1
|
Prenzler N, Salcher R, Büchner A, Warnecke A, Kley D, Batsoulis C, Vormelcher S, Mitterberger-Vogt M, Morettini S, Schilp S, Hochmair I, Lenarz T. Cochlear implantation with a dexamethasone-eluting electrode array: First-in-human safety and performance results. Hear Res 2025; 461:109255. [PMID: 40158223 DOI: 10.1016/j.heares.2025.109255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 04/02/2025]
Abstract
Cochlear implantation is the standard of care for individuals with severe-to-profound sensorineural hearing loss. However, implantation itself can degrade residual hearing, for example due to insertional trauma and subsequent inflammatory processes. One potential method to mitigate this loss of residual hearing is through the local and sustained delivery of anti-inflammatory drugs released from the electrode array. To this end, a dexamethasone eluting electrode array (FLEX28 DEX) was developed by MED-EL. Here we present the results from a first-in-human feasibility study of the CIDEXEL system (the Mi1200 SYNCHRONY cochlear implant combined with the FLEX28 DEX array). A single-arm, exploratory, open-label, prospective, longitudinal, and monocentric study design with sequential block enrolment was used. Nine participants were implanted with the CIDEXEL and were followed up to 9 months post first fitting. The primary aim was to evaluate the safety of the device. The secondary aims were to assess: 1) electrode impedance levels; 2) hearing preservation rates; 3) speech perception outcomes; and 4) subjective feedback from the surgeons regarding their experience with the device during the operation. There were no device- or procedure-related serious adverse events. Low and stable impedance levels were observed across all electrode sites (basal, medial and apical). In the majority of participants, good preservation of residual hearing (≤15 dB hearing loss) was achieved. The participants showed speech perception test results which were comparable to those with a non-eluting FLEX28 array. Surgeons reported that the CIDEXEL had similar handling and insertion properties to a conventional electrode array.
Collapse
Affiliation(s)
- Nils Prenzler
- Department of Otorhinolaryngology, Hannover Medical School, Hannover, Germany.
| | - Rolf Salcher
- Department of Otorhinolaryngology, Hannover Medical School, Hannover, Germany
| | - Andreas Büchner
- Department of Otorhinolaryngology, Hannover Medical School, Hannover, Germany
| | - Athanasia Warnecke
- Department of Otorhinolaryngology, Hannover Medical School, Hannover, Germany
| | - Daniel Kley
- Department of Otorhinolaryngology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | - Thomas Lenarz
- Department of Otorhinolaryngology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
2
|
Rahman MT, Mostaert B, Eckard P, Fatima SM, Scheperle R, Razu I, Hunger B, Olszewski RT, Gu S, Garcia C, Khan NA, Bennion DM, Oleson J, Kirk JR, Enke YL, Gay RD, Morell RJ, Hirose K, Hoa M, Claussen AD, Hansen MR. Cochlear implants with dexamethasone-eluting electrode arrays reduce foreign body response in a murine model of cochlear implantation and human subjects. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.11.24315311. [PMID: 39417118 PMCID: PMC11483020 DOI: 10.1101/2024.10.11.24315311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The inflammatory foreign body response (FBR) following cochlear implantation (CI) can negatively impact CI outcomes, including increased electrode impedances. This study aims to investigate the long-term efficacy of dexamethasone eluting cochlear implant and locally delivered dexamethasone, a potent anti-inflammatory glucocorticoid on the intracochlear FBR and electrical impedance post-implantation in a murine model and human subjects. The left ears of CX3CR1 +/GFP Thy1 +/YFP (macrophage-neuron dual reporter) mice were implanted with dexamethasone-eluting cochlear implants (Dex-CI) or standard implant (Standard-CI) while the right ear served as unoperated control. Another group of dual reporter mice was implanted with a standard CI electrode array followed by injection of dexamethasone in the middle ear to mimic current clinical practice (Dex-local). Mouse implants were electrically stimulated with serial measurement of electrical impedance. Human subjects were implanted with either standard or Dex-CI followed by serial impedance measurements. Dex-CI reduced electrical impedance in the murine model and human subjects and inflammatory FBR in the murine model for an extended period. Dex-local in the murine model is ineffective for long-term reduction of FBR and electrode impedance. Our data suggest that dexamethasone eluting arrays are more effective than the current clinical practice of locally applied dexamethasone in reducing FBR and electrical impedance.
Collapse
|
3
|
Gerlitz M, Yildiz E, Gadenstaetter AJ, Niisuke K, Kandathil SA, Nieratschker M, Landegger LD, Honeder C, Arnoldner C. Insertion trauma of a novel inner ear catheter for intracochlear drug delivery. Front Vet Sci 2024; 11:1397554. [PMID: 38903692 PMCID: PMC11188737 DOI: 10.3389/fvets.2024.1397554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/15/2024] [Indexed: 06/22/2024] Open
Abstract
Introduction Even with recent research advances, effective delivery of a compound to its target cells inside the inner ear remains a challenging endeavor due to anatomical and physiological barriers. Direct intracochlear drug administration with an inner ear catheter (IEC) aims to overcome this obstacle and strives to provide a safe and efficient way for inner ear pharmacotherapy. The goal of this study was to histologically and audiologically evaluate the traumatic properties of a novel IEC for intracochlear drug delivery in a large animal model. Methods Seven inner ears of piglets that had undergone intracochlear fluorescein isothiocyanate dextran application via an IEC (n = 4) or round window membrane (RWM) puncture with a needle (n = 3) followed by sequential apical perilymph sampling were histologically analyzed. Additionally, obtained objective auditory compound action potential and cochlear microphonic measurements were compared. Cochlear cryosections were stained using hematoxylin and eosin, and preservation of inner ear structures was investigated. Moreover, one cochlea was methylmethacrylate-embedded and analyzed with the IEC in situ. Results Histological evaluation revealed an atraumatic insertion and subsequent compound application in a majority of IEC-inserted inner ears. Click cochlear compound action potential (CAP) shifts in the IEC groups reached a maximum of 5 dB (1.25 ± 2.5 dB) post administration and prior to perilymph sampling. In comparison, application by RWM puncture generated a maximum click CAP hearing threshold shift of 50 dB (23.3 ± 23.1 dB) coinciding with coagulated blood in the basal cochlear turn in one specimen of the latter group. Furthermore, in situ histology showed an atraumatic insertion of the IEC demonstrating preserved intracochlear structures. Conclusion The IEC appears to be a promising and efficient way for inner ear drug delivery. The similarities between the porcine and human inner ear enhance the clinical translation of our findings and increase confidence regarding the safe applicability of the IEC in human subjects.
Collapse
Affiliation(s)
- Matthias Gerlitz
- Department of Otorhinolaryngology, Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Inner Ear Research, Department of Otorhinolaryngology, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Erdem Yildiz
- Department of Otorhinolaryngology, Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Inner Ear Research, Department of Otorhinolaryngology, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Anselm J. Gadenstaetter
- Department of Otorhinolaryngology, Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Inner Ear Research, Department of Otorhinolaryngology, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Katrin Niisuke
- Christian Doppler Laboratory for Inner Ear Research, Department of Otorhinolaryngology, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Sam A. Kandathil
- Department of Otorhinolaryngology, Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
- Division of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Michael Nieratschker
- Department of Otorhinolaryngology, Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Inner Ear Research, Department of Otorhinolaryngology, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Lukas D. Landegger
- Department of Otorhinolaryngology, Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Inner Ear Research, Department of Otorhinolaryngology, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Clemens Honeder
- Department of Otorhinolaryngology, Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Inner Ear Research, Department of Otorhinolaryngology, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Christoph Arnoldner
- Department of Otorhinolaryngology, Head and Neck Surgery, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Inner Ear Research, Department of Otorhinolaryngology, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Fleet A, Nikookam Y, Radotra A, Gowrishankar S, Metcalfe C, Muzaffar J, Smith ME, Monksfield P, Bance M. Outcomes following cochlear implantation with eluting electrodes: A systematic review. Laryngoscope Investig Otolaryngol 2024; 9:e1263. [PMID: 38855776 PMCID: PMC11160184 DOI: 10.1002/lio2.1263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/22/2024] [Accepted: 04/25/2024] [Indexed: 06/11/2024] Open
Abstract
Objectives To establish audiological and other outcomes following cochlear implantation in humans and animals with eluting electrodes. Methods Systematic review and narrative synthesis. Databases searched (April 2023): MEDLINE, EMBASE, CENTRAL, ClinicalTrials.gov, and Web of Science. Studies reporting outcomes in either humans or animals following cochlear implantation with a drug-eluting electrode were included. No limits were placed on language or year of publication. Risk of bias assessment was performed on all included studies using either the Brazzelli or Systematic Review Centre for Laboratory animal Experimentation (SYRCLE) assessment tools. The review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 statement. Results Searches identified 146 abstracts and 108 full texts. Of these, 18 studies met the inclusion criteria, reporting outcomes in 523 animals (17 studies) and 24 humans (1 study). Eluting electrodes included dexamethasone (16 studies), aracytine (1 study), nicotinamide adenine dinucleotide (1 study), the growth factors insulin-like growth factor 1 (IGF1) and hepatocyte growth factor (HGF) (1 study), and neurotrophin-3 (1 study). All included studies compare outcomes following implantation with an eluting electrode with a control non-eluting electrode. In the majority of studies, audiological outcomes (e.g., auditory brainstem response threshold) were superior following implantation with an eluting electrode compared with a standard electrode. Most studies which investigated post-implantation impedance reported lower impedance following implantation with an eluting electrode. The influence of eluting electrodes on other reported outcomes (including post-implantation cochlear fibrosis and the survival of hair cells and spiral ganglion neurons) was more varied across the included studies. Conclusions Eluting electrodes have shown promise in animal studies in preserving residual hearing following cochlear implantation and in reducing impedance, though data from human studies remain lacking. Further in-human studies will be required to determine the clinical usefulness of drug-eluting cochlear implants as a future treatment for sensorineural hearing loss.
Collapse
Affiliation(s)
- Alex Fleet
- Department of Clinical Neurosciences, Addenbrooke's Health CampusUniversity of CambridgeCambridgeUK
| | - Yasmin Nikookam
- Department of Ear, Nose and Throat SurgeryUniversity Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Mindelsohn WayEdgbastonBirminghamUK
| | - Anshul Radotra
- The Royal Wolverhampton NHS Trust New Cross HospitalWolverhamptonUK
| | - Shravan Gowrishankar
- Department of Clinical Neurosciences, Addenbrooke's Health CampusUniversity of CambridgeCambridgeUK
| | | | - Jameel Muzaffar
- Department of Clinical Neurosciences, Addenbrooke's Health CampusUniversity of CambridgeCambridgeUK
- Department of Ear, Nose and Throat SurgeryUniversity Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Mindelsohn WayEdgbastonBirminghamUK
| | - Matthew E. Smith
- Department of Clinical Neurosciences, Addenbrooke's Health CampusUniversity of CambridgeCambridgeUK
| | - Peter Monksfield
- Department of Ear, Nose and Throat SurgeryUniversity Hospitals Birmingham NHS Foundation Trust, Queen Elizabeth Hospital Birmingham, Mindelsohn WayEdgbastonBirminghamUK
| | - Manohar Bance
- Department of Clinical Neurosciences, Addenbrooke's Health CampusUniversity of CambridgeCambridgeUK
| |
Collapse
|
5
|
Manrique-Huarte R, Álvarez de Linera-Alperi M, Pérez-Fernández N, Manrique M. Acute histological reactions in the otolith organs to inner ear drug delivery through a cochlear implant. Front Neurol 2024; 15:1363481. [PMID: 38469594 PMCID: PMC10926955 DOI: 10.3389/fneur.2024.1363481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 01/30/2024] [Indexed: 03/13/2024] Open
Abstract
Introduction Cochlear implantation is currently regarded as a safe and minimally invasive procedure. However, cochlear implantation can have an impact on vestibular function, despite the lack of correlation between patient symptomatology and damage in vestibular tests. Thus, the present study aims to analyze the presence of hydrops and histological reactions at the level of the vestibule after cochlear implantation with dexamethasone pump delivery in Macaca fascicularis (Mf). Materials and methods A detailed histological study was conducted on a total of 11 Mf. All 11 Mf were divided into three groups: 5 Mf were implanted with an electrode array HL-14 connected to a pump delivering FITC-dextran for 24 h (Group A); 4 Mf were implanted with a CI electrode array attached to a pump for FITC-dextran delivery for 7 days (Group B); and 2 Mf were considered the control group, without any kind of cochlear device implantation (Group C). After drug deliver, the selected macaques were euthanized to collect tissue samples for histological analysis. An experienced observer, focusing on the utricle and saccule areas, conducted a blinded inner ear histology analysis. Results Surgical procedures were successfully performed in all cases. No signs of cochlear reaction to the device were observed, including neither collapse nor fibrosis. Endolymphatic sinus dilatation was observed in Mf4A and Mf3B, while cochlear hydrops was observed in Mf3A. The mean areas of the utricle and saccule exhibited some statistically significant differences, specifically, in the saccule between groups C and both groups A (p = 0.028) and B (p = 0.029); however, no significant differences were observed between groups A and B or among comparisons of the utricle. Discussion A significant concern relates to the safety of cochlear implantation with regard to vestibular preservation and hearing. New advancements in electrode arrays, such as CI devices coupled with delivery pumps, pose a challenge in maintaining minimally traumatic surgical concept-based procedures without affecting the inner ear homeostasis. The implantation of this device may cause vestibular hydrops in the saccule, indicating that the longer the time of substance release, the greater the grade of hydrops evidenced at the saccular level. Apart from this finding, the risk of histological damage to the vestibule is low.
Collapse
Affiliation(s)
- Raquel Manrique-Huarte
- Department of Otorhinolaryngology, Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain
| | | | - Nicolás Pérez-Fernández
- Department of Otorhinolaryngology, Clínica Universidad de Navarra, University of Navarra, Madrid, Spain
| | - Manuel Manrique
- Department of Otorhinolaryngology, Clínica Universidad de Navarra, University of Navarra, Pamplona, Spain
| |
Collapse
|
6
|
Rahman MT, Mostaert BJ, Hunger B, Saha U, Claussen AD, Razu I, Nasrin F, Khan NA, Eckard P, Coleman S, Oleson J, Kirk JR, Hirose K, Hansen MR. Contribution of macrophages to neural survival and intracochlear tissue remodeling responses following cochlear implantation. J Neuroinflammation 2023; 20:266. [PMID: 37974203 PMCID: PMC10652501 DOI: 10.1186/s12974-023-02955-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Cochlear implants (CIs) restore hearing to deafened patients. The foreign body response (FBR) following cochlear implantation (post-CI) comprises an infiltration of macrophages, other immune and non-immune cells, and fibrosis into the scala tympani, a space that is normally devoid of cells. This FBR is associated with negative effects on CI outcomes including increased electrode impedances and loss of residual acoustic hearing. This study investigates the extent to which macrophage depletion by an orally administered CSF-1R specific kinase (c-FMS) inhibitor, PLX-5622, modulates the tissue response to CI and neural health. MAIN TEXT 10- to 12-week-old CX3CR1 + /GFP Thy1 + /YFP mice on C57BL/6J/B6 background was fed chow containing 1200 mg/kg PLX5622 or control chow for the duration of the study. 7 days after starting the diet, 3-channel cochlear implants were implanted in the ear via the round window. Serial impedance and neural response telemetry (NRT) measurements were acquired throughout the study. Electric stimulation began 7 days post-CI until 28 days post-CI for 5 h/day, 5 days/week, with programming guided by NRT and behavioral responses. Cochleae harvested at 10, 28 or 56 days post-CI were cryosectioned and labeled with an antibody against α-smooth muscle actin (α-SMA) to identify myofibroblasts and quantify the fibrotic response. Using IMARIS image analysis software, the outlines of scala tympani, Rosenthal canal, modiolus, and lateral wall for each turn were traced manually to measure region volume. The density of nuclei, CX3CR1 + macrophages, Thy1 + spiral ganglion neuron (SGN) numbers, and the ratio of the α-SMA + volume/scala tympani volume were calculated. Cochlear implantation in control diet subjects caused infiltration of cells, including macrophages, into the cochlea. Fibrosis was evident in the scala tympani adjacent to the electrode array. Mice fed PLX5622 chow showed reduced macrophage infiltration throughout the implanted cochleae across all time points. However, scala tympani fibrosis was not reduced relative to control diet subjects. Further, mice treated with PLX5622 showed increased electrode impedances compared to controls. Finally, treatment with PLX5622 decreased SGN survival in implanted and contralateral cochleae. CONCLUSION The data suggest that macrophages play an important role in modulating the intracochlear tissue response following CI and neural survival.
Collapse
Affiliation(s)
- Muhammad Taifur Rahman
- Department of Otolaryngology-Head and Neck Surgery, The University of Iowa, Iowa City, IA, 52242, USA
| | - Brian J Mostaert
- Department of Otolaryngology-Head and Neck Surgery, The University of Iowa, Iowa City, IA, 52242, USA
| | - Bryce Hunger
- Department of Otolaryngology-Head and Neck Surgery, The University of Iowa, Iowa City, IA, 52242, USA
| | - Utsow Saha
- Department of Otolaryngology-Head and Neck Surgery, The University of Iowa, Iowa City, IA, 52242, USA
| | - Alexander D Claussen
- Department of Otolaryngology-Head and Neck Surgery, The University of Iowa, Iowa City, IA, 52242, USA
| | - Ibrahim Razu
- Department of Otolaryngology-Head and Neck Surgery, The University of Iowa, Iowa City, IA, 52242, USA
| | - Farjana Nasrin
- Department of Otolaryngology-Head and Neck Surgery, The University of Iowa, Iowa City, IA, 52242, USA
| | - Nashwaan Ali Khan
- Department of Otolaryngology-Head and Neck Surgery, The University of Iowa, Iowa City, IA, 52242, USA
| | - Peter Eckard
- Department of Otolaryngology-Head and Neck Surgery, The University of Iowa, Iowa City, IA, 52242, USA
| | - Sarah Coleman
- Department of Biostatistics, The University of Iowa, Iowa City, IA, USA
| | - Jacob Oleson
- Department of Biostatistics, The University of Iowa, Iowa City, IA, USA
| | | | - Keiko Hirose
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Marlan R Hansen
- Department of Otolaryngology-Head and Neck Surgery, The University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
7
|
Lehner E, Honeder C, Knolle W, Binder W, Scheffler J, Plontke SK, Liebau A, Mäder K. Towards the optimization of drug delivery to the cochlear apex: Influence of polymer and drug selection in biodegradable intracochlear implants. Int J Pharm 2023; 643:123268. [PMID: 37488058 DOI: 10.1016/j.ijpharm.2023.123268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
There is growing need for new drug delivery systems for intracochlear application of drugs to effectively treat inner ear disorders. In this study, we describe the development and characterization of biodegradable, triamcinolone-loaded implants based on poly(lactic-co-glycolic acid) (PLGA) and polyethylene glycol-poly(lactic-co-glycolic acid) (PEG-PLGA) respectively, prepared by hot-melt extrusion. PEG 1500 was used as a plasticizer to improve flexibility and accelerate drug release. The sterilization process was performed by electron beam irradiation, resulting in minimal but acceptable polymer degradation for PEG-PLGA implants. The implants have been characterized by texture analysis, differential scanning calorimetry and X-ray powder diffraction. Compared to PLGA implants, PEG-PLGA implants offer similar flexibility but with improved mechanical stability, which will ease the handling and intracochlear application. A controlled release over three months was observed for dexamethasone and triamcinolone extrudates (drug load of 10%) with similar release profiles for both drugs. PEG-PLGA implants showed an initial slow release rate over several days regardless of the amount of PEG added. Mathematical simulations of the pharmacokinetics of the inner ear based on the in vitro release kinetics indicate a complete distribution of triamcinolone in the whole human scala tympani, which underlines the high potential of the developed formulation.
Collapse
Affiliation(s)
- E Lehner
- Department of Otorhinolaryngology-Head and Neck Surgery, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany.
| | - C Honeder
- Department of Otorhinolaryngology-Head and Neck Surgery, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - W Knolle
- Leibniz Institute of Surface Engineering (IOM), Leipzig, Germany
| | - W Binder
- Institute of Chemistry, Martin-Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - J Scheffler
- Department of Otorhinolaryngology-Head and Neck Surgery, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - S K Plontke
- Department of Otorhinolaryngology-Head and Neck Surgery, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany; Halle Research Centre for Drug Therapy (HRCDT), Halle (Saale), Germany
| | - A Liebau
- Department of Otorhinolaryngology-Head and Neck Surgery, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - K Mäder
- Institute of Pharmacy, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany; Halle Research Centre for Drug Therapy (HRCDT), Halle (Saale), Germany
| |
Collapse
|
8
|
Prenzler NK, Salcher R, Lenarz T, Gaertner L, Lesinski-Schiedat A, Warnecke A. Deep intracochlear injection of triamcinolone-acetonide with an inner ear catheter in patients with residual hearing. Front Neurosci 2023; 17:1202429. [PMID: 37564369 PMCID: PMC10410142 DOI: 10.3389/fnins.2023.1202429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/10/2023] [Indexed: 08/12/2023] Open
Abstract
Introduction In a previous study, an inner ear catheter was used to deliver low- and high-dose steroids into the cochlea prior to cochlear implant electrode insertion. With this approach, more apical regions of the cochlea could be reached and a reduction of electrode impedances in the short term was achieved in cochlear implant recipients. Whether intracochlear application of drugs via the catheter is a safe method also for patients with residual hearing has not been investigated hitherto. The aim of the present study was therefore to investigate the effect of intracochlear triamcinolone application in cochlear implant recipients with residual hearing. Patients and methods Patients with residual hearing were administered triamcinolone-acetonide (4 mg/ml; n = 10) via an inner ear catheter just prior to insertion of a MED-EL FLEX28 electrode. Impedances were measured at defined time points (intra-operatively, post-operatively and at first fitting) and retrospectively compared with a control group (no steroid application) and low- and high-dose group. Hearing thresholds were measured preoperatively, 3 days after surgery and at first fitting by pure tone audiometry. Pre- to postoperative hearing loss was determined at first fitting and compared to results from a previous study. Results The median hearing loss after implantation (125-1,500 Hz) was 20.6 dB. Four patients (40%) showed a median hearing loss of less than 15 dB, three patients (30%) between 15 and 30 dB and three patients (30%) more than 30 dB. The median hearing loss was similar to the results obtained from our previous study showing a median hearing loss of 24 dB when using FLEX28 electrode arrays. Conclusion No difference in residual hearing loss was found when comparing application of triamcinolone-acetonide using an inner ear catheter prior to the insertion of a FLEX28 electrode array to the use of the FLEX28 electrode array without the catheter. Thus, we conclude that application of drugs to the cochlea with an inner ear catheter could be a feasible approach in patients with residual hearing.
Collapse
Affiliation(s)
- Nils K. Prenzler
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hanover, Germany
| | - Rolf Salcher
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hanover, Germany
| | - Thomas Lenarz
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hanover, Germany
- Cluster of Excellence “Hearing 4 All” (DFG Exc. 2177), Hannover Medical School, Hanover, Germany
| | - Lutz Gaertner
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hanover, Germany
| | - Anke Lesinski-Schiedat
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hanover, Germany
| | - Athanasia Warnecke
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Hanover, Germany
- Cluster of Excellence “Hearing 4 All” (DFG Exc. 2177), Hannover Medical School, Hanover, Germany
| |
Collapse
|
9
|
Rahman MT, Mostaert BJ, Hunger B, Saha U, Claussen AD, Razu I, Farjana N, Khan NA, Coleman S, Oleson J, Kirk J, Keiko H, Hansen MR. Contribution of macrophages to intracochlear tissue remodeling responses following cochlear implantation and neural survival. RESEARCH SQUARE 2023:rs.3.rs-3065630. [PMID: 37461619 PMCID: PMC10350110 DOI: 10.21203/rs.3.rs-3065630/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Introduction Cochlear implants (CIs) restore hearing to deafened patients. The foreign body response (FBR) following cochlear implantation (post-CI) comprises an infiltration of macrophages, other immune and non-immune cells, and fibrosis into the scala tympani; a space that is normally devoid of cells. This FBR is associated with negative effects on CI outcomes including increased electrode impedances and loss of residual acoustic hearing. This study investigates the extent to which macrophage depletion by an orally administered CSF-1R specific kinase (c-FMS) inhibitor, PLX-5622, modulates the tissue response to CI and neural health. Materials and methods 10-12-week-old CX3CR1+/GFP Thy1+/YFP mice on C57Bl6 background with normal hearing were fed chow containing 1200 mg/kg PLX5622 or control chow for the duration of the study. 7-days after starting the diet, 3-channel cochlear implants were implanted ear via the round window. Serial impedance and neural response telemetry (NRT) measurements were acquired throughout the study. Electric stimulation began 7 days post-CI until 28- days post-CI for 5 hrs/day, 5 days/week, with programming guided by NRT and behavioral responses. Cochleae harvested at 10-, 28- or 56-days post-CI were cryosectioned and labeled with antibody against α-smooth muscle actin (α-SMA) to identify myofibroblasts and quantify the fibrotic response. Using IMARIS image analysis software, the outlines of scala tympani, Rosenthal canal, modiolus and lateral wall for each turn were traced manually to measure region volume. Density of nuclei, CX3CR1+ macrophages, Thy1+ spiral ganglion neuron (SGN) numbers and ratio of volume of α-SMA+ space/volume of scala tympani were calculated. Results Cochlear implantation in control diet subjects caused infiltration of cells, including macrophages, into the cochlea: this response was initially diffuse throughout the cochlea and later localized to the scala tympani of the basal turn by 56-days post-CI. Fibrosis was evident in the scala tympani adjacent to the electrode array. Mice fed PLX5622 chow showed reduced macrophage infiltration throughout the implanted cochleae across all timepoints. However, scala tympani fibrosis was not reduced relative to control diet subjects. Further, mice treated with PLX5622 showed increased electrode impedances compared to controls. Finally, treatment with PLX5622 decreased SGN survival in implanted and contralateral cochleae. Discussion The data suggest that macrophages play an important role in modulating the intracochlear tissue response following CI and neural survival.
Collapse
Affiliation(s)
| | - Brain J Mostaert
- Department of Otolaryngology-Head and Neck Surgery, The University of Iowa, IA
| | - Bryce Hunger
- Department of Otolaryngology-Head and Neck Surgery, The University of Iowa, IA
| | - Utsow Saha
- Department of Otolaryngology-Head and Neck Surgery, The University of Iowa, IA
| | | | - Ibrahim Razu
- Department of Otolaryngology-Head and Neck Surgery, The University of Iowa, IA
| | - Nasrin Farjana
- Department of Otolaryngology-Head and Neck Surgery, The University of Iowa, IA
| | - Nashwaan Ali Khan
- Department of Otolaryngology-Head and Neck Surgery, The University of Iowa, IA
| | - Sarah Coleman
- Department of Statistics, The University of Iowa, IA
| | - Jackob Oleson
- Department of Statistics, The University of Iowa, IA
| | | | - Hirose Keiko
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St Louis, MO
| | - Marlan R Hansen
- Department of Otolaryngology-Head and Neck Surgery, The University of Iowa, IA
| |
Collapse
|
10
|
Schvartz-Leyzac KC, Colesa DJ, Swiderski DL, Raphael Y, Pfingst BE. Cochlear Health and Cochlear-implant Function. J Assoc Res Otolaryngol 2023; 24:5-29. [PMID: 36600147 PMCID: PMC9971430 DOI: 10.1007/s10162-022-00882-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/24/2022] [Indexed: 01/06/2023] Open
Abstract
The cochlear implant (CI) is widely considered to be one of the most innovative and successful neuroprosthetic treatments developed to date. Although outcomes vary, CIs are able to effectively improve hearing in nearly all recipients and can substantially improve speech understanding and quality of life for patients with significant hearing loss. A wealth of research has focused on underlying factors that contribute to success with a CI, and recent evidence suggests that the overall health of the cochlea could potentially play a larger role than previously recognized. This article defines and reviews attributes of cochlear health and describes procedures to evaluate cochlear health in humans and animal models in order to examine the effects of cochlear health on performance with a CI. Lastly, we describe how future biologic approaches can be used to preserve and/or enhance cochlear health in order to maximize performance for individual CI recipients.
Collapse
Affiliation(s)
- Kara C Schvartz-Leyzac
- Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, Kresge Hearing Research Institute, University of Michigan, 1150 Medical Center Drive, Ann Arbor, MI, 48109-5616, USA
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Ave, Charleston, SC, 29425, USA
| | - Deborah J Colesa
- Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, Kresge Hearing Research Institute, University of Michigan, 1150 Medical Center Drive, Ann Arbor, MI, 48109-5616, USA
| | - Donald L Swiderski
- Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, Kresge Hearing Research Institute, University of Michigan, 1150 Medical Center Drive, Ann Arbor, MI, 48109-5616, USA
| | - Yehoash Raphael
- Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, Kresge Hearing Research Institute, University of Michigan, 1150 Medical Center Drive, Ann Arbor, MI, 48109-5616, USA
| | - Bryan E Pfingst
- Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, Kresge Hearing Research Institute, University of Michigan, 1150 Medical Center Drive, Ann Arbor, MI, 48109-5616, USA.
| |
Collapse
|
11
|
Gay RD, Enke YL, Kirk JR, Goldman DR. Therapeutics for hearing preservation and improvement of patient outcomes in cochlear implantation—Progress and possibilities. Hear Res 2022; 426:108637. [DOI: 10.1016/j.heares.2022.108637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 11/04/2022]
|
12
|
Rahman MT, Chari DA, Ishiyama G, Lopez I, Quesnel AM, Ishiyama A, Nadol JB, Hansen MR. Cochlear implants: Causes, effects and mitigation strategies for the foreign body response and inflammation. Hear Res 2022; 422:108536. [PMID: 35709579 PMCID: PMC9684357 DOI: 10.1016/j.heares.2022.108536] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 04/20/2022] [Accepted: 05/23/2022] [Indexed: 12/15/2022]
Abstract
Cochlear implants provide effective auditory rehabilitation for patients with severe to profound sensorineural hearing loss. Recent advances in cochlear implant technology and surgical approaches have enabled a greater number of patients to benefit from this technology, including those with significant residual low frequency acoustic hearing. Nearly all cochleae implanted with a cochlear implant electrode array develop an inflammatory and fibrotic response. This tissue reaction can have deleterious consequences for implant function, residual acoustic hearing, and the development of the next generation of cochlear prosthetics. This article reviews the current understanding of the inflammatory/foreign body response (FBR) after cochlear implant surgery, its impact on clinical outcome, and therapeutic strategies to mitigate this response. Findings from both in human subjects and animal models across a variety of species are highlighted. Electrode array design, surgical techniques, implant materials, and the degree and type of electrical stimulation are some critical factors that affect the FBR and inflammation. Modification of these factors and various anti-inflammatory pharmacological interventions have been shown to mitigate the inflammatory/FBR response. Ongoing and future approaches that seek to limit surgical trauma and curb the FBR to the implanted biomaterials of the electrode array are discussed. A better understanding of the anatomical, cellular and molecular basis of the inflammatory/FBR response after cochlear implantation has the potential to improve the outcome of current cochlear implants and also facilitate the development of the next generation of neural prostheses.
Collapse
Affiliation(s)
- Muhammad T Rahman
- Department of Otolaryngology-Head & Neck Surgery, University of Iowa, Iowa City, IA, USA
| | - Divya A Chari
- Department of Otolaryngology-Head & Neck Surgery, Harvard University, Boston, MA, USA
| | - Gail Ishiyama
- Department of Head & Neck Surgery, University of California Los Angeles, LA, USA
| | - Ivan Lopez
- Department of Head & Neck Surgery, University of California Los Angeles, LA, USA
| | - Alicia M Quesnel
- Department of Otolaryngology-Head & Neck Surgery, Harvard University, Boston, MA, USA
| | - Akira Ishiyama
- Department of Head & Neck Surgery, University of California Los Angeles, LA, USA
| | - Joseph B Nadol
- Department of Otolaryngology-Head & Neck Surgery, Harvard University, Boston, MA, USA
| | - Marlan R Hansen
- Department of Otolaryngology-Head & Neck Surgery, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
13
|
Matin-Mann F, Gao Z, Schwieger J, Ulbricht M, Domsta V, Senekowitsch S, Weitschies W, Seidlitz A, Doll K, Stiesch M, Lenarz T, Scheper V. Individualized, Additively Manufactured Drug-Releasing External Ear Canal Implant for Prevention of Postoperative Restenosis: Development, In Vitro Testing, and Proof of Concept in an Individual Curative Trial. Pharmaceutics 2022; 14:pharmaceutics14061242. [PMID: 35745813 PMCID: PMC9228097 DOI: 10.3390/pharmaceutics14061242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022] Open
Abstract
Postoperative restenosis in patients with external ear canal (EEC) atresia or stenosis is a common complication following canaloplasty. Our aim in this study was to explore the feasibility of using a three dimensionally (3D)-printed, patient-individualized, drug ((dexamethasone (DEX)), and ciprofloxacin (cipro))-releasing external ear canal implant (EECI) as a postoperative stent after canaloplasty. We designed and pre-clinically tested this novel implant for drug release (by high-performance liquid chromatography), biocompatibility (by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay), bio-efficacy (by the TNF-α (tumor necrosis factor-alpha)-reduction test (DEX) and inhibition zone test (for cipro)), and microbial contamination (formation of turbidity or sediments in culture medium). The EECI was implanted for the first time to one patient with a history of congenital EEC atresia and state after three canaloplasties due to EEC restenosis. The preclinical tests revealed no cytotoxic effect of the used materials; an antibacterial effect was verified against the bacteria Staphylococcus aureus and Pseudomonas aeruginosa, and the tested UV-irradiated EECI showed no microbiological contamination. Based on the test results, the combination of silicone with 1% DEX and 0.3% cipro was chosen to treat the patient. The EECI was implantable into the EEC; the postoperative follow-up visits revealed no otogenic symptoms or infections and the EECI was explanted three months postoperatively. Even at 12 months postoperatively, the EEC showed good epithelialization and patency. Here, we report the first ever clinical application of an individualized, drug-releasing, mechanically flexible implant and suggest that our novel EECI represents a safe and effective method for postoperatively stenting the reconstructed EEC.
Collapse
Affiliation(s)
- Farnaz Matin-Mann
- Department of Otorhinolaryngology, Head and Neck Surgery, Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany; (Z.G.); (J.S.); (T.L.); (V.S.)
- Correspondence: ; Tel.: +49-511-532-6565; Fax: +49-511-532-8001
| | - Ziwen Gao
- Department of Otorhinolaryngology, Head and Neck Surgery, Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany; (Z.G.); (J.S.); (T.L.); (V.S.)
- Cluster of Excellence”Hearing4all” EXC 1077/1, 30625 Hannover, Germany
| | - Jana Schwieger
- Department of Otorhinolaryngology, Head and Neck Surgery, Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany; (Z.G.); (J.S.); (T.L.); (V.S.)
- Cluster of Excellence”Hearing4all” EXC 1077/1, 30625 Hannover, Germany
| | - Martin Ulbricht
- Center of Drug Absorption and Transport, Department of Biopharmacy and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, 17489 Greifswald, Germany; (M.U.); (V.D.); (S.S.); (W.W.); (A.S.)
| | - Vanessa Domsta
- Center of Drug Absorption and Transport, Department of Biopharmacy and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, 17489 Greifswald, Germany; (M.U.); (V.D.); (S.S.); (W.W.); (A.S.)
| | - Stefan Senekowitsch
- Center of Drug Absorption and Transport, Department of Biopharmacy and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, 17489 Greifswald, Germany; (M.U.); (V.D.); (S.S.); (W.W.); (A.S.)
| | - Werner Weitschies
- Center of Drug Absorption and Transport, Department of Biopharmacy and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, 17489 Greifswald, Germany; (M.U.); (V.D.); (S.S.); (W.W.); (A.S.)
| | - Anne Seidlitz
- Center of Drug Absorption and Transport, Department of Biopharmacy and Pharmaceutical Technology, Institute of Pharmacy, University of Greifswald, 17489 Greifswald, Germany; (M.U.); (V.D.); (S.S.); (W.W.); (A.S.)
- Institute of Pharmaceutics and Biopharmaceutics, University of Duesseldorf, 40225 Dusseldorf, Germany
| | - Katharina Doll
- Clinic for Dental Prosthetics and Biomedical Materials Science, Hanover Medical School, 30625 Hannover, Germany; (K.D.); (M.S.)
| | - Meike Stiesch
- Clinic for Dental Prosthetics and Biomedical Materials Science, Hanover Medical School, 30625 Hannover, Germany; (K.D.); (M.S.)
| | - Thomas Lenarz
- Department of Otorhinolaryngology, Head and Neck Surgery, Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany; (Z.G.); (J.S.); (T.L.); (V.S.)
- Cluster of Excellence”Hearing4all” EXC 1077/1, 30625 Hannover, Germany
| | - Verena Scheper
- Department of Otorhinolaryngology, Head and Neck Surgery, Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover Medical School, Stadtfelddamm 34, 30625 Hannover, Germany; (Z.G.); (J.S.); (T.L.); (V.S.)
- Cluster of Excellence”Hearing4all” EXC 1077/1, 30625 Hannover, Germany
| |
Collapse
|
14
|
Liu SS, Yang R. Inner Ear Drug Delivery for Sensorineural Hearing Loss: Current Challenges and Opportunities. Front Neurosci 2022; 16:867453. [PMID: 35685768 PMCID: PMC9170894 DOI: 10.3389/fnins.2022.867453] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/02/2022] [Indexed: 12/20/2022] Open
Abstract
Most therapies for treating sensorineural hearing loss are challenged by the delivery across multiple tissue barriers to the hard-to-access anatomical location of the inner ear. In this review, we will provide a recent update on various pharmacotherapy, gene therapy, and cell therapy approaches used in clinical and preclinical studies for the treatment of sensorineural hearing loss and approaches taken to overcome the drug delivery barriers in the ear. Small-molecule drugs for pharmacotherapy can be delivered via systemic or local delivery, where the blood-labyrinth barrier hinders the former and tissue barriers including the tympanic membrane, the round window membrane, and/or the oval window hinder the latter. Meanwhile, gene and cell therapies often require targeted delivery to the cochlea, which is currently achieved via intra-cochlear or intra-labyrinthine injection. To improve the stability of the biomacromolecules during treatment, e.g., RNAs, DNAs, proteins, additional packing vehicles are often required. To address the diverse range of biological barriers involved in inner ear drug delivery, each class of therapy and the intended therapeutic cargoes will be discussed in this review, in the context of delivery routes commonly used, delivery vehicles if required (e.g., viral and non-viral nanocarriers), and other strategies to improve drug permeation and sustained release (e.g., hydrogel, nanocarriers, permeation enhancers, and microfluidic systems). Overall, this review aims to capture the important advancements and key steps in the development of inner ear therapies and delivery strategies over the past two decades for the treatment and prophylaxis of sensorineural hearing loss.
Collapse
Affiliation(s)
- Sophie S. Liu
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - Rong Yang
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| |
Collapse
|
15
|
Dohr D, Wulf K, Grabow N, Mlynski R, Schraven SP. A PLLA Coating Does Not Affect the Insertion Pressure or Frictional Behavior of a CI Electrode Array at Higher Insertion Speeds. MATERIALS 2022; 15:ma15093049. [PMID: 35591381 PMCID: PMC9104964 DOI: 10.3390/ma15093049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 01/27/2023]
Abstract
To prevent endocochlear insertion trauma, the development of drug delivery coatings in the field of CI electrodes has become an increasing focus of research. However, so far, the effect of a polymer coating of PLLA on the mechanical properties, such as the insertion pressure and friction of an electrode array, has not been investigated. In this study, the insertion pressure of a PLLA-coated, 31.5-mm long standard electrode array was examined during placement in a linear cochlear model. Additionally, the friction coefficients between a PLLA-coated electrode array and a tissue simulating the endocochlear lining were acquired. All data were obtained at different insertion speeds (0.1, 0.5, 1.0, 1.5, and 2.0 mm/s) and compared with those of an uncoated electrode array. It was shown that both the maximum insertion pressure generated in the linear model and the friction coefficient of the PLLA-coated electrode did not depend on the insertion speed. At higher insertion speeds above 1.0 mm/s, the insertion pressure (1.268 ± 0.032 mmHg) and the friction coefficient (0.40 ± 0.15) of the coated electrode array were similar to those of an uncoated array (1.252 ± 0.034 mmHg and 0.36 ± 0.15). The present study reveals that a PLLA coating on cochlear electrode arrays has a negligible effect on the electrode array insertion pressure and the friction when higher insertion speeds are used compared with an uncoated electrode array. Therefore, PLLA is a suitable material to be used as a coating for CI electrode arrays and can be considered for a potential drug delivery system.
Collapse
Affiliation(s)
- Dana Dohr
- Department of Otorhinolaryngology, Head and Neck Surgery “Otto Körner”, Rostock University Medical Center, 18057 Rostock, Germany; (R.M.); (S.P.S.)
- Correspondence: author
| | - Katharina Wulf
- Institute for Biomedical Engineering, Rostock University Medical Center, 18119 Rostock, Germany; (K.W.); (N.G.)
| | - Niels Grabow
- Institute for Biomedical Engineering, Rostock University Medical Center, 18119 Rostock, Germany; (K.W.); (N.G.)
| | - Robert Mlynski
- Department of Otorhinolaryngology, Head and Neck Surgery “Otto Körner”, Rostock University Medical Center, 18057 Rostock, Germany; (R.M.); (S.P.S.)
| | - Sebastian P. Schraven
- Department of Otorhinolaryngology, Head and Neck Surgery “Otto Körner”, Rostock University Medical Center, 18057 Rostock, Germany; (R.M.); (S.P.S.)
| |
Collapse
|
16
|
Dexamethasone for Inner Ear Therapy: Biocompatibility and Bio-Efficacy of Different Dexamethasone Formulations In Vitro. Biomolecules 2021; 11:biom11121896. [PMID: 34944539 PMCID: PMC8699596 DOI: 10.3390/biom11121896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 01/27/2023] Open
Abstract
Dexamethasone is widely used in preclinical studies and clinical trials to treat inner ear disorders. The results of those studies vary widely, maybe due to the different dexamethasone formulations used. Laboratory (lab) and medical grade (med) dexamethasone (DEX, C22H29FO5) and dexamethasone dihydrogen phosphate-disodium (DPS, C22H28FNa2O8P) were investigated for biocompatibility and bio-efficacy in vitro. The biocompatibility of each dexamethasone formulation in concentrations from 0.03 to 10,000 µM was evaluated using an MTT assay. The concentrations resulting in the highest cell viability were selected to perform a bio-efficiency test using a TNFα-reduction assay. All dexamethasone formulations up to 900 µM are biocompatible in vitro. DPS-lab becomes toxic at 1000 µM and DPS-med at 2000 µM, while DEX-lab and DEX-med become toxic at 4000 µM. Bio-efficacy was evaluated for DEX-lab and DPS-med at 300 µM, for DEX-med at 60 µM, and DPS-lab at 150 µM, resulting in significantly reduced expression of TNFα, with DPS-lab having the highest effect. Different dexamethasone formulations need to be applied in different concentration ranges to be biocompatible. The concentration to be applied in future studies should carefully be chosen based on the respective dexamethasone form, application route and duration to ensure biocompatibility and bio-efficacy.
Collapse
|
17
|
Tarabichi O, Jensen M, Hansen MR. Advances in hearing preservation in cochlear implant surgery. Curr Opin Otolaryngol Head Neck Surg 2021; 29:385-390. [PMID: 34354014 PMCID: PMC9002354 DOI: 10.1097/moo.0000000000000742] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Advancements in cochlear implant surgical approaches and electrode designs have enabled preservation of residual acoustic hearing. Preservation of low-frequency hearing allows cochlear implant users to benefit from electroacoustic stimulation, which improves performance in complex listening situations, such as music appreciation and speech understanding in noise. Despite the relative high rates of success of hearing preservation, postoperative acoustic hearing outcomes remain unpredictable. RECENT FINDINGS Thin, flexible, lateral wall arrays are preferred for hearing preservation. Both shortened and thin, lateral wall arrays have shown success with hearing preservation and the optimal implant choice is an issue of ongoing investigation. Electrocochleography can monitor cochlear function during and after insertion of the electrode array. The pathophysiology of hearing loss acutely after cochlear implant may differ from that involved in delayed hearing loss following cochlear implant. Emerging innovations may reduce cochlear trauma and improve hearing preservation. SUMMARY Hearing preservation is possible using soft surgical techniques and electrode arrays designed to minimize cochlear trauma; however, a subset of patients suffer from partial to total loss of acoustic hearing months to years following surgery despite evidence of residual apical hair cell function. Early investigations in robotic-assisted insertion and dexamethasone-eluting implants show promise.
Collapse
Affiliation(s)
- Osama Tarabichi
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA
| | - Megan Jensen
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA
| | - Marlan R. Hansen
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa Hospitals and Clinics, Iowa City, IA
| |
Collapse
|
18
|
Manrique-Huarte R, Linera-Alperi MAD, Parilli D, Rodriguez JA, Borro D, Dueck WF, Smyth D, Salt A, Manrique M. Inner ear drug delivery through a cochlear implant: Pharmacokinetics in a Macaque experimental model. Hear Res 2021; 404:108228. [PMID: 33784550 DOI: 10.1016/j.heares.2021.108228] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/27/2021] [Accepted: 03/15/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVES The method of drug delivery directly into the cochlea with an implantable pump connected to a CI electrode array ensures long-term delivery and effective dose control, and also provides the possibility to use different drugs. The objective is to develop a model of inner ear pharmacokinetics of an implanted cochlea, with the delivery of FITC-Dextran, in the non-human primate model. DESIGN A preclinical cochlear electrode array (CI Electrode Array HL14DD, manufactured by Cochlear Ltd.) attached to an implantable peristaltic pump filled with FITC-Dextran was implanted unilaterally in a total of 15 Macaca fascicularis (Mf). Three groups were created (5 Mf in each group), according to three different drug delivery times: 2 hours, 24 hours and 7 days. Perilymph (10 samples, 1μL each) was sampled from the apex of the cochlea and measured immediately after extraction with a spectrofluorometer. After scarifying the specimens, x-Rays and histological analysis were performed. RESULTS Surgery, sampling and histological analysis were performed successfully in all specimens. FITC-Dextran quantification showed different patterns, depending on the delivery group. In the 2 hours injection experiment, an increase in FITC-Dextran concentrations over the sample collection time was seen, reaching maximum concentration peaks (420-964µM) between samples 5 and 7, decreasing in successive samples, without returning to baseline. The 24-hours and 7-days injection experiments showed even behaviour throughout the 10 samples obtained, reaching a plateau with mean concentrations ranging from 2144 to 2564 µM and from 1409 to 2502µM, respectively. Statistically significant differences between the 2 hours and 24 hours groups (p = 0.001) and between the 2 hours and 7 days groups (p = 0.037) were observed, while between the 24 hours and 7 days groups no statistical differences were found. CONCLUSIONS This experimental study shows that a model of drug delivery and pharmacokinetics using an active pump connected to an electrode array is feasible in Mf. An infusion time ranging from 2 to 24 hours is required to reach a maximum concentration peak at the apex. It establishes then an even concentration profile from base to apex that is maintained throughout the infusion time in Mf. Flow mechanisms during injection and during sampling that may explain such findings may involve cochlear aqueduct flow as well as the possible existence of substance exchange from scala tympani to extracellular spaces, such as the modiolar space or the endolymphatic sinus, acting as a substance reservoir to maintain a relatively flat concentration profile from base to apex during sampling. Leveraging the learnings achieved by experimentation in rodent models, we can move to experiment in non-human primate with the aim of achieving a useful model that provides transferrable data to human pharmacokinetics. Thus, it may broaden clinical and therapeutic approaches to inner ear diseases.
Collapse
Affiliation(s)
- R Manrique-Huarte
- Otorhinolaryngology Department, University of Navarra Clinic, Pamplona, Spain
| | | | - D Parilli
- Otorhinolaryngology Department, University of Navarra Clinic, Pamplona, Spain
| | - J A Rodriguez
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, CIMA-Universidad de Navarra, Pamplona, Spain; IdiSNA; CIBERCV
| | - D Borro
- CEIT and Tecnun (University of Navarra), San Sebastián, Spain
| | - W F Dueck
- Cochlear Limited, 1 University Avenue, Macquarie University, NSW, 2109, Australia
| | - D Smyth
- Cochlear Limited, 1 University Avenue, Macquarie University, NSW, 2109, Australia
| | - A Salt
- Department of Otolaryngology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8115, St. Louis, MO 63110, USA
| | - M Manrique
- Otorhinolaryngology Department, University of Navarra Clinic, Pamplona, Spain
| |
Collapse
|
19
|
Abstract
Intra-cochlear fibrous tissue formation around the electrode following cochlear implantation affects the electrode impedance as well as electrode explantation during reimplantation surgeries. Applying corticosteroids in cochlear implantation is one way of minimizing the intra-cochlear fibrous tissue formation around the electrode. It were J. Kiefer, C. von Ilberg, and W. Gstöttner who proposed the first idea on drug delivery application in cochlear implantation to MED-EL in the year 2000. During the twenty years of translational research efforts at MED-EL in collaboration with several clinics and research institutions from across the world, preclinical safety and efficacy of corticosteroids were performed leading to the final formulation of the electrode design. In parallel to the drug eluting CI electrode development, MED-EL also invested research efforts into developing tools enabling delivery of pharmaceutical agents of surgeon's choice inside the cochlea. The inner ear catheter designed to administer drug substances into the cochlea was CE marked in 2020. A feasibility study in human subjects with MED-EL CI featuring dexamethasone-eluting electrode array started in June 2020. This article covers the milestones of translational research towards the drug delivery in CI application that took place in association with MED-EL.
Collapse
Affiliation(s)
| | - Ingeborg Hochmair
- MED-EL Elektromedizinische Geraete Gesellschaft m.b.H., Innsbruck, Austria
| |
Collapse
|