphthalmologyXiamen UniversityXiamenFujianChina
| | - Xiaoyan Jiang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Center for Medical Genetics, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Yudi Fan
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Center for Medical Genetics, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Kuanxiang Sun
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Center for Medical Genetics, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Wenjing Liu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Center for Medical Genetics, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Xuyang Liu
- Xiamen Eye Center, Xiamen Research Center for Eye Diseases and Key Laboratory of OphthalmologyXiamen UniversityXiamenFujianChina
| | - Yeming Yang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Center for Medical Genetics, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Xianjun Zhu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Center for Medical Genetics, Sichuan Provincial People's HospitalUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
- Henan Branch of National Clinical Research Center for Ocular Diseases, Henan Eye HospitalPeople's Hospital of Zhengzhou University, Henan Provincial People's HospitalZhengzhouHenanChina
- Qinghai Key Laboratory of Qinghai Tibet Plateau Biological Resources, Chinese Academy of Sciences and Qinghai Provincial Key Laboratory of Tibetan Medicine ResearchNorthwest Institute of Plateau BiologyXiningQinghaiChina
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026)Sichuan Academy of Medical Sciences and Sichuan Provincial People's HospitalChengduSichuanChina
| |
Collapse
|
4
|
Jiang R, Lu Z, Wang C, Tu W, Yao Q, Shen J, Zhu X, Wang Z, Chen Y, Yang Y, Kang K, Gong P. Astrocyte-derived Interleukin-31 causes poor prognosis in elderly patients with intracerebral hemorrhage. Brain Pathol 2024; 34:e13245. [PMID: 38354695 PMCID: PMC11328350 DOI: 10.1111/bpa.13245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/19/2024] [Indexed: 02/16/2024] Open
Abstract
The incidence of intracerebral hemorrhage (ICH) is increasing every year, with very high rates of mortality and disability. The prognosis of elderly ICH patients is extremely unfavorable. Interleukin, as an important participant in building the inflammatory microenvironment of the central nervous system after ICH, has long been the focus of neuroimmunology research. However, there are no studies on the role IL31 play in the pathologic process of ICH. We collected para-lesion tissue for immunofluorescence and flow cytometry from the elderly and young ICH patients who underwent surgery. Here, we found that IL31 expression in the lesion of elderly ICH patients was significantly higher than that of young patients. The activation of astrocytes after ICH releases a large amount of IL31, which binds to microglia through IL31R, causing a large number of microglia to converge to the hematoma area, leading to the spread of neuroinflammation, apoptosis of neurons, and ultimately resulting in poorer recovery of nerve function. Interfering with IL31 expression suppresses neuroinflammation and promotes the recovery of neurological function. Our study demonstrated that elderly patients release more IL31 after ICH than young patients. IL31 promotes the progression of neuroinflammation, leading to neuronal apoptosis as well as neurological decline. Suppression of high IL31 concentrations in the brain after ICH may be a promising therapeutic strategy for ICH.
Collapse
Affiliation(s)
- Rui Jiang
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Neuro-Microscopy and Minimally Invasive Translational Medicine Innovation Center, Affiliated Hospital of Nantong University, Nantong, China
- Jiangsu Medical Innovation Center, Neurological Disease Diagnosis and Treatment Center, Affiliated Hospital of Nantong University, Nantong, China
| | - Zhichao Lu
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Chenxing Wang
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - WenJun Tu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qi Yao
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Neuro-Microscopy and Minimally Invasive Translational Medicine Innovation Center, Affiliated Hospital of Nantong University, Nantong, China
- Jiangsu Medical Innovation Center, Neurological Disease Diagnosis and Treatment Center, Affiliated Hospital of Nantong University, Nantong, China
| | - Jiabing Shen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, China
| | - Xingjia Zhu
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Ziheng Wang
- Department of Clinical Bio-bank, Affiliated Hospital of Nantong University, Nantong, China
- Centre for Precision Medicine Research and Training, Faculty of Health Sciences, University of Macau, Taipa, China
| | - Yixun Chen
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Yang Yang
- Department of Trauma Center, Affiliated Hospital of Nantong University, Medical school of Nantong University, Nantong, China
| | - Kaijiang Kang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Peipei Gong
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Neuro-Microscopy and Minimally Invasive Translational Medicine Innovation Center, Affiliated Hospital of Nantong University, Nantong, China
- Jiangsu Medical Innovation Center, Neurological Disease Diagnosis and Treatment Center, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
5
|
Chapman KA, Ullah F, Yahiku ZA, Kodiparthi SV, Kellaris G, Correia SP, Stödberg T, Sofokleous C, Marinakis NM, Fryssira H, Tsoutsou E, Traeger-Synodinos J, Accogli A, Salpietro V, Striano P, Berger SI, Pond KW, Sirimulla S, Davis EE, Bhattacharya MRC. Pathogenic variants in TMEM184B cause a neurodevelopmental syndrome via alteration of metabolic signaling. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.27.24309417. [PMID: 39006436 PMCID: PMC11245063 DOI: 10.1101/2024.06.27.24309417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Transmembrane protein 184B (TMEM184B) is an endosomal 7-pass transmembrane protein with evolutionarily conserved roles in synaptic structure and axon degeneration. We report six pediatric patients who have de novo heterozygous variants in TMEM184B. All individuals harbor rare missense or mRNA splicing changes and have neurodevelopmental deficits including intellectual disability, corpus callosum hypoplasia, seizures, and/or microcephaly. TMEM184B is predicted to contain a pore domain, wherein many human disease-associated variants cluster. Structural modeling suggests that all missense variants alter TMEM184B protein stability. To understand the contribution of TMEM184B to neural development in vivo, we suppressed the TMEM184B ortholog in zebrafish and observed microcephaly and reduced anterior commissural neurons, aligning with patient symptoms. Ectopic TMEM184B expression resulted in dominant effects for K184E and G162R. However, in vivo complementation studies demonstrate that all other variants tested result in diminished protein function and indicate a haploinsufficiency basis for disease. Expression of K184E and other variants increased apoptosis in cell lines and altered nuclear localization of transcription factor EB (TFEB), a master regulator of lysosomal biogenesis, suggesting disrupted nutrient signaling pathways. Together, our data indicate that TMEM184B variants cause cellular metabolic disruption likely through divergent molecular effects that all result in abnormal neural development.
Collapse
Affiliation(s)
- Kimberly A Chapman
- Children’s National Rare Disease Institute and Center for Genetic Medicine Research, Washington DC, USA
| | - Farid Ullah
- Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
- Department of Pediatrics and Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern, Chicago, IL, USA
| | - Zachary A Yahiku
- Department of Neuroscience, University of Arizona, Tucson AZ, USA
| | | | - Georgios Kellaris
- Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
| | - Sandrina P Correia
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Tommy Stödberg
- Department of Women’s and Children`s Health, Karolinska Institute, Stockholm, Sweden; and Department of Pediatric Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Christalena Sofokleous
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, St. Sophia’s Children’s Hospital, Athens, Greece
| | - Nikolaos M Marinakis
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, St. Sophia’s Children’s Hospital, Athens, Greece
- Research University Institute for the Study and Prevention of Genetic and Malignant Disease of Childhood,National and Kapodistrian University of Athens, St. Sophia’s Children’s Hospital, Athens, Greece
| | - Helena Fryssira
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, St. Sophia’s Children’s Hospital, Athens, Greece
| | - Eirini Tsoutsou
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, St. Sophia’s Children’s Hospital, Athens, Greece
| | - Jan Traeger-Synodinos
- Laboratory of Medical Genetics, Medical School, National and Kapodistrian University of Athens, St. Sophia’s Children’s Hospital, Athens, Greece
| | - Andrea Accogli
- Division of Medical Genetics, Department of Medicine, and Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Vincenzo Salpietro
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University. College London, London, WC1N 3BG, UK
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100, L’Aquila, Italy
| | - Pasquale Striano
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Giannina Gaslini Institute, Genoa, Italy
| | - Seth I Berger
- Children’s National Rare Disease Institute and Center for Genetic Medicine Research, Washington DC, USA
| | - Kelvin W Pond
- Department of Cellular and Molecular Medicine, University of Arizona College of Medicine - Tucson, AZ, USA
| | | | - Erica E Davis
- Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL, USA
- Department of Pediatrics and Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern, Chicago, IL, USA
| | | |
Collapse
|
6
|
Wright EB, Larsen EG, Coloma-Roessle CM, Hart HR, Bhattacharya MRC. Transmembrane protein 184B (TMEM184B) promotes expression of synaptic gene networks in the mouse hippocampus. BMC Genomics 2023; 24:559. [PMID: 37730546 PMCID: PMC10512654 DOI: 10.1186/s12864-023-09676-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/13/2023] [Indexed: 09/22/2023] Open
Abstract
In Alzheimer's Disease (AD) and other dementias, hippocampal synaptic dysfunction and loss contribute to the progression of memory impairment. Recent analysis of human AD transcriptomes has provided a list of gene candidates that may serve as drivers of disease. One such candidate is the membrane protein TMEM184B. To evaluate whether TMEM184B contributes to neurological impairment, we asked whether loss of TMEM184B in mice causes gene expression or behavior alterations, focusing on the hippocampus. Because one major risk factor for AD is age, we compared young adult (5-month-old) and aged (15-month-old) wild type and Tmem184b-mutant mice to assess the dual contributions of age and genotype. TMEM184B loss altered expression of pre- and post-synaptic transcripts by 5 months and continued through 15 months, specifically affecting genes involved in synapse assembly and neural development. Wnt-activated enhancer elements were enriched among differentially expressed genes, suggesting an intersection with this pathway. Few differences existed between young adult and aged mutants, suggesting that transcriptional effects of TMEM184B loss are relatively constant. To understand how TMEM184B disruption may impact behaviors, we evaluated memory using the novel object recognition test and anxiety using the elevated plus maze. Young adult Tmem184b-mutant mice show normal object discrimination, suggesting a lack of memory impairment at this age. However, mutant mice showed decreased anxiety, a phenotype seen in some neurodevelopmental disorders. Taken together, our data suggest that TMEM184B is required for proper synaptic gene expression and anxiety-related behavior and is more likely to be linked to neurodevelopmental disorders than to dementia.
Collapse
Affiliation(s)
- Elizabeth B Wright
- Department of Neuroscience, 1040 E 4th Street, Tucson, Arizona, 85721, USA
| | - Erik G Larsen
- Department of Neuroscience, 1040 E 4th Street, Tucson, Arizona, 85721, USA
| | | | - Hannah R Hart
- Department of Neuroscience, 1040 E 4th Street, Tucson, Arizona, 85721, USA
| | | |
Collapse
|
7
|
Sensory neuron-expressed TRPC3 mediates acute and chronic itch. Pain 2023; 164:98-110. [PMID: 35507377 DOI: 10.1097/j.pain.0000000000002668] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/20/2022] [Indexed: 01/09/2023]
Abstract
ABSTRACT Chronic pruritus is a prominent symptom of allergic contact dermatitis (ACD) and represents a huge unmet health problem. However, its underlying cellular and molecular mechanisms remain largely unexplored. TRPC3 is highly expressed in primary sensory neurons and has been implicated in peripheral sensitization induced by proinflammatory mediators. Yet, the role of TRPC3 in acute and chronic itch is still not well defined. Here, we show that, among mouse trigeminal ganglion (TG) neurons, Trpc3 mRNA is predominantly expressed in nonpeptidergic small diameter TG neurons of mice. Moreover, Trpc3 mRNA signal was present in most presumptively itch sensing neurons. TRPC3 agonism induced TG neuronal activation and acute nonhistaminergic itch-like and pain-like behaviors in naive mice. In addition, genetic deletion of Trpc3 attenuated acute itch evoked by certain common nonhistaminergic pruritogens, including endothelin-1 and SLIGRL-NH2. In a murine model of contact hypersensitivity (CHS), the Trpc3 mRNA expression level and function were upregulated in the TG after CHS. Pharmacological inhibition and global knockout of Trpc3 significantly alleviated spontaneous scratching behaviors without affecting concurrent cutaneous inflammation in the CHS model. Furthermore, conditional deletion of Trpc3 in primary sensory neurons but not in keratinocytes produced similar antipruritic effects in this model. These findings suggest that TRPC3 expressed in primary sensory neurons may contribute to acute and chronic itch through a histamine independent mechanism and that targeting neuronal TRPC3 might benefit the treatment of chronic itch associated with ACD and other inflammatory skin disorders.
Collapse
|
8
|
Lin Y, Liu D, Li X, Ma Y, Pan X. TMEM184B promotes proliferation, migration and invasion, and inhibits apoptosis in hypopharyngeal squamous cell carcinoma. J Cell Mol Med 2022; 26:5551-5561. [PMID: 36254814 DOI: 10.1111/jcmm.17572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/02/2022] [Accepted: 09/17/2022] [Indexed: 11/30/2022] Open
Abstract
Several members of the transmembrane protein family are associated with the biological processes of human malignancies; however, the expression pattern and biological function of one family member, TMEM184B, in hypopharyngeal squamous cell carcinoma (HPSCC) are not fully understood. The expression between HPSCC tumours and adjacent normal tissues was determined by the Immunohistochemistry (IHC). A bioinformatics analysis was performed to verify the expression pattern of TMEM184B in The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Furthermore, in vitro assays on cell proliferation, invasion, migration and in vivo experiments on tumour growth and apoptosis of TMEM184B in HPSCC were performed. We found that the HPSCC tissues had a significantly higher expression of TMEM184B than the adjacent normal tissues. Bioinformatics analysis confirmed the different expression of TMEM184B expression in HPSCC. Furthermore, in vitro and in vivo experiments demonstrated that TMEM184B promotes HPSCC cell growth, cell invasion and migration in FaDu cells, whereas flow cytometry assay showed that TMEM184B inhibited cell apoptosis. Our study revealed for the first time that TMEM184B might serve an oncogenic function in HPSCC and could be a potential diagnostic biomarker and therapeutic target for HPSCC.
Collapse
Affiliation(s)
- Yun Lin
- Department of Otolaryngology, Qilu Hospital of Shandong University, Qingdao, China
| | - Dayu Liu
- Department of Otolaryngology, Qilu Hospital of Shandong University, Qingdao, China
| | - Xuexin Li
- Department of Otolaryngology, Qilu Hospital of Shandong University, Qingdao, China
| | - Yan Ma
- Department of Otolaryngology, Qilu Hospital of Shandong University, Qingdao, China
| | - Xinliang Pan
- Department of Otolaryngology, Qilu Hospital of Shandong University, Qingdao, China.,NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, China
| |
Collapse
|
9
|
Cytokines and chemokines modulation of itch. Neuroscience 2022; 495:74-85. [PMID: 35660453 DOI: 10.1016/j.neuroscience.2022.05.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/07/2022] [Accepted: 05/26/2022] [Indexed: 12/31/2022]
Abstract
Itch (pruritus) is a common cutaneous symptom widely associated with many skin complaints, and chronic itch can be a severe clinical problem. The onset and perpetuation of itch are linked to cytokines, such as interleukin (IL)-31, IL-4, IL-13, IL-33, thymic stromal lymphopoietin, and tumor necrosis factor-alpha, and chemokines, such as chemokine (C-C motif) ligand 2 and C-X-C motif chemokine ligand 10. This review highlights research that has attempted to determine the attributes of various cytokines and chemokines concerning the development and modulation of itch. Through such research, clinical approaches targeting cytokines and/or chemokines may arise, which may further the development of itch therapeutics.
Collapse
|
10
|
Toyama S, Tominaga M, Takamori K. Connections between Immune-Derived Mediators and Sensory Nerves for Itch Sensation. Int J Mol Sci 2021; 22:12365. [PMID: 34830245 PMCID: PMC8624544 DOI: 10.3390/ijms222212365] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 12/28/2022] Open
Abstract
Although histamine is a well-known itch mediator, histamine H1-receptor blockers often lack efficacy in chronic itch. Recent molecular and cellular based studies have shown that non-histaminergic mediators, such as proteases, neuropeptides and cytokines, along with their cognate receptors, are involved in evocation and modulation of itch sensation. Many of these molecules are produced and secreted by immune cells, which act on sensory nerve fibers distributed in the skin to cause itching and sensitization. This understanding of the connections between immune cell-derived mediators and sensory nerve fibers has led to the development of new treatments for itch. This review summarizes current knowledge of immune cell-derived itch mediators and neuronal response mechanisms, and discusses therapeutic agents that target these systems.
Collapse
Affiliation(s)
- Sumika Toyama
- Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Chiba 279-0021, Japan; (S.T.); (M.T.)
| | - Mitsutoshi Tominaga
- Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Chiba 279-0021, Japan; (S.T.); (M.T.)
- Anti-Aging Skin Research Laboratory, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Chiba 279-0021, Japan
| | - Kenji Takamori
- Juntendo Itch Research Center (JIRC), Institute for Environmental and Gender-Specific Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Chiba 279-0021, Japan; (S.T.); (M.T.)
- Anti-Aging Skin Research Laboratory, Juntendo University Graduate School of Medicine, 2-1-1 Tomioka, Chiba 279-0021, Japan
- Department of Dermatology, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Chiba 279-0021, Japan
| |
Collapse
|