1
|
Jones A, Ali MU, Mayhew A, Aryal K, Correia RH, Dash D, Manis DR, Rehman A, O'Connell ME, Taler V, Costa AP, Hogan DB, Wolfson C, Raina P, Griffith L. Environmental risk factors for all-cause dementia, Alzheimer's disease dementia, vascular dementia, and mild cognitive impairment: An umbrella review and meta-analysis. ENVIRONMENTAL RESEARCH 2025; 270:121007. [PMID: 39889875 DOI: 10.1016/j.envres.2025.121007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/03/2025]
Abstract
BACKGROUND Mitigation of environmental risk factors for neurocognitive disorders could reduce the number of incident cases. We sought to synthesize the literature on environmental risk factors for dementia and mild cognitive impairment. METHODS We conducted an umbrella review and meta-analysis. Multiple databases were systematically searched to identify systematic reviews and meta-analyses of longitudinal studies examining environmental risk factors for dementia or mild cognitive impairment. We used random effects multi-level, meta-analytic models to synthesize risk ratios for each risk factor while accounting for overlap in the studies within reviews. As a secondary objective, we examined risk factors for two common phenotypes of dementia: Alzheimer's disease dementia and vascular dementia. RESULTS A total of 19 reviews containing 37 meta-analyses were included umbrella review. We found 9 factors where exposure was associated with higher risks of all-cause dementia: fine particulate matter, particulate matter, nitrogen dioxide, nitrogen oxides, carbon monoxide, shift work, night shift work, chronic noise, and extremely-low frequency magnetic fields. Neighbourhood greenness was associated with a lower risk of all-cause dementia. In a narrative review, we found that exposure to sulfur dioxide, proximity to roadways, ionizing radiation, aluminum, solvents, pesticides, and environmental tobacco smoke were also associated with dementia. We also found that fine particulate matter, extremely-low frequency magnetic fields, sulfur dioxide, chronic noise, and pesticides were related to Alzheimer's disease dementia. Fine particulate matter, particulate matter, and chronic noise were related to vascular dementia. No systematic review reported on mild cognitive impairment. CONCLUSION Achieving stronger air quality targets has the potential to reduce population-level dementia risk. Neighbourhood (i.e., greenness and chronic noise) and occupational (i.e., shift work) characteristics are associated with dementia and are viable public health intervention points. Additional research should examine the relationship between other environmental risk factors and mild cognitive impairment and specific types of dementia.
Collapse
Affiliation(s)
- Aaron Jones
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada; McMaster Institute for Research on Aging, Hamilton, Ontario, Canada.
| | - Muhammad Usman Ali
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Alexandra Mayhew
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada; McMaster Institute for Research on Aging, Hamilton, Ontario, Canada; Labarge Centre for Mobility in Aging, Hamilton, Ontario, Canada
| | - Komal Aryal
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Rebecca H Correia
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Darly Dash
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Derek R Manis
- Edson College of Nursing and Health Innovation, Arizona State University, Phoenix, AZ, USA; Bruyère Research Institute, Ottawa, Ontario, Canada
| | - Atiya Rehman
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
| | - Megan E O'Connell
- Department of Psychology & Health Studies, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Vanessa Taler
- Bruyère Research Institute, Ottawa, Ontario, Canada; School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
| | - Andrew P Costa
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada; McMaster Institute for Research on Aging, Hamilton, Ontario, Canada
| | - David B Hogan
- Division of Geriatric Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Christina Wolfson
- Department of Epidemiology, Biostatistics and Occupational Health, School of Population and Global Health & Department of Medicine, McGill University, Montreal, Canada; Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Parminder Raina
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada; McMaster Institute for Research on Aging, Hamilton, Ontario, Canada; Labarge Centre for Mobility in Aging, Hamilton, Ontario, Canada
| | - Lauren Griffith
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada; McMaster Institute for Research on Aging, Hamilton, Ontario, Canada; Labarge Centre for Mobility in Aging, Hamilton, Ontario, Canada
| |
Collapse
|
2
|
Hadzibegovic S, Nicole O, Andelkovic V, de Gannes FP, Hurtier A, Lagroye I, Bontempi B. Examining the effects of extremely low-frequency magnetic fields on cognitive functions and functional brain markers in aged mice. Sci Rep 2025; 15:8365. [PMID: 40069380 PMCID: PMC11897315 DOI: 10.1038/s41598-025-93230-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 03/05/2025] [Indexed: 03/15/2025] Open
Abstract
Extremely low-frequency magnetic fields (ELF-MFs) are ubiquitously present in various environments of everyday life. While surveys from the World Health Organization (WHO) have not demonstrated the existence of ELF-MF-induced harmful consequences in healthy subjects, whether older adults are more vulnerable to the effects of residential and occupational ELF-MF exposure, and therefore may be at risk, remains unsettled. Here, we explored this potential health issue by investigating, in aged mice, the effects of chronic exposure to ELF-MFs (50 Hz ELF-MF at 1 mT for 8 h/day, 5 days/week for 12 consecutive weeks) on cognitive functions and expression profile of brain markers typically associated with aggravated aging or the development of Alzheimer`s disease (AD). Sham-exposed mice showed a significant age-related decline in spatial memory functions compared to young adult mice. However, this expected pattern was neither exacerbated nor counteracted by chronic exposure to ELF-MFs. No difference in hippocampal expression of APP-695, Aβ(1-42), S100b and GFAP proteins or in the pTau/Tau ratio was observed between sham- and ELF-MF-exposed aged mice, suggesting that chronic exposure to ELF-MFs does not aggravate aging and associated neuroinflammation, or promote pathological pathways involved in the initiation of AD. Because care should be taken in extrapolating these results to older adults with various comorbidities, applying current exposure limits to existing or new sensitive ELF-MF locations is recommended.
Collapse
Affiliation(s)
- Senka Hadzibegovic
- Neurocentre Magendie, INSERM U1215, Université de Bordeaux, 33000, Bordeaux, France.
| | - Olivier Nicole
- Institut Interdisciplinaire de Neurosciences, CNRS UMR 5297, Université de Bordeaux, 33000, Bordeaux, France
| | - Vojislav Andelkovic
- Laboratoire de l'Intégration du Matériau au Système, CNRS UMR 5218, Université de Bordeaux, 33405, Talence, France and Ecole Pratique des Hautes Etudes-PSL, 75014, Paris, France
| | - Florence Poulletier de Gannes
- Laboratoire de l'Intégration du Matériau au Système, CNRS UMR 5218, Université de Bordeaux, 33405, Talence, France and Ecole Pratique des Hautes Etudes-PSL, 75014, Paris, France
| | - Annabelle Hurtier
- Laboratoire de l'Intégration du Matériau au Système, CNRS UMR 5218, Université de Bordeaux, 33405, Talence, France and Ecole Pratique des Hautes Etudes-PSL, 75014, Paris, France
| | - Isabelle Lagroye
- Laboratoire de l'Intégration du Matériau au Système, CNRS UMR 5218, Université de Bordeaux, 33405, Talence, France and Ecole Pratique des Hautes Etudes-PSL, 75014, Paris, France
| | - Bruno Bontempi
- Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS UMR 5287, Université de Bordeaux and Ecole Pratique des Hautes Etudes, 33000, Bordeaux, France.
| |
Collapse
|
3
|
König AM, Pöschke A, Mahnken AH. [Health risks for medical personnel due to magnetic fields in magnetic resonance imaging]. ROFO-FORTSCHR RONTG 2025; 197:135-144. [PMID: 39029511 DOI: 10.1055/a-2296-3860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
The current state of medical and scientific knowledge on the effects of exposure to electromagnetic fields on workers in the field of clinical magnetic resonance imaging (MRI) is summarized here.A systematic literature search was conducted to analyze the health risks to medical personnel from magnetic fields in MRI. A total of 7273 sources were identified, with 7139 being excluded after screening of the title and abstract. After full-text screening, 34 sources remained and were included in this paper.There are a number of scientific publications on the occurrence of short-term sensory effects such as vertigo, metallic taste, phosphenes as well as on the occurrence of neurocognitive and neurobehavioral effects. For example, short-term exposure to clinical magnetic fields has been reported to result in a 4% reduction in speed and precision and a 16% reduction in visual contrast sensitivity at close range. Both eye-hand precision and coordination speed are affected. The long-term studies concern, among other things, the influence of magnetic fields on sleep quality, which could be linked to an increased risk of accidents. The data on the exposure of healthcare workers to magnetic fields during pregnancy is consistently outdated. However, it has been concluded that there are no particular deviations with regard to the duration of pregnancy, premature births, miscarriages, and birth weight. Epidemiological studies are lacking. With a focus on healthcare personnel, there is a considerable need for high-quality data, particularly on the consequences of long-term exposure to electromagnetic fields from clinical MRI and the effects on pregnancy. · Short-term sensory effects such as vertigo, metallic taste, phosphenes as well as neurocognitive and neurological behavioral effects may occur upon exposure to magnetic fields.. · Long-term effects mainly concern quality of sleep, which can be associated with an increased risk of accidents.. · When pregnant women were exposed to magnetic fields, no particular deviations were found with regard to the duration of pregnancy, premature births, miscarriages, and birth weight.. · König AM, Pöschke A, Mahnken AH. Health risks for medical personnel due to magnetic fields in magnetic resonance imaging. Rofo 2025; 197: 135-144.
Collapse
Affiliation(s)
- Alexander Marc König
- Diagnostic and Interventional Radiology, Philipps University of Marburg, Marburg, Germany
| | - Antje Pöschke
- Diagnostic and Interventional Radiology, Philipps University of Marburg, Marburg, Germany
| | - Andreas H Mahnken
- Diagnostic and Interventional Radiology, Philipps University of Marburg, Marburg, Germany
| |
Collapse
|
4
|
Phillips MCL, Picard M. Neurodegenerative disorders, metabolic icebergs, and mitohormesis. Transl Neurodegener 2024; 13:46. [PMID: 39242576 PMCID: PMC11378521 DOI: 10.1186/s40035-024-00435-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/25/2024] [Indexed: 09/09/2024] Open
Abstract
Neurodegenerative disorders are typically "split" based on their hallmark clinical, anatomical, and pathological features, but they can also be "lumped" by a shared feature of impaired mitochondrial biology. This leads us to present a scientific framework that conceptualizes Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD) as "metabolic icebergs" comprised of a tip, a bulk, and a base. The visible tip conveys the hallmark neurological symptoms, neurodegenerative regions, and neuronal protein aggregates for each disorder. The hidden bulk depicts impaired mitochondrial biology throughout the body, which is multifaceted and may be subdivided into impaired cellular metabolism, cell-specific mitotypes, and mitochondrial behaviours, functions, activities, and features. The underlying base encompasses environmental factors, especially modern industrial toxins, dietary lifestyles, and cognitive, physical, and psychosocial behaviours, but also accommodates genetic factors specific to familial forms of AD, PD, and ALS, as well as HD. Over years or decades, chronic exposure to a particular suite of environmental and genetic factors at the base elicits a trajectory of impaired mitochondrial biology that maximally impacts particular subsets of mitotypes in the bulk, which eventually surfaces as the hallmark features of a particular neurodegenerative disorder at the tip. We propose that impaired mitochondrial biology can be repaired and recalibrated by activating "mitohormesis", which is optimally achieved using strategies that facilitate a balanced oscillation between mitochondrial stressor and recovery phases. Sustainably harnessing mitohormesis may constitute a potent preventative and therapeutic measure for people at risk of, or suffering with, neurodegenerative disorders.
Collapse
Affiliation(s)
- Matthew C L Phillips
- Department of Neurology, Waikato Hospital, Hamilton, 3204, New Zealand.
- Department of Medicine, University of Auckland, Auckland, 1142, New Zealand.
| | - Martin Picard
- Division of Behavioral Medicine, Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, NY, 10032, USA
- New York State Psychiatric Institute, New York, NY, 10032, USA
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
5
|
Eskandani R, Zibaii MI. Unveiling the biological effects of radio-frequency and extremely-low frequency electromagnetic fields on the central nervous system performance. BIOIMPACTS : BI 2023; 14:30064. [PMID: 39104617 PMCID: PMC11298025 DOI: 10.34172/bi.2023.30064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/09/2023] [Accepted: 11/26/2023] [Indexed: 08/07/2024]
Abstract
Introduction Radiofrequency electromagnetic radiation (RF-EMR) and extremely low-frequency electromagnetic fields (ELF-EMF) have emerged as noteworthy sources of environmental pollution in the contemporary era. The potential biological impacts of RF-EMR and ELF-EMF exposure on human organs, particularly the central nervous system (CNS), have garnered considerable attention in numerous research studies. Methods This article presents a comprehensive yet summarized review of the research on the explicit/implicit effects of RF-EMR and ELF-EMF exposure on CNS performance. Results Exposure to RF-EMR can potentially exert adverse effects on the performance of CNS by inducing changes in the permeability of the blood-brain barrier (BBB), neurotransmitter levels, calcium channel regulation, myelin protein structure, the antioxidant defense system, and metabolic processes. However, it is noteworthy that certain reports have suggested that RF-EMR exposure may confer cognitive benefits for various conditions and disorders. ELF-EMF exposure has been associated with the enhancement of CNS performance, marked by improved memory retention, enhanced learning ability, and potential mitigation of neurodegenerative diseases. Nevertheless, it is essential to acknowledge that ELF-EMF exposure has also been linked to the induction of anxiety states, oxidative stress, and alterations in hormonal regulation. Moreover, ELF-EMR exposure alters hippocampal function, notch signaling pathways, the antioxidant defense system, and synaptic activities. Conclusion The RF-EMR and ELF-EMF exposures exhibit both beneficial and adverse effects. Nevertheless, the precise conditions and circumstances under which detrimental or beneficial effects manifest (either individually or simultaneously) remain uncertain.
Collapse
Affiliation(s)
- Ramin Eskandani
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran 19839-69411, Iran
| | - Mohammad Ismail Zibaii
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran 19839-69411, Iran
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran 19839-69411, Iran
| |
Collapse
|
6
|
Touitou Y, Selmaoui B, Lambrozo J. Assessment of cortisol secretory pattern in workers chronically exposed to ELF-EMF generated by high voltage transmission lines and substations. ENVIRONMENT INTERNATIONAL 2022; 161:107103. [PMID: 35121496 DOI: 10.1016/j.envint.2022.107103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/20/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
We investigated the effects of extremely-low frequency electromagnetic fields (ELF-EMFs; 50 Hz) on the secretion of cortisol in 14 men (mean age = 38.0 ± 0.9 years) working in extra-high voltage (EHV) substations. The workers dwelt in houses that were close to substations and high-voltage lines. Thus, they had long histories (1-20 years) of long-yerm exposure to ELF-EMFs. Magnetic field strength was recorded using Emdex dosimeters worn by the volunteers day and night for seven days; the one-week geometric mean ranged from 0.1 to 2.6 μT. Blood samples were taken hourly from 20:00 to 08:00 the next morning. Cortisol concentrations and patterns were compared to age-matched, unexposed control subjects whose exposure level was ten times lower. The comparison of the control group (n = 15) and the groups exposed to fields of 0.1-0.3 μT (n = 5) and > 0.3 μT (n = 9), respectively, revealed a significant effect of field intensity on the cortisol secretory pattern. This study strongly suggests that chronic exposure to ELF-EMFs alters the peak-time serum cortisol levels. Studies are required on the effect of this disruption in high-risk populations such as children, elderly people, and patients with cancer.
Collapse
Affiliation(s)
- Yvan Touitou
- Unité de Chronobiologie, Fondation Ophtalmologique A. de Rothschild, 75019 Paris, France.
| | - Brahim Selmaoui
- Department of Experimental Toxicology, Institut National de l'Environnement Industriel et des Risques (INERIS), Verneuil-en-Halatte, France and PériTox Laboratory, UMR-I 01 INERIS, Picardie Jules Verne University, Amiens, France
| | - Jacques Lambrozo
- Unité de Chronobiologie, Fondation Ophtalmologique A. de Rothschild, 75019 Paris, France
| |
Collapse
|
7
|
Mezei G, Lau E, Pace ND, Schenk J, Kheifets L. Receipt of Electroconvulsive Therapy and Subsequent Development of Amyotrophic Lateral Sclerosis: A Cohort Study. Bioelectromagnetics 2022; 43:81-89. [PMID: 35066895 DOI: 10.1002/bem.22389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/25/2021] [Accepted: 01/08/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Gabor Mezei
- Center for Health Sciences Exponent Inc. Oakland California
| | - Edmund Lau
- Center for Health Sciences Exponent Inc. Menlo Park California
| | | | - Jamie Schenk
- Center for Health Sciences Exponent Inc. Oakland California
| | - Leeka Kheifets
- Department of Epidemiology University of California, Los Angeles Los Angeles California
| |
Collapse
|
8
|
Abstract
BACKGROUND Many studies have investigated magnetic field exposure and the risks of motor neuron disease (MND). Meta-analyses have found positive associations but a causal relationship has not been established. AIMS To investigate the risks of MND and occupational exposure to magnetic fields in a large UK cohort. METHODS Mortality of 37 986 employees of the former Central Electricity Generating Board of England and Wales was investigated for the period 1987-2018. Employees were first employed in the period 1942-82 and were still in employment on the 1 November, 1987. Detailed calculations enabled estimates to be made of magnetic field exposures. Observed deaths were compared with expected numbers based on mortality rates for the general population of England and Wales and Poisson regression was used to calculate rate ratios (relative risks) for categories of lifetime, lagged (distant) and lugged (recent) magnetic field exposure. RESULTS Mortality from MND in the total cohort was similar to national rates (observed 69, expected 71.3, SMR 97, 95% CI 76-122). There were no statistically significant trends of risks increasing with lifetime, recent or distant magnetic field exposure, although positive associations were observed for some categories of recent exposure. CONCLUSIONS The study did not find that the cohort had elevated risks of MND as a consequence of occupational lifetime exposure to magnetic fields, although a possible role for recent exposures could usefully be investigated in other datasets.
Collapse
Affiliation(s)
- Tom Sorahan
- Institute of Applied Health Research, University of Birmingham, Edgbaston, Birmingham, UK
| | - Linda Nichols
- Department of Statistics, Mathematical Sciences Building, University of Warwick, Coventry, UK
| |
Collapse
|
9
|
Zarghami A, Li Y, Claflin SB, van der Mei I, Taylor BV. Role of environmental factors in multiple sclerosis. Expert Rev Neurother 2021; 21:1389-1408. [PMID: 34494502 DOI: 10.1080/14737175.2021.1978843] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Environmental factors play a significant role in the pathogenesis and progression of multiple sclerosis (MS), either acting alone or by interacting with other environmental or genetic factors. This cumulative exposure to external risk factors is highly complex and highly variable between individuals. AREAS COVERED We narratively review the current evidence on the role of environment-specific risk factors in MS onset and progression, as well as the effect of gene-environment interactions and the timing of exposure We have reviewed the latest literature, by Ovid Medline, retrieving the most recently published systematic reviews and/or meta-analyses and more recent studies not previously included in meta-analyses or systematic reviews. EXPERT OPINION There is some good evidence supporting the impact of some environmental risk factors in increasing the risk of developing MS. Tobacco smoking, low vitamin D levels and/or low sun exposure, Epstein Barr Virus (EBV) seropositivity and a history of infectious mononucleosis may increase the risk of developing MS. Additionally, there is some evidence that gene-smoking, gene-EBV, and smoking-EBV interactions additively affect the risk of MS onset. However, the evidence for a role of other environmental factors in MS progression is limited. Finally, there is some evidence that tobacco smoking, insufficient vitamin D levels and/or sun exposure have impacts on MS phenotypes and various markers of disease activity including relapse, disability progression and MRI findings. Clearly the effect of environmental factors on MS disease course is an area that requires significantly more research.
Collapse
Affiliation(s)
- Amin Zarghami
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Ying Li
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Suzi B Claflin
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Ingrid van der Mei
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Bruce V Taylor
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
10
|
Jalilian H, Najafi K, Khosravi Y, Röösli M. Amyotrophic lateral sclerosis, occupational exposure to extremely low frequency magnetic fields and electric shocks: a systematic review and meta-analysis. REVIEWS ON ENVIRONMENTAL HEALTH 2021; 36:129-142. [PMID: 32946420 DOI: 10.1515/reveh-2020-0041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
Exposure to extremely low frequency magnetic fields (ELF-MF) and electric shocks occurs in many workplaces and occupations but it is unclear whether any of these exposures cause Amyotrophic lateral sclerosis (ALS). The aim of this systematic review and meta-analysis is to explore whether occupational exposure to ELF-MF and/or electric shocks are risk factor for ALS. We searched PubMed, Embase, and Web of Science databases up to the end of 2019. Pooled risk estimates were calculated using random-effects meta-analysis including exploration of the sources of heterogeneity between studies and publication bias. Twenty-seven publications fulfilled the inclusion criteria. We found a weak, significant, association between occupational exposure to ELF-MF and the risk of ALS (RRPooled estimate: 1.20; 95%CI: 1.05, 1.38) with moderate to high heterogeneity (I2=66.3%) and indication of publication bias (PEgger's test=0.03). No association was observed between occupational exposure to electric shocks and risk of ALS (RRPooled estimate: 0.97; 95%CI: 0.80, 1.17) with high heterogeneity (I2=80.5%), and little indication for publication bias (PEgger's test=0.24). The findings indicate that occupational exposure to ELF-MF, but not electric shocks, might be a risk factor for ALS. However, given the moderate to high heterogeneity and potential publication bias, the results should be interpreted with caution.
Collapse
Affiliation(s)
- Hamed Jalilian
- Department of Occupational Health and Safety Engineering, Faculty of Health, Qom University of Medical Sciences, Qom, Iran
| | - Kamran Najafi
- Student Research Committee, Hamedan University of Medical Sciences, Hamedan, Iran
| | - Yahya Khosravi
- Department of Occupational Health and Safety Engineering, School of Health, Research Center for Health, Safety and Environment, Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Martin Röösli
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
11
|
Baaken D, Dechent D, Blettner M, Drießen S, Merzenich H. Occupational Exposure to Extremely Low-Frequency Magnetic Fields and Risk of Amyotrophic Lateral Sclerosis: Results of a Feasibility Study for a Pooled Analysis of Original Data. Bioelectromagnetics 2021; 42:271-283. [PMID: 33764559 DOI: 10.1002/bem.22335] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/05/2020] [Accepted: 03/09/2021] [Indexed: 11/08/2022]
Abstract
Previous meta-analyses have suggested an increased risk of amyotrophic lateral sclerosis (ALS) associated with occupational exposure to extremely low-frequency magnetic fields (ELF-MF). However, results should be interpreted with caution since studies were methodologically heterogeneous. Here, we assessed the feasibility of a pooling study to harmonize and re-analyze available original data. A systematic literature search was conducted. Published epidemiological studies were identified in PubMed and EMF-Portal from literature databases' inception dates until January 2019. The characteristics of all studies were described, including exposure metrics, exposure categories, and confounders. A survey among the principal investigators (PI) was carried out to assess their willingness to provide their original data. The statistical power of a pooling study was evaluated. We identified 15 articles published between 1997 and 2019. Studies differed in terms of outcome, study population, exposure assessment, and exposure metrics. Most studies assessed ELF-MF as average magnetic flux density per working day; however, exposure categories varied widely. The pattern of adjustment for confounders was heterogeneous between studies, with age, sex, and socioeconomic status being most frequent. Eight PI expressed their willingness to provide original data. A relative risk of ≥1.14 for ALS and occupational exposure to ELF-MF can be detected with a power of more than 80% in a pooled study. The pooling of original data is recommended and could contribute to a better understanding of ELF-MF in the etiology of ALS based on a large database and reduced heterogeneity due to a standardized analysis protocol with harmonized exposure metrics and exposure categories. Bioelectromagnetics. © 2021 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Dan Baaken
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Dagmar Dechent
- Research Center for Bioelectromagnetic Interaction (femu), Institute of Occupational, Social and Environmental Medicine, Medical Faculty, University Hospital RWTH, Aachen, Germany
| | - Maria Blettner
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Sarah Drießen
- Research Center for Bioelectromagnetic Interaction (femu), Institute of Occupational, Social and Environmental Medicine, Medical Faculty, University Hospital RWTH, Aachen, Germany
| | - Hiltrud Merzenich
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
12
|
Chen GX, Mannetje A', Douwes J, van den Berg LH, Pearce N, Kromhout H, Glass B, Brewer N, McLean DJ. Associations of Occupational Exposures to Electric Shocks and Extremely Low-Frequency Magnetic Fields With Motor Neurone Disease. Am J Epidemiol 2021; 190:393-402. [PMID: 33034341 DOI: 10.1093/aje/kwaa214] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/28/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022] Open
Abstract
In a New Zealand population-based case-control study we assessed associations with occupational exposure to electric shocks, extremely low-frequency magnetic fields (ELF-MF) and motor neurone disease using job-exposure matrices to assess exposure. Participants were recruited between 2013 and 2016. Associations with ever/never, duration, and cumulative exposure were assessed using logistic regression adjusted for age, sex, ethnicity, socioeconomic status, education, smoking, alcohol consumption, sports, head or spine injury, and solvents, and was mutually adjusted for the other exposure. All analyses were repeated stratified by sex. An elevated risk was observed for having ever worked in a job with potential for electric shocks (odds ratio (OR) = 1.35, 95% confidence interval (CI): 0.98, 1.86), with the strongest association for the highest level of exposure (OR = 2.01, 95% CI: 1.31, 3.09). Analysis by duration suggested a nonlinear association: Risk was increased for both short duration (<3 years; OR = 4.69, 95% CI: 2.25, 9.77) and long duration (>24 years; OR = 1.88; 95% CI: 1.05, 3.36) in a job with high level of electric shock exposure, with less pronounced associations for intermediate durations. No association with ELF-MF was found. Our findings provide support for an association between occupational exposure to electric shocks and motor neurone disease but did not show associations with exposure to work-related ELF-MF.
Collapse
|
13
|
Riancho J, Sanchez de la Torre JR, Paz-Fajardo L, Limia C, Santurtun A, Cifra M, Kourtidis K, Fdez-Arroyabe P. The role of magnetic fields in neurodegenerative diseases. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2021; 65:107-117. [PMID: 32198562 DOI: 10.1007/s00484-020-01896-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/19/2020] [Accepted: 03/06/2020] [Indexed: 06/10/2023]
Abstract
The term neurodegenerative diseases include a long list of diseases affecting the nervous system that are characterized by the degeneration of different neurological structures. Among them, Alzheimer disease (AD), Parkinson disease (PD), and amyotrophic lateral sclerosis (ALS) are the most representative ones. The vast majority of cases are sporadic and results from the interaction of genes and environmental factors in genetically predisposed individuals. Among environmental conditions, electromagnetic field exposure has begun to be assessed as a potential risk factor for neurodegeneration. In this review, we discuss the existing literature regarding electromagnetic fields and neurodegenerative diseases. Epidemiological studies in AD, PD, and ALS have shown discordant results; thus, a clear correlation between electromagnetic exposure and neurodegeneration has not been demonstrated. In addition, we discuss the role of electromagnetic radiation as a potential non-invasive therapeutic strategy for some neurodegenerative diseases, particularly for PD and AD.
Collapse
Affiliation(s)
- Javier Riancho
- Service of Neurology, Hospital Sierrallana-IDIVAL, Barrio Ganzo s/n, 39300, Torrelavega, Spain.
- CIBERNED, Barcelona, Spain.
- Medicine and Psychiatry Department, University of Cantabria, Santander, Spain.
| | | | - Lucía Paz-Fajardo
- Service of Internal Medicine, Hospital Sierrallana, Torrelavega, Spain
| | - Cristina Limia
- Service of Internal Medicine, Hospital Sierrallana, Torrelavega, Spain
| | - Ana Santurtun
- Legal Medicine and Toxicology Unit, Department of Physiology and Pharmacology, University of Cantabria, Santander, Spain
| | - Michal Cifra
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberská 1014/57, 182 51, Prague, Czech Republic
| | - Kostas Kourtidis
- Department of Environmental Engineering, Democritus University of Thrace, 67100, Xanthi, Greece
- Environmental and Networking Technologies and Applications Unit (ENTA), Athena Research and Innovation Center, 67100, Xanthi, Greece
| | - Pablo Fdez-Arroyabe
- Geography and Planning Department, Geobiomet Research Group, University of Cantabria, Santander, Spain
| |
Collapse
|
14
|
Zuo H, Liu X, Li Y, Wang D, Hao Y, Yu C, Xu X, Peng R, Song T. The mitochondria/caspase-dependent apoptotic pathway plays a role in the positive effects of a power frequency electromagnetic field on Alzheimer's disease neuronal model. J Chem Neuroanat 2020; 109:101857. [PMID: 32918997 DOI: 10.1016/j.jchemneu.2020.101857] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/20/2020] [Accepted: 09/06/2020] [Indexed: 11/16/2022]
Abstract
In this study, rat pheochromocytoma (PC12) cells were induced into an Alzheimer's Disease (AD) neuronal model using nerve growth factor (NGF; 50 ng/mL) and Amyloid β25-35 (20 μmol/L). Changes in the morphological structure, cell viability, apoptosis rate, and expression of apoptosis-related protein induced by exposure to a power frequency electromagnetic field (PF-MF; 50 Hz, 100 μT, 24 h) were detected respectively by light and electron microscopy, the MTT assay, immunohistochemistry, flow cytometry and enzyme-linked immunosorbent assays. The results showed that 3-12 h after PF-MF exposure, the pathological injury was improved partly; metabolic activity was promoted and cell apoptosis was inhibited in the AD neuronal model. In addition, PF-MF exposure significantly inhibited the expression of Caspase8, Caspase3, and CytC, but increased the Bcl-2/Bax ratio of the AD neuronal model. Meanwhile, PF-MF seemed to have no effect on the expression of Fas and TNFR1. This study indicated that the mitochondria/caspase-dependent apoptotic pathway plays an important role in the positive effects of PF-MF on an AD neuronal model. The results suggested that PF-MF exposure might have potential therapeutic value for AD, and the underling molecular mechanisms still need further studies.
Collapse
Affiliation(s)
- Hongyan Zuo
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Xiao Liu
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing 100850, China; Department ofPathology, Hainan Hospital of PLA General Hospital, Sanya 572013, China
| | - Yang Li
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing 100850, China; Anhui Medical University, Hefei 230032, China
| | - Dewen Wang
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yanhui Hao
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Chao Yu
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xinping Xu
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Ruiyun Peng
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Tao Song
- Beijing Key Laboratory of Bioelectromagnetics, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
15
|
Karimi A, Ghadiri Moghaddam F, Valipour M. Insights in the biology of extremely low-frequency magnetic fields exposure on human health. Mol Biol Rep 2020; 47:5621-5633. [DOI: 10.1007/s11033-020-05563-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022]
|
16
|
Kodavati M, Wang H, Hegde ML. Altered Mitochondrial Dynamics in Motor Neuron Disease: An Emerging Perspective. Cells 2020; 9:cells9041065. [PMID: 32344665 PMCID: PMC7226538 DOI: 10.3390/cells9041065] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/15/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondria plays privotal role in diverse pathways that regulate cellular function and survival, and have emerged as a prime focus in aging and age-associated motor neuron diseases (MNDs), such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Accumulating evidence suggests that many amyloidogenic proteins, including MND-associated RNA/DNA-binding proteins fused in sarcoma (FUS) and TAR DNA binding protein (TDP)-43, are strongly linked to mitochondrial dysfunction. Animal model and patient studies have highlighted changes in mitochondrial structure, plasticity, replication/copy number, mitochondrial DNA instability, and altered membrane potential in several subsets of MNDs, and these observations are consistent with the evidence of increased excitotoxicity, induction of reactive oxygen species, and activation of intrinsic apoptotic pathways. Studies in MND rodent models also indicate that mitochondrial abnormalities begin prior to the clinical and pathological onset of the disease, suggesting a causal role of mitochondrial dysfunction. Our recent studies, which demonstrated the involvement of specific defects in DNA break-ligation mediated by DNA ligase 3 (LIG3) in FUS-associated ALS, raised a key question of its potential implication in mitochondrial DNA transactions because LIG3 is essential for both mitochondrial DNA replication and repair. This question, as well as how wild-type and mutant MND-associated factors affect mitochondria, remain to be elucidated. These new investigation avenues into the mechanistic role of mitochondrial dysfunction in MNDs are critical to identify therapeutic targets to alleviate mitochondrial toxicity and its consequences. In this article, we critically review recent advances in our understanding of mitochondrial dysfunction in diverse subgroups of MNDs and discuss challenges and future directions.
Collapse
Affiliation(s)
- Manohar Kodavati
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (M.K.); (H.W.)
| | - Haibo Wang
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (M.K.); (H.W.)
| | - Muralidhar L. Hegde
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (M.K.); (H.W.)
- Department of Neurosurgery, Weill Medical College, New York, NY 10065, USA
- Correspondence:
| |
Collapse
|
17
|
Khan MW, Juutilainen J, Roivainen P. Registry of Buildings With Transformer Stations as a Basis for Epidemiological Studies on Health Effects of Extremely Low‐Frequency Magnetic Fields. Bioelectromagnetics 2019; 41:34-40. [DOI: 10.1002/bem.22228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 10/22/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Muhammad Waseem Khan
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandKuopio Finland
- Department of BiotechnologyBalochistan University of Information Technology, Engineering and Management SciencesQuetta Pakistan
| | - Jukka Juutilainen
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandKuopio Finland
| | - Päivi Roivainen
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandKuopio Finland
| |
Collapse
|
18
|
Sagiraju HKR, Živković S, VanCott AC, Patwa H, Gimeno Ruiz de Porras D, Amuan ME, Pugh MJV. Amyotrophic Lateral Sclerosis Among Veterans Deployed in Support of Post-9/11 U.S. Conflicts. Mil Med 2019; 185:e501-e509. [PMID: 31642489 PMCID: PMC8921606 DOI: 10.1093/milmed/usz350] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a recognized military service-connected condition. Prior prevalence studies of ALS among U.S. war Veterans were not able to address concerns related to neurodegenerative sequelae of traumatic brain injury (TBI) and disregarded risk heterogeneity from occupational categories within service branches. MATERIALS AND METHODS We identified the prevalence of definite and possible ALS and cumulative incidence of definite ALS among Post-9/11 U.S. Veterans deployed in support of Post-9/11 conflicts (mean age 36.3) who received care in the Veterans Health Administration during fiscal years 2002-2015. Using a case-control study design, we also evaluated the association of TBI and major military occupation groups with ALS adjusting for demographics and comorbidities. RESULTS The prevalence of ALS was 19.7 per 100,000 over 14 years. Both prevalence and cumulative incidence of definite ALS were significantly higher among Air Force personnel compared to other service branches and among tactical operation officers and health care workers compared to general and administrative officers. Neither TBI nor younger age (<45 years) was associated with ALS. Depression, cardiac disease, cerebrovascular disease, high blood pressure, and obstructive sleep apnea were clinical comorbidities significantly associated with ALS in this population of Veterans. CONCLUSION This study among a cohort of relatively young Veterans showed a high ALS prevalence, suggesting an early onset of ALS among deployed military service members. The higher prevalence among some military specific occupations highlights the need to determine which occupational exposures specific to these occupations (particularly, Air Force personnel, tactical operations officers, and health care workers) might be associated with early onset ALS.
Collapse
Affiliation(s)
- Hari Krishna Raju Sagiraju
- Informatics, Decision-Enhancement and Analytic Sciences Center, VA Salt Lake City Health Care System, 500 Foothill Drive Bldg. 182, Salt Lake City, UT 84148,Division of Epidemiology, University of Utah, 383 Colorow Dr, Suite203, Salt Lake City, UT 84108
| | - Sasa Živković
- Department of Neurology, University of Pittsburgh, 3471 Fifth Avenue, Pittsburgh, PA 15213
| | - Anne C VanCott
- Department of Neurology, University of Pittsburgh, 3471 Fifth Avenue, Pittsburgh, PA 15213,Department of Neurology, VA Pittsburgh Health Care System, 4100 Allequippa St, Pittsburgh, PA 15213
| | - Huned Patwa
- VA Neurology Service, VA Connecticut Health Care System, 950 Campbell Avenue, West Haven, CT 06516
| | - David Gimeno Ruiz de Porras
- Department of Epidemiology, Human Genetics and Environmental Sciences, The University of Texas Health Science Center at Houston, School of Public Health in San Antonio, 7411 John Smith Dr #1100, San Antonio, TX 78229
| | - Megan E Amuan
- Informatics, Decision-Enhancement and Analytic Sciences Center, VA Salt Lake City Health Care System, 500 Foothill Drive Bldg. 182, Salt Lake City, UT 84148
| | - Mary Jo V Pugh
- Informatics, Decision-Enhancement and Analytic Sciences Center, VA Salt Lake City Health Care System, 500 Foothill Drive Bldg. 182, Salt Lake City, UT 84148,Division of Epidemiology, University of Utah, 383 Colorow Dr, Suite203, Salt Lake City, UT 84108
| |
Collapse
|
19
|
Peters S, Visser AE, D’Ovidio F, Beghi E, Chiò A, Logroscino G, Hardiman O, Kromhout H, Huss A, Veldink J, Vermeulen R, van den Berg LH. Associations of Electric Shock and Extremely Low-Frequency Magnetic Field Exposure With the Risk of Amyotrophic Lateral Sclerosis. Am J Epidemiol 2019; 188:796-805. [PMID: 30649156 DOI: 10.1093/aje/kwy287] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 12/12/2018] [Accepted: 12/12/2018] [Indexed: 11/14/2022] Open
Abstract
We explored the associations of occupational exposure to extremely low-frequency magnetic fields (ELF-MF) and electric shocks with the risk of amyotrophic lateral sclerosis (ALS) in a pooled case-control study (European Multidisciplinary ALS Network Identification to Cure Motor Neurone Degeneration (Euro-MOTOR)) of data from 3 European countries. ALS patients and population-based controls were recruited in Ireland, Italy, and the Netherlands between 2010 and 2015. Lifetime occupational and lifestyle histories were obtained using structured questionnaires. We applied previously developed job exposure matrices assigning exposure levels to ELF-MF and potential for electric shocks. Odds ratios and 95% confidence intervals were estimated by means of logistic regression for exposure to either ELF-MF or electric shocks, adjusted for age, sex, study center, education, smoking, and alcohol consumption and for the respective other exposure. Complete occupational histories and information on confounding variables were available for 1,323 clinically confirmed ALS cases and 2,704 controls. Both ever having had exposure to ELF-MF above the background level (odds ratio = 1.16, 95% confidence interval: 1.01, 1.33) and ever having had potential exposure above background for electric shocks (odds ratio = 1.23, 95% confidence interval: 1.05, 1.43) were associated with ALS. Adjustment for the respective other exposure resulted in similar risk estimates. Heterogeneity in risks across study centers was significant for both exposures. Our findings support possible independent associations of occupational exposure to ELF-MF and electric shocks with the risk of ALS.
Collapse
Affiliation(s)
- Susan Peters
- Department of Neurology, University Medical Center Utrecht, Utrecht, the Netherlands
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Anne E Visser
- Department of Neurology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Fabrizio D’Ovidio
- Rita Levi Montalcini Department of Neuroscience, School of Medicine, University of Torino, Torino, Italy
| | - Ettore Beghi
- Department of Neuroscience, IRCCS–Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Adriano Chiò
- Rita Levi Montalcini Department of Neuroscience, School of Medicine, University of Torino, Torino, Italy
| | - Giancarlo Logroscino
- Department of Neuroscience, IRCCS–Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
- Unit of Neurodegenerative Diseases, Department of Clinical Research in Neurology, Faculty of Medicine and Surgery, University of Bari Aldo Moro, Lecce, Italy
- Pia Fondazione de Culto e Religione Cardinale Giovanni Panico, Lecce, Italy
| | - Orla Hardiman
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Hans Kromhout
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Anke Huss
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Jan Veldink
- Department of Neurology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | | | | |
Collapse
|
20
|
Gunnarsson LG, Bodin L. Occupational Exposures and Neurodegenerative Diseases-A Systematic Literature Review and Meta-Analyses. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16030337. [PMID: 30691095 PMCID: PMC6388365 DOI: 10.3390/ijerph16030337] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/22/2019] [Accepted: 01/22/2019] [Indexed: 12/13/2022]
Abstract
Objectives: To carry out an integrated and stratified meta-analysis on occupational exposure to electromagnetic fields (EMFs), metals and pesticides and its effects on amyotrophic lateral sclerosis (ALS) and Parkinson's and Alzheimer's disease, and investigate the possibility of publication bias. Methods: In the current study, we updated our recently published meta-analyses on occupational exposures in relation to ALS, Alzheimer's and Parkinson's disease. Based on 66 original publications of good scientific epidemiological standard, according to the Meta-analysis of Observational Studies in Epidemiology (MOOSE) and the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) guidelines, we analysed subgroups by carrying out stratified meta-analyses on publication year, statistical precision of the relative risk (RR) estimates, inspection of the funnel plots and test of bias. Results: Based on 19 studies the weighted RR for occupational exposure to EMFs was 1.26 (95% confidence interval (CI) 1.07⁻1.50) for ALS, 1.33 (95% CI 1.07⁻1.64) for Alzheimer's disease and 1.02 (95% CI 0.83⁻1.26) for Parkinson's disease. Thirty-one studies concerned occupational exposure to pesticides and the weighted RR was 1.35 (95% CI 1.02⁻1.79) for ALS, 1.50 (95% CI 0.98⁻2.29) for Alzheimer's disease and 1.66 (95% CI 1.42⁻1.94) for Parkinson's disease. Finally, 14 studies concerned occupational exposure to metals and only exposure to lead (five studies) involved an elevated risk for ALS or Parkinson's disease and the weighted RR was 1.57 (95% CI 1.11⁻2.20). The weighted RR for all the non-lead exposures was 0.97 (95% CI 0.88⁻1.06). Conclusions: Exposure to pesticides increased the risk of getting the mentioned neurodegenerative diseases by at least 50%. Exposure to lead was only studied for ALS and Parkinson's disease and involved 50% increased risk. Occupational exposure to EMFs seemed to involve some 10% increase in risk for ALS and Alzheimer's disease only.
Collapse
Affiliation(s)
- Lars-Gunnar Gunnarsson
- Department of Occupational and Environmental Medicine, School of Medicine, Örebro University, 701 82 Örebro, Sweden.
| | - Lennart Bodin
- Department of Statistics, Örebro University, 701 82 Örebro, Sweden.
- Institute of Environmental Medicine, Karolinska Institute, SE 177 77 Stockholm, Sweden.
| |
Collapse
|
21
|
Occupational exposure to extremely low frequency magnetic fields and risk of Alzheimer disease: A systematic review and meta-analysis. Neurotoxicology 2018; 69:242-252. [DOI: 10.1016/j.neuro.2017.12.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/18/2017] [Accepted: 12/21/2017] [Indexed: 12/16/2022]
|
22
|
Gunnarsson LG, Bodin L. Amyotrophic Lateral Sclerosis and Occupational Exposures: A Systematic Literature Review and Meta-Analyses. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15112371. [PMID: 30373166 PMCID: PMC6265680 DOI: 10.3390/ijerph15112371] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 10/16/2018] [Accepted: 10/24/2018] [Indexed: 11/16/2022]
Abstract
Objectives: We conducted a systematic literature review to identify studies fulfilling good scientific epidemiological standards for use in meta-analyses of occupational risk factors for amyotrophic lateral sclerosis (ALS). Methods: We identified 79 original publications on associations between work and ALS. The MOOSE (Meta-analysis Of Observational Studies in Epidemiology) and GRADE (Grading of Recommendations, Assessment, Development and Evaluations) guidelines were used to ensure high scientific quality, and reliable protocols were applied to classify the articles. Thirty-seven articles fulfilled good scientific standards, while 42 were methodologically deficient and thus were excluded from our meta-analyses. Results: The weighted relative risks for the various occupational exposures were respectively; 1.29 (95% confidence interval (CI): 0.97–1.72; six articles) for heavy physical work, 3.98 (95% CI: 2.04–7.77; three articles) for professional sports, 1.45 (95% CI: 1.07–1.96; six articles) for metals, 1.19 (95% CI: 1.07–1.33; 10 articles) for chemicals, 1.18 (95% CI: 1.07–1.31; 16 articles) for electromagnetic fields or working with electricity, and 1.18 (95% CI: 1.05–1.34; four articles) for working as a nurse or physician. Conclusions: Meta-analyses based only on epidemiologic publications of good scientific quality show that the risk of ALS is statistically significantly elevated for occupational exposures to excessive physical work, chemicals (especially pesticides), metals (especially lead), and possibly also to electromagnetic fields and health care work. These results are not explained by publication bias.
Collapse
Affiliation(s)
- Lars-Gunnar Gunnarsson
- School of Medical Sciences, Örebro University, SE 701 82 Örebro, Sweden.
- Department of Occupational and Environmental Medicine, Örebro University, SE 701 82 Örebro, Sweden.
| | - Lennart Bodin
- Department of Statistics, Örebro University, SE 701 82 Örebro, Sweden.
- Institute of Environmental Medicine, Karolinska Institute, SE 177 77 Stockholm, Sweden.
| |
Collapse
|
23
|
Röösli M, Jalilian H. A meta-analysis on residential exposure to magnetic fields and the risk of amyotrophic lateral sclerosis. REVIEWS ON ENVIRONMENTAL HEALTH 2018; 33:309-313. [PMID: 29874196 DOI: 10.1515/reveh-2018-0019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/07/2018] [Indexed: 06/08/2023]
Abstract
Abstract
Amyotrophic lateral sclerosis (ALS) is caused by the gradual degeneration and death of motor neurons, with mostly unknown etiology. Some risk factors have been suggested for this disease including extremely low frequency magnetic fields (ELF-MF) exposure. This meta-analysis assesses the association of residential exposure to ELF-MF with the risk of ALS. Five studies have addressed the risk of ALS in relation to overhead power lines. A pooled relative risk (RR) of 0.71 [95% confidence interval (CI): 0.48, 1.07] for the most exposed population group (either <200 m distance from high voltage power lines or >0.1 μT) was found. Little heterogeneity (I2=0.00%, p=0.67) and indication for publication bias (PBegg’s test=0.22; PEgger’s test=0.19) was seen. Overall, we found no evidence for an association between residential exposure to ELF-MF and the risk of ALS, although the number of exposed cases is low.
Collapse
Affiliation(s)
- Martin Röösli
- Swiss Tropical and Public Health Institute, Socinstrasse 57, P.O. Box, CH-4002 Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Hamed Jalilian
- Facility of Public Health, al-zahra Street, Shiraz, Iran, Phone: +987137251009, Fax: +987132299694
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Research Center for Health, Safety and Environment, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
24
|
Huss A, Peters S, Vermeulen R. Occupational exposure to extremely low-frequency magnetic fields and the risk of ALS: A systematic review and meta-analysis. Bioelectromagnetics 2018; 39:156-163. [DOI: 10.1002/bem.22104] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 11/17/2017] [Indexed: 02/03/2023]
Affiliation(s)
- Anke Huss
- Institute for Risk Assessment Sciences; Utrecht University; Utrecht The Netherlands
| | - Susan Peters
- Institute for Risk Assessment Sciences; Utrecht University; Utrecht The Netherlands
- Department of Neurology; University Medical Centre Utrecht; Utrecht The Netherlands
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences; Utrecht University; Utrecht The Netherlands
- Julius Center for Health Sciences and Primary Care; University Medical Center Utrecht; Utrecht The Netherlands
| |
Collapse
|
25
|
Zuo H, Liu X, Wang D, Li Y, Xu X, Peng R, Song T. RKIP-Mediated NF-κB Signaling is involved in ELF-MF-mediated improvement in AD rat. Int J Med Sci 2018; 15:1658-1666. [PMID: 30588189 PMCID: PMC6299414 DOI: 10.7150/ijms.28411] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/12/2018] [Indexed: 12/24/2022] Open
Abstract
In a previous study, we reported the positive effects of extremely low frequency electromagnetic field (ELF-MF) exposure on Alzheimer's disease (AD) rats; however, the underlying mechanism remains unclear. In addition, we found that Raf-1 kinase inhibitor protein (RKIP) was downregulated by microwave exposure in the rat hippocampus. Our hypothesis was that RKIP-mediated NF-κB pathway signaling is involved in the effect of ELF-MF on the AD rat. In this study, D-galactose intraperitoneal (50 mg/kg/d for 42 d) and Aβ25-35 hippocampal (5 μL/unilateral, bilateral, single-dose) injection were implemented to establish an AD rat model. Animals were exposed to 50 Hz and 400 µT ELF-MF for 60 continuous days. The spatial memory ability of the rat was then tested using the Morris water maze. Protein expression and interaction were detected by western blotting and co-immunoprecipitation for RKIP-mediated NF-κB pathway factors. The results showed that ELF-MF exposure partially improved the cognitive disorder, upregulated the levels of RKIP, TAK1, and the RKIP/TAK1 interaction, but downregulated p-IKK levels in AD rats. These results indicated that RKIP-mediated NF-κB pathway signaling plays an important role in the ELF-MF exposure-mediated improvements in the AD rat. Our study suggested that ELF-MF exposure might have a potential therapeutic value for AD. Further in depth studies are required in the future.
Collapse
Affiliation(s)
- Hongyan Zuo
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xiao Liu
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Dewen Wang
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yang Li
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Xinping Xu
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Ruiyun Peng
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Tao Song
- Beijing Key Laboratory of Bioelectromagnetism, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
26
|
Beard JD, Engel LS, Richardson DB, Gammon MD, Baird C, Umbach DM, Allen KD, Stanwyck CL, Keller J, Sandler DP, Schmidt S, Kamel F. Military service, deployments, and exposures in relation to amyotrophic lateral sclerosis survival. PLoS One 2017; 12:e0185751. [PMID: 29016608 PMCID: PMC5634564 DOI: 10.1371/journal.pone.0185751] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 09/18/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Military veterans may have higher rates of amyotrophic lateral sclerosis (ALS) mortality than non-veterans. Few studies, with sparse exposure information and mixed results, have studied relationships between military-related factors and ALS survival. We evaluated associations between military-related factors and ALS survival among U.S. military veteran cases. METHODS We followed 616 medical record-confirmed cases from enrollment (2005-2010) in the Genes and Environmental Exposures in Veterans with Amyotrophic Lateral Sclerosis study until death or July 25, 2013, whichever came first. We ascertained vital status information from several sources within the Department of Veterans Affairs. We obtained information regarding military service, deployments, and 39 related exposures via standardized telephone interviews. We used Cox proportional hazards regression models to estimate hazard ratios (HRs) and 95% confidence intervals. We adjusted for potential confounding and missing covariate data biases via inverse probability weights. We also used inverse probability weights to adjust for potential selection bias among a case group that included a disproportionate number of long-term survivors at enrollment. RESULTS We observed 446 deaths during 24,267 person-months of follow-up (median follow-up: 28 months). Survival was shorter for cases who served before 1950, were deployed to World War II, or mixed and applied burning agents, with HRs between 1.58 and 2.57. Longer survival was associated with exposure to: paint, solvents, or petrochemical substances; local food not provided by the Armed Forces; or burning agents or Agent Orange in the field with HRs between 0.56 and 0.73. CONCLUSIONS Although most military-related factors were not associated with survival, associations we observed with shorter survival are potentially important because of the large number of military veterans.
Collapse
Affiliation(s)
- John D. Beard
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Lawrence S. Engel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - David B. Richardson
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Marilie D. Gammon
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Coleen Baird
- Environmental Medicine Program, US Army Public Health Command, Aberdeen Proving Ground, Maryland, United States of America
| | - David M. Umbach
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Kelli D. Allen
- Durham VA Medical Center, Durham, North Carolina, United States of America
- Department of Medicine and Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Catherine L. Stanwyck
- Durham VA Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Jean Keller
- Westat, Inc., Durham, North Carolina, United States of America
| | - Dale P. Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Silke Schmidt
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Freya Kamel
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| |
Collapse
|
27
|
Pedersen C, Poulsen AH, Rod NH, Frei P, Hansen J, Grell K, Raaschou-Nielsen O, Schüz J, Johansen C. Occupational exposure to extremely low-frequency magnetic fields and risk for central nervous system disease: an update of a Danish cohort study among utility workers. Int Arch Occup Environ Health 2017; 90:619-628. [PMID: 28429106 DOI: 10.1007/s00420-017-1224-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 04/11/2017] [Indexed: 11/28/2022]
Abstract
PURPOSE Evidence of whether exposure to extremely low-frequency magnetic fields (ELF-MF) is related to central nervous system diseases is inconsistent. This study updates a previous study of the incidence of such diseases in a large cohort of Danish utility workers by almost doubling the period of follow-up. METHODS We investigated the risks for dementia, motor neurone disease, Parkinson disease, multiple sclerosis and epilepsy among 32,006 men employed at the 99 utility companies that supplied Denmark with electricity during the period 1900-1993. Cases were identified in the Danish National Patient Registry and the cohort was followed during 1982-2010. Exposure was estimated from a job-exposure matrix based on company records of job title and area of work and cohort members were allocated to one of three categories (<0.1, 0.1-0.99 and ≥1.0 µT). RESULTS For dementia, multiple sclerosis and epilepsy the incidence rate ratios (IRR) were close to unity, but higher for motor neurone disease [IRR 1.24, 95% confidence interval (CI) 0.86-1.79] and lower for Parkinson disease (IRR 0.81, 95% CI 0.67-0.97) among workers exposed to ≥0.1 µT compared with the Danish population. For the highest level of exposure (≥1.0 µT), IRRs of 1.44, 1.78, 1.40 and 1.34 were observed for dementia, motor neurone disease, multiple sclerosis and epilepsy, respectively. CONCLUSIONS We observed elevated risks of dementia, motor neurone disease, multiple sclerosis and epilepsy and lower risks of Parkinson disease in relation to exposure to ELF-MF in a large cohort of utility employees.
Collapse
Affiliation(s)
- Camilla Pedersen
- Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen Ø, Denmark.
| | - Aslak Harbo Poulsen
- Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen Ø, Denmark
| | - Naja Hulvej Rod
- Social Medicine Section, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5, 1014, Copenhagen K, Denmark
| | - Patrizia Frei
- Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen Ø, Denmark
| | - Johnni Hansen
- Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen Ø, Denmark
| | - Kathrine Grell
- Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen Ø, Denmark
| | - Ole Raaschou-Nielsen
- Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen Ø, Denmark
| | - Joachim Schüz
- Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen Ø, Denmark
- International Agency for Research on Cancer (IARC), Section of Environment and Radiation, 150 Cours Albert Thomas, 69372, Lyon Cedex 08, France
| | - Christoffer Johansen
- Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen Ø, Denmark
- Oncology Clinic, Finsen Centre, Rigshospitalet 5073, University of Copenhagen, Blegdamsvej, 2100, Copenhagen Ø, Denmark
| |
Collapse
|
28
|
Su L, Yimaer A, Wei X, Xu Z, Chen G. The effects of 50 Hz magnetic field exposure on DNA damage and cellular functions in various neurogenic cells. JOURNAL OF RADIATION RESEARCH 2017; 58:474-486. [PMID: 28369556 PMCID: PMC5570089 DOI: 10.1093/jrr/rrx012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Indexed: 05/15/2023]
Abstract
Epidemiological studies have indicated a possible association between extremely low-frequency magnetic field (ELF-MF) exposure and the risk of nervous system diseases. However, laboratory studies have not provided consistent results for clarifying this association, despite many years of studies. In this study, we have systematically investigated the effects of 50 Hz MF exposure on DNA damage and cellular functions in both neurogenic tumor cell lines (U251, A172, SH-SY5Y) and primary cultured neurogenic cells from rats (astrocytes, microglia, cortical neurons). The results showed that exposure to a 50 Hz MF at 2.0 mT for up to 24 h did not influence γH2AX foci formation (an early marker of DNA double-strand breaks) in any of six different neurogenic cells. Exposure to a 50 Hz MF did not affect cell cycle progression, cell proliferation or cell viability in neurogenic tumor U251, A172 or SH-SY5Y cells. Furthermore, the MF exposure for 24 h did not significantly affect the secretion of cytokines (TNF-α, IL-6 or IL-1β) in astrocytes or microglia, or the phagocytic activity of microglia. In addition, MF exposure for 1 h per day did not significantly influence expression levels of microtubule-associated protein tau, microtubule-associated protein 2, postsynaptic density 95 or gephyrin in cortical neurons, indicating an absence of effects of MF exposure on the development of cortical neurons. In conclusion, our data suggest that exposure to a 50 Hz MF at 2.0 mT did not elicit DNA damage effects or abnormal cellular functions in the neurogenic cells studied.
Collapse
Affiliation(s)
- Liling Su
- Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China
- Department of Clinical Medicine, Jiangxi Medical College, 399 Zhimi Road, Shangrao 331000, China
| | - Aziguli Yimaer
- Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Xiaoxia Wei
- Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Zhengping Xu
- Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China
- Institute of Environmental Health, Zhejiang University School of Public Health, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Guangdi Chen
- Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China
- Institute of Environmental Health, Zhejiang University School of Public Health, 866 Yuhangtang Road, Hangzhou 310058, China
- Corresponding author. Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou 310058, China. Tel: +86-571-88208169; Fax: +86-571-88208163;
| |
Collapse
|
29
|
Wang MD, Little J, Gomes J, Cashman NR, Krewski D. Identification of risk factors associated with onset and progression of amyotrophic lateral sclerosis using systematic review and meta-analysis. Neurotoxicology 2017; 61:101-130. [DOI: 10.1016/j.neuro.2016.06.015] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 06/29/2016] [Indexed: 12/11/2022]
|
30
|
Risk factors associated with the onset and progression of Alzheimer’s disease: A systematic review of the evidence. Neurotoxicology 2017; 61:143-187. [DOI: 10.1016/j.neuro.2017.03.006] [Citation(s) in RCA: 223] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 03/22/2017] [Indexed: 12/25/2022]
|
31
|
Koeman T, Slottje P, Schouten LJ, Peters S, Huss A, Veldink JH, Kromhout H, van den Brandt PA, Vermeulen R. Occupational exposure and amyotrophic lateral sclerosis in a prospective cohort. Occup Environ Med 2017; 74:578-585. [DOI: 10.1136/oemed-2016-103780] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 01/31/2017] [Accepted: 02/10/2017] [Indexed: 12/12/2022]
|
32
|
Abstract
Research addressing social class and dementia has largely focused on measures of socioeconomic status as causal risk factors for dementia and in observed differences in diagnosis, treatment and care. This large body of work has produced important insights but also contains numerous problems and weaknesses. Research needs to take account of the ways in which ageing and social class have been transformed in tandem with the economic, social and cultural coordinates of late modernity. These changes have particular consequences for individual identities and social relations. With this in mind this article adopts a critical gaze on research that considers interactions between dementia and social class in three key areas: (i) epidemiological approaches to inequalities in risk (ii) the role of social class in diagnosis and treatment and (iii) class in the framing of care and access to care. Following this, the article considers studies of dementia and social class that focus on lay understandings and biographical accounts. Sociological insights in this field come from the view that dementia and social class are embedded in social relations. Thus, forms of distinction based on class relations may still play an important role in the lived experience of dementia.
Collapse
Affiliation(s)
- Ian Rees Jones
- Wales Institute of Social and Economic Research, Data and Methods, Cardiff University, Cardiff, UK
| |
Collapse
|
33
|
Killin LOJ, Starr JM, Shiue IJ, Russ TC. Environmental risk factors for dementia: a systematic review. BMC Geriatr 2016; 16:175. [PMID: 27729011 PMCID: PMC5059894 DOI: 10.1186/s12877-016-0342-y] [Citation(s) in RCA: 239] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 09/19/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Dementia risk reduction is a major and growing public health priority. While certain modifiable risk factors for dementia have been identified, there remains a substantial proportion of unexplained risk. There is evidence that environmental risk factors may explain some of this risk. Thus, we present the first comprehensive systematic review of environmental risk factors for dementia. METHODS We searched the PubMed and Web of Science databases from their inception to January 2016, bibliographies of review articles, and articles related to publically available environmental data. Articles were included if they examined the association between an environmental risk factor and dementia. Studies with another outcome (for example, cognition), a physiological measure of the exposure, case studies, animal studies, and studies of nutrition were excluded. Data were extracted from individual studies which were, in turn, appraised for methodological quality. The strength and consistency of the overall evidence for each risk factor identified was assessed. RESULTS We screened 4784 studies and included 60 in the review. Risk factors were considered in six categories: air quality, toxic heavy metals, other metals, other trace elements, occupational-related exposures, and miscellaneous environmental factors. Few studies took a life course approach. There is at least moderate evidence implicating the following risk factors: air pollution; aluminium; silicon; selenium; pesticides; vitamin D deficiency; and electric and magnetic fields. CONCLUSIONS Studies varied widely in size and quality and therefore we must be circumspect in our conclusions. Nevertheless, this extensive review suggests that future research could focus on a short list of environmental risk factors for dementia. Furthermore, further robust, longitudinal studies with repeated measures of environmental exposures are required to confirm these associations.
Collapse
Affiliation(s)
- Lewis O. J. Killin
- Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing & Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Scottish Dementia Clinical Research Network, NHS Scotland, Perth, UK
| | - John M. Starr
- Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing & Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Ivy J. Shiue
- Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, UK
- Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, UK
| | - Tom C. Russ
- Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing & Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Centre for Dementia Prevention, University of Edinburgh, Edinburgh, UK
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
34
|
Kesari KK, Juutilainen J, Luukkonen J, Naarala J. Induction of micronuclei and superoxide production in neuroblastoma and glioma cell lines exposed to weak 50 Hz magnetic fields. J R Soc Interface 2016; 13:20150995. [PMID: 26791000 DOI: 10.1098/rsif.2015.0995] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Extremely low-frequency (ELF) magnetic fields (MF) have been associated with adverse health effects in epidemiological studies. However, there is no known mechanism for biological effects of weak environmental MFs. Previous studies indicate MF effects on DNA integrity and reactive oxygen species, but such evidence is limited to MFs higher (greater than or equal to 100 µT) than those generally found in the environment. Effects of 10 and 30 µT fields were studied in SH-SY5Y and C6 cells exposed to 50-Hz MFs for 24 h. Based on earlier findings, menadione (MQ) was used as a cofactor. Responses to MF were observed in both cell lines, but the effects differed between the cell lines. Micronuclei were significantly increased in SH-SY5Y cells at 30 µT. This effect was largest at the highest MQ dose used. Increased cytosolic and mitochondrial superoxide levels were observed in C6 cells. The effects on superoxide levels were independent of MQ, enabling further mechanistic studies without co-exposure to MQ. The micronucleus and mitochondrial superoxide data were consistent with a conventional rising exposure-response relationship. For cytosolic superoxide, the effect size was unexpectedly large at 10 µT. The results indicate that the threshold for biological effects of ELF MFs is 10 µT or less.
Collapse
Affiliation(s)
- Kavindra Kumar Kesari
- Department of Environmental Science, University of Eastern Finland, PO Box 1627, 70211 Kuopio, Finland
| | - Jukka Juutilainen
- Department of Environmental Science, University of Eastern Finland, PO Box 1627, 70211 Kuopio, Finland
| | - Jukka Luukkonen
- Department of Environmental Science, University of Eastern Finland, PO Box 1627, 70211 Kuopio, Finland
| | - Jonne Naarala
- Department of Environmental Science, University of Eastern Finland, PO Box 1627, 70211 Kuopio, Finland
| |
Collapse
|
35
|
Belyaev I, Dean A, Eger H, Hubmann G, Jandrisovits R, Kern M, Kundi M, Moshammer H, Lercher P, Müller K, Oberfeld G, Ohnsorge P, Pelzmann P, Scheingraber C, Thill R. EUROPAEM EMF Guideline 2016 for the prevention, diagnosis and treatment of EMF-related health problems and illnesses. REVIEWS ON ENVIRONMENTAL HEALTH 2016; 31:363-397. [PMID: 27454111 DOI: 10.1515/reveh-2016-0011] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/29/2016] [Indexed: 06/06/2023]
Abstract
Chronic diseases and illnesses associated with non-specific symptoms are on the rise. In addition to chronic stress in social and work environments, physical and chemical exposures at home, at work, and during leisure activities are causal or contributing environmental stressors that deserve attention by the general practitioner as well as by all other members of the health care community. It seems necessary now to take "new exposures" like electromagnetic fields (EMF) into account. Physicians are increasingly confronted with health problems from unidentified causes. Studies, empirical observations, and patient reports clearly indicate interactions between EMF exposure and health problems. Individual susceptibility and environmental factors are frequently neglected. New wireless technologies and applications have been introduced without any certainty about their health effects, raising new challenges for medicine and society. For instance, the issue of so-called non-thermal effects and potential long-term effects of low-dose exposure were scarcely investigated prior to the introduction of these technologies. Common electromagnetic field or EMF sources: Radio-frequency radiation (RF) (3 MHz to 300 GHz) is emitted from radio and TV broadcast antennas, Wi-Fi access points, routers, and clients (e.g. smartphones, tablets), cordless and mobile phones including their base stations, and Bluetooth devices. Extremely low frequency electric (ELF EF) and magnetic fields (ELF MF) (3 Hz to 3 kHz) are emitted from electrical wiring, lamps, and appliances. Very low frequency electric (VLF EF) and magnetic fields (VLF MF) (3 kHz to 3 MHz) are emitted, due to harmonic voltage and current distortions, from electrical wiring, lamps (e.g. compact fluorescent lamps), and electronic devices. On the one hand, there is strong evidence that long-term exposure to certain EMFs is a risk factor for diseases such as certain cancers, Alzheimer's disease, and male infertility. On the other hand, the emerging electromagnetic hypersensitivity (EHS) is more and more recognized by health authorities, disability administrators and case workers, politicians, as well as courts of law. We recommend treating EHS clinically as part of the group of chronic multisystem illnesses (CMI), but still recognizing that the underlying cause remains the environment. In the beginning, EHS symptoms occur only occasionally, but over time they may increase in frequency and severity. Common EHS symptoms include headaches, concentration difficulties, sleep problems, depression, a lack of energy, fatigue, and flu-like symptoms. A comprehensive medical history, which should include all symptoms and their occurrences in spatial and temporal terms and in the context of EMF exposures, is the key to making the diagnosis. The EMF exposure is usually assessed by EMF measurements at home and at work. Certain types of EMF exposure can be assessed by asking about common EMF sources. It is very important to take the individual susceptibility into account. The primary method of treatment should mainly focus on the prevention or reduction of EMF exposure, that is, reducing or eliminating all sources of high EMF exposure at home and at the workplace. The reduction of EMF exposure should also be extended to public spaces such as schools, hospitals, public transport, and libraries to enable persons with EHS an unhindered use (accessibility measure). If a detrimental EMF exposure is reduced sufficiently, the body has a chance to recover and EHS symptoms will be reduced or even disappear. Many examples have shown that such measures can prove effective. To increase the effectiveness of the treatment, the broad range of other environmental factors that contribute to the total body burden should also be addressed. Anything that supports homeostasis will increase a person's resilience against disease and thus against the adverse effects of EMF exposure. There is increasing evidence that EMF exposure has a major impact on the oxidative and nitrosative regulation capacity in affected individuals. This concept also may explain why the level of susceptibility to EMF can change and why the range of symptoms reported in the context of EMF exposures is so large. Based on our current understanding, a treatment approach that minimizes the adverse effects of peroxynitrite - as has been increasingly used in the treatment of multisystem illnesses - works best. This EMF Guideline gives an overview of the current knowledge regarding EMF-related health risks and provides recommendations for the diagnosis, treatment and accessibility measures of EHS to improve and restore individual health outcomes as well as for the development of strategies for prevention.
Collapse
|
36
|
Beard JD, Engel LS, Richardson DB, Gammon MD, Baird C, Umbach DM, Allen KD, Stanwyck CL, Keller J, Sandler DP, Schmidt S, Kamel F. Military service, deployments, and exposures in relation to amyotrophic lateral sclerosis etiology. ENVIRONMENT INTERNATIONAL 2016; 91:104-115. [PMID: 26923711 PMCID: PMC4876822 DOI: 10.1016/j.envint.2016.02.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/29/2016] [Accepted: 02/09/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Factors underlying a possible excess of amyotrophic lateral sclerosis (ALS) among military veterans remain unidentified. Limitations of previous studies on this topic include reliance on ALS mortality as a surrogate for ALS incidence, low statistical power, and sparse information on military-related factors. OBJECTIVES We evaluated associations between military-related factors and ALS using data from a case-control study of U.S. military veterans. METHODS From 2005 to 2010, we identified medical record-confirmed ALS cases via the National Registry of Veterans with ALS and controls via the Veterans Benefits Administration's Beneficiary Identification and Records Locator System database. In total, we enrolled 621 cases and 958 frequency-matched controls in the Genes and Environmental Exposures in Veterans with Amyotrophic Lateral Sclerosis study. We collected information on military service and deployments and 39 related exposures. We used unconditional logistic regression models to estimate odds ratios (ORs) and 95% confidence intervals (CIs). We used inverse probability weighting to adjust for potential bias from confounding, missing covariate data, and selection arising from a case group that disproportionately included long-term survivors and a control group that may or may not differ from U.S. military veterans at large. RESULTS The odds of ALS did not differ for veterans of the Air Force, Army, Marines, and Navy. We found higher odds of ALS for veterans whose longest deployment was World War II or the Korean War and a positive trend with total years of all deployments (OR=1.27; 95% CI: 1.06, 1.52). ALS was positively associated with exposure to herbicides for military purposes, nasopharyngeal radium, personal pesticides, exhaust from heaters or generators, high-intensity radar waves, contaminated food, explosions within one mile, herbicides in the field, mixing and application of burning agents, burning agents in the field, and Agent Orange in the field, with ORs between 1.50 and 7.75. CONCLUSIONS Although our results need confirmation, they are potentially important given the large number of U.S. military veterans, and they provide clues to potential factors underlying the apparent increase of ALS in veteran populations.
Collapse
Affiliation(s)
- John D Beard
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Lawrence S Engel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David B Richardson
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Marilie D Gammon
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Coleen Baird
- Environmental Medicine Program, US Army Public Health Command, Aberdeen Proving Ground, MD, USA
| | - David M Umbach
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Kelli D Allen
- Durham VA Medical Center, Durham, NC, USA; Department of Medicine and Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Catherine L Stanwyck
- Durham VA Medical Center, Durham, NC, USA; Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | | | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Silke Schmidt
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Freya Kamel
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| |
Collapse
|
37
|
Occupational Exposure to Electric Shocks and Magnetic Fields and Amyotrophic Lateral Sclerosis in Sweden. Epidemiology 2015; 26:824-30. [DOI: 10.1097/ede.0000000000000365] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Huss A, Koeman T, Kromhout H, Vermeulen R. Extremely Low Frequency Magnetic Field Exposure and Parkinson's Disease--A Systematic Review and Meta-Analysis of the Data. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:7348-56. [PMID: 26133127 PMCID: PMC4515660 DOI: 10.3390/ijerph120707348] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 06/09/2015] [Accepted: 06/15/2015] [Indexed: 11/16/2022]
Abstract
Objective: To examine the association between occupational exposure to extremely-low-frequency magnetic fields (ELF-MF) and Parkinson’s disease. Methods: We systematically searched publications reporting risk estimates of Parkinson’s disease in workers exposed to ELF-MF. Summary relative risks were obtained with random effects meta-analysis. Results: We included 11 studies. To assign exposure, four studies evaluated occupational records, four used census, interview or questionnaire information and three used death certificates. Risk of Parkinson’s disease was not elevated in workers exposed to ELF-MF with a summary relative risk of 1.05, 95% CI 0.98–1.13. Conclusions: Overall, there was no evidence that the exposure to ELF-MF increases the risk of Parkinson’s disease.
Collapse
Affiliation(s)
- Anke Huss
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht 3584CM, The Netherlands.
- Institute of Social and Preventive Medicine, University of Bern, Bern 3012, Switzerland.
| | - Tom Koeman
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht 3584CM, The Netherlands.
| | - Hans Kromhout
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht 3584CM, The Netherlands.
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht 3584CM, The Netherlands.
- Julius Centre for Public Health Sciences and Primary Care, University Medical Centre, Utrecht 3584CG, The Netherlands.
| |
Collapse
|
39
|
Vergara XP, Fischer HJ, Yost M, Silva M, Lombardi DA, Kheifets L. Job exposure matrix for electric shock risks with their uncertainties. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:3889-902. [PMID: 25856552 PMCID: PMC4410222 DOI: 10.3390/ijerph120403889] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 11/16/2022]
Abstract
We present an update to an electric shock job exposure matrix (JEM) that assigned ordinal electric shocks exposure for 501 occupational titles based on electric shocks and electrocutions from two available data sources and expert judgment. Using formal expert elicitation and starting with data on electric injury, we arrive at a consensus-based JEM. In our new JEM, we quantify exposures by adding three new dimensions: (1) the elicited median proportion; (2) the elicited 25th percentile; and (3) and the elicited 75th percentile of those experiencing occupational electric shocks in a working lifetime. We construct the relative interquartile range (rIQR) based on uncertainty interval and the median. Finally, we describe overall results, highlight examples demonstrating the impact of cut point selection on exposure assignment, and evaluate potential impacts of such selection on epidemiologic studies of the electric work environment. In conclusion, novel methods allowed for consistent exposure estimates that move from qualitative to quantitative measures in this population-based JEM. Overlapping ranges of median exposure in various categories reflect our limited knowledge about this exposure.
Collapse
Affiliation(s)
- Ximena P Vergara
- Electric Power Research Institute, Environment Sector, Palo Alto, CA 94304, USA.
| | - Heidi J Fischer
- UCLA Fielding School of Public Health, Department of Biostatistics, Los Angeles, CA 90024, USA.
| | - Michael Yost
- Department of Environmental and Occupational Health Sciences, University of Washington School of Public Health, Seattle, WA 98195, USA.
| | | | - David A Lombardi
- Center for Injury Epidemiology, Liberty Mutual Research Institute for Safety, Hopkinton, MA 07418, USA.
| | - Leeka Kheifets
- UCLA Fielding School of Public Health, Department of Epidemiology, Los Angeles, CA 90024, USA.
| |
Collapse
|
40
|
Low-frequency magnetic fields do not aggravate disease in mouse models of Alzheimer's disease and amyotrophic lateral sclerosis. Sci Rep 2015; 5:8585. [PMID: 25717019 PMCID: PMC4341214 DOI: 10.1038/srep08585] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/27/2015] [Indexed: 11/08/2022] Open
Abstract
Low-frequency magnetic fields (LF-MF) generated by power lines represent a potential environmental health risk and are classified as possibly carcinogenic by the World Health Organization. Epidemiological studies indicate that LF-MF might propagate neurodegenerative diseases like Alzheimer's disease (AD) or amyotrophic lateral sclerosis (ALS). We conducted a comprehensive analysis to determine whether long-term exposure to LF-MF (50 Hz, 1 mT) interferes with disease development in established mouse models for AD and ALS, namely APP23 mice and mice expressing mutant Cu/Zn-superoxide dismutase (SOD1), respectively. Exposure for 16 months did not aggravate learning deficit of APP23 mice. Likewise, disease onset and survival of SOD1(G85R) or SOD1(G93A) mice were not altered upon LF-MF exposure for ten or eight months, respectively. These results and an extended biochemical analysis of protein aggregation, glial activation and levels of toxic protein species suggests that LF-MF do not affect cellular processes involved in the pathogenesis of AD or ALS.
Collapse
|
41
|
Brouwer M, Koeman T, van den Brandt PA, Kromhout H, Schouten LJ, Peters S, Huss A, Vermeulen R. Occupational exposures and Parkinson's disease mortality in a prospective Dutch cohort. Occup Environ Med 2015; 72:448-55. [DOI: 10.1136/oemed-2014-102209] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 02/09/2015] [Indexed: 12/19/2022]
|
42
|
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease. It is typically fatal within 2-5 years of symptom onset. The incidence of ALS is largely uniform across most parts of the world, but an increasing ALS incidence during the last decades has been suggested. Although recent genetic studies have substantially improved our understanding of the causes of ALS, especially familial ALS, an important role of non-genetic factors in ALS is recognized and needs further study. In this review, we briefly discuss several major genetic contributors to ALS identified to date, followed by a more focused discussion on the most commonly examined non-genetic risk factors for ALS. We first review factors related to lifestyle choices, including smoking, intake of antioxidants, physical fitness, body mass index, and physical exercise, followed by factors related to occupational and environmental exposures, including electromagnetic fields, metals, pesticides, β-methylamino-L-alanine, and viral infection. Potential links between ALS and other medical conditions, including head trauma, metabolic diseases, cancer, and inflammatory diseases, are also discussed. Finally, we outline several future directions aiming to more efficiently examine the role of non-genetic risk factors in ALS.
Collapse
Affiliation(s)
- Caroline Ingre
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Per M Roos
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Freya Kamel
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Fang Fang
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
43
|
Belyaev I, Dean A, Eger H, Hubmann G, Jandrisovits R, Johansson O, Kern M, Kundi M, Lercher P, Mosgöller W, Moshammer H, Müller K, Oberfeld G, Ohnsorge P, Pelzmann P, Scheingraber C, Thill R. EUROPAEM EMF Guideline 2015 for the prevention, diagnosis and treatment of EMF-related health problems and illnesses. REVIEWS ON ENVIRONMENTAL HEALTH 2015; 30:337-371. [PMID: 26613329 DOI: 10.1515/reveh-2015-0033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 10/13/2015] [Indexed: 06/05/2023]
Abstract
Chronic diseases and illnesses associated with unspecific symptoms are on the rise. In addition to chronic stress in social and work environments, physical and chemical exposures at home, at work, and during leisure activities are causal or contributing environmental stressors that deserve attention by the general practitioner as well as by all other members of the health care community. It seems certainly necessary now to take "new exposures" like electromagnetic field (EMF) into account. Physicians are increasingly confronted with health problems from unidentified causes. Studies, empirical observations, and patient reports clearly indicate interactions between EMF exposure and health problems. Individual susceptibility and environmental factors are frequently neglected. New wireless technologies and applications have been introduced without any certainty about their health effects, raising new challenges for medicine and society. For instance, the issue of so-called non-thermal effects and potential long-term effects of low-dose exposure were scarcely investigated prior to the introduction of these technologies. Common EMF sources include Wi-Fi access points, routers and clients, cordless and mobile phones including their base stations, Bluetooth devices, ELF magnetic fields from net currents, ELF electric fields from electric lamps and wiring close to the bed and office desk. On the one hand, there is strong evidence that long-term-exposure to certain EMF exposures is a risk factor for diseases such as certain cancers, Alzheimer's disease and male infertility. On the other hand, the emerging electromagnetic hypersensitivity (EHS) is more and more recognized by health authorities, disability administrators and case workers, politicians, as well as courts of law. We recommend treating EHS clinically as part of the group of chronic multisystem illnesses (CMI) leading to a functional impairment (EHS), but still recognizing that the underlying cause remains the environment. In the beginning, EHS symptoms often occur only occasionally, but over time they may increase in frequency and severity. Common EHS symptoms include headaches, concentration difficulties, sleeping problems, depression, lack of energy, fatigue and flu-like symptoms. A comprehensive medical history, which should include all symptoms and their occurrences in spatial and temporal terms and in the context of EMF exposures, is the key to the diagnosis. The EMF exposure can be assessed by asking for typical sources like Wi-Fi access points, routers and clients, cordless and mobile phones and measurements at home and at work. It is very important to take the individual susceptibility into account. The primary method of treatment should mainly focus on the prevention or reduction of EMF exposure, that is, reducing or eliminating all sources of EMF at home and in the workplace. The reduction of EMF exposure should also be extended to public spaces such as schools, hospitals, public transport, and libraries to enable persons with EHS an unhindered use (accessibility measure). If a detrimental EMF exposure is reduced sufficiently, the body has a chance to recover and EHS symptoms will be reduced or even disappear. Many examples have shown that such measures can prove effective. Also the survival rate of children with leukemia depends on ELF magnetic field exposure at home. To increase the effectiveness of the treatment, the broad range of other environmental factors that contribute to the total body burden should also be addressed. Anything that supports a balanced homeostasis will increase a person's resilience against disease and thus against the adverse effects of EMF exposure. There is increasing evidence that EMF exposure has a major impact on the oxidative and nitrosative regulation capacity in affected individuals. This concept also may explain why the level of susceptibility to EMF can change and why the number of symptoms reported in the context of EMF exposures is so large. Based on our current understanding, a treatment approach that minimizes the adverse effects of peroxynitrite - as has been increasingly used in the treatment of multisystem disorders - works best. This EMF Guideline gives an overview of the current knowledge regarding EMF-related health risks and provides concepts for the diagnosis and treatment and accessibility measures of EHS to improve and restore individual health outcomes as well as for the development of strategies for prevention.
Collapse
|
44
|
Vergara X, Mezei G, Kheifets L. Case-control study of occupational exposure to electric shocks and magnetic fields and mortality from amyotrophic lateral sclerosis in the US, 1991-1999. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2015; 25:65-71. [PMID: 24917188 DOI: 10.1038/jes.2014.39] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 04/10/2014] [Accepted: 04/15/2014] [Indexed: 06/03/2023]
Abstract
We investigated the relationship between occupational exposure to electric shocks (ES) and magnetic fields (MF) and amyotrophic lateral sclerosis (ALS) using 1991-1999 US mortality data. For each of the 5886 included ALS deaths, 10 controls-matched on sex-, age-, year- and region-were selected from among other deaths. Usual occupation as reported on death certificates was linked to job-exposure matrices for ES and MF. Education and electric occupations were associated with moderately increased ALS risks (odds ratio (OR)=1.85, 95% confidence interval (CI)=1.67, 2.04; OR=1.23, 95% CI=1.04, 1.47, respectively). For ES, ALS mortality OR were 0.73 (95% CI=0.67, 0.79) for high and 0.90 (95% CI=0.84, 0.97) for medium exposure compared with low exposure. For MF, ALS ORs were 1.09 (95% CI=1.00, 1.19) for high and 1.09 (95% CI=0.96, 1.23) for medium exposure as compared with low exposure. For electric occupations, ALS ORs were insensitive to adjustments for ES, MF or both. Consistent with previous publications, an association between electric occupations and ALS was observed. Findings do not support occupational exposure to ES or MF as an explanation.
Collapse
Affiliation(s)
- Ximena Vergara
- Department of Environment Sector, Electric Power Research Institute (EPRI), Palo Alto, California, USA
| | - Gabor Mezei
- Department of Environment Sector, Electric Power Research Institute (EPRI), Palo Alto, California, USA
| | - Leeka Kheifets
- Department of Epidemiology, UCLA School of Public Health, Los Angeles, California, USA
| |
Collapse
|
45
|
Elbaz A, Kab S, Moisan F. Épidémiologie et facteurs de risque professionnels des pathologies neuro-dégénératives. ARCH MAL PROF ENVIRO 2014. [DOI: 10.1016/j.admp.2014.07.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
46
|
Sorahan T, Mohammed N. Neurodegenerative disease and magnetic field exposure in UK electricity supply workers. Occup Med (Lond) 2014; 64:454-60. [DOI: 10.1093/occmed/kqu105] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
47
|
Extremely low-frequency magnetic field exposure, electrical shocks and risk of Parkinson’s disease. Int Arch Occup Environ Health 2014; 88:227-34. [DOI: 10.1007/s00420-014-0949-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 05/30/2014] [Indexed: 11/26/2022]
|
48
|
Davanipour Z, Tseng CC, Lee PJ, Markides KS, Sobel E. Severe Cognitive Dysfunction and Occupational Extremely Low Frequency Magnetic Field Exposure among Elderly Mexican Americans. ACTA ACUST UNITED AC 2013; 4:1641-1662. [PMID: 24839595 PMCID: PMC4020120 DOI: 10.9734/bjmmr/2014/7317] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Aims This report is the first study of the possible relationship between extremely low frequency (50–60 Hz, ELF) magnetic field (MF) exposure and severe cognitive dysfunction. Earlier studies investigated the relationships between MF occupational exposure and Alzheimer’s disease (AD) or dementia. These studies had mixed results, depending upon whether the diagnosis of AD or dementia was performed by experts and upon the methodology used to classify MF exposure. Study Design Population-based case-control. Place and Duration of Study Neurology and Preventive Medicine, Keck School of Medicine, University of Southern California, 2 years. Methodology The study population consisted of 3050 Mexican Americans, aged 65+, enrolled in Phase 1 of the Hispanic Established Population for the Epidemiologic Study of the Elderly (H-EPESE) study. Mini-Mental State Exam (MMSE) results, primary occupational history, and other data were collected. Severe cognitive dysfunction was defined as an MMSE score below 10. The MF exposure methodology developed and used in earlier studies was used. Results Univariate odds ratios (OR) were 3.4 (P< .03; 95% CI: 1.3–8.9) for high and 1.7 (P=.27; 95% CI: 0.7–4.1) for medium or high (M/H) MF occupations. In multivariate main effects models, the results were similar. When interaction terms were allowed in the models, the interactions between M/H or high occupational MF exposure and smoking history or age group were statistically significant, depending upon whether two (65–74, 75+) or three (65–74, 75–84, 85+) age groups were considered, respectively. When the analyses were limited to subjects aged 75+, the interactions between M/H or high MF occupations and a positive smoking history were statistically significant. Conclusion The results of this study indicate that working in an occupation with high or M/H MF exposure may increase the risk of severe cognitive dysfunction. Smoking and older age may increase the deleterious effect of MF exposure.
Collapse
Affiliation(s)
- Zoreh Davanipour
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Chiu-Chen Tseng
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Pey-Jiuan Lee
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Kyriakos S Markides
- Department of Preventive Medicine and Community Health, University of Texas Medical Branch, Galveston, Texas 77555-1153, USA
| | - Eugene Sobel
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA ; Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
49
|
THEME 6 EPIDEMIOLOGY. Amyotroph Lateral Scler Frontotemporal Degener 2013. [DOI: 10.3109/21678421.2013.838420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
50
|
Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration. Amyotroph Lateral Scler Frontotemporal Degener 2013. [DOI: 10.3109/21678421.2013.838413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|