1
|
Wang H, Zheng A, Arias EB, Kwak SE, Pan X, Duan D, Cartee GD. AS160 expression, but not AS160 Serine-588, Threonine-642, and Serine-704 phosphorylation, is essential for elevated insulin-stimulated glucose uptake by skeletal muscle from female rats after acute exercise. FASEB J 2023; 37:e23021. [PMID: 37289137 DOI: 10.1096/fj.202300282rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/09/2023]
Abstract
One exercise session can increase subsequent insulin-stimulated glucose uptake (ISGU) by skeletal muscle in both sexes. We recently found that muscle expression and phosphorylation of key sites of Akt substrate of 160 kDa (AS160; also called TBC1D4) are essential for the full-exercise effect on postexercise-ISGU (PEX-ISGU) in male rats. In striking contrast, AS160's role in increased PEX-ISGU has not been rigorously tested in females. Our rationale was to address this major knowledge gap. Wild-type (WT) and AS160-knockout (KO) rats were either sedentary or acutely exercised. Adeno-associated virus (AAV) vectors were engineered to express either WT-AS160 or AS160 mutated on key serine and threonine residues (Ser588, Thr642, and Ser704) to alanine to prevent their phosphorylation. AAV vectors were delivered to the muscle of AS160-KO rats to determine if WT-AS160 or phosphorylation-inactivated AS160 would influence PEX-ISGU. AS160-KO rats have lower skeletal muscle abundance of the GLUT4 glucose transporter protein. This GLUT4 deficit was rescued using AAV delivery of GLUT4 to determine if eliminating muscle GLUT4 deficiency would normalize PEX-ISGU. The novel results were as follows: (1) AS160 expression was required for greater PEX-ISGU; (2) rescuing muscle AS160 expression in AS160-KO rats restored elevated PEX-ISGU; (3) AS160's essential role for the postexercise increase in ISGU was not attributable to reduced muscle GLUT4 content; and (4) AS160 phosphorylation on Ser588, Thr642, and Ser704 was not essential for greater PEX-ISGU. In conclusion, these novel findings revealed that three phosphosites widely proposed to influence PEX-ISGU are not required for this important outcome in female rats.
Collapse
Affiliation(s)
- Haiyan Wang
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Amy Zheng
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Edward B Arias
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Seong Eun Kwak
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Xiufang Pan
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
- Department of Neurology, School of Medicine, University of Missouri, Columbia, Missouri, USA
- Department of Biomedical, Biological & Chemical Engineering, College of Engineering, University of Missouri, Columbia, Missouri, USA
| | - Gregory D Cartee
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
- Institute of Gerontology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Zheng A, Wang H, Arias EB, Dong G, Zhao J, Cartee GD. Akt substrate of 160 kDa is essential for the calorie restriction-induced increase in insulin-stimulated glucose uptake by skeletal muscle of female rats. Appl Physiol Nutr Metab 2023; 48:283-292. [PMID: 36634338 PMCID: PMC11726319 DOI: 10.1139/apnm-2022-0414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We evaluated effects of calorie restriction (CR; consuming 65% of ad libitum (AL) intake) for 8 weeks on female wildtype (WT) and Akt substrate of 160 kDa knockout (AS160-KO) rats. Insulin-stimulated glucose uptake (ISGU) was determined in isolated epitrochlearis muscles incubated with 0, 50, 100, or 500 µU/mL insulin. Phosphorylation of key insulin signaling proteins that control ISGU (Akt and AS160) was assessed by immunoblotting (Akt phosphorylation on Threonine-308, pAktThr308 and Serine-473, pAktSer473; AS160 phosphorylation on Serine-588, pAS160Ser588, and Threonine-642, pAS160Thr642). Abundance of proteins that regulate ISGU (GLUT4 glucose transporter protein and hexokinase II) was also determined by immunoblotting. The major results were as follows: (i) WT-CR versus WT-AL rats had greater ISGU with 100 and 500 µU/mL insulin; (ii) CR versus WT-AL rats had greater GLUT4 protein abundance; (iii) WT-CR versus WT-AL rats had greater pAktThr308 with 500 µU/mL insulin; (iv) WT-CR versus WT-AL rats did not differ for pAktSer473, pAS160Ser588, or pAS160Thr642 at any insulin concentration; (v) AS160-KO versus WT rats with each diet had lower ISGU at each insulin concentration, but not lower pAkt on either phosphosite; (vi) AS160-KO versus WT rats had lower muscle GLUT4 abundance regardless of diet; and (vii) AS160-KO-CR versus AS160-KO-AL rats did not differ for ISGU, GLUT4 abundance, pAkt on either phosphosite, or pAS160 on either phosphosite. These novel results demonstrated that AS160 expression, but not greater pAS160 on key phosphosites, was essential for the CR-induced increases in muscle ISGU and GLUT4 abundance of female rats.
Collapse
Affiliation(s)
- Amy Zheng
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Haiyan Wang
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Edward B. Arias
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Gengfu Dong
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Jiahui Zhao
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Gregory D. Cartee
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Institute of Gerontology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
3
|
Li M, Luo M, Liu P, Wang R, Jing H. Circ_0001402 knockdown suppresses the chemoresistance and development of DDP-resistant cutaneous squamous cell carcinoma cells by functioning as a ceRNA for miR-625-5p. Exp Dermatol 2023; 32:529-541. [PMID: 36635223 DOI: 10.1111/exd.14745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/14/2023]
Abstract
Cutaneous squamous cell carcinoma (CSCC) is the most common metastatic skin cancer. Circular RNAs (circRNAs) are differentially expressed in CSCC and can sequester and sponge microRNAs. GSE74758 shows that hsa_circ_0001402 (circ_0001402) is the most overexpressed circRNA in CSCC. Expression of circ_0001402, microRNA(miR)-625-5p and karyopherin subunit alpha 4 (KPNA4) was detected by quantitative real-time polymerase chain reaction and/or Western blot. Colon formation, flow cytometry, Transwell assays and xenograft tumour model confirmed the development of CSCC cells. The competing endogenous RNA (ceRNA) interaction was confirmed by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. Circ_0001402 was significantly upregulated in CSCC tissues and cells, and higher expression of circ_0001402 was found in DDP-resistant samples. Functionally, circ_0001402 knockdown induced apoptosis and inhibited half maximal inhibitory concentration of DDP, colony formation, migration and invasion of DDP-resistant CSCC cells, accompanied with the depressed multi-drug resistance-1 (MDR1) and MDR-related protein-1, while miR-625-5p inhibitor could counteract these effects. Mechanically, circ_0001402 mediated the expression regulation of KPNA4 via functioning as a ceRNA for miR-625-5p. KPNA4 re-expression could abate the functions of miR-625-5p. Furthermore, circ_0001402 knockdown could hinder tumour growth of DDP-resistant CSCC. Circ_0001402 knockdown can suppress the development and chemoresistance of DDP-resistant CSCC cells at least partly through targeting miR-625-5p/KPNA4 axis.
Collapse
Affiliation(s)
- Min Li
- Department of Dematology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Ming Luo
- Department of Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Pei Liu
- Department of Dematology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Runchao Wang
- Department of Dematology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Haixia Jing
- Department of Dematology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
4
|
Mann G, Riddell MC, Adegoke OAJ. Effects of Acute Muscle Contraction on the Key Molecules in Insulin and Akt Signaling in Skeletal Muscle in Health and in Insulin Resistant States. DIABETOLOGY 2022; 3:423-446. [DOI: 10.3390/diabetology3030032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Insulin signaling plays a key role in glucose uptake, glycogen synthesis, and protein and lipid synthesis. In insulin-resistant states like obesity and type 2 diabetes mellitus, these processes are dysregulated. Regular physical exercise is a potential therapeutic strategy against insulin resistance, as an acute bout of exercise increases glucose disposal during the activity and for hours into recovery. Chronic exercise increases the activation of proteins involved in insulin signaling and increases glucose transport, even in insulin resistant states. Here, we will focus on the effect of acute exercise on insulin signaling and protein kinase B (Akt) pathways. Activation of proximal proteins involved in insulin signaling (insulin receptor, insulin receptor substrate-1 (IRS-1), phosphoinoside-3 kinase (PI3K)) are unchanged in response to acute exercise/contraction, while activation of Akt and of its substrates, TBC1 domain family 1 (TBC1D1), and TBC domain family 4 (TBC1D4) increases in response to such exercise/contraction. A wide array of Akt substrates is also regulated by exercise. Additionally, AMP-activated protein kinase (AMPK) seems to be a main mediator of the benefits of exercise on skeletal muscle. Questions persist on how mTORC1 and AMPK, two opposing regulators, are both upregulated after an acute bout of exercise.
Collapse
Affiliation(s)
- Gagandeep Mann
- School of Kinesiology and Health Science, York University, Toronto, ON M3J 1P3, Canada
| | - Michael C. Riddell
- School of Kinesiology and Health Science, York University, Toronto, ON M3J 1P3, Canada
| | | |
Collapse
|
5
|
Zheng A, Arias EB, Wang H, Kwak SE, Pan X, Duan D, Cartee GD. Exercise-Induced Improvement in Insulin-Stimulated Glucose Uptake by Rat Skeletal Muscle Is Absent in Male AS160-Knockout Rats, Partially Restored by Muscle Expression of Phosphomutated AS160, and Fully Restored by Muscle Expression of Wild-Type AS160. Diabetes 2022; 71:219-232. [PMID: 34753801 PMCID: PMC8914290 DOI: 10.2337/db21-0601] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/03/2021] [Indexed: 11/13/2022]
Abstract
One exercise session can elevate insulin-stimulated glucose uptake (ISGU) in skeletal muscle, but the mechanisms remain elusive. Circumstantial evidence suggests a role for Akt substrate of 160 kDa (AS160 or TBC1D4). We used genetic approaches to rigorously test this idea. The initial experiment evaluated the role of AS160 in postexercise increase in ISGU using muscles from male wild-type (WT) and AS160-knockout (KO) rats. The next experiment used AS160-KO rats with an adeno-associated virus (AAV) approach to determine if rescuing muscle AS160 deficiency could restore the ability of exercise to improve ISGU. The third experiment tested if eliminating the muscle GLUT4 deficit in AS160-KO rats via AAV-delivered GLUT4 would enable postexercise enhancement of ISGU. The final experiment used AS160-KO rats and AAV delivery of AS160 mutated to prevent phosphorylation of Ser588, Thr642, and Ser704 to evaluate their role in postexercise ISGU. We discovered the following: 1) AS160 expression was essential for postexercise increase in ISGU; 2) rescuing muscle AS160 expression of AS160-KO rats restored postexercise enhancement of ISGU; 3) restoring GLUT4 expression in AS160-KO muscle did not rescue the postexercise increase in ISGU; and 4) although AS160 phosphorylation on three key sites was not required for postexercise elevation in ISGU, it was essential for the full exercise effect.
Collapse
Affiliation(s)
- Amy Zheng
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI
| | - Edward B. Arias
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI
| | - Haiyan Wang
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI
| | - Seong Eun Kwak
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI
| | - Xiufang Pan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO
- Department of Biomedical, Biological & Chemical Engineering, College of Engineering, University of Missouri, Columbia, MO
| | - Gregory D. Cartee
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI
- Institute of Gerontology, University of Michigan, Ann Arbor, MI
- Corresponding author: Gregory D. Cartee,
| |
Collapse
|
6
|
Wang H, Arias EB, Treebak JT, Cartee GD. Exercise effects on γ3-AMPK activity, Akt substrate of 160 kDa phosphorylation, and glucose uptake in muscle of normal and insulin-resistant female rats. J Appl Physiol (1985) 2022; 132:140-153. [PMID: 34882030 PMCID: PMC8759959 DOI: 10.1152/japplphysiol.00533.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Previous studies demonstrated that acute exercise can enhance glucose uptake (GU), γ3-AMP-activated protein kinase (AMPK) activity, and Akt substrate of 160 kDa (AS160) phosphorylation in skeletal muscles from low-fat diet (LFD)- and high-fat diet (HFD)-fed male rats. Because little is known about exercise effects on these outcomes in females, we assessed postexercise GU by muscles incubated ± insulin, delta-insulin GU (GU of muscles incubated with insulin minus GU uptake of paired muscles incubated without insulin), and muscle signaling proteins from female rats fed a LFD or a brief HFD (2 wk). Rats were sedentary (LFD-SED, HFD-SED) or swim exercised. Immediately postexercise (IPEX) or 3 h postexercise (3hPEX), epitrochlearis muscles were incubated (no insulin IPEX; ±insulin 3hPEX) to determine GU. Muscle γ3-AMPK activity (IPEX, 3hPEX) and phosphorylated AS160 (pAS160; 3hPEX) were also assessed. γ3-AMPK activity and insulin-independent GU of IPEX rats exceeded sedentary rats without diet-related differences in either outcome. At 3hPEX, both GU by insulin-stimulated muscles and delta-insulin GU exceeded their respective diet-matched sedentary controls. GU by insulin-stimulated muscles, but not delta-insulin GU for LFD-3hPEX, exceeded HFD-3hPEX. LFD-3hPEX versus LFD-SED had greater γ3-AMPK activity and greater pAS160. HFD-3hPEX exceeded HFD-SED for pAS160 but not for γ3-AMPK activity. pAS160 and γ3-AMPK at 3hPEX did not differ between diet groups. These results revealed that increased γ3-AMPK activity at 3hPEX was not essential for greater GU in insulin-stimulated muscle or greater delta-insulin GU in HFD female rats. Similarly elevated γ3-AMPK activity in LFD-IPEX versus HFD-IPEX and pAS160 in LFD-3hPEX versus HFD-3hPEX may contribute to the comparable delta-insulin GU at 3hPEX in both diet groups.NEW & NOTEWORTHY Glucose uptake (GU) and phosphorylated AS160 (pAS160) by insulin-stimulated muscles at 3 h postexercise (3hPEX) exceeded diet-matched controls in female low-fat diet-fed (LFD) or high-fat diet-fed (HFD) rats. GU with insulin for LFD-3hPEX exceeded HFD-3hPEX, whereas pAS160 was similar between these groups. γ3-AMPK immediately postexercise (IPEX) was similarly elevated in LFD and HFD, but only LFD-3hPEX had increased γ3-AMPK. These results suggest that greater γ3-AMPK at IPEX and pAS160 at 3hPEX may contribute to elevated GU with insulin, but greater γ3-AMPK at 3hPEX was dispensable for female HFD rats.
Collapse
Affiliation(s)
- Haiyan Wang
- 1Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Edward B. Arias
- 1Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Jonas T. Treebak
- 2Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gregory D. Cartee
- 1Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan,3Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan,4Institute of Gerontology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
7
|
Suhariningsih S, Astuti SD, Husen SA, Winarni D, Rahmawati DA, Mukti AT, Putra AP, Miftahussurur M. The combined effect of magnetic and electric fields using on/off infrared light on the blood sugar level and the diameter of Langerhans islets of diabetic mice. Vet World 2020; 13:2286-2293. [PMID: 33281368 PMCID: PMC7704297 DOI: 10.14202/vetworld.2020.2286-2293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/16/2020] [Indexed: 11/16/2022] Open
Abstract
Background and Aim At present, diabetes is treated with oral antidiabetic medicines, such as sulfonylureas and thiazolidine, as well as insulin injection. However, these methods have several shortcomings. Therefore, alternatives for treating diabetes mellitus (DM) are needed. This study aims to determine the combined effect of magnetic and electric fields on blood sugar levels and the diameter of Langerhans islets of diabetic mice. Materials and Methods Induction of DM in mice was carried out by administering lard for 2 weeks and continued with an intraperitoneal injection of streptozotocin, dissolved in a 4.5 pH citrate buffer, and administered in a dose of 30 mg/kg bodyweight for 5 days. Treatments were used in combination with magnetic and electric fields using on/off infrared light. Blood samples were pipetted through the tip of mice's tails to establish the blood sugar level for each individual mouse. Histology preparation of the pancreas organ was affected using the histology standard as well as hematoxylin and eosin staining methods. Langerhans islet diameter data were analyzed using analysis of variance followed by Duncan's multiple range test. Data analysis was performed at ssssssss=0.05. Results The results showed that the combined treatment of permanent magnetic and unidirectional electric fields (PS) caused changes in blood sugar levels that were not significantly different from the normal control group. The PS treatment improved the diameter of the Langerhans islets but not to a significant degree compared to other treatments. Conclusion The use of PS treatment is effective for reducing the blood sugar levels of diabetic mice and improving the diameter of their Langerhans islets.
Collapse
Affiliation(s)
- S Suhariningsih
- Department of Physics, Faculty of Sciences and Technology, Universitas Airlangga, Surabaya 60115, Indonesia.,Biophysics and Medical Physics Research Group, Faculty of Sciences and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Suryani Dyah Astuti
- Department of Physics, Faculty of Sciences and Technology, Universitas Airlangga, Surabaya 60115, Indonesia.,Biophysics and Medical Physics Research Group, Faculty of Sciences and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Saikhu Akhmad Husen
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Dwi Winarni
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Dian Astri Rahmawati
- Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Akhmad Taufiq Mukti
- Department of Fish Health Management and Aquaculture, Faculty of Fisheries and Marine, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Alfian Pramudita Putra
- Biomedical Engineering Study Program, Department of Physics, Faculty of Sciences and Technology, Universitas Airlangga, Surabaya 60115, Indonesia.,Biomedical Signals and Systems Research Group, Faculty of Sciences and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Muhammad Miftahussurur
- Department of Internal Medicine, Division of Gastroentero-Hepatology, Faculty of Medicine, Institute of Tropical Diseases, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
8
|
Hansen SL, Bojsen-Møller KN, Lundsgaard AM, Hendrich FL, Nilas L, Sjøberg KA, Hingst JR, Serup AK, Olguín CH, Carl CS, Wernblad LF, Henneberg M, Lustrup KM, Hansen C, Jensen TE, Madsbad S, Wojtaszewski JFP, Richter EA, Kiens B. Mechanisms Underlying Absent Training-Induced Improvement in Insulin Action in Lean, Hyperandrogenic Women With Polycystic Ovary Syndrome. Diabetes 2020; 69:2267-2280. [PMID: 32873590 DOI: 10.2337/db20-0062] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 08/24/2020] [Indexed: 11/13/2022]
Abstract
Women with polycystic ovary syndrome (PCOS) have been shown to be less insulin sensitive compared with control (CON) women, independent of BMI. Training is associated with molecular adaptations in skeletal muscle, improving glucose uptake and metabolism in both healthy individuals and patients with type 2 diabetes. In the current study, lean hyperandrogenic women with PCOS (n = 9) and healthy CON women (n = 9) completed 14 weeks of controlled and supervised exercise training. In CON, the training intervention increased whole-body insulin action by 26% and insulin-stimulated leg glucose uptake by 53% together with increased insulin-stimulated leg blood flow and a more oxidative muscle fiber type distribution. In PCOS, no such changes were found, despite similar training intensity and improvements in VO2max In skeletal muscle of CON but not PCOS, training increased GLUT4 and HKII mRNA and protein expressions. These data suggest that the impaired increase in whole-body insulin action in women with PCOS with training is caused by an impaired ability to upregulate key glucose-handling proteins for insulin-stimulated glucose uptake in skeletal muscle and insulin-stimulated leg blood flow. Still, other important benefits of exercise training appeared in women with PCOS, including an improvement of the hyperandrogenic state.
Collapse
Affiliation(s)
- Solvejg L Hansen
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | | | - Anne-Marie Lundsgaard
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Frederikke L Hendrich
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Lisbeth Nilas
- Department of Obstetrics and Gynaecology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Kim A Sjøberg
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Janne R Hingst
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Annette K Serup
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Carlos Henríquez Olguín
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Christian S Carl
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Louise F Wernblad
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Marie Henneberg
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Katja M Lustrup
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Christine Hansen
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Thomas E Jensen
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Jørgen F P Wojtaszewski
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Erik A Richter
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Bente Kiens
- Molecular Physiology Section, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Hook SC, Chadt A, Heesom KJ, Kishida S, Al-Hasani H, Tavaré JM, Thomas EC. TBC1D1 interacting proteins, VPS13A and VPS13C, regulate GLUT4 homeostasis in C2C12 myotubes. Sci Rep 2020; 10:17953. [PMID: 33087848 PMCID: PMC7578007 DOI: 10.1038/s41598-020-74661-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/07/2020] [Indexed: 01/01/2023] Open
Abstract
Proteins involved in the spaciotemporal regulation of GLUT4 trafficking represent potential therapeutic targets for the treatment of insulin resistance and type 2 diabetes. A key regulator of insulin- and exercise-stimulated glucose uptake and GLUT4 trafficking is TBC1D1. This study aimed to identify proteins that regulate GLUT4 trafficking and homeostasis via TBC1D1. Using an unbiased quantitative proteomics approach, we identified proteins that interact with TBC1D1 in C2C12 myotubes including VPS13A and VPS13C, the Rab binding proteins EHBP1L1 and MICAL1, and the calcium pump SERCA1. These proteins associate with TBC1D1 via its phosphotyrosine binding (PTB) domains and their interactions with TBC1D1 were unaffected by AMPK activation, distinguishing them from the AMPK regulated interaction between TBC1D1 and AMPKα1 complexes. Depletion of VPS13A or VPS13C caused a post-transcriptional increase in cellular GLUT4 protein and enhanced cell surface GLUT4 levels in response to AMPK activation. The phenomenon was specific to GLUT4 because other recycling proteins were unaffected. Our results provide further support for a role of the TBC1D1 PTB domains as a scaffold for a range of Rab regulators, and also the VPS13 family of proteins which have been previously linked to fasting glycaemic traits and insulin resistance in genome wide association studies.
Collapse
Affiliation(s)
- Sharon C Hook
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Alexandra Chadt
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Kate J Heesom
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Shosei Kishida
- Department of Biochemistry and Genetics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Hadi Al-Hasani
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, Medical Faculty, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Jeremy M Tavaré
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - Elaine C Thomas
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
10
|
Barros LSDA, Nunes CDC. A influência do exercício físico na captação de glicose independente de insulina. HU REVISTA 2019. [DOI: 10.34019/1982-8047.2019.v45.2899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
O diabetes melito é uma desordem metabólica de múltipla etiologia, que se caracteriza por hiperglicemia crônica decorrente de defeitos na secreção e/ou ação da insulina e captação reduzida de glicose nos tecidos periféricos, resultando em resistência à insulina. A partir disso, este artigo aborda aspectos fisiopatológicos do diabetes melito tipo 2 (DM2), tendo como objetivo elucidar as vias de sinalização da insulina no tecido muscular esquelético e como a captação de glicose pode ser prejudicada em um indivíduo resistente à insulina, apontando a prática de exercício físico como recurso não farmacológico e/ou terapia adjacente para a melhora da sensibilidade à insulina e captação de glicose no tecido muscular esquelético. Para tal, foi realizada uma pesquisa de revisão da literatura de materiais já publicados sobre o tema e uma análise qualitativa. A sinalização da proteína quinase ativada por adenosina monofosfato (AMPK), mediada pelo exercício físico pode otimizar a captação de glicose no músculo independente de insulina. Assim, o exercício físico serve como recurso não farmacológico e/ou terapia adjacente para restaurar a sensibilidade da via de sinalização receptor de insulina/substrato do receptor de insulina/fosfatidilinositol-3-quinase/Akt e aumento da atividade da proteína quinase ativada de AMP, para translocação e exocitose de transportadores de glicose tipo 4 (GLUT-4) independente de insulina.
Collapse
|
11
|
Fu S, Meng Y, Zhang W, Wang J, He Y, Huang L, Chen H, Kuang J, Du H. Transcriptomic Responses of Skeletal Muscle to Acute Exercise in Diabetic Goto-Kakizaki Rats. Front Physiol 2019; 10:872. [PMID: 31338039 PMCID: PMC6629899 DOI: 10.3389/fphys.2019.00872] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 06/21/2019] [Indexed: 12/27/2022] Open
Abstract
Physical activity exerts positive effects on glycemic control in type 2 diabetes (T2D), which is mediated in part by extensive metabolic and molecular remodeling of skeletal muscle in response to exercise, while many regulators of skeletal muscle remain unclear. In the present study, we investigated the effects of acute exercise on skeletal muscle transcriptomic responses in the Goto-Kakizaki (GK) rats which can spontaneously develop T2D. The transcriptomes of skeletal muscle from both 8-week-old GK and Wistar rats that underwent a single exercise session (60 min running using an animal treadmill at 15 m/min) or remained sedentary were analyzed by next-generation RNA sequencing. We identified 819 differentially expressed genes in the sedentary GK rats compared with those of the sedentary Wistar rats. After a single bout of running, we found 291 and 598 genes that were differentially expressed in the exercise GK and exercise Wistar rats when compared with the corresponding sedentary rats. By integrating our data and previous studies including RNA or protein expression patterns and transgenic experiments, the downregulated expression of Fasn and upregulated expression of Tbc1d1, Hk2, Lpin1, Ppargc1a, Sorbs1, and Hmox1 might enhance glucose uptake or improve insulin sensitivity to ameliorate hyperglycemia in the exercise GK rats. Our results provide mechanistic insight into the beneficial effects of exercise on hyperglycemia and insulin action in skeletal muscle of diabetic GK rats.
Collapse
Affiliation(s)
- Shuying Fu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Yuhuan Meng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Wenlu Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Jiajian Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Yuting He
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Lizhen Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Hongmei Chen
- Department of Endocrinology, Guangdong General Hospital/Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jian Kuang
- Department of Endocrinology, Guangdong General Hospital/Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hongli Du
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
12
|
Chemical denervation using botulinum toxin increases Akt expression and reduces submaximal insulin-stimulated glucose transport in mouse muscle. Cell Signal 2019; 53:224-233. [DOI: 10.1016/j.cellsig.2018.10.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 12/31/2022]
|
13
|
Noninvasive Continuous Glucose Monitoring Using a Multisensor-Based Glucometer and Time Series Analysis. Sci Rep 2017; 7:12650. [PMID: 28978974 PMCID: PMC5627266 DOI: 10.1038/s41598-017-13018-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 09/12/2017] [Indexed: 11/26/2022] Open
Abstract
Daily continuous glucose monitoring is very helpful in the control of glucose levels for people with diabetes and impaired glucose tolerance. In this study, a multisensor-based, noninvasive continuous glucometer was developed, which can continuously estimate glucose levels via monitoring of physiological parameter changes such as impedance spectroscopy at low and high frequency, optical properties, temperature and humidity. Thirty-three experiments were conducted for six healthy volunteers and three volunteers with diabetes. Results showed that the average correlation coefficient between the estimated glucose profiles and reference glucose profiles reached 0.8314, with a normalized root mean squared error (NRMSE) of 14.6064. The peak time of postprandial glucose was extracted from the glucose profile, and its estimated value had a correlation coefficient of 0.9449 with the reference value, wherein the root mean square error (RMSE) was 6.8958 min. Using Clarke error grid (CEG) analysis, 100% of the estimated glucose values fell in the clinically acceptable zones A and B, and 92.86% fell in zone A. The application of a multisensor-based, noninvasive continuous glucometer and time series analysis can endure the time delay between human physiological parameters and glucose level changes, so as to potentially accomplish noninvasive daily continuous glucose monitoring.
Collapse
|
14
|
Hinkley JM, Zou K, Park S, Turner K, Zheng D, Houmard JA. Roux-en-Y gastric bypass surgery enhances contraction-mediated glucose metabolism in primary human myotubes. Am J Physiol Endocrinol Metab 2017; 313:E195-E202. [PMID: 28487439 PMCID: PMC5582889 DOI: 10.1152/ajpendo.00413.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 05/02/2017] [Accepted: 05/02/2017] [Indexed: 01/10/2023]
Abstract
Contractile activity (e.g., exercise) evokes numerous metabolic adaptations in human skeletal muscle, including enhanced insulin action and substrate oxidation. However, there is intersubject variation in the physiological responses to exercise, which may be linked with factors such as the degree of obesity. Roux-en-Y gastric bypass (RYGB) surgery reduces body mass in severely obese (body mass index ≥ 40 kg/m2) individuals; however, it is uncertain whether RYGB can potentiate responses to contractile activity in this potentially exercise-resistant population. To examine possible interactions between RYGB and contractile activity, muscle biopsies were obtained from severely obese patients before and after RYGB, differentiated into myotubes, and electrically stimulated, after which changes in insulin action and glucose oxidation were determined. Before RYGB, myotubes were unresponsive to electrical stimulation, as indicated by no changes in insulin-stimulated glycogen synthesis and basal glucose oxidation. However, myotubes from the same patients at 1 mo after RYGB increased insulin-stimulated glycogen synthesis and basal glucose oxidation when subjected to contraction. While unresponsive before surgery, contraction improved insulin-stimulated phosphorylation of AS160 (Thr642, Ser704) after RYGB. These data suggest that RYGB surgery may enhance the ability of skeletal muscle from severely obese individuals to respond to contractile activity.
Collapse
Affiliation(s)
- J Matthew Hinkley
- Human Performance Laboratory, East Carolina University, Greenville, North Carolina
- Department of Kinesiology, East Carolina University, Greenville, North Carolina; and
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina
| | - Kai Zou
- Human Performance Laboratory, East Carolina University, Greenville, North Carolina
- Department of Kinesiology, East Carolina University, Greenville, North Carolina; and
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina
| | - Sanghee Park
- Human Performance Laboratory, East Carolina University, Greenville, North Carolina
- Department of Kinesiology, East Carolina University, Greenville, North Carolina; and
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina
| | - Kristen Turner
- Human Performance Laboratory, East Carolina University, Greenville, North Carolina
- Department of Kinesiology, East Carolina University, Greenville, North Carolina; and
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina
| | - Donghai Zheng
- Human Performance Laboratory, East Carolina University, Greenville, North Carolina
- Department of Kinesiology, East Carolina University, Greenville, North Carolina; and
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina
| | - Joseph A Houmard
- Human Performance Laboratory, East Carolina University, Greenville, North Carolina;
- Department of Kinesiology, East Carolina University, Greenville, North Carolina; and
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, North Carolina
| |
Collapse
|
15
|
Sharma P, Arias EB, Cartee GD. Protein Phosphatase 1-α Regulates AS160 Ser588 and Thr642 Dephosphorylation in Skeletal Muscle. Diabetes 2016; 65:2606-17. [PMID: 27246912 PMCID: PMC5001182 DOI: 10.2337/db15-0867] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 05/23/2016] [Indexed: 01/09/2023]
Abstract
Akt substrate of 160 kDa (AS160) phosphorylation on Thr(642) and Ser(588) by Akt is essential for insulin's full effect on glucose transport. However, protein phosphorylation is determined by the balance of actions by kinases and phosphatases, and the specific phosphatase(s) controlling AS160 dephosphorylation is (are) unknown. Accordingly, we assessed roles of highly expressed skeletal muscle serine/threonine phosphatases (PP1, PP2A, PP2B, and PP2C) on AS160 dephosphorylation. Preliminary screening of candidate phosphatases used an AS160 dephosphorylation assay. Lysates from insulin-stimulated skeletal muscle were treated with pharmacological phosphatase inhibitors and assessed for AS160 Ser(588) and Thr(642) dephosphorylation. AS160 dephosphorylation on both phosphorylation sites was unaltered by PP2B or PP2C inhibitors. Okadaic acid (low dose inhibits PP2A; high dose inhibits PP1) delayed AS160 Ser(588) (both doses) and Thr(642) (high dose only) dephosphorylation concomitant with greater Akt phosphorylation (both doses). AS160 was coimmunoprecipitated with PP1-α but not with PP1-β, PP1-γ1, or PP2A. Recombinant inhibitor-2 protein (a selective PP1 inhibitor) delayed AS160 dephosphorylation on both phosphorylation sites without altering Akt phosphorylation. Furthermore, knockdown of PP1-α but not PP1-β or PP1-γ1 by small interfering RNA caused greater AS160 Ser(588) and Thr(642) phosphorylation concomitant with unaltered Akt phosphorylation. Together, these results identified PP1-α as a regulator of AS160 Thr(642) and Ser(588) dephosphorylation in skeletal muscle.
Collapse
Affiliation(s)
- Pragya Sharma
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI
| | - Edward B Arias
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI
| | - Gregory D Cartee
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI Institute of Gerontology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
16
|
Cleasby ME, Jamieson PM, Atherton PJ. Insulin resistance and sarcopenia: mechanistic links between common co-morbidities. J Endocrinol 2016; 229:R67-81. [PMID: 26931135 DOI: 10.1530/joe-15-0533] [Citation(s) in RCA: 376] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 03/01/2016] [Indexed: 12/15/2022]
Abstract
Insulin resistance (IR) in skeletal muscle is a key defect mediating the link between obesity and type 2 diabetes, a disease that typically affects people in later life. Sarcopenia (age-related loss of muscle mass and quality) is a risk factor for a number of frailty-related conditions that occur in the elderly. In addition, a syndrome of 'sarcopenic obesity' (SO) is now increasingly recognised, which is common in older people and is applied to individuals that simultaneously show obesity, IR and sarcopenia. Such individuals are at an increased risk of adverse health events compared with those who are obese or sarcopenic alone. However, there are no licenced treatments for sarcopenia or SO, the syndrome is poorly defined clinically and the mechanisms that might explain a common aetiology are not yet well characterised. In this review, we detail the nature and extent of the clinical syndrome, highlight some of the key physiological processes that are dysregulated and discuss some candidate molecular pathways that could be implicated in both metabolic and anabolic defects in skeletal muscle, with an eye towards future therapeutic options. In particular, the potential roles of Akt/mammalian target of rapamycin signalling, AMP-activated protein kinase, myostatin, urocortins and vitamin D are discussed.
Collapse
Affiliation(s)
- Mark E Cleasby
- Department of Comparative Biomedical SciencesRoyal Veterinary College, University of London, London, UK
| | - Pauline M Jamieson
- Centre for Cardiovascular ScienceQueen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Philip J Atherton
- Division of Medical Sciences and Graduate Entry MedicineUniversity of Nottingham, Medical School, Royal Derby Hospital, Derby, UK
| |
Collapse
|
17
|
Wang H, Arias EB, Cartee GD. Calorie restriction leads to greater Akt2 activity and glucose uptake by insulin-stimulated skeletal muscle from old rats. Am J Physiol Regul Integr Comp Physiol 2016; 310:R449-58. [PMID: 26739650 DOI: 10.1152/ajpregu.00449.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/30/2015] [Indexed: 11/22/2022]
Abstract
Skeletal muscle insulin resistance is associated with many common age-related diseases, but moderate calorie restriction (CR) can substantially elevate glucose uptake by insulin-stimulated skeletal muscle from both young and old rats. The current study evaluated the isolated epitrochlearis muscle from ∼24.5-mo-old rats that were either fed ad libitum (AL) or subjected to CR (consuming ∼65% of ad libitum, AL, intake beginning at ∼22.5 mo old). Some muscles were also incubated with MK-2206, a potent and selective Akt inhibitor. The most important results were that in isolated muscles, CR vs. AL resulted in 1) greater insulin-stimulated glucose uptake 2) that was accompanied by significantly increased insulin-mediated activation of Akt2, as indicated by greater phosphorylation on both Thr(309) and Ser(474) along with greater Akt2 activity, 3) concomitant with enhanced phosphorylation of several Akt substrates, including an Akt substrate of 160 kDa on Thr(642) and Ser(588), filamin C on Ser(2213) and proline-rich Akt substrate of 40 kDa on Thr(246), but not TBC1D1 on Thr(596); and 4) each of the CR effects was eliminated by MK-2206. These data provide compelling new evidence linking greater Akt2 activation to the CR-induced elevation of insulin-stimulated glucose uptake by muscle from old animals.
Collapse
Affiliation(s)
- Haiyan Wang
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan; College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Edward B Arias
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Gregory D Cartee
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan; and Institute of Gerontology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
18
|
Wang H, Sharma N, Arias EB, Cartee GD. Insulin Signaling and Glucose Uptake in the Soleus Muscle of 30-Month-Old Rats After Calorie Restriction With or Without Acute Exercise. J Gerontol A Biol Sci Med Sci 2015; 71:323-32. [PMID: 26341783 DOI: 10.1093/gerona/glv142] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 07/16/2015] [Indexed: 12/16/2022] Open
Abstract
Exercise and calorie restriction (CR) can each improve insulin sensitivity in older individuals, but benefits of combining these treatments on skeletal muscle insulin signaling and glucose uptake are poorly understood, especially in predominantly slow-twitch muscles (eg, soleus). Accordingly, our purpose was to determine independent and combined effects of prior acute exercise and CR (beginning at 14 weeks old) on insulin signaling and glucose uptake in insulin-stimulated soleus muscles of 30-month-old rats. CR alone (but not exercise alone) versus ad libitum sedentary controls induced greater insulin-stimulated glucose uptake. There was a main effect of diet (CR > ad libitum) for insulin-stimulated Akt(Ser473) and Akt(Thr308) phosphorylation. CR alone versus ad libitum sedentary increased Akt substrate of 160 kDa (AS160) Ser(588) phosphorylation and TBC1D1 Thr(596), but not AS160 Thr(642) phosphorylation or abundance of GLUT4, GLUT1, or hexokinase II proteins. Combined CR and exercise versus CR alone did not further increase insulin-stimulated glucose uptake although phosphorylation of Akt(Ser473), Akt(Thr308), TBC1D1(Thr596), and AMPK(Thr172) for the combined group exceeded values for CR and/or exercise alone. These results revealed that although the soleus was highly responsive to a CR-induced enhancement of insulin-stimulated glucose uptake, the exercise protocol did not elevate insulin-stimulated glucose uptake, either alone or when combined with CR.
Collapse
Affiliation(s)
- Haiyan Wang
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor. College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Naveen Sharma
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor. School of Health Sciences, Central Michigan University, Mount Pleasant
| | - Edward B Arias
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor
| | - Gregory D Cartee
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor. Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor. Institute of Gerontology, University of Michigan, Ann Arbor.
| |
Collapse
|
19
|
Di Chiara M, Glaudemans B, Loffing-Cueni D, Odermatt A, Al-Hasani H, Devuyst O, Faresse N, Loffing J. Rab-GAP TBC1D4 (AS160) is dispensable for the renal control of sodium and water homeostasis but regulates GLUT4 in mouse kidney. Am J Physiol Renal Physiol 2015; 309:F779-90. [PMID: 26336159 DOI: 10.1152/ajprenal.00139.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/29/2015] [Indexed: 12/17/2022] Open
Abstract
The Rab GTPase-activating protein TBC1D4 (AS160) controls trafficking of the glucose transporter GLUT4 in adipocytes and skeletal muscle cells. TBC1D4 is also highly abundant in the renal distal tubule, although its role in this tubule is so far unknown. In vitro studies suggest that it is involved in the regulation of renal transporters and channels such as the epithelial sodium channel (ENaC), aquaporin-2 (AQP2), and the Na+-K+-ATPase. To assess the physiological role of TBC1D4 in the kidney, wild-type (TBC1D4+/+) and TBC1D4-deficient (TBC1D4-/-) mice were studied. Unexpectedly, neither under standard nor under challenging conditions (low Na+/high K+, water restriction) did TBC1D4-/- mice show any difference in urinary Na+ and K+ excretion, urine osmolarity, plasma ion and aldosterone levels, and blood pressure compared with TBC1D4+/+ mice. Also, immunoblotting did not reveal any change in the abundance of major renal sodium- and water-transporting proteins [Na-K-2Cl cotransporter (NKCC2) NKCC2, NaCl cotransporter (NCC), ENaC, AQP2, and the Na+-K+-ATPase]. However, the abundance of GLUT4, which colocalizes with TBC1D4 along the distal nephron of TBC1D4+/+ mice, was lower in whole kidney lysates of TBC1D4-/- mice than in TBC1D4+/+ mice. Likewise, primary thick ascending limb (TAL) cells isolated from TBC1D4-/- mice showed an increased basal glucose uptake and an abrogated insulin response compared with TAL cells from TBC1D4+/+ mice. Thus, TBC1D4 is dispensable for the regulation of renal Na+ and water transport, but may play a role for GLUT4-mediated basolateral glucose uptake in distal tubules. The latter may contribute to the known anaerobic glycolytic capacity of distal tubules during renal ischemia.
Collapse
Affiliation(s)
- Marianna Di Chiara
- Institute of Anatomy, University of Zurich, Zurich, Switzerland; Zurich Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Bob Glaudemans
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | | | - Alex Odermatt
- Division of Molecular and Systems Toxicology, Pharmacenter, University of Basel, Basel, Switzerland; National Center of Competence in Research "Kidney.CH," Switzerland; and
| | - Hadi Al-Hasani
- German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich-Heine-University and German Center for Diabetes Research, Düsseldorf, Germany
| | - Olivier Devuyst
- Zurich Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland; Institute of Physiology, University of Zurich, Zurich, Switzerland; National Center of Competence in Research "Kidney.CH," Switzerland; and
| | - Nourdine Faresse
- Institute of Anatomy, University of Zurich, Zurich, Switzerland; Zurich Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland; National Center of Competence in Research "Kidney.CH," Switzerland; and
| | - Johannes Loffing
- Institute of Anatomy, University of Zurich, Zurich, Switzerland; Zurich Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland; National Center of Competence in Research "Kidney.CH," Switzerland; and
| |
Collapse
|
20
|
Affiliation(s)
- Gregory D Cartee
- Muscle Biology Laboratory, School of Kinesiology; Department of Molecular & Integrative Physiology; and Institute of Gerontology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
21
|
Stöckli J, Meoli CC, Hoffman NJ, Fazakerley DJ, Pant H, Cleasby ME, Ma X, Kleinert M, Brandon AE, Lopez JA, Cooney GJ, James DE. The RabGAP TBC1D1 plays a central role in exercise-regulated glucose metabolism in skeletal muscle. Diabetes 2015; 64:1914-22. [PMID: 25576050 DOI: 10.2337/db13-1489] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 12/24/2014] [Indexed: 11/13/2022]
Abstract
Insulin and exercise stimulate glucose uptake into skeletal muscle via different pathways. Both stimuli converge on the translocation of the glucose transporter GLUT4 from intracellular vesicles to the cell surface. Two Rab guanosine triphosphatases-activating proteins (GAPs) have been implicated in this process: AS160 for insulin stimulation and its homolog, TBC1D1, are suggested to regulate exercise-mediated glucose uptake into muscle. TBC1D1 has also been implicated in obesity in humans and mice. We investigated the role of TBC1D1 in glucose metabolism by generating TBC1D1(-/-) mice and analyzing body weight, insulin action, and exercise. TBC1D1(-/-) mice showed normal glucose and insulin tolerance, with no difference in body weight compared with wild-type littermates. GLUT4 protein levels were reduced by ∼40% in white TBC1D1(-/-) muscle, and TBC1D1(-/-) mice showed impaired exercise endurance together with impaired exercise-mediated 2-deoxyglucose uptake into white but not red muscles. These findings indicate that the RabGAP TBC1D1 plays a key role in regulating GLUT4 protein levels and in exercise-mediated glucose uptake in nonoxidative muscle fibers.
Collapse
Affiliation(s)
- Jacqueline Stöckli
- Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia Garvan Institute of Medical Research, Sydney, New South Wales, Australia St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Christopher C Meoli
- Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Nolan J Hoffman
- Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Daniel J Fazakerley
- Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Himani Pant
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Mark E Cleasby
- The Royal Veterinary College, University of London, London, U.K
| | - Xiuquan Ma
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Maximilian Kleinert
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia Molecular Physiology Group, Department of Nutrition, Exercise and Sports, August Krogh Centre, University of Copenhagen, Copenhagen, Denmark
| | - Amanda E Brandon
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Jamie A Lopez
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Gregory J Cooney
- Garvan Institute of Medical Research, Sydney, New South Wales, Australia St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - David E James
- Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia Garvan Institute of Medical Research, Sydney, New South Wales, Australia School of Medicine, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
22
|
Sharma N, Wang H, Arias EB, Castorena CM, Cartee GD. Mechanisms for independent and combined effects of calorie restriction and acute exercise on insulin-stimulated glucose uptake by skeletal muscle of old rats. Am J Physiol Endocrinol Metab 2015; 308:E603-12. [PMID: 25670830 PMCID: PMC4385876 DOI: 10.1152/ajpendo.00618.2014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 02/03/2015] [Indexed: 12/27/2022]
Abstract
Either calorie restriction [CR; consuming 60-65% of ad libitum (AL) intake] or acute exercise can independently improve insulin sensitivity in old age, but their combined effects on muscle insulin signaling and glucose uptake have previously been unknown. Accordingly, we assessed the independent and combined effects of CR (beginning at 14 wk old) and acute exercise (3-4 h postexercise) on insulin signaling and glucose uptake in insulin-stimulated epitrochlearis muscles from 30-mo-old rats. Either CR alone or exercise alone vs. AL sedentary controls induced greater insulin-stimulated glucose uptake. Combined CR and exercise vs. either treatment alone caused an additional increase in insulin-stimulated glucose uptake. Either CR or exercise alone vs. AL sedentary controls increased Akt Ser(473) and Akt Thr(308) phosphorylation. Combined CR and exercise further elevated Akt phosphorylation on both sites. CR alone, but not exercise alone, vs. AL sedentary controls significantly increased Akt substrate of 160 kDa (AS160) Ser(588) and Thr(642) phosphorylation. Combined CR and exercise did not further enhance AS160 phosphorylation. Exercise alone, but not CR alone, modestly increased GLUT4 abundance. Combined CR and exercise did not further elevate GLUT4 content. These results suggest that CR or acute exercise independently increases insulin-stimulated glucose uptake via overlapping (greater Akt phosphorylation) and distinct (greater AS160 phosphorylation for CR, greater GLUT4 for exercise) mechanisms. Our working hypothesis is that greater insulin-stimulated glucose uptake in the combined CR and exercise group vs. CR or exercise alone relies on greater Akt activation, leading to greater phosphorylation of one or more Akt substrates other than AS160.
Collapse
Affiliation(s)
- Naveen Sharma
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan; School of Health Sciences, Central Michigan University, Mount Pleasant, Michigan
| | - Haiyan Wang
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan; College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Edward B Arias
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Carlos M Castorena
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Gregory D Cartee
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan; and Institute of Gerontology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
23
|
Impaired translocation of GLUT4 results in insulin resistance of atrophic soleus muscle. BIOMED RESEARCH INTERNATIONAL 2015; 2015:291987. [PMID: 25713812 PMCID: PMC4332754 DOI: 10.1155/2015/291987] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 01/15/2015] [Accepted: 01/15/2015] [Indexed: 11/18/2022]
Abstract
Whether or not the atrophic skeletal muscle induces insulin resistance and its mechanisms are not resolved now. The antigravity soleus muscle showed a progressive atrophy in 1-week, 2-week, and 4-week tail-suspended rats. Hyperinsulinemic-euglycemic clamp showed that the steady-state glucose infusion rate was lower in 4-week tail-suspended rats than that in the control rats. The glucose uptake rates under insulin- or contraction-stimulation were significantly decreased in 4-week unloaded soleus muscle. The key protein expressions of IRS-1, PI3K, and Akt on the insulin-dependent pathway and of AMPK, ERK, and p38 on the insulin-independent pathway were unchanged in unloaded soleus muscle. The unchanged phosphorylation of Akt and p38 suggested that the activity of two signal pathways was not altered in unloaded soleus muscle. The AS160 and GLUT4 expression on the common downstream pathway also was not changed in unloaded soleus muscle. But the GLUT4 translocation to sarcolemma was inhibited during insulin stimulation in unloaded soleus muscle. The above results suggest that hindlimb unloading in tail-suspended rat induces atrophy in antigravity soleus muscle. The impaired GLUT4 translocation to sarcolemma under insulin stimulation may mediate insulin resistance in unloaded soleus muscle and further affect the insulin sensitivity of whole body in tail-suspended rats.
Collapse
|
24
|
Castorena CM, Arias EB, Sharma N, Bogan JS, Cartee GD. Fiber type effects on contraction-stimulated glucose uptake and GLUT4 abundance in single fibers from rat skeletal muscle. Am J Physiol Endocrinol Metab 2015; 308:E223-30. [PMID: 25491725 PMCID: PMC4312834 DOI: 10.1152/ajpendo.00466.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
To fully understand skeletal muscle at the cellular level, it is essential to evaluate single muscle fibers. Accordingly, the major goals of this study were to determine if there are fiber type-related differences in single fibers from rat skeletal muscle for: 1) contraction-stimulated glucose uptake and/or 2) the abundance of GLUT4 and other metabolically relevant proteins. Paired epitrochlearis muscles isolated from Wistar rats were either electrically stimulated to contract (E-Stim) or remained resting (No E-Stim). Single fibers isolated from muscles incubated with 2-deoxy-d-[(3)H]glucose (2-DG) were used to determine fiber type [myosin heavy chain (MHC) isoform protein expression], 2-DG uptake, and abundance of metabolically relevant proteins, including the GLUT4 glucose transporter. E-Stim, relative to No E-Stim, fibers had greater (P < 0.05) 2-DG uptake for each of the isolated fiber types (MHC-IIa, MHC-IIax, MHC-IIx, MHC-IIxb, and MHC-IIb). However, 2-DG uptake for E-Stim fibers was not significantly different among these five fiber types. GLUT4, tethering protein containing a UBX domain for GLUT4 (TUG), cytochrome c oxidase IV (COX IV), and filamin C protein levels were significantly greater (P < 0.05) in MHC-IIa vs. MHC-IIx, MHC-IIxb, or MHC-IIb fibers. TUG and COX IV in either MHC-IIax or MHC-IIx fibers exceeded values for MHC-IIxb or MHC-IIb fibers. GLUT4 levels for MHC-IIax fibers exceeded MHC-IIxb fibers. GLUT4, COX IV, filamin C, and TUG abundance in single fibers was significantly (P < 0.05) correlated with each other. Differences in GLUT4 abundance among the fiber types were not accompanied by significant differences in contraction-stimulated glucose uptake.
Collapse
Affiliation(s)
- Carlos M Castorena
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Edward B Arias
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Naveen Sharma
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - Jonathan S Bogan
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut; Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut
| | - Gregory D Cartee
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan; and Institute of Gerontology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
25
|
Cartee GD. Roles of TBC1D1 and TBC1D4 in insulin- and exercise-stimulated glucose transport of skeletal muscle. Diabetologia 2015; 58:19-30. [PMID: 25280670 PMCID: PMC4258142 DOI: 10.1007/s00125-014-3395-5] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/07/2014] [Indexed: 10/24/2022]
Abstract
This review focuses on two paralogue Rab GTPase activating proteins known as TBC1D1 Tre-2/BUB2/cdc 1 domain family (TBC1D) 1 and TBC1D4 (also called Akt Substrate of 160 kDa, AS160) and their roles in controlling skeletal muscle glucose transport in response to the independent and combined effects of insulin and exercise. Convincing evidence implicates Akt2-dependent TBC1D4 phosphorylation on T642 as a key part of the mechanism for insulin-stimulated glucose uptake by skeletal muscle. TBC1D1 phosphorylation on several insulin-responsive sites (including T596, a site corresponding to T642 in TBC1D4) does not appear to be essential for in vivo insulin-stimulated glucose uptake by skeletal muscle. In vivo exercise or ex vivo contraction of muscle result in greater TBC1D1 phosphorylation on S237 that is likely to be secondary to increased AMP-activated protein kinase activity and potentially important for contraction-stimulated glucose uptake. Several studies that evaluated both normal and insulin-resistant skeletal muscle stimulated with a physiological insulin concentration after a single exercise session found that greater post-exercise insulin-stimulated glucose uptake was accompanied by greater TBC1D4 phosphorylation on several sites. In contrast, enhanced post-exercise insulin sensitivity was not accompanied by greater insulin-stimulated TBC1D1 phosphorylation. The mechanism for greater TBC1D4 phosphorylation in insulin-stimulated muscles after acute exercise is uncertain, and a causal link between enhanced TBC1D4 phosphorylation and increased post-exercise insulin sensitivity has yet to be established. In summary, TBC1D1 and TBC1D4 have important, but distinct roles in regulating muscle glucose transport in response to insulin and exercise.
Collapse
Affiliation(s)
- Gregory D Cartee
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, 401 Washtenaw Avenue, Ann Arbor, MI, 48109-2214, USA,
| |
Collapse
|
26
|
Stanford KI, Goodyear LJ. Exercise and type 2 diabetes: molecular mechanisms regulating glucose uptake in skeletal muscle. ADVANCES IN PHYSIOLOGY EDUCATION 2014; 38:308-14. [PMID: 25434013 PMCID: PMC4315445 DOI: 10.1152/advan.00080.2014] [Citation(s) in RCA: 205] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Exercise is a well-established tool to prevent and combat type 2 diabetes. Exercise improves whole body metabolic health in people with type 2 diabetes, and adaptations to skeletal muscle are essential for this improvement. An acute bout of exercise increases skeletal muscle glucose uptake, while chronic exercise training improves mitochondrial function, increases mitochondrial biogenesis, and increases the expression of glucose transporter proteins and numerous metabolic genes. This review focuses on the molecular mechanisms that mediate the effects of exercise to increase glucose uptake in skeletal muscle.
Collapse
Affiliation(s)
- Kristin I Stanford
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Laurie J Goodyear
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
27
|
Castorena CM, Arias EB, Sharma N, Cartee GD. Effects of a brief high-fat diet and acute exercise on the mTORC1 and IKK/NF-κB pathways in rat skeletal muscle. Appl Physiol Nutr Metab 2014; 40:251-62. [PMID: 25706655 DOI: 10.1139/apnm-2014-0412] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
One exercise session can improve subsequent insulin-stimulated glucose uptake by skeletal muscle in healthy and insulin-resistant individuals. Our first aim was to determine whether a brief (2 weeks) high-fat diet (HFD) that caused muscle insulin resistance would activate the mammalian target of rapamycin complex 1 (mTORC1) and/or inhibitor of κB kinase/nuclear factor κB (IKK/NF-κB) pathways, which are potentially linked to induction of insulin resistance. Our second aim was to determine whether acute exercise that improved insulin-stimulated glucose uptake by muscles would attenuate activation of these pathways. We compared HFD-fed rats with rats fed a low-fat diet (LFD). Some animals from each diet group were sedentary and others were studied 3 h postexercise, when insulin-stimulated glucose uptake was increased. The results did not provide evidence that brief HFD activated either the mTORC1 (including phosphorylation of mTOR(Ser2448), TSC2(Ser939), p70S6K(Thr412), and RPS6(Ser235/236)) or the IKK/NF-κB (including abundance of IκBα or phosphorylation of NF-κB(Ser536), IKKα/β(Ser177/181), and IκB(Ser32)) pathway in insulin-resistant muscles. Exercise did not oppose the activation of either pathway, as evidenced by no attenuation of phosphorylation of key proteins in the IKK/NF-κB pathway (NF-κB(Ser536), IKKα/β(Ser177/181), and IκB(Ser32)), unaltered IκBα abundance, and no attenuation of phosphorylation of key proteins in the mTORC1 pathway (mTOR(Ser2448), TSC2(Ser939), and RPS6(Ser235/236)). Instead, exercise induced greater phosphorylation of 2 proteins of the mTORC1 pathway (PRAS40(Thr246) and p70S6K(Thr412)) in insulin-stimulated muscles, regardless of diet. Insulin resistance induced by a brief HFD was not attributable to greater activation of the mTORC1 or the IKK/NF-κB pathway in muscle, and exercise-induced improvement in insulin sensitivity was not attributable to attenuated activation of these pathways in muscle.
Collapse
Affiliation(s)
- Carlos M Castorena
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI 48109-2214, USA
| | | | | | | |
Collapse
|
28
|
Cartee GD. Let's get real about the regulation of TBC1D1 and TBC1D4 phosphorylation in skeletal muscle. J Physiol 2014; 592:253-4. [PMID: 24453349 DOI: 10.1113/jphysiol.2013.269092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
29
|
Li Z, Ni CL, Yao Z, Chen LM, Niu WY. Liraglutide enhances glucose transporter 4 translocation via regulation of AMP-activated protein kinase signaling pathways in mouse skeletal muscle cells. Metabolism 2014; 63:1022-30. [PMID: 24972503 DOI: 10.1016/j.metabol.2014.05.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 04/30/2014] [Accepted: 05/13/2014] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Liraglutide is an anti-diabetic drug and human glucagon-like peptide-1 (GLP-1) analog that primarily functions in the pancreas. However, its extra-pancreatic functions are not clear. Skeletal muscle tissue is an important determinant of blood glucose and cells take in approximately 80% of dietary glucose via glucose transporter 4 (GLUT4) on the plasma membrane. Insulin and muscle contraction are two physiological stimuli of GLUT4 translocation to the cell membrane from intracellular storage compartments, but the signaling mechanisms that mediate these processes are different. AMP-activated protein kinase (AMPK) and Akt are the key signal molecules mediating the effects of muscle contraction and insulin, respectively, on GLUT4 translocation. Here, we investigate the effect of liraglutide on GLUT4 translocation and the roles of AMPK and Akt in this mechanism in skeletal muscle cells by stably expressing GLUT4myc with an exofacial myc-epitope C(2)C(12)-GLUT4myc. MATERIALS/METHODS The cell surface GLUT4myc levels were determined by an antibody-coupled colorimetric assay. The phosphorylation levels of AMPK, Akt, AS160, TBC1D1, and GLUT4 were determined by western blotting. The cAMP levels were measured by an ELISA kit. siRNA was transfected with Lipofectamine 2000. Analysis of variance (ANOVA) was used for data analysis. RESULTS Liraglutide stimulated GLUT4 translocation in C(2)C(12)-GLUT4myc myotubes. Liraglutide increased the intracellular cAMP levels and the phosphorylation of AMPK, AS160, and TBC1D1. Akt phosphorylation and GLUT4 expression were not affected. Inhibition of AMPK by siRNA or Compound C reduced liraglutide-induced GLUT4 translocation. CONCLUSION Our results suggest that liraglutide may induce GLUT4 translocation by activation of AMPK in muscle cells.
Collapse
Affiliation(s)
- Zhu Li
- Department of Immunology, Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry of China, Tianjin Medical University, Tianjin, 300070 China; Key Laboratory of Hormones and Development (Ministry of Health), Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China
| | - Chang-Lin Ni
- Key Laboratory of Hormones and Development (Ministry of Health), Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China
| | - Zhi Yao
- Department of Immunology, Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry of China, Tianjin Medical University, Tianjin, 300070 China
| | - Li-Ming Chen
- Key Laboratory of Hormones and Development (Ministry of Health), Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China.
| | - Wen-Yan Niu
- Department of Immunology, Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry of China, Tianjin Medical University, Tianjin, 300070 China; Key Laboratory of Hormones and Development (Ministry of Health), Metabolic Diseases Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
30
|
Castorena CM, Arias EB, Sharma N, Cartee GD. Postexercise improvement in insulin-stimulated glucose uptake occurs concomitant with greater AS160 phosphorylation in muscle from normal and insulin-resistant rats. Diabetes 2014; 63:2297-308. [PMID: 24608437 PMCID: PMC4066340 DOI: 10.2337/db13-1686] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Earlier research on rats with normal insulin sensitivity demonstrated that acute exercise increased insulin-stimulated glucose uptake (GU) concomitant with greater phosphorylation of Akt substrate of 160 kDa (pAS160). Because mechanisms for exercise effects on GU in insulin-resistant muscle are unknown, our primary objective was to assess insulin-stimulated GU, proximal insulin signaling (insulin receptor [IR] tyrosine phosphorylation, IR substrate 1-phosphatidylinositol-3-kinase, and Akt phosphorylation and activity), and pAS160 in muscles from acutely exercised (one session) and sedentary rats fed either chow (low-fat diet [LFD]; normal insulin sensitivity) or a high-fat diet (HFD; for 2 weeks, insulin-resistant). At 3 h postexercise (3hPEX), isolated epitrochlearis muscles were used for insulin-stimulated GU and insulin signaling measurements. Although exercise did not enhance proximal signaling in either group, insulin-stimulated GU at 3hPEX exceeded respective sedentary control subjects (Sedentary) in both diet groups. Furthermore, insulin-stimulated GU for LFD-3hPEX was greater than HFD-3hPEX values. For HFD-3hPEX muscles, pAS160 exceeded HFD-Sedentary, but in muscle from LFD-3hPEX rats, pAS160 was greater still than HFD-3hPEX values. These results implicated pAS160 as a potential determinant of the exercise-induced elevation in insulin-stimulated GU for each diet group and also revealed pAS160 as a possible mediator of greater postexercise GU of insulin-stimulated muscles from the insulin-sensitive versus insulin-resistant group.
Collapse
Affiliation(s)
- Carlos M Castorena
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI
| | - Edward B Arias
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI
| | - Naveen Sharma
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MISchool of Health Sciences, Central Michigan University, Mount Pleasant, MI
| | - Gregory D Cartee
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MIDepartment of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MIInstitute of Gerontology, University of Michigan, Ann Arbor, MI
| |
Collapse
|
31
|
Insulin- and contraction-induced glucose transporter 4 traffic in muscle: insights from a novel imaging approach. Exerc Sport Sci Rev 2014; 41:77-86. [PMID: 23072821 DOI: 10.1097/jes.0b013e318275574c] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Insulin- and contraction-mediated glucose transporter 4 (GLUT4) trafficking have different kinetics in mature skeletal muscle. Intravital imaging indicates that insulin-stimulated GLUT4 trafficking differs between t-tubules and sarcolemma. In contrast, contraction-induced GLUT4 trafficking does not differ between membrane surfaces. This distinction likely is caused by differences in the underlying signaling pathways regulating GLUT4 vesicle depletion, GLUT4 membrane fusion, and GLUT4 reinternalization.
Collapse
|
32
|
Booth FW, Roberts CK, Laye MJ. Lack of exercise is a major cause of chronic diseases. Compr Physiol 2013; 2:1143-211. [PMID: 23798298 DOI: 10.1002/cphy.c110025] [Citation(s) in RCA: 1365] [Impact Index Per Article: 113.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chronic diseases are major killers in the modern era. Physical inactivity is a primary cause of most chronic diseases. The initial third of the article considers: activity and prevention definitions; historical evidence showing physical inactivity is detrimental to health and normal organ functional capacities; cause versus treatment; physical activity and inactivity mechanisms differ; gene-environment interaction (including aerobic training adaptations, personalized medicine, and co-twin physical activity); and specificity of adaptations to type of training. Next, physical activity/exercise is examined as primary prevention against 35 chronic conditions [accelerated biological aging/premature death, low cardiorespiratory fitness (VO2max), sarcopenia, metabolic syndrome, obesity, insulin resistance, prediabetes, type 2 diabetes, nonalcoholic fatty liver disease, coronary heart disease, peripheral artery disease, hypertension, stroke, congestive heart failure, endothelial dysfunction, arterial dyslipidemia, hemostasis, deep vein thrombosis, cognitive dysfunction, depression and anxiety, osteoporosis, osteoarthritis, balance, bone fracture/falls, rheumatoid arthritis, colon cancer, breast cancer, endometrial cancer, gestational diabetes, pre-eclampsia, polycystic ovary syndrome, erectile dysfunction, pain, diverticulitis, constipation, and gallbladder diseases]. The article ends with consideration of deterioration of risk factors in longer-term sedentary groups; clinical consequences of inactive childhood/adolescence; and public policy. In summary, the body rapidly maladapts to insufficient physical activity, and if continued, results in substantial decreases in both total and quality years of life. Taken together, conclusive evidence exists that physical inactivity is one important cause of most chronic diseases. In addition, physical activity primarily prevents, or delays, chronic diseases, implying that chronic disease need not be an inevitable outcome during life.
Collapse
Affiliation(s)
- Frank W Booth
- Departments of Biomedical Sciences, Medical Pharmacology and Physiology, and Nutrition and Exercise Physiology, Dalton Cardiovascular Institute, University of Missouri, Columbia, Missouri, USA.
| | | | | |
Collapse
|
33
|
Abstract
Glucose is an important fuel for contracting muscle, and normal glucose metabolism is vital for health. Glucose enters the muscle cell via facilitated diffusion through the GLUT4 glucose transporter which translocates from intracellular storage depots to the plasma membrane and T-tubules upon muscle contraction. Here we discuss the current understanding of how exercise-induced muscle glucose uptake is regulated. We briefly discuss the role of glucose supply and metabolism and concentrate on GLUT4 translocation and the molecular signaling that sets this in motion during muscle contractions. Contraction-induced molecular signaling is complex and involves a variety of signaling molecules including AMPK, Ca(2+), and NOS in the proximal part of the signaling cascade as well as GTPases, Rab, and SNARE proteins and cytoskeletal components in the distal part. While acute regulation of muscle glucose uptake relies on GLUT4 translocation, glucose uptake also depends on muscle GLUT4 expression which is increased following exercise. AMPK and CaMKII are key signaling kinases that appear to regulate GLUT4 expression via the HDAC4/5-MEF2 axis and MEF2-GEF interactions resulting in nuclear export of HDAC4/5 in turn leading to histone hyperacetylation on the GLUT4 promoter and increased GLUT4 transcription. Exercise training is the most potent stimulus to increase skeletal muscle GLUT4 expression, an effect that may partly contribute to improved insulin action and glucose disposal and enhanced muscle glycogen storage following exercise training in health and disease.
Collapse
Affiliation(s)
- Erik A Richter
- Molecular Physiology Group, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark.
| | | |
Collapse
|
34
|
Malin SK, Mulya A, Fealy CE, Haus JM, Pagadala MR, Scelsi AR, Huang H, Flask CA, McCullough AJ, Kirwan JP. Fetuin-A is linked to improved glucose tolerance after short-term exercise training in nonalcoholic fatty liver disease. J Appl Physiol (1985) 2013; 115:988-94. [PMID: 23928114 DOI: 10.1152/japplphysiol.00237.2013] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Fetuin-A is synthesized in the liver and may be associated with nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes. Lifestyle-induced weight loss reduces fetuin-A, but the effect of exercise alone is unknown. We determined the effect of short-term exercise training on plasma fetuin-A in 13 (50.5 ± 3.4 yr) obese adults (body mass index, 33.3 ± 0.9 kg/m(2)) with clinically diagnosed NAFLD. Subjects participated in 7 days of supervised exercise training (60 min/day at ∼85% maximum heart rate) and were instructed to maintain their normal caloric and macronutrient intake. Insulin resistance was assessed by an oral glucose tolerance test. Hepatic triglyceride content (HTGC) was determined by proton MRI. We used C2C12 skeletal muscle cells to examine the direct effect of fetuin-A on 2-deoxyglucose uptake, insulin signaling [phosphorylation of Akt and AS160 (pAkt and pAS160, respectively)], and glucose transporter-4 (GLUT-4) translocation. Insulin resistance was reduced by 29% (P < 0.05), and glucose area under the curve (AUC) was decreased by 13% (P < 0.01) after the 7 days of exercise. Furthermore, circulating fetuin-A was decreased by 11% (4.2 ± 03 vs. 3.6 ± 0.2 nM; P < 0.02), and this change correlated with reduced insulin resistance (r = 0.62; P < 0.04) and glucose AUC (r = 0.58; P < 0.04). Importantly, the exercise program did not change body weight (P = 0.12), HTGC (P = 0.73), or aerobic capacity (P = 0.14). In vitro experiments revealed that fetuin-A decreased skeletal muscle glucose uptake by downregulating pAkt and pAS160 and subsequent GLUT-4 translocation to the plasma membrane. Together, our findings highlight a role for fetuin-A in skeletal muscle insulin resistance and suggest that part of the exercise-induced improvement in glucose tolerance in patients with NAFLD may be due to lowering fetuin-A.
Collapse
Affiliation(s)
- Steven K Malin
- Department of Pathobiology, Cleveland Clinic, Cleveland, Ohio
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Sharma N, Sequea DA, Castorena CM, Arias EB, Qi NR, Cartee GD. Heterogeneous effects of calorie restriction on in vivo glucose uptake and insulin signaling of individual rat skeletal muscles. PLoS One 2013; 8:e65118. [PMID: 23755179 PMCID: PMC3670927 DOI: 10.1371/journal.pone.0065118] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 04/22/2013] [Indexed: 11/19/2022] Open
Abstract
Calorie restriction (CR) (consuming ~60% of ad libitum, AL, intake) improves whole body insulin sensitivity and enhances insulin-stimulated glucose uptake by isolated skeletal muscles. However, little is known about CR-effects on in vivo glucose uptake and insulin signaling in muscle. Accordingly, 9-month-old male AL and CR (initiated when 3-months-old) Fischer 344 x Brown Norway rats were studied using a euglycemic-hyperinsulinemic clamp with plasma insulin elevated to a similar level (~140 µU/ml) in each diet group. Glucose uptake (assessed by infusion of [(14)C]-2-deoxyglucose, 2-DG), phosphorylation of key insulin signaling proteins (insulin receptor, Akt and Akt substrate of 160 kDa, AS160), abundance of GLUT4 and hexokinase proteins, and muscle fiber type composition (myosin heavy chain, MHC, isoform percentages) were determined in four predominantly fast-twitch (epitrochlearis, gastrocnemius, tibialis anterior, plantaris) and two predominantly slow-twitch (soleus, adductor longus) muscles. CR did not result in greater GLUT4 or hexokinase abundance in any of the muscles, and there were no significant diet-related effects on percentages of MHC isoforms. Glucose infusion was greater for CR versus AL rats (P<0.05) concomitant with significantly (P<0.05) elevated 2-DG uptake in 3 of the 4 fast-twitch muscles (epitrochlearis, gastrocnemius, tibialis anterior), without a significant diet-effect on 2-DG uptake by the plantaris or either slow-twitch muscle. Each of the muscles with a CR-related increase in 2-DG uptake was also characterized by significant (P<0.05) increases in phosphorylation of both Akt and AS160. Among the 3 muscles without a CR-related increase in glucose uptake, only the soleus had significant (P<0.05) CR-related increases in Akt and AS160 phosphorylation. The current data revealed that CR leads to greater whole body glucose disposal in part attributable to elevated in vivo insulin-stimulated glucose uptake by fast-twitch muscles. The results also demonstrated that CR does not uniformly enhance either insulin signaling or insulin-stimulated glucose uptake in all muscles in vivo.
Collapse
Affiliation(s)
- Naveen Sharma
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Donel A. Sequea
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Carlos M. Castorena
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Edward B. Arias
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Nathan R. Qi
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Gregory D. Cartee
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
- Institute of Gerontology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
36
|
Xiao Y, Sharma N, Arias EB, Castorena CM, Cartee GD. A persistent increase in insulin-stimulated glucose uptake by both fast-twitch and slow-twitch skeletal muscles after a single exercise session by old rats. AGE (DORDRECHT, NETHERLANDS) 2013; 35:573-582. [PMID: 22286902 PMCID: PMC3636414 DOI: 10.1007/s11357-012-9383-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 01/12/2012] [Indexed: 05/31/2023]
Abstract
Exercise has been demonstrated to enhance subsequent insulin-stimulated glucose uptake (GU) by predominantly type II (fast-twitch) muscle of old rats, but previous research has not evaluated exercise effects on GU by type I (slow-twitch) muscle from old rats. Accordingly, we studied male Fischer 344/Brown Norway rats (24 months old) and determined GU (0, 100, 200, and 5,000 μU/ml insulin) of isolated soleus (predominantly type I) and epitrochlearis (predominantly type II) muscles after one exercise session. Epitrochlearis (100, 200, and 5,000 μU/ml insulin) and soleus (100 and 200 μU/ml insulin) GU were greater at 3-h postexercise vs. age-matched sedentary controls. Insulin receptor tyrosine phosphorylation (Tyr1162/1163) was unaltered by exercise in either muscle. Akt phosphorylation (pAkt) was greater for exercised vs. sedentary rats in the epitrochlearis (Ser473 and Thr308 with 100 and 200 μU/ml, respectively) and soleus (Ser473 with 200 μU/ml). AS160 phosphorylation (pAS160) was greater for exercised vs. sedentary rats in the epitrochlearis (Thr642 with 100 μU/ml), but not the soleus. Exercised vs. sedentary rats did not differ for total protein abundance of insulin receptor, Akt, AS160, or GLUT4 in either muscle. These results demonstrate that both predominantly type I and type II muscles from old rats are susceptible to exercise-induced improvement in insulin-mediated GU by mechanisms that are independent of enhanced insulin receptor tyrosine phosphorylation or altered abundance of important signaling proteins or GLUT4. Exercise-induced elevation in pAkt, and possibly pAS160, may contribute to this effect in the epitrochlearis of old rats, but other mechanisms are likely important for the soleus.
Collapse
Affiliation(s)
- Yuanyuan Xiao
- />Muscle Biology Laboratory, School of Kinesiology, University of Michigan, 401 Washtenaw Ave., Ann Arbor, MI 48109-2214 USA
| | - Naveen Sharma
- />Muscle Biology Laboratory, School of Kinesiology, University of Michigan, 401 Washtenaw Ave., Ann Arbor, MI 48109-2214 USA
| | - Edward B. Arias
- />Muscle Biology Laboratory, School of Kinesiology, University of Michigan, 401 Washtenaw Ave., Ann Arbor, MI 48109-2214 USA
| | - Carlos M. Castorena
- />Muscle Biology Laboratory, School of Kinesiology, University of Michigan, 401 Washtenaw Ave., Ann Arbor, MI 48109-2214 USA
| | - Gregory D. Cartee
- />Muscle Biology Laboratory, School of Kinesiology, University of Michigan, 401 Washtenaw Ave., Ann Arbor, MI 48109-2214 USA
- />Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109 USA
- />Institute of Gerontology, University of Michigan, Ann Arbor, MI 48109 USA
| |
Collapse
|
37
|
Frank P, Katz A, Andersson E, Sahlin K. Acute exercise reverses starvation-mediated insulin resistance in humans. Am J Physiol Endocrinol Metab 2013; 304:E436-43. [PMID: 23269410 DOI: 10.1152/ajpendo.00416.2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Within 2-3 days of starvation, pronounced insulin resistance develops, possibly mediated by increased lipid load. Here, we show that one exercise bout increases mitochondrial fatty acid (FA) oxidation and reverses starvation-induced insulin resistance. Nine healthy subjects underwent 75-h starvation on two occasions: with no exercise (NE) or with one exercise session at the end of the starvation period (EX). Muscle biopsies were analyzed for mitochondrial function, contents of glycogen, and phosphorylation of regulatory proteins. Glucose tolerance and insulin sensitivity, measured with an intravenous glucose tolerance test (IVGTT), were impaired after starvation, but in EX the response was attenuated or abolished. Glycogen stores were reduced, and plasma FA was increased in both conditions, with a more pronounced effect in EX. After starvation, mitochondrial respiration decreased with complex I substrate (NE and EX), but in EX there was an increased respiration with complex I + II substrate. EX altered regulatory proteins associated with increases in glucose disposal (decreased phosphorylation of glycogen synthase), glucose transport (increased phosphorylation of Akt substrate of 160 kDa), and FA oxidation (increased phosphorylation of acetyl-CoA carboxylase). In conclusion, exercise reversed starvation-induced insulin resistance and was accompanied by reduced glycogen stores, increased lipid oxidation capacity, and activation of signaling proteins involved in glucose transport and FA metabolism.
Collapse
Affiliation(s)
- Per Frank
- The Swedish School of Sport and Health Sciences, Åstrand Laboratory of Work Physiology, Box 5626, 114 86 Stockholm, Sweden.
| | | | | | | |
Collapse
|
38
|
Funai K, Song H, Yin L, Lodhi IJ, Wei X, Yoshino J, Coleman T, Semenkovich CF. Muscle lipogenesis balances insulin sensitivity and strength through calcium signaling. J Clin Invest 2013; 123:1229-40. [PMID: 23376793 DOI: 10.1172/jci65726] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 12/14/2012] [Indexed: 12/24/2022] Open
Abstract
Exogenous dietary fat can induce obesity and promote diabetes, but endogenous fat production is not thought to affect skeletal muscle insulin resistance, an antecedent of metabolic disease. Unexpectedly, the lipogenic enzyme fatty acid synthase (FAS) was increased in the skeletal muscle of mice with diet-induced obesity and insulin resistance. Skeletal muscle-specific inactivation of FAS protected mice from insulin resistance without altering adiposity, specific inflammatory mediators of insulin signaling, or skeletal muscle levels of diacylglycerol or ceramide. Increased insulin sensitivity despite high-fat feeding was driven by activation of AMPK without affecting AMP content or the AMP/ATP ratio in resting skeletal muscle. AMPK was induced by elevated cytosolic calcium caused by impaired sarco/endoplasmic reticulum calcium ATPase (SERCA) activity due to altered phospholipid composition of the sarcoplasmic reticulum (SR), but came at the expense of decreased muscle strength. Thus, inhibition of skeletal muscle FAS prevents obesity-associated diabetes in mice, but also causes muscle weakness, which suggests that mammals have retained the capacity for lipogenesis in muscle to preserve physical performance in the setting of disrupted metabolic homeostasis.
Collapse
Affiliation(s)
- Katsuhiko Funai
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
AMPK is an evolutionary conserved sensor of cellular energy status that is activated during exercise. Pharmacological activation of AMPK promotes glucose uptake, fatty acid oxidation, mitochondrial biogenesis, and insulin sensitivity; processes that are reduced in obesity and contribute to the development of insulin resistance. AMPK deficient mouse models have been used to provide direct genetic evidence either supporting or refuting a role for AMPK in regulating these processes. Exercise promotes glucose uptake by an insulin dependent mechanism involving AMPK. Exercise is important for improving insulin sensitivity; however, it is not known if AMPK is required for these improvements. Understanding how these metabolic processes are regulated is important for the development of new strategies that target obesity-induced insulin resistance. This review will discuss the involvement of AMPK in regulating skeletal muscle metabolism (glucose uptake, glycogen synthesis, and insulin sensitivity).
Collapse
Affiliation(s)
- Hayley M. O'Neill
- Protein Chemistry and Metabolism Unit, St. Vincent's Institute of Medical Research, Fitzroy, Australia
| |
Collapse
|
40
|
Sequea DA, Sharma N, Arias EB, Cartee GD. Greater filamin C, GSK3α, and GSK3β serine phosphorylation in insulin-stimulated isolated skeletal muscles of calorie restricted 24 month-old rats. Mech Ageing Dev 2012; 134:60-3. [PMID: 23246341 DOI: 10.1016/j.mad.2012.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 11/21/2012] [Accepted: 12/01/2012] [Indexed: 11/17/2022]
Abstract
Moderate calorie restriction (CR) can improve insulin-stimulated Akt phosphorylation and glucose uptake in muscles from 24 month-old rats, but the specific Akt substrates linking CR-effects on Akt to glucose uptake and other cellular processes are uncertain. We probed CR's influence on site-specific phosphorylation of five Akt substrates (AS160(Ser588), TBC1D1(Thr596), FLNc(Ser2213), GSK3α(Ser21), and GSK3β(Ser9)) in predominantly fast-twitch (epitrochlearis) and predominantly slow-twitch (soleus) muscles. We observed no CR-effect on phosphorylation of AS160(Ser588) or TBC1D1(Thr596), but there was a CR-induced increase in insulin-stimulated FLNc(Ser2213), GSK3α(Ser21), and GSK3β(Ser9) phosphorylation for both muscles. These results indicate that CR does not uniformly affect insulin-mediated phosphorylation of Akt substrates in fast- or slow-twitch muscles from 24 month-old rats.
Collapse
Affiliation(s)
- Donel A Sequea
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109-2214, USA
| | | | | | | |
Collapse
|
41
|
Sharma N, Sequea DA, Arias EB, Cartee GD. Greater insulin-mediated Akt phosphorylation concomitant with heterogeneous effects on phosphorylation of Akt substrates in soleus of calorie-restricted rats. Am J Physiol Regul Integr Comp Physiol 2012; 303:R1261-7. [PMID: 23115120 DOI: 10.1152/ajpregu.00457.2012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Akt is a serine/threonine kinase that plays a key role in numerous cellular functions including metabolism, growth, protein synthesis, apoptosis, and cell proliferation. The most consistent and robust effect of moderate calorie restriction (CR; ~60% of ad libitum, AL, food consumption) on insulin signaling in rodent muscle has been enhanced insulin-induced phosphorylation of Akt (pAkt). However, there is limited knowledge regarding the mechanism for this enhancement and its consequences in predominantly slow-twitch muscle. Accordingly, in soleus muscle of 9-mo-old rats, we analyzed the effect of CR and insulin on important signaling events that are proximal to Akt activation including: pIR(Tyr1162/1163), pIRS1(Tyr), pIRS1(Ser312), IRS1-associated phosphatidylinositol 3-kinase activity, or pPTEN(Ser380). In addition, we analyzed the effect of CR and insulin on Akt substrates that have established or putative roles in glucose metabolism, cellular growth, maintenance of muscle structure, or protein synthesis including pGSK3α(Ser21), pGSK3β(Ser9), pTSC2(Ser939), pP70S6K(Thr412), pAS160(Thr642), and pFLNc(Ser2213). The current study demonstrated that the CR-induced increase in pAkt in isolated soleus muscles from 9-mo-old rats can occur without concomitant enhancement of several important insulin signaling events that are proximal to Akt activation. These results suggest that the greater pAkt in the soleus muscles from CR rats was attributable to an alternative mechanism. We also observed that the effects of CR were not uniform for phosphorylation of six insulin-regulated Akt substrates in the soleus. The differential response in phosphorylation by Akt substrates likely has important implications for explaining the complex effect of CR diverse cellular functions.
Collapse
Affiliation(s)
- Naveen Sharma
- Muscle Biology Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI 48109-2214, USA.
| | | | | | | |
Collapse
|
42
|
Forde N, Duffy GB, McGettigan PA, Browne JA, Mehta JP, Kelly AK, Mansouri-Attia N, Sandra O, Loftus BJ, Crowe MA, Fair T, Roche JF, Lonergan P, Evans ACO. Evidence for an early endometrial response to pregnancy in cattle: both dependent upon and independent of interferon tau. Physiol Genomics 2012; 44:799-810. [DOI: 10.1152/physiolgenomics.00067.2012] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The aims of this study were to 1) identify the earliest transcriptional response of the bovine endometrium to the presence of the conceptus (using RNAseq), 2) investigate if these genes are regulated by interferon tau (IFNT) in vivo, and 3) determine if they are predictive of the pregnancy status of postpartum dairy cows. RNAseq identified 459 differentially expressed genes (DEGs) between pregnant and cyclic endometria on day 16. Quantitative real-time PCR analysis of selected genes revealed PARP12, ZNFX1, HERC6, IFI16, RNF213, and DDX58 expression increased in pregnant compared with cyclic endometria on day 16 and were directly upregulated by intrauterine infusion of IFNT in vivo for 2 h ( P < 0.05). On day 13 following estrous endometrial expression of nine genes increased [ ARHGAP1, MGC127874, LIMS2, TBC1D1, FBXL7, C25H16orf71, LOC507810, ZSWIM4, and one novel gene (ENSBTAT00000050193)] and seven genes decreased ( SERBP1, SRGAP2, AL7A1, TBK1, F2RL2, MGC128929, and WBSCR17; P < 0.05) in pregnant compared with cyclic heifers. Of these DEGs, significant differences in expression between pregnant and cyclic endometria were maintained on day 16 for F2RL2, LIMS2, LOC507810, MGC127874, TBC1D1, WBSCR17, and ZSWIM4 ( P < 0.05) both their expression was not directly regulated by IFNT in vivo. Analysis of the expression of selected interferon-stimulated genes in blood samples from postpartum dairy cows revealed a significant increase ( P < 0.05) in expression of ZXFX1, PARP12, SAMD9, and HERC6 on day 18 following artificial insemination in cows subsequently confirmed pregnant compared with cyclic controls. In conclusion, RNAseq identified a number of novel pregnancy-associated genes in the endometrium of cattle during early pregnancy that are not regulated by IFNT in vivo. In addition, a number of genes that are directly regulated by short term exposure to IFNT in vivo are differentially expressed on day 18 following estrus detection in the blood of postpartum dairy cows depending on their pregnancy status.
Collapse
Affiliation(s)
- N. Forde
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - G. B. Duffy
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - P. A. McGettigan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - J. A. Browne
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - J. P. Mehta
- Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - A. K. Kelly
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - N. Mansouri-Attia
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - O. Sandra
- Institut National de la Recherche Agronomique, Unite Mixté de Recherche, 1198 Biologie du Développement et Reproduction, Jouy en Josas, France
| | - B. J. Loftus
- Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - M. A. Crowe
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland
- Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - T. Fair
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - J. F. Roche
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - P. Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
- Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - A. C. O. Evans
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
- Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
43
|
Capobianco V, Nardelli C, Ferrigno M, Iaffaldano L, Pilone V, Forestieri P, Zambrano N, Sacchetti L. miRNA and protein expression profiles of visceral adipose tissue reveal miR-141/YWHAG and miR-520e/RAB11A as two potential miRNA/protein target pairs associated with severe obesity. J Proteome Res 2012; 11:3358-69. [PMID: 22537031 DOI: 10.1021/pr300152z] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Adipose tissues show selective gene expression patterns, to whom microRNAs (miRNAs) may contribute. We evaluated in visceral adipose tissue (VAT) from obese and nonobese females, both miRNA and protein expression profiles, to identify miRNA/protein target pairs associated with obesity (metabolic pathways miRNA-deregulated during obesity). Obese and nonobese females [BMI 42.2 ± 1.6 and 23.7 ± 1.2 kg/m(2) (mean ± SEM), respectively] were enrolled in this study. Notably, most miRNAs were down-expressed in obese tissues, whereas most of the proteins from the investigated spots were up-expressed. Bioinformatics integration of miRNA expression and proteomic data highlighted two potential miRNA/protein target pairs: miR-141/YWHAG (tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, gamma polypeptide) and miR-520e/RAB11A (Ras-related protein RAB-11A); the functional interaction between these miRNAs and their target sequences on the corresponding mRNAs was confirmed by luciferase assays. Both RAB11A and YWHAG proteins are involved in glucose homeostasis; YWHAG is also involved in lipid metabolism. Hence, the identified miRNA/protein target pairs are potential players in the obese phenotype.
Collapse
Affiliation(s)
- Valentina Capobianco
- Fondazione IRCCS SDN, Istituto di Ricerca Diagnostica e Nucleare , Via Gianturco 113, 80143 Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Sequea DA, Sharma N, Arias EB, Cartee GD. Calorie restriction enhances insulin-stimulated glucose uptake and Akt phosphorylation in both fast-twitch and slow-twitch skeletal muscle of 24-month-old rats. J Gerontol A Biol Sci Med Sci 2012; 67:1279-85. [PMID: 22454372 DOI: 10.1093/gerona/gls085] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Calorie restriction (CR) induces enhanced insulin-stimulated glucose uptake in fast-twitch (type II) muscle from old rats, but the effect of CR on slow-twitch (type I) muscle from old rats is unknown. The purpose of this study was to assess insulin-stimulated glucose uptake and phosphorylation of key insulin signaling proteins in isolated epitrochlearis (fast-twitch) and soleus (slow-twitch) muscles from 24-month-old ad libitum fed and CR (consuming 65% of ad libitum, intake) rats. Muscles were incubated with and without 1.2 nM insulin. CR versus ad libitum rats had greater insulin-stimulated glucose uptake and Akt phosphorylation (pAkt) on T308 and S473 for both muscles incubated with insulin. GLUT4 protein abundance and phosphorylation of the insulin receptor (Y1162/1163) and AS160 (T642) were unaltered by CR in both muscles. These results implicate enhanced pAkt as a potential mechanism for the CR-induced increase in insulin-stimulated glucose uptake by the fast-twitch epitrochlearis and slow-twitch soleus of old rats.
Collapse
Affiliation(s)
- Donel A Sequea
- University of Michigan, School of Kinesiology, Room 4745F, 401 Washtenaw Avenue, Ann Arbor, MI 48109-2214, USA.
| | | | | | | |
Collapse
|
45
|
Mohankumar SK, Taylor CG, Zahradka P. Domain-dependent modulation of insulin-induced AS160 phosphorylation and glucose uptake by Ca2+/calmodulin-dependent protein kinase II in L6 myotubes. Cell Signal 2012; 24:302-8. [DOI: 10.1016/j.cellsig.2011.09.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 09/11/2011] [Indexed: 12/17/2022]
|
46
|
Jensen TE, Richter EA. Regulation of glucose and glycogen metabolism during and after exercise. J Physiol 2011; 590:1069-76. [PMID: 22199166 DOI: 10.1113/jphysiol.2011.224972] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Utilization of carbohydrate in the form of intramuscular glycogen stores and glucose delivered from plasma becomes an increasingly important energy substrate to the working muscle with increasing exercise intensity. This review gives an update on the molecular signals by which glucose transport is increased in the contracting muscle followed by a discussion of glycogen mobilization and synthesis by the action of glycogen phosphorylase and glycogen synthase, respectively. Finally, this review deals with the signalling relaying the well-described increased sensitivity of glucose transport to insulin in the post-exercise period which can result in an overshoot of intramuscular glycogen resynthesis post exercise (glycogen supercompensation).
Collapse
Affiliation(s)
- Thomas E Jensen
- Molecular Physiology Group, Department of Exercise and Sport Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | |
Collapse
|
47
|
Chiu TT, Jensen TE, Sylow L, Richter EA, Klip A. Rac1 signalling towards GLUT4/glucose uptake in skeletal muscle. Cell Signal 2011; 23:1546-54. [DOI: 10.1016/j.cellsig.2011.05.022] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 05/31/2011] [Indexed: 12/27/2022]
|
48
|
Funai K, Semenkovich CF. Skeletal muscle lipid flux: running water carries no poison. Am J Physiol Endocrinol Metab 2011; 301:E245-51. [PMID: 21558546 PMCID: PMC3275151 DOI: 10.1152/ajpendo.00152.2011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 05/09/2011] [Indexed: 02/06/2023]
Abstract
Lipids are the most abundant organic constituents in many humans. The rise in obesity prevalence has prompted a need for a more refined understanding of the effects of lipid molecules on cell physiology. In skeletal muscle, deposition of lipids can be associated with insulin resistance that contributes to the development of diabetes. Here, we review the evidence that muscle cells are equipped with the molecular machinery to convert and sequester lipid molecules, thus rendering them harmless. Induction of mitochondrial and lipogenic flux in the setting of elevated lipid deposition can protect muscle from lipid-induced "poisoning" of the cellular machinery. Lipid flux may also be directed toward the synthesis of ligands for nuclear receptors, further enhancing the capacity of muscle for lipid metabolism to promote favorable physiology. Exploiting these mechanisms may have implications for the treatment of obesity-related diseases.
Collapse
Affiliation(s)
- Katsuhiko Funai
- Div. of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | | |
Collapse
|
49
|
Castorena CM, Mackrell JG, Bogan JS, Kanzaki M, Cartee GD. Clustering of GLUT4, TUG, and RUVBL2 protein levels correlate with myosin heavy chain isoform pattern in skeletal muscles, but AS160 and TBC1D1 levels do not. J Appl Physiol (1985) 2011; 111:1106-17. [PMID: 21799128 DOI: 10.1152/japplphysiol.00631.2011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Skeletal muscle is a heterogeneous tissue. To further elucidate this heterogeneity, we probed relationships between myosin heavy chain (MHC) isoform composition and abundance of GLUT4 and four other proteins that are established or putative GLUT4 regulators [Akt substrate of 160 kDa (AS160), Tre-2/Bub2/Cdc 16-domain member 1 (TBC1D1), Tethering protein containing an UBX-domain for GLUT4 (TUG), and RuvB-like protein two (RUVBL2)] in 12 skeletal muscles or muscle regions from Wistar rats [adductor longus, extensor digitorum longus, epitrochlearis, gastrocnemius (mixed, red, and white), plantaris, soleus, tibialis anterior (red and white), tensor fasciae latae, and white vastus lateralis]. Key results were 1) significant differences found among the muscles (range of muscle expression values) for GLUT4 (2.5-fold), TUG (1.7-fold), RUVBL2 (2.0-fold), and TBC1D1 (2.7-fold), but not AS160; 2) significant positive correlations for pairs of proteins: GLUT4 vs. TUG (R = 0.699), GLUT4 vs. RUVBL2 (R = 0.613), TUG vs. RUVBL2 (R = 0.564), AS160 vs. TBC1D1 (R = 0.293), and AS160 vs. TUG (R = 0.246); 3) significant positive correlations for %MHC-I: GLUT4 (R = 0.460), TUG (R = 0.538), and RUVBL2 (R = 0.511); 4) significant positive correlations for %MHC-IIa: GLUT4 (R = 0.293) and RUVBL2 (R = 0.204); 5) significant negative correlations for %MHC-IIb vs. GLUT4 (R = -0.642), TUG (R = -0.626), and RUVBL2 (R = -0.692); and 6) neither AS160 nor TBC1D1 significantly correlated with MHC isoforms. In 12 rat muscles, GLUT4 abundance tracked with TUG and RUVBL2 and correlated with MHC isoform expression, but was unrelated to AS160 or TBC1D1. Our working hypothesis is that some of the mechanisms that regulate GLUT4 abundance in rat skeletal muscle also influence TUG and RUVBL2 abundance.
Collapse
Affiliation(s)
- Carlos M Castorena
- Muscle Biology Laboratory, Univ. of Michigan, School of Kinesiology, Ann Arbor, MI 48109-2214, USA
| | | | | | | | | |
Collapse
|
50
|
Stöckli J, Fazakerley DJ, Coster ACF, Holman GD, James DE. Muscling in on GLUT4 kinetics. Commun Integr Biol 2011; 3:260-2. [PMID: 20714409 DOI: 10.4161/cib.3.3.11457] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 02/10/2010] [Indexed: 01/14/2023] Open
Abstract
Insulin triggers glucose uptake into muscle and adipose tissue by stimulating the translocation of the glucose transporter glut4 from intracellular vesicles to the plasma membrane (pm). insulin leads to a rapid increase in glut4 at the pm from approximately 5% to 40-50%. this effect is time and dose-dependent, reaching a new steady state after 30 min of insulin stimulation. previous kinetic analyses in adipocytes has revealed that this is regulated by two mechanisms-increasing the amount of glut4 in the endosomal recycling system and increasing the exocytosis rate constant. fazakerley et al.1 focuses on GLUT4 kinetics in the L6 skeletal muscle cell line. Despite displaying a similar redistribution of GLUT4 to the cell surface with insulin to that seen in adipocytes, the mechanism for this effect in L6 cells was completely different. Insulin had a modest effect to increase the amount of GLUT4 in the recycling system with the dominant effect being on reduction of the endocytosis rate constant. Similar findings were observed with AMPK agonists. These studies indicate that different cell types are capable of achieving the same cell biological endpoint but using completely distinct mechanisms.
Collapse
|