1
|
Mingbao Y, Bei Z, Yafeng G, Xiuni L, Beiping M. Perfusion Steroid via Ventilation Tube as Salvage Treatments for Sudden Sensorineural Hearing Loss. EAR, NOSE & THROAT JOURNAL 2024:1455613241284154. [PMID: 39315458 DOI: 10.1177/01455613241284154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
Objectives: Intratympanic steroid injection (ISI) for sudden sensorineural hearing loss (SSNHL) is a relatively popular and effective method, but there is no standardized method for intratympanic steroids for the treatment of SSNHL and no consensus on how to deliver steroids to the middle ear. The purpose of this study was to compare 2 means of intratympanic steroid delivery as therapy for SSNHL. Methods: A retrospective chart review was performed for the period from November 2018 to October 2022 at our Department of Otorhinolaryngology-Head and Neck Surgery. Sixty patients with profound SSNHL who have failed initial steroid therapy were divided into the continuously transtympanic steroid perfusion (TSP) therapy and the intermittent ISI therapy. Results: Posttreatment pure-tone average was 60.3 ± 18.2 dB in the TSP group and 67.5 ± 22.6 dB in the ISI group, 70.0% of subjects in the TSP group, and 46.7% of subjects in the ISI group had improved by 15 dB or more after the therapy. The increased hearing threshold of the TSP group (24.6 ± 14.1 dB) was better than the ISI group (16.6 ± 14.9 dB), and the hearing recovery was significantly different (P < .05) in the 2 groups. Besides the hearing improvement was most obvious in low-frequency areas in the TSP group, the most significant hearing improvement was at 250 Hz, reaching 30.8 ± 3.3 dB. Conclusions: In SSNHL patients who have failed initial steroid therapy, TSP therapy via a ventilation tube can achieve good hearing outcomes and serve as a salvage therapy for patients with SSNHL.
Collapse
Affiliation(s)
- Yang Mingbao
- Department of Otorhinolaryngology-Head and Neck Surgery, the University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Zhang Bei
- Department of Otorhinolaryngology-Head and Neck Surgery, the University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Guan Yafeng
- Department of Otorhinolaryngology-Head and Neck Surgery, the University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Liang Xiuni
- Department of Otorhinolaryngology-Head and Neck Surgery, the University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Miao Beiping
- Department of Otolaryngology, Head and Neck Surgery, Shenzhen Secondary Hospital and First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
- Shenzhen Clinical Medical Research Center for Otolaryngology Diseases, Shenzhen Secondary Hospital and First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Goswami A, Ruhina Rahman SN, Ponneganti S, Gangipangi V, Vavialala H, Radhakrishnanand P, Selvaraju S, Mutheneni SR, Bharti S, Shunmugaperumal T. Intratympanic injections of emulsion-like dispersions to augment cinnarizine amount in a healthy rabbit inner ear model. Nanomedicine (Lond) 2024; 19:1717-1741. [PMID: 39041668 PMCID: PMC11418292 DOI: 10.1080/17435889.2024.2373042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Aim: To investigate eutectic liquid-based emulsion-like dispersions for intratympanic injections to augment cinnarizine permeability across round window membrane in a healthy rabbit inner ear model.Methods: Two-tier systematic optimization was used to get the injection formula. The drug concentrations in perilymph and plasma were analyzed via. Ultra-performance liquid chromatography-tandem mass spectrometry method after 30-, 60-, 90- and 120-min post intratympanic injection time points in rabbits.Results: A shear-thinning behavior, immediate drug release (∼98.80%, 10 min) and higher cell viability (>97.86%, 24 h) were observed in dispersions. The cinnarizine level of 8168.57 ± 1236.79 ng/ml was observed in perilymph at 30 min post intratympanic injection in rabbits.Conclusion: The emulsion-like dispersions can augment drug permeability through round window membrane.
Collapse
Affiliation(s)
- Abhinab Goswami
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research- Guwahati, Sila Katamur (Halugurisuk), Changsari, Kamrup, Assam781101, India
| | - Syed Nazrin Ruhina Rahman
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research- Guwahati, Sila Katamur (Halugurisuk), Changsari, Kamrup, Assam781101, India
| | - Srikanth Ponneganti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research- Guwahati, Sila Katamur (Halugurisuk), Changsari, Kamrup, Assam781101, India
| | - Vijayakumar Gangipangi
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research- Guwahati, Sila Katamur (Halugurisuk), Changsari, Kamrup, Assam781101, India
| | - Hariprasad Vavialala
- Bioinformatics Group, Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana500007, India
| | - Pullapanthula Radhakrishnanand
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education & Research- Guwahati, Sila Katamur (Halugurisuk), Changsari, Kamrup, Assam781101, India
| | - Sudhagar Selvaraju
- Department of Biotechnology, National Institute of Pharmaceutical Education & Research- Guwahati, Sila Katamur (Halugurisuk), Changsari, Kamrup, Assam781101, India
| | - Srinivasa Rao Mutheneni
- Bioinformatics Group, Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, Telangana500007, India
| | - Shreekant Bharti
- Department of Pathology/Lab Medicine, All India Institute of Medical Sciences Patna, Phulwarisarif, Patna, Bihar801507, India
| | - Tamilvanan Shunmugaperumal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research- Guwahati, Sila Katamur (Halugurisuk), Changsari, Kamrup, Assam781101, India
| |
Collapse
|
3
|
Gunewardene N, Ma Y, Lam P, Wagstaff S, Cortez-Jugo C, Hu Y, Caruso F, Richardson RT, Wise AK. Developing the supraparticle technology for round window-mediated drug administration into the cochlea. J Control Release 2023; 361:621-635. [PMID: 37572963 DOI: 10.1016/j.jconrel.2023.08.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
The semi-permeable round window membrane (RWM) is the gateway to the cochlea. Although the RWM is considered a minimally invasive and clinically accepted route for localised drug delivery to the cochlea, overcoming this barrier is challenging, hindering development of effective therapies for hearing loss. Neurotrophin 3 (NT3) is an emerging treatment option for hearing loss, but its therapeutic effect relies on sustained delivery across the RWM into the cochlea. Silica supraparticles (SPs) are drug delivery carriers capable of providing long-term NT3 delivery, when injected directly into the guinea pig cochlea. However, for clinical translation, a RWM delivery approach is desirable. Here, we aimed to test approaches to improve the longevity and biodistribution of NT3 inside the cochlea after RWM implantation of SPs in guinea pigs and cats. Three approaches were tested (i) coating the SPs to slow drug release (ii) improving the retention of SPs on the RWM using a clinically approved gel formulation and (iii) permeabilising the RWM with hyaluronic acid. A radioactive tracer (iodine 125: 125I) tagged to NT3 (125I NT3) was loaded into the SPs to characterise drug pharmacokinetics in vitro and in vivo. The neurotrophin-loaded SPs were coated using a chitosan and alginate layer-by-layer coating strategy, named as '(Chi/Alg)SPs', to promote long term drug release. The guinea pigs were implanted with 5× 125I NT3 loaded (Chi/Alg) SPs on the RWM, while cats were implanted with 30× (Chi/Alg) SPs. A cohort of animals were also implanted with SPs (controls). We found that the NT3 loaded (Chi/Alg)SPs exhibited a more linear release profile compared to NT3 loaded SPs alone. The 125I NT3 loaded (Chi/Alg)SPs in fibrin sealant had efficient drug loading (~5 μg of NT3 loaded per SP that weights ~50 μg) and elution capacities (~49% over one month) in vitro. Compared to the SPs in fibrin sealant, the (Chi/Alg)SPs in fibrin sealant had a significantly slower 125I NT3 drug release profile over the first 7 days in vitro (~12% for (Chi/Alg) SPs in fibrin sealant vs ~43% for SPs in fibrin sealant). One-month post-implantation of (Chi/Alg) SPs, gamma count measurements revealed an average of 0.3 μg NT3 remained in the guinea pig cochlea, while for the cat, 1.3 μg remained. Histological analysis of cochlear tissue revealed presence of a 125I NT3 signal localised in the basilar membrane of the lower basal turn in some cochleae after 4 weeks in guinea pigs and 8 weeks in cats. Comparatively, and in contrast to the in vitro release data, implantation of the SPs presented better NT3 retention and distribution inside the cochlea in both the guinea pigs and cats. No significant difference in drug entry was observed upon acute treatment of the RWM with hyaluronic acid. Collectively, our findings indicate that SPs and (Chi/Alg)SPs can facilitate drug transfer across the RWM, with detectable levels inside the cat cochlea even after 8 weeks with the intracochlear approach. This is the first study to examine neurotrophin pharmacokinetics in the cochlea for such an extended period of times in these two animal species. Whilst promising, we note that outcomes between animals were variable, and opposing results were found between in vitro and in vivo release studies. These findings have important clinical ramifications, emphasising the need to understand the physical properties and mechanics of this complex barrier in parallel with the development of therapies for hearing loss.
Collapse
Affiliation(s)
- Niliksha Gunewardene
- Bionics Institute, East Melbourne, Victoria 3002, Australia; Department of Medical Bionics, The University of Melbourne, Fitzroy, Victoria 3065, Australia.
| | - Yutian Ma
- Bionics Institute, East Melbourne, Victoria 3002, Australia; Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Patrick Lam
- Bionics Institute, East Melbourne, Victoria 3002, Australia
| | | | - Christina Cortez-Jugo
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yingjie Hu
- Bionics Institute, East Melbourne, Victoria 3002, Australia; Department of Medical Bionics, The University of Melbourne, Fitzroy, Victoria 3065, Australia; Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Rachael T Richardson
- Bionics Institute, East Melbourne, Victoria 3002, Australia; Department of Medical Bionics, The University of Melbourne, Fitzroy, Victoria 3065, Australia; Department of Surgery (Otolaryngology), University of Melbourne, The Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria 3002, Australia
| | - Andrew K Wise
- Bionics Institute, East Melbourne, Victoria 3002, Australia; Department of Medical Bionics, The University of Melbourne, Fitzroy, Victoria 3065, Australia.
| |
Collapse
|
4
|
Haggerty RA, Hutson KA, Riggs WJ, Brown KD, Pillsbury HC, Adunka OF, Buchman CA, Fitzpatrick DC. Assessment of cochlear synaptopathy by electrocochleography to low frequencies in a preclinical model and human subjects. Front Neurol 2023; 14:1104574. [PMID: 37483448 PMCID: PMC10361575 DOI: 10.3389/fneur.2023.1104574] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
Cochlear synaptopathy is the loss of synapses between the inner hair cells and the auditory nerve despite survival of sensory hair cells. The findings of extensive cochlear synaptopathy in animals after moderate noise exposures challenged the long-held view that hair cells are the cochlear elements most sensitive to insults that lead to hearing loss. However, cochlear synaptopathy has been difficult to identify in humans. We applied novel algorithms to determine hair cell and neural contributions to electrocochleographic (ECochG) recordings from the round window of animal and human subjects. Gerbils with normal hearing provided training and test sets for a deep learning algorithm to detect the presence of neural responses to low frequency sounds, and an analytic model was used to quantify the proportion of neural and hair cell contributions to the ECochG response. The capacity to detect cochlear synaptopathy was validated in normal hearing and noise-exposed animals by using neurotoxins to reduce or eliminate the neural contributions. When the analytical methods were applied to human surgical subjects with access to the round window, the neural contribution resembled the partial cochlear synaptopathy present after neurotoxin application in animals. This result demonstrates the presence of viable hair cells not connected to auditory nerve fibers in human subjects with substantial hearing loss and indicates that efforts to regenerate nerve fibers may find a ready cochlear substrate for innervation and resumption of function.
Collapse
Affiliation(s)
- Raymond A. Haggerty
- Department of Otolaryngology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kendall A. Hutson
- Department of Otolaryngology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - William J. Riggs
- Department of Otolaryngology, The Ohio State University, Columbus, OH, United States
| | - Kevin D. Brown
- Department of Otolaryngology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Harold C. Pillsbury
- Department of Otolaryngology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- University of North Carolina School of Medicine, Chapel Hill, NC, United States
| | - Oliver F. Adunka
- Department of Otolaryngology, The Ohio State University, Columbus, OH, United States
| | - Craig A. Buchman
- Department of Otolaryngology, Washington University in St. Louis, St. Louis, MO, United States
| | - Douglas C. Fitzpatrick
- Department of Otolaryngology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
5
|
Lutz BT, Hutson KA, Trecca EMC, Hamby M, Fitzpatrick DC. Neural Contributions to the Cochlear Summating Potential: Spiking and Dendritic Components. J Assoc Res Otolaryngol 2022; 23:351-363. [PMID: 35254541 DOI: 10.1007/s10162-022-00842-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/21/2022] [Indexed: 11/30/2022] Open
Abstract
Using electrocochleography, the summating potential (SP) is a deflection from baseline to tones and an early rise in the response to clicks. Here, we use normal hearing gerbils and gerbils with outer hair cells removed with a combination of furosemide and kanamycin to investigate cellular origins of the SP. Round window electrocochleography to tones and clicks was performed before and after application of tetrodotoxin to prevent action potentials, and then again after kainic acid to prevent generation of an EPSP. With appropriate subtractions of the response curves from the different conditions, the contributions to the SP from outer hair cells, inner hair cell, and neural "spiking" and "dendritic" responses were isolated. Like hair cells, the spiking and dendritic components had opposite polarities to tones - the dendritic component had negative polarity and the spiking component had positive polarity. The magnitude of the spiking component was larger than the dendritic across frequencies and intensities. The onset to tones and to clicks followed a similar sequence; the outer hair cells responded first, then inner hair cells, then the dendritic component, and then the compound action potential of the spiking response. These results show the sources of the SP include at least the four components studied, and that these have a mixture of polarities and magnitudes that vary across frequency and intensity. Thus, multiple possible interactions must be considered when interpreting the SP for clinical uses.
Collapse
Affiliation(s)
- Brendan T Lutz
- The University of North Carolina at Chapel Hill, Department of Otolaryngology - Head & Neck Surgery, 101 Mason Farm Rd, CB#7546, Chapel Hill, NC, USA
| | - Kendall A Hutson
- The University of North Carolina at Chapel Hill, Department of Otolaryngology - Head & Neck Surgery, 101 Mason Farm Rd, CB#7546, Chapel Hill, NC, USA
| | - Eleonora M C Trecca
- IRCCS Casa Sollievo Della Sofferenza, Department of Maxillofacial Surgery and Otolaryngology, San Giovanni Rotondo (Foggia), Italy.,University Hospital of Foggia, Department of Otolaryngology- Head and Neck Surgery, Foggia, Italy
| | - Meredith Hamby
- The University of North Carolina at Chapel Hill, Department of Otolaryngology - Head & Neck Surgery, 101 Mason Farm Rd, CB#7546, Chapel Hill, NC, USA
| | - Douglas C Fitzpatrick
- The University of North Carolina at Chapel Hill, Department of Otolaryngology - Head & Neck Surgery, 101 Mason Farm Rd, CB#7546, Chapel Hill, NC, USA.
| |
Collapse
|
6
|
Bako P, Gerlinger I, Wolpert S, Müller M, Löwenheim H. The ototoxic effect of locally applied kanamycin and furosemide in guinea pigs. J Neurosci Methods 2022; 372:109527. [PMID: 35182603 DOI: 10.1016/j.jneumeth.2022.109527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Hearing impairment is a growing social and economic issue. New technical or biological approaches aiming hearing rehabilitation or regeneration require animal testing. Therefore, a reproducible and safe model for hearing-impaired animals is essential. NEW METHOD Intratympanic injection of kanamycin and furosemide was administered for BFA bunt pigmented guinea pigs for either 1 or 2hours. Hearing loss was regularly measured with compound action potential response to click and tone burst stimuli for up to 26 weeks. Hair cell loss and the density of spiral ganglion neurons were histologically analyzed. RESULTS One week after the exposure, complete hearing loss was observed in 34 ears from the 36 ears treated for 2hours and remained stable during the follow-up. Histology revealed near complete hair cell loss and secondary degeneration of spiral ganglion neurons. COMPARISON WITH EXISTING METHODS Animal deafening is usually achieved by systemic application of aminoglycoside antibiotics or chemotherapy drugs, although side effects such as nephrotoxicity may occur which can be avoided by local application. With our procedure, unilateral hearing loss model can also be established. CONCLUSIONS The single intratympanic application of a solution of 200mg/ml kanamycin and 50mg/ml furosemide is a stable and reliable deafening method.
Collapse
Affiliation(s)
- Peter Bako
- Dept. of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Elfriede-Aulhorn Str 5, Tübingen 72076, Germany; Dept. of Otorhinolaryngology and Head and Neck Surgery, Medical School, University of Pécs, Munkácsy Str 2, Pécs 7621, Hungary; Regenerative Science, Sport and Medicine Research Group, Szentágothai Research Centre, University of Pécs, Ifjúság Str 20, Pécs 7624, Hungary.
| | - Imre Gerlinger
- Dept. of Otorhinolaryngology and Head and Neck Surgery, Medical School, University of Pécs, Munkácsy Str 2, Pécs 7621, Hungary.
| | - Stephan Wolpert
- Dept. of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Elfriede-Aulhorn Str 5, Tübingen 72076, Germany.
| | - Marcus Müller
- Dept. of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Elfriede-Aulhorn Str 5, Tübingen 72076, Germany
| | - Hubert Löwenheim
- Dept. of Otolaryngology, Head and Neck Surgery, Tübingen Hearing Research Centre, University of Tübingen, Elfriede-Aulhorn Str 5, Tübingen 72076, Germany.
| |
Collapse
|
7
|
Gunewardene N, Lam P, Ma Y, Caruso F, Wagstaff S, Richardson RT, Wise AK. Pharmacokinetics and biodistribution of supraparticle-delivered neurotrophin 3 in the guinea pig cochlea. J Control Release 2022; 342:295-307. [PMID: 34999140 DOI: 10.1016/j.jconrel.2021.12.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 12/29/2021] [Indexed: 02/06/2023]
Abstract
Hearing loss is the most prevalent sensory disorder affecting nearly half a billion people worldwide. Aside from devices to assist hearing, such as hearing aids and cochlear implants, a drug treatment for hearing loss has yet to be developed. The neurotrophin family of growth factors has long been established as a potential therapy, however delivery of these factors into the inner ear at therapeutic levels over a sustained period of time has remained a challenge restricting clinical translation. We previously demonstrated that direct delivery of exogenous neurotrophin-3 (NT3) in the guinea pig cochleae via a bolus injection was rapidly cleared from the inner ear, with almost complete elimination 3 days post-treatment. Here, we explored the potential of suprapaticles (SPs) for NT3 delivery to the inner ear to achieve sustained delivery over time. SPs are porous spheroid structures comprised of smaller colloidal silica nanoparticles that provide a platform for long-term controlled release of therapeutics. This study aimed to assess the pharmacokinetics and biodistribution of SP-delivered NT3. We used a radioactive tracer (iodine 125: 125I) to label the NT3 to determine the loading, retention and distribution of NT3 delivered via SPs. Gamma measurements taken from 125I NT3 loaded SPs revealed high drug loading (an average of 5.3 μg of NT3 loaded per SP weighing 50 μg) and elution capacities in vitro (67% cumulative release over one month). Whole cochlear gamma measurements from SP-implanted cochleae harvested at various time points revealed detection of 125I NT3 in the guinea pig cochlea after one month, with 3.6 and 10% of the loaded drug remaining in the intracochlear and round window-implanted cochleae respectively. Autoradiography analysis of cochlear micro-sections revealed widespread 125I NT3 distribution after intracochlear SP delivery, but more restricted distribution with the round window delivery approach. Collectively, drug delivery into the inner ear using SPs support sustained, long-term availability and release of neurotrophins in the inner ear.
Collapse
Affiliation(s)
- Niliksha Gunewardene
- Bionics Institute, Melbourne, Australia; Medical Bionics Department, University of Melbourne, Australia.
| | | | - Yutian Ma
- Bionics Institute, Melbourne, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Frank Caruso
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | - Rachael T Richardson
- Bionics Institute, Melbourne, Australia; Medical Bionics Department, University of Melbourne, Australia; Department of Surgery (Otolaryngology), University of Melbourne, Australia
| | - Andrew K Wise
- Bionics Institute, Melbourne, Australia; Medical Bionics Department, University of Melbourne, Australia; Department of Surgery (Otolaryngology), University of Melbourne, Australia.
| |
Collapse
|
8
|
Lee C, Sinha AK, Henry K, Walbaum AW, Crooks PA, Holt JC. Characterizing the Access of Cholinergic Antagonists to Efferent Synapses in the Inner Ear. Front Neurosci 2022; 15:754585. [PMID: 34970112 PMCID: PMC8712681 DOI: 10.3389/fnins.2021.754585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Stimulation of cholinergic efferent neurons innervating the inner ear has profound, well-characterized effects on vestibular and auditory physiology, after activating distinct ACh receptors (AChRs) on afferents and hair cells in peripheral endorgans. Efferent-mediated fast and slow excitation of vestibular afferents are mediated by α4β2*-containing nicotinic AChRs (nAChRs) and muscarinic AChRs (mAChRs), respectively. On the auditory side, efferent-mediated suppression of distortion product otoacoustic emissions (DPOAEs) is mediated by α9α10nAChRs. Previous characterization of these synaptic mechanisms utilized cholinergic drugs, that when systemically administered, also reach the CNS, which may limit their utility in probing efferent function without also considering central effects. Use of peripherally-acting cholinergic drugs with local application strategies may be useful, but this approach has remained relatively unexplored. Using multiple administration routes, we performed a combination of vestibular afferent and DPOAE recordings during efferent stimulation in mouse and turtle to determine whether charged mAChR or α9α10nAChR antagonists, with little CNS entry, can still engage efferent synaptic targets in the inner ear. The charged mAChR antagonists glycopyrrolate and methscopolamine blocked efferent-mediated slow excitation of mouse vestibular afferents following intraperitoneal, middle ear, or direct perilymphatic administration. Both mAChR antagonists were effective when delivered to the middle ear, contralateral to the side of afferent recordings, suggesting they gain vascular access after first entering the perilymphatic compartment. In contrast, charged α9α10nAChR antagonists blocked efferent-mediated suppression of DPOAEs only upon direct perilymphatic application, but failed to reach efferent synapses when systemically administered. These data show that efferent mechanisms are viable targets for further characterizing drug access in the inner ear.
Collapse
Affiliation(s)
- Choongheon Lee
- Department of Otolaryngology, University of Rochester, Rochester, NY, United States
| | - Anjali K Sinha
- Department of Neuroscience, University of Rochester, Rochester, NY, United States
| | - Kenneth Henry
- Department of Otolaryngology, University of Rochester, Rochester, NY, United States.,Department of Neuroscience, University of Rochester, Rochester, NY, United States
| | - Anqi W Walbaum
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Peter A Crooks
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Joseph C Holt
- Department of Otolaryngology, University of Rochester, Rochester, NY, United States.,Department of Neuroscience, University of Rochester, Rochester, NY, United States.,Department of Pharmacology & Physiology, University of Rochester, Rochester, NY, United States
| |
Collapse
|
9
|
Dahm V, Gausterer JC, Auinger AB, Honeder C, Gabor F, Reznicek G, Kaider A, Riss D, Arnoldner C. Evaluation of Levels of Triamcinolone Acetonide in Human Perilymph and Plasma After Intratympanic Application in Patients Receiving Cochlear Implants: A Randomized Clinical Trial. JAMA Otolaryngol Head Neck Surg 2021; 147:974-980. [PMID: 34591079 PMCID: PMC8485207 DOI: 10.1001/jamaoto.2021.2492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Importance The use of intratympanically applied steroids is of increasing interest. Consequently, research has focused on finding an ideal drug that diffuses through the round window membrane and can be retained in the perilymph. Objective To compare levels of triamcinolone acetonide (TAC) in perilymph and plasma after intratympanic injection. Design, Setting, and Participants This randomized clinical trial included 40 patients receiving cochlear implants at a single tertiary care center in Vienna, Austria. Patients were randomized to 1 of 4 treatment groups receiving 1 of 2 intratympanic doses of TAC (10 mg/mL or 40 mg/mL) at 1 of 2 approximate time points (24 hours or 1 hour) before sampling the perilymph. Inclusion was carried out between November 2017 and January 2020, and data were analyzed in December 2020. Interventions All patients underwent intratympanic injection of TAC. During cochlear implantation, perilymph and plasma were sampled for further analysis. Main Outcomes and Measures Levels of TAC measured in perilymph and plasma. Results Among the 37 patients (median [range] age, 57 [26-88] years; 18 [49%] men) included in the analysis, TAC was present at a median (range) level of 796.0 (46.4-7706.7) ng/mL. In the majority of patients (n = 29; 78%), no drug was detectable in the plasma after intratympanic injection. Levels above the limit of detection were less than 2.5 ng/mL. The 1-factorial analysis of variance model showed lower TAC levels in the group that received TAC, 10 mg/mL, 24 hours before surgery (median, 271 ng/mL) compared with the group that received TAC, 10 mg/mL, 1 hour before surgery (median, 2877 ng/mL), as well as in comparison with the groups receiving TAC, 40 mg/mL, 24 hours before surgery (median, 2150 ng/mL) and 1 hour before surgery (median, 939 ng/mL). The 2-factorial analysis of variance model showed lower TAC levels in the group receiving TAC, 10 mg/mL, 24 hours before surgery than the group receiving TAC, 10 mg/mL, 1 hour before surgery, and higher TAC levels in the group receiving TAC, 40 mg/mL, 24 hours before surgery compared with the group receiving TAC, 10 mg/mL, 24 hours before surgery. Patients with thickening of the middle ear had statistically significantly higher plasma levels (median, 1.4 ng/mL vs 0 ng/mL) and lower perilymph levels (median, 213.1 ng/mL vs 904 ng/mL) than individuals with unremarkable middle ear mucosa. Conclusions and Relevance In this randomized clinical trial, TAC was shown to be a promising drug for intratympanic therapies, with similar levels in perilymph 1 hour and 24 hours after injection (distinctly in the groups receiving the 40 mg/mL dose). There was also minimal dissemination to the plasma, especially in patients with unremarkable middle ear mucosa. Trial Registration ClinicalTrials.gov Identifier: NCT03248856.
Collapse
Affiliation(s)
- Valerie Dahm
- Department of Otorhinolaryngology-Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Julia Clara Gausterer
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Austria
| | - Alice Barbara Auinger
- Department of Otorhinolaryngology-Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Clemens Honeder
- Department of Otorhinolaryngology-Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Franz Gabor
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Austria
| | | | - Alexandra Kaider
- Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Dominik Riss
- Department of Otorhinolaryngology-Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Christoph Arnoldner
- Department of Otorhinolaryngology-Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Nacher-Soler G, Lenglet S, Coelho M, Thomas A, Voruz F, Krause KH, Senn P, Rousset F. Local Cisplatin Delivery in Mouse Reliably Models Sensorineural Ototoxicity Without Systemic Adverse Effects. Front Cell Neurosci 2021; 15:701783. [PMID: 34335192 PMCID: PMC8316727 DOI: 10.3389/fncel.2021.701783] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/11/2021] [Indexed: 11/30/2022] Open
Abstract
Cisplatin is a lifesaving chemotherapeutic drug with marked ototoxic adverse effects. Cisplatin-induced hearing loss affects a significant part of cancer-surviving patients and is an unmet clinical need with important socioeconomic consequences. Unfortunately, in current preclinical animal models of cisplatin ototoxicity, which are mainly based on systemic delivery, important morbidity is observed, leading to premature death. This methodology not only raises obvious animal welfare concerns but also increases the number of animals used in ototoxicity studies to compensate for dropouts related to early death. To overcome these important limitations, we developed a local delivery model based on the application of a cisplatin solution directly into the otic bulla through a retroauricular approach. The local delivery model reliably induced significant hearing loss with a mean threshold shift ranging from 10 to 30 dB, strongly affecting the high frequencies (22 and 32 kHz). Importantly, mice did not show visible stress or distress indicators and no significant morbidity in comparison with a traditional systemic delivery control group of mice injected intraperitoneally with 10 mg/kg cisplatin, where significant weight loss >10% in all treated animals (without any recovery) led to premature abortion of experiments on day 3. Mass spectrometry confirmed the absence of relevant systemic uptake after local delivery, with platinum accumulation restricted to the cochlea, whereas important platinum concentrations were detected in the liver and kidney of the systemic cisplatin group. A clear correlation between the cochlear platinum concentration and the auditory threshold shift was observed. Immunohistochemistry revealed statistically significant loss of outer hair cells in the basal and apical turns of the cochlea and an important and statistically significant loss of auditory neurons and synapses in all cochlear regions. In conclusion, local cisplatin delivery induces robust hearing loss with minimal morbidity, thereby offering a reliable rodent model for human cisplatin ototoxicity, reducing the number of animals required and showing improved animal welfare compared with traditional systemic models.
Collapse
Affiliation(s)
- German Nacher-Soler
- The Inner Ear and Olfaction Lab, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sébastien Lenglet
- Forensic Toxicology and Chemistry Unit, University Centre for Legal Medicine, Geneva University Hospital, Geneva, Switzerland
| | - Marta Coelho
- The Inner Ear and Olfaction Lab, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Aurélien Thomas
- Forensic Toxicology and Chemistry Unit, University Centre for Legal Medicine, Geneva University Hospital, Geneva, Switzerland.,Faculty Unit of Toxicology, University Centre of Legal Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - François Voruz
- The Inner Ear and Olfaction Lab, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Department of Clinical Neurosciences, Service of ORL & Head and Neck Surgery, University Hospital of Geneva, Geneva, Switzerland
| | - Karl-Heinz Krause
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Pascal Senn
- The Inner Ear and Olfaction Lab, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Department of Clinical Neurosciences, Service of ORL & Head and Neck Surgery, University Hospital of Geneva, Geneva, Switzerland
| | - Francis Rousset
- The Inner Ear and Olfaction Lab, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
11
|
Jaudoin C, Carré F, Gehrke M, Sogaldi A, Steinmetz V, Hue N, Cailleau C, Tourrel G, Nguyen Y, Ferrary E, Agnely F, Bochot A. Transtympanic injection of a liposomal gel loaded with N-acetyl-L-cysteine: A relevant strategy to prevent damage induced by cochlear implantation in guinea pigs? Int J Pharm 2021; 604:120757. [PMID: 34058306 DOI: 10.1016/j.ijpharm.2021.120757] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 01/17/2023]
Abstract
Patients with residual hearing can benefit from cochlear implantation. However, insertion can damage cochlear structures and generate oxidative stress harmful to auditory cells. The antioxidant N-acetyl-L-cysteine (NAC) is a precursor of glutathione (GSH), a powerful endogenous antioxidant. NAC local delivery to the inner ear appeared promising to prevent damage after cochlear implantation in animals. NAC-loaded liposomal gel was specifically designed for transtympanic injection, performed both 3 days before and on the day of surgery. Hearing thresholds were recorded over 30 days in implanted guinea pigs with and without NAC. NAC, GSH, and their degradation products, N,N'-diacetyl-L-cystine (DiNAC) and oxidized glutathione (GSSG) were simultaneously quantified in the perilymph over 15 days in non-implanted guinea pigs. For the first time, endogenous concentrations of GSH and GSSG were determined in the perilymph. Although NAC-loaded liposomal gel sustained NAC release in the perilymph over 15 days, it induced hearing loss in both implanted and non-implanted groups with no perilymphatic GSH increase. Under physiological conditions, NAC appeared poorly stable within liposomes. As DiNAC was quantified at concentrations which were twice as high as NAC in the perilymph, it was hypothesized that DiNAC could be responsible for the adverse effects on hearing.
Collapse
Affiliation(s)
- Céline Jaudoin
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 5 rue J-B Clément, 92296 Châtenay-Malabry, France.
| | - Fabienne Carré
- Inserm/Institut Pasteur, Institut de l'audition, Technologies et thérapie génique pour la surdité, 63 rue de Charenton, 75012 Paris, France.
| | - Maria Gehrke
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 5 rue J-B Clément, 92296 Châtenay-Malabry, France.
| | - Audrey Sogaldi
- UMS IPSIT, SAMM, Faculté de Pharmacie, Université Paris-Saclay, 5 rue J-B Clément, 92296 Châtenay-Malabry, France.
| | - Vincent Steinmetz
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France.
| | - Nathalie Hue
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198 Gif-sur-Yvette, France.
| | - Catherine Cailleau
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 5 rue J-B Clément, 92296 Châtenay-Malabry, France.
| | - Guillaume Tourrel
- Oticon Medical/Neurelec SAS, Research & Technology Department, 2720 chemin Saint-Bernard, Vallauris, France.
| | - Yann Nguyen
- Inserm/Institut Pasteur, Institut de l'audition, Technologies et thérapie génique pour la surdité, 63 rue de Charenton, 75012 Paris, France; Sorbonne Université, AP-HP, GHU Pitié-Salpêtrière, DMU ChIR, Service ORL, GRC Robotique et Innovation Chirurgicale, 47-83, boulevard de l'hôpital, 75013 Paris, France.
| | - Evelyne Ferrary
- Inserm/Institut Pasteur, Institut de l'audition, Technologies et thérapie génique pour la surdité, 63 rue de Charenton, 75012 Paris, France.
| | - Florence Agnely
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 5 rue J-B Clément, 92296 Châtenay-Malabry, France.
| | - Amélie Bochot
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 5 rue J-B Clément, 92296 Châtenay-Malabry, France.
| |
Collapse
|
12
|
Crane R, Conley SM, Al-Ubaidi MR, Naash MI. Gene Therapy to the Retina and the Cochlea. Front Neurosci 2021; 15:652215. [PMID: 33815052 PMCID: PMC8010260 DOI: 10.3389/fnins.2021.652215] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/22/2021] [Indexed: 12/20/2022] Open
Abstract
Vision and hearing disorders comprise the most common sensory disorders found in people. Many forms of vision and hearing loss are inherited and current treatments only provide patients with temporary or partial relief. As a result, developing genetic therapies for any of the several hundred known causative genes underlying inherited retinal and cochlear disorders has been of great interest. Recent exciting advances in gene therapy have shown promise for the clinical treatment of inherited retinal diseases, and while clinical gene therapies for cochlear disease are not yet available, research in the last several years has resulted in significant advancement in preclinical development for gene delivery to the cochlea. Furthermore, the development of somatic targeted genome editing using CRISPR/Cas9 has brought new possibilities for the treatment of dominant or gain-of-function disease. Here we discuss the current state of gene therapy for inherited diseases of the retina and cochlea with an eye toward areas that still need additional development.
Collapse
Affiliation(s)
- Ryan Crane
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Shannon M. Conley
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Oklahoma Center for Neurosciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Muayyad R. Al-Ubaidi
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
- College of Optometry, University of Houston, Houston, TX, United States
- Depatment of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | - Muna I. Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
- College of Optometry, University of Houston, Houston, TX, United States
- Depatment of Biology and Biochemistry, University of Houston, Houston, TX, United States
| |
Collapse
|
13
|
Hofmann VM, Schoenfeld U, Jagielski M, Pudszuhn A. [Does sealing the oval window in addition to the round window bring an advantage in reserve therapy of acute idiopathic deafness?]. HNO 2021; 69:31-41. [PMID: 32728759 PMCID: PMC7806567 DOI: 10.1007/s00106-020-00903-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Following sudden unilateral deafness or severe sensorineural hearing loss, patients with unsuccessful intravenous steroid therapy can be treated with explorative tympanotomy with sealing of the round (RW) and/or oval window (OW), due to suspected rupture of the RW with perilymph fistula (PLF) or a fissula ante fenestram (FAF). This study investigated whether additional sealing of the oval window (RW+OW) achieved an improved hearing benefit as compared to sealing of the round window only (RW) . METHODS This retrospective study investigated 54 patients with acute profound hearing loss who underwent tympanoscopy. Audiometric examinations were performed preoperatively and at two postoperative intervals (1 month and 3-6 months after surgery). In 28 patients, the OW was sealed in addition to the RW. RESULTS No intraoperatively visible PLF or FAF were reported. Hearing thresholds were significantly reduced in the early postoperative follow-up period and further improvement was observed 3-6 months later. No significant differences between the RW and RW+OW subgroups were seen at either follow-up timepoint. In 65% (Kanzaki criteria) and 74% (Siegel criteria) of patients, partial or complete postoperative hearing improvement was observed. Upon comparing the groups of patients with and without hearing improvement, no statistical significance was found in terms of gender, age, secondary diagnoses, or latency period between symptom onset and surgery. CONCLUSION Additional sealing of the OW did not lead to significantly better postoperative hearing thresholds. In general, postoperative hearing improvement corresponds to published spontaneous remission rates.
Collapse
Affiliation(s)
- V M Hofmann
- Klinik für Hals‑, Nasen- und Ohrenheilkunde, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200, Berlin, Deutschland.
| | - U Schoenfeld
- Klinik für Hals‑, Nasen- und Ohrenheilkunde, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200, Berlin, Deutschland
| | - M Jagielski
- Klinik für Hals‑, Nasen- und Ohrenheilkunde, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200, Berlin, Deutschland
| | - A Pudszuhn
- Klinik für Hals‑, Nasen- und Ohrenheilkunde, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200, Berlin, Deutschland
| |
Collapse
|
14
|
Characterization of the Sheep Round Window Membrane. J Assoc Res Otolaryngol 2020; 22:1-17. [PMID: 33258054 DOI: 10.1007/s10162-020-00778-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/19/2020] [Indexed: 12/21/2022] Open
Abstract
Intratympanic injection is a clinically used approach to locally deliver therapeutic molecules to the inner ear. Drug diffusion, at least in part, is presumed to occur through the round window membrane (RWM), one of the two openings to the inner ear. Previous studies in human temporal bones have identified a three-layered structure of the RWM with a thickness of 70-100 μm. This is considerably thicker than the RWM in rodents, which are mostly used to model RWM permeability and assess drug uptake. The sheep has been suggested as a large animal model for inner ear research given the similarities in structure and frequency range for hearing. Here, we report the structure of the sheep RWM. The RWM is anchored within the round window niche (average vertical diameter of 2.1 ± 0.3 mm and horizontal diameter of 2.3 ± 0.4 mm) and has a curvature that leans towards the scala tympani. The centre of the RWM is the thinnest (55-71 μm), with increasing thickness towards the edges (< 171 μm), where the RWM forms tight attachments to the surrounding bony niche. The layered RWM structure, including an outer epithelial layer, middle connective tissue and inner epithelial layer, was identified with cellular features such as wavy fibre bundles, melanocytes and blood vessels. An attached "meshwork structure" which extends over the cochlear aqueduct was seen, as in humans. The striking anatomical similarities between sheep and human RWM suggest that sheep may be evaluated as a more appropriate system to predict RWM permeability and drug delivery in humans than rodent models.
Collapse
|
15
|
Yao Q, Jiang Z, Zhang J, Huang S, He S, Feng Y, Wang H, Yin S. Steroid Administration Approach for Idiopathic Sudden Sensorineural Hearing Loss: A National Survey in China. Ann Otol Rhinol Laryngol 2020; 130:752-759. [PMID: 33185127 DOI: 10.1177/0003489420968879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To optimize a protocol for the steroid administration approach for idiopathic sudden sensorineural hearing loss (ISSNHL) in China. METHODS A questionnaire was distributed to otolaryngologists. The data on demographics, indications for first-line and salvage treatment, such as intratympanic administration of steroids (ITS) and postauricular steroids (PAS), and procedures were analyzed. RESULTS 74 respondents used oral steroids, 112 used intravenous injections, 10 used ITS and 6 used PAS as a monotherapy for first-line treatment, and 135 used ITS or PAS in conjunction with oral or intravenous injection as a first-line treatment. Of the 249 respondents who used ITS, 97.19% adopted it as salvage therapy. The most commonly used steroid was 0.5 ml dexamethasone at 5 mg/ml and the most common side effect was pain. Of the 174 respondents who used PAS, 94.25% used it as salvage therapy. The most commonly used steroid was 0.5 ml methylprednisolone mixed with 0.5 ml lidocaine. CONCLUSIONS The obtained data suggested that intravenous injection of steroids was the most popular treatment for ISSNHL and that ITS or PAS were used as a salvage treatment in China.
Collapse
Affiliation(s)
- Qingxiu Yao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Zhuang Jiang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Jiajia Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Shujian Huang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Shouhuan He
- Department of Otolaryngology, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Yanmei Feng
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Hui Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Shankai Yin
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| |
Collapse
|
16
|
Nanocarriers for drug delivery to the inner ear: Physicochemical key parameters, biodistribution, safety and efficacy. Int J Pharm 2020; 592:120038. [PMID: 33159985 DOI: 10.1016/j.ijpharm.2020.120038] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/26/2022]
Abstract
Despite the high incidence of inner ear disorders, there are still no dedicated medications on the market. Drugs are currently administered by the intratympanic route, the safest way to maximize drug concentration in the inner ear. Nevertheless, therapeutic doses are ensured for only a few minutes/hours using drug solutions or suspensions. The passage through the middle ear barrier strongly depends on drug physicochemical characteristics. For the past 15 years, drug encapsulation into nanocarriers has been developed to overcome this drawback. Nanocarriers are well known to sustain drug release and protect it from degradation. In this review, in vivo studies are detailed concerning nanocarrier biodistribution, their pathway mechanisms in the inner ear and the resulting drug pharmacokinetics. Key parameters influencing nanocarrier biodistribution are identified and discussed: nanocarrier size, concentration, surface composition and shape. Recent advanced strategies that combine nanocarriers with hydrogels, specific tissue targeting or modification of the round window permeability (cell-penetrating peptide, magnetic delivery) are explored. Most of the nanocarriers appear to be safe for the inner ear and provide a significant efficacy over classic formulations in animal models. However, many challenges remain to be overcome for future clinical applications.
Collapse
|
17
|
Intratympanic Diltiazem-Chitosan Hydrogel as an Otoprotectant Against Cisplatin-Induced Ototoxicity in a Mouse Model. Otol Neurotol 2020; 41:115-122. [PMID: 31746818 DOI: 10.1097/mao.0000000000002417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
HYPOTHESIS Local administration of the calcium-channel blocker (CCB), diltiazem, via intratympanic (IT) chitosan-glycerophosphate (CGP) hydrogel will protect against cisplatin-induced ototoxicity. BACKGROUND Cisplatin induces calcium-mediated apoptosis of cochlear outer hair cells (OHCs). Previous work demonstrated otoprotection and reduced auditory brainstem response (ABR) threshold shifts in a cisplatin-induced ototoxicity mouse model treated with multiple doses of IT diltiazem given in solution. Here, we evaluated the role of a single dose of IT CGP-diltiazem as a novel otoprotectant against cisplatin-induced ototoxicity. METHODS Baseline pure-tone and click-evoked ABRs were performed in control (IT CGP-saline, n = 13) and treatment (IT CGP-diltiazem 2 mg/kg, n = 9) groups of female CBA/J mice. A single dose of IT CGP hydrogel was administered just before intraperitoneal injection of cisplatin (14 mg/kg). On Day 7 posttreatment, ABRs were performed and cochleae were harvested. Hair cells were quantified using anti-myosin VIIa immunostaining and inner hair cell ribbon synapses were quantified using Ctbp2 immunostaining. RESULTS There was a statistically significant effect of treatment on click- and tone-evoked ABRs between groups. The mean threshold shifts were significantly reduced in both click- and tone-evoked ABRs on Day 7 in IT CGP-diltiazem treated mice compared with CGP-saline control mice. There were no significant differences in OHC counting between groups, but there appears to be an otoprotection against loss of synapses in the apical turn from IT CGP-diltiazem treated mice (p < 0.05). CONCLUSIONS This preliminary work suggests that IT CGP-diltiazem reduces ABR threshold shifts with possible mechanisms of protecting ribbon synapses in the setting of cisplatin-induced ototoxicity. More work is necessary to determine the mechanism underlying this otoprotection.
Collapse
|
18
|
Gausterer JC, Saidov N, Ahmadi N, Zhu C, Wirth M, Reznicek G, Arnoldner C, Gabor F, Honeder C. Intratympanic application of poloxamer 407 hydrogels results in sustained N-acetylcysteine delivery to the inner ear. Eur J Pharm Biopharm 2020; 150:143-155. [DOI: 10.1016/j.ejpb.2020.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 01/20/2020] [Accepted: 03/04/2020] [Indexed: 01/06/2023]
|
19
|
Szeto B, Chiang H, Valentini C, Yu M, Kysar JW, Lalwani AK. Inner ear delivery: Challenges and opportunities. Laryngoscope Investig Otolaryngol 2020; 5:122-131. [PMID: 32128438 PMCID: PMC7042639 DOI: 10.1002/lio2.336] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/21/2019] [Accepted: 11/21/2019] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES The treatment of inner ear disorders remains challenging due to anatomic barriers intrinsic to the bony labyrinth. The purpose of this review is to highlight recent advances and strategies for overcoming these barriers and to discuss promising future avenues for investigation. DATA SOURCES The databases used were PubMed, EMBASE, and Web of Science. RESULTS Although some studies aimed to improve systemic delivery using nanoparticle systems, the majority enhanced local delivery using hydrogels, nanoparticles, and microneedles. Developments in direct intracochlear delivery include intracochlear injection and intracochlear implants. CONCLUSIONS In the absence of a systemic drug that targets only the inner ear, the best alternative is local delivery that harnesses a combination of new strategies to overcome anatomic barriers. The combination of microneedle technology with hydrogel and nanoparticle delivery is a promising area for future investigation. LEVEL OF EVIDENCE NA.
Collapse
Affiliation(s)
- Betsy Szeto
- Department of Otolaryngology–Head and Neck SurgeryColumbia University Vagelos College of Physicians and SurgeonsNew YorkNew York
| | - Harry Chiang
- Department of Otolaryngology–Head and Neck SurgeryColumbia University Vagelos College of Physicians and SurgeonsNew YorkNew York
| | - Chris Valentini
- Department of Otolaryngology–Head and Neck SurgeryColumbia University Vagelos College of Physicians and SurgeonsNew YorkNew York
| | - Michelle Yu
- Department of Otolaryngology–Head and Neck SurgeryColumbia University Vagelos College of Physicians and SurgeonsNew YorkNew York
| | - Jeffrey W. Kysar
- Department of Otolaryngology–Head and Neck SurgeryColumbia University Vagelos College of Physicians and SurgeonsNew YorkNew York
- Department of Mechanical Engineering, School of EngineeringColumbia UniversityNew YorkNew York
| | - Anil K. Lalwani
- Department of Otolaryngology–Head and Neck SurgeryColumbia University Vagelos College of Physicians and SurgeonsNew YorkNew York
- Department of Mechanical Engineering, School of EngineeringColumbia UniversityNew YorkNew York
| |
Collapse
|
20
|
Kryukov AI, Kunelskaya NL, Shershunova EA, Rebrov IE, Yamshchikov VA, Garov EV, Tsarapkin GY, Mishchenko VV. [Topical drug administration to the inner ear. Modern state of the problem and development perspectives]. Vestn Otorinolaringol 2019; 84:6-14. [PMID: 31793520 DOI: 10.17116/otorino2019840516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The work assessed modern methods of drug delivery through biological barriers to the lesion, in particular, through the most studied - skin. The main advantages and disadvantages of the existing methods for the topical administration of drugs into the inner ear - intra-imperial and intra-labyrinth delivery are analyzed. A brief review of medicinal substances for topical administration to the inner ear, both widely used (for example, aminoglycosides, steroid drugs) and undergoing clinical trials, is given. An assessment is made of the prospects for the use of transmembrane drug delivery to the inner ear using an electric field, which has a combined electro-creative and iontophoretic effect.
Collapse
Affiliation(s)
- A I Kryukov
- The Sverzhevskiy's Otorhinolaryngology Healthcare Research Institute, Moscow, Russia, 117152
| | - N L Kunelskaya
- The Sverzhevskiy's Otorhinolaryngology Healthcare Research Institute, Moscow, Russia, 117152
| | - E A Shershunova
- The Institute for Electrophysics and Electric Power of the Russian Academy of Sciences, Sanct-Petersburg, Russia, 191186
| | - I E Rebrov
- The Institute for Electrophysics and Electric Power of the Russian Academy of Sciences, Sanct-Petersburg, Russia, 191186
| | - V A Yamshchikov
- The Institute for Electrophysics and Electric Power of the Russian Academy of Sciences, Sanct-Petersburg, Russia, 191186
| | - E V Garov
- The Sverzhevskiy's Otorhinolaryngology Healthcare Research Institute, Moscow, Russia, 117152
| | - G Yu Tsarapkin
- The Sverzhevskiy's Otorhinolaryngology Healthcare Research Institute, Moscow, Russia, 117152
| | - V V Mishchenko
- The Sverzhevskiy's Otorhinolaryngology Healthcare Research Institute, Moscow, Russia, 117152
| |
Collapse
|
21
|
Anderson CR, Xie C, Su MP, Garcia M, Blackshaw H, Schilder AGM. Local Delivery of Therapeutics to the Inner Ear: The State of the Science. Front Cell Neurosci 2019; 13:418. [PMID: 31649507 PMCID: PMC6794458 DOI: 10.3389/fncel.2019.00418] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/30/2019] [Indexed: 12/24/2022] Open
Abstract
Background: Advances in the understanding of the genetic and molecular etiologies of inner ear disorders have enabled the identification of therapeutic targets and innovative delivery approaches to the inner ear. As this field grows, the need for knowledge about effective delivery of therapeutics to the inner ear has become a priority. This review maps all clinical and pre-clinical research published in English in the field to date, to guide both researchers and clinicians about local drug delivery methods in the context of novel therapeutics. Methods: A systematic search was conducted using customized strategies in Cochrane, pubmed and EMBASE databases from inception to 30/09/2018. Two researchers undertook study selection and data extraction independently. Results: Our search returned 12,200 articles, of which 837 articles met the inclusion criteria. 679 were original research and 158 were reviews. There has been a steady increase in the numbers of publications related to inner ear therapeutics delivery over the last three decades, with a sharp rise over the last 2 years. The intra-tympanic route accounts for over 70% of published articles. Less than one third of published research directly assesses delivery efficacy, with most papers using clinical efficacy as a surrogate marker. Conclusion: Research into local therapeutic delivery to the inner ear has undergone a recent surge, improving our understanding of how novel therapeutics can be delivered. Direct assessment of delivery efficacy is challenging, especially in humans, and progress in this area is key to understanding how to make decisions about delivery of novel hearing therapeutics.
Collapse
Affiliation(s)
- Caroline R. Anderson
- evidENT, Ear Institute, University College London, London, United Kingdom
- NIHR University College London Hospitals Biomedical Research Centre, London, United Kingdom
| | - Carol Xie
- evidENT, Ear Institute, University College London, London, United Kingdom
- NIHR University College London Hospitals Biomedical Research Centre, London, United Kingdom
| | - Matthew P. Su
- evidENT, Ear Institute, University College London, London, United Kingdom
- NIHR University College London Hospitals Biomedical Research Centre, London, United Kingdom
| | - Maria Garcia
- evidENT, Ear Institute, University College London, London, United Kingdom
- NIHR University College London Hospitals Biomedical Research Centre, London, United Kingdom
| | - Helen Blackshaw
- evidENT, Ear Institute, University College London, London, United Kingdom
- NIHR University College London Hospitals Biomedical Research Centre, London, United Kingdom
| | - Anne G. M. Schilder
- evidENT, Ear Institute, University College London, London, United Kingdom
- NIHR University College London Hospitals Biomedical Research Centre, London, United Kingdom
| |
Collapse
|
22
|
Permeation Enhancers for Intratympanically-applied Drugs Studied Using Fluorescent Dexamethasone as a Marker. Otol Neurotol 2019; 39:639-647. [PMID: 29649043 DOI: 10.1097/mao.0000000000001786] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
HYPOTHESIS Entry of locally applied drugs into the inner ear can be enhanced by chemical manipulations. BACKGROUND Perilymph drug concentrations achieved by intratympanic applications are well below the applied concentration due to limited entry through the round window (RW) membrane and stapes. Chemical manipulations to increase entry permeability could increase the effectiveness of drug therapy with local applications. METHODS Dexamethasone-fluorescein (F-dex) was used as an entry marker. F-dex was applied to the RW niche of guinea pigs as a 20 μL bolus of 1 mM solution. After a 1 hour application, 10 samples of perilymph were collected sequentially from the lateral semicircular canal, allowing F-dex distribution throughout the perilymph to be quantified. Entry was also measured with the applied solution additionally containing dimethyl sulfoxide (DMSO), N-methylpyrrolidone (NMP), saponin, caprate, benzyl alcohol (BA) or poloxamer 407 (P407). Combinations of saponin or BA with P407 were also compared. RESULTS In control experiments, F-dex entered the inner ear slowly at both the RW and stapes. The total F-dex recovered in all 10 samples from each animal averaged 2.1 pMoles for controls, 1.71 pMoles for 17% P407, 3.70 pMoles for caprate, 8.04 pMoles for DMSO, 16.32 pMoles for NMP, 31.0 pMoles for saponin, and 67.3 pMoles for 4% BA. Entry with DMSO, NMP, saponin and 4% BA were all significantly higher than the controls (one-way ANOVA). CONCLUSION These studies confirm that entry of drugs into the ear can be markedly enhanced with the use of chemical permeation-enhancing agents.
Collapse
|
23
|
Ren Y, Landegger LD, Stankovic KM. Gene Therapy for Human Sensorineural Hearing Loss. Front Cell Neurosci 2019; 13:323. [PMID: 31379508 PMCID: PMC6660246 DOI: 10.3389/fncel.2019.00323] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/01/2019] [Indexed: 12/22/2022] Open
Abstract
Hearing loss is the most common sensory impairment in humans and currently disables 466 million people across the world. Congenital deafness affects at least 1 in 500 newborns, and over 50% are hereditary in nature. To date, existing pharmacologic therapies for genetic and acquired etiologies of deafness are severely limited. With the advent of modern sequencing technologies, there is a vast compendium of growing genetic alterations that underlie human hearing loss, which can be targeted by therapeutics such as gene therapy. Recently, there has been tremendous progress in the development of gene therapy vectors to treat sensorineural hearing loss (SNHL) in animal models in vivo. Nevertheless, significant hurdles remain before such technologies can be translated toward clinical use. These include addressing the blood-labyrinth barrier, engineering more specific and effective delivery vehicles, improving surgical access, and validating novel targets. In this review, we both highlight recent progress and outline challenges associated with in vivo gene therapy for human SNHL.
Collapse
Affiliation(s)
- Yin Ren
- Department of Otolaryngology, Harvard Medical School, Boston, MA, United States
- Eaton Peabody Laboratories, Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, United States
| | - Lukas D. Landegger
- Department of Otolaryngology, Harvard Medical School, Boston, MA, United States
- Eaton Peabody Laboratories, Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, United States
- Department of Otolaryngology, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Konstantina M. Stankovic
- Department of Otolaryngology, Harvard Medical School, Boston, MA, United States
- Eaton Peabody Laboratories, Department of Otolaryngology, Massachusetts Eye and Ear, Boston, MA, United States
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA, United States
- Harvard Program in Therapeutic Science, Harvard University, Boston, MA, United States
| |
Collapse
|
24
|
Bielefeld EC, Kobel MJ. Advances and Challenges in Pharmaceutical Therapies to Prevent and Repair Cochlear Injuries From Noise. Front Cell Neurosci 2019; 13:285. [PMID: 31297051 PMCID: PMC6607696 DOI: 10.3389/fncel.2019.00285] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/13/2019] [Indexed: 12/20/2022] Open
Abstract
Noise induces a broad spectrum of pathological injuries to the cochlea, reflecting both mechanical damage to the delicate architecture of the structures of the organ of Corti and metabolic damage within the organ of Corti and lateral wall tissues. Unlike ototoxic medications, the blood-labyrinth barrier does not offer protection against noise injury. The blood-labyrinth barrier is a target of noise injury, and can be weakened as part of the metabolic pathologies in the cochlea. However, it also offers a potential for therapeutic intervention with oto-protective compounds. Because the blood-labyrinth barrier is weakened by noise, penetration of blood-borne oto-protective compounds could be higher. However, systemic dosing for cochlear protection from noise offers other significant challenges. An alternative option to systemic dosing is local administration to the cochlea through the round window membrane using a variety of drug delivery techniques. The review will discuss noise-induced cochlear pathology, including alterations to the blood-labyrinth barrier, and then transition into discussing approaches for delivery of oto-protective compounds to reduce cochlear injury from noise.
Collapse
Affiliation(s)
- Eric C Bielefeld
- Department of Speech and Hearing Science, The Ohio State University, Columbus, OH, United States
| | - Megan J Kobel
- Department of Speech and Hearing Science, The Ohio State University, Columbus, OH, United States.,Department of Otolaryngology-Head & Neck Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
25
|
Patel J, Szczupak M, Rajguru S, Balaban C, Hoffer ME. Inner Ear Therapeutics: An Overview of Middle Ear Delivery. Front Cell Neurosci 2019; 13:261. [PMID: 31244616 PMCID: PMC6580187 DOI: 10.3389/fncel.2019.00261] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/24/2019] [Indexed: 12/12/2022] Open
Abstract
There are a variety of methods to access the inner ear and many of these methods depend on utilizing the middle ear as a portal. In this approach the middle ear can be used as a passive receptacle, as part of an active drug delivery system, or simply as the most convenient way to access the inner ear directly in human subjects. The purpose of this volume is to examine some of the more cutting-edge approaches to treating the middle ear. Before considering these therapies, this manuscript provides an overview of some therapies that have been delivered through the middle ear both in the past and at the current time. This manuscript also serves as a review of many of the methods for accessing the inner ear that directly utilize or pass though the middle ear. This manuscript provides the reader a basis for understanding middle ear delivery, the basis of delivery of medicines via cochlear implants, and examines the novel approach of using hypothermia as a method of altering the responses of the inner ear to damage.
Collapse
Affiliation(s)
- Jaimin Patel
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Mikhaylo Szczupak
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Suhrud Rajguru
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, United States
| | - Carey Balaban
- Department of Otolaryngology and Biomedical Engineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Michael E. Hoffer
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
26
|
Rhee J, Han E, Rah YC, Park S, Koun S, Choi J. Evaluation of Ototoxicity of an Antifog Agent and the Suspected Underlying Mechanisms: An Animal Study. EAR, NOSE & THROAT JOURNAL 2019; 98:NP131-NP137. [PMID: 31088301 DOI: 10.1177/0145561319850808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Use of rigid endoscopes has become widespread in middle ear surgeries, thereby attracting attention to the safety of antifog agents. However, few studies on the ototoxicity of antifog agents have been conducted. The purpose of this study was to evaluate hair cell damage and the underlying mechanisms caused by antifog agents using zebrafish larvae. We exposed zebrafish larvae at 3 days postfertilization to various concentrations of the antifog agent, Ultrastop (0.01, 0.02, 0.04, and 0.08%) for 72 hours. The average number of hair cells within 4 neuromasts of larvae, including supraorbital (SO1 and SO2), otic (O1), and occipital (OC1), in the control group were compared to those in the exposure groups. Significant hair cell loss was observed in the experimental groups compared to that in the control group (P < .01; control: 53.88 ± 4.85, 0.01%: 45.08 ± 11.70, 0.02%: 41.36 ± 12.00, 0.04%: 35.36 ± 16.18, and 0.08%: 15.60 ± 7.53 cells). Concentration-dependent increase in hair cell apoptosis by terminal deoxynucleotidyltransferase (TDT)-mediated dUTP-biotin nick end labeling assay (control: 0.00 ± 0.00, 0.01%: 3.48 ± 2.18, 0.02%: 9.64 ± 5.75, 0.04%: 17.72 ± 6.26, and 0.08%: 14.60 ± 8.18 cells) and decrease in the viability of hair cell mitochondria by 2-(4-[dimethylamino] styryl)-N-ethylpyridinium iodide assay (control: 9.61 ± 1.47, 0.01%: 8.28 ± 2.22, 0.02%: 8.45 ± 2.72, 0.04%: 7.25 ± 2.44, and 0.08%: 6.77 ± 3.26 percentage of total area) were observed. Antifog agent exposure can cause hair cell damage in zebrafish larvae, possibly by induction of mitochondrial damage with subsequent apoptosis of hair cells.
Collapse
Affiliation(s)
- Jihye Rhee
- Department of Otorhinolaryngology - Head and Neck Surgery, Korea University Ansan Hospital, Korea University, College of Medicine, Seoul, Republic of Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, Veterans Health Service Medical Center, Seoul, Republic of Korea
| | - Eunjung Han
- Department of Otorhinolaryngology - Head and Neck Surgery, Korea University Ansan Hospital, Korea University, College of Medicine, Seoul, Republic of Korea.,Laboratory of Neurodevelopmental Genetics, Graduate School of Medicine, Korea University, Seoul, Republic of Korea
| | - Yoon Chan Rah
- Department of Otorhinolaryngology - Head and Neck Surgery, Korea University Ansan Hospital, Korea University, College of Medicine, Seoul, Republic of Korea
| | - Saemi Park
- Department of Otorhinolaryngology - Head and Neck Surgery, Korea University Ansan Hospital, Korea University, College of Medicine, Seoul, Republic of Korea
| | - Soonil Koun
- Biomedical Research Center, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - June Choi
- Department of Otorhinolaryngology - Head and Neck Surgery, Korea University Ansan Hospital, Korea University, College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
27
|
Pappa AK, Hutson KA, Scott WC, Wilson JD, Fox KE, Masood MM, Giardina CK, Pulver SH, Grana GD, Askew C, Fitzpatrick DC. Hair cell and neural contributions to the cochlear summating potential. J Neurophysiol 2019; 121:2163-2180. [PMID: 30943095 DOI: 10.1152/jn.00006.2019] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The cochlear summating potential (SP) to a tone is a baseline shift that persists for the duration of the burst. It is often considered the most enigmatic of cochlear potentials because its magnitude and polarity vary across frequency and level and its origins are uncertain. In this study, we used pharmacology to isolate sources of the SP originating from the gerbil cochlea. Animals either had the full complement of outer and inner hair cells (OHCs and IHCs) and an intact auditory nerve or had systemic treatment with furosemide and kanamycin (FK) to remove the outer hair cells. Responses to tone bursts were recorded from the round window before and after the neurotoxin kainic acid (KA) was applied. IHC responses were then isolated from the post-KA responses in FK animals, neural responses were isolated from the subtraction of post-KA from pre-KA responses in NH animals, and OHC responses were isolated by subtraction of post-KA responses in FK animals from post-KA responses in normal hearing (NH) animals. All three sources contributed to the SP; OHCs with a negative polarity and IHCs and the auditory nerve with positive polarity. Thus the recorded SP in NH animals is a sum of contributions from different sources, contributing to the variety of magnitudes and polarities seen across frequency and intensity. When this information was applied to observations of the SP recorded from the round window in human cochlear implant subjects, a strong neural contribution to the SP was confirmed in humans as well as gerbils. NEW & NOTEWORTHY Of the various potentials produced by the cochlea, the summating potential (SP) is typically described as the most enigmatic. Using combinations of ototoxins and neurotoxins, we show contributions to the SP from the auditory nerve and from inner and outer hair cells, which differ in polarity and vary in size across frequency and level. This complexity of sources helps to explain the enigmatic nature of the SP.
Collapse
Affiliation(s)
- Andrew K Pappa
- Department of Otolaryngology and Head and Neck Surgery, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina
| | - Kendall A Hutson
- Department of Otolaryngology and Head and Neck Surgery, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina
| | - William C Scott
- Department of Otolaryngology and Head and Neck Surgery, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina
| | - J David Wilson
- Department of Otolaryngology and Head and Neck Surgery, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina
| | - Kevin E Fox
- Campbell University School of Osteopathic Medicine, Lillington, North Carolina
| | - Maheer M Masood
- Department of Otolaryngology and Head and Neck Surgery, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina
| | - Christopher K Giardina
- Department of Otolaryngology and Head and Neck Surgery, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina
| | - Stephen H Pulver
- Department of Otolaryngology and Head and Neck Surgery, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina
| | - Gilberto D Grana
- Department of Otolaryngology and Head and Neck Surgery, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina
| | - Charles Askew
- Gene Therapy Center, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina
| | - Douglas C Fitzpatrick
- Department of Otolaryngology and Head and Neck Surgery, University of North Carolina at Chapel Hill , Chapel Hill, North Carolina
| |
Collapse
|
28
|
Pharmacokinetics and tissue distribution of neurotrophin 3 after intracochlear delivery. J Control Release 2019; 299:53-63. [PMID: 30790594 DOI: 10.1016/j.jconrel.2019.02.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/11/2019] [Accepted: 02/15/2019] [Indexed: 01/22/2023]
Abstract
Neurotrophin therapy has potential to reverse some forms of hearing loss. However, cochlear pharmacokinetic studies are challenging due to small fluid volumes. Here a radioactive tracer was used to determine neurotrophin-3 retention, distribution and clearance after intracochlear administration. 125I-neurotrophin-3 was injected into guinea pig cochleae using a sealed injection technique comparing dosing volumes, rates and concentrations up to 750 μg/mL. Retention was measured by whole-cochlear gamma counts at five time points while distribution and clearance were assessed by autoradiography. Smaller injection volumes and higher concentrations correlated with higher retention of neurotrophin-3. Distribution of neurotrophin-3 was widespread throughout the cochlear tissue, decreasing in concentration from base to apex. Tissue distribution was non-uniform, with greatest density in cells lining the scala tympani and lower density in neural target tissue. The time constant for clearance of neurotrophin-3 from cochlear tissues was 38 h but neurotrophin-3 remained detectable for at least 2 weeks. Neurotrophin-3 was evident in the semi-circular canals with minor spread to the contralateral cochlea. This study is the first comprehensive evaluation of the disposition profile for a protein therapy in the cochlea. The findings and methods in this study will provide valuable guidance for the development of protein therapies for hearing loss.
Collapse
|
29
|
Abstract
Soft tissue conduction (STC) is a recently explored mode of auditory stimulation, complementing air (AC) and bone (BC) conduction stimulation. STC can be defined as the hearing induced when vibratory stimuli reach skin and soft tissue sites not directly overlying skull bone such as the head, neck, thorax, and body. Examples of STC include the delivery of vibrations to the skin of parts of the body by a clinical bone vibrator, hearing underwater sounds and free field air sounds, while AC hearing is attenuated by earplugs. The vibrations induced in the soft tissues are apparently transmitted along soft tissues, reaching, and exciting the ear. Further research is required to determine whether the mechanism of the final stage of STC hearing involves the excitation of the ear by eliciting inner ear fluid pressures that activate the hair cells directly, by the induction of skull bone vibrations, or by a combination of both mechanisms, depending on the magnitude of each mechanism.
Collapse
Affiliation(s)
- Haim Sohmer
- 1 Department of Medical Neurobiology (Physiology), Institute for Medical Research - Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
30
|
Shimoji M, Ramaswamy B, Shukoor MI, Benhal P, Broda A, Kulkarni S, Malik P, McCaffrey B, Lafond JF, Nacev A, Weinberg IN, Shapiro B, Depireux DA. Toxicology study for magnetic injection of prednisolone into the rat cochlea. Eur J Pharm Sci 2019; 126:33-48. [PMID: 29933075 PMCID: PMC6235712 DOI: 10.1016/j.ejps.2018.06.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/31/2018] [Accepted: 06/12/2018] [Indexed: 01/28/2023]
Abstract
This paper investigates the safety of a novel 'magnetic injection' method of delivering therapy to the cochlea, in a rodent model. In this method of administration, a magnetic field is employed to actively transport drug-eluting superparamagnetic iron-oxide core nanoparticles into the cochlea, where they then release their drug payload (we delivered the steroid prednisolone). Our study design and selection of control groups was based on published regulatory guidance for safety studies that involve local drug delivery. We tested for both single and multiple delivery doses to the cochlea, and found that magnetic delivery did not harm hearing. There was no statistical difference in hearing between magnetically treated ears versus ears that received intra-tympanic steroid (a mimic of a standard-of-care for sudden sensorineural hearing loss), both 2 and 30 days after treatment. Since our treatment is local to the ear, the levels of steroid and iron circulating systemically after our treatment were low, below mass-spectrometry detection limits for the steroid and no different from normal for iron. No adverse findings were observed in ear tissue histopathology or in animal gross behavior. At 2 and 30 days after treatment, inflammatory changes examined in the ear were limited to the middle ear, were very mild in severity, and by day 90 there was ongoing and almost complete reversibility of these changes. There were no ear tissue scarring or hemorrhage trends associated with magnetic delivery. In summary, after conducting a pre-clinical safety study, no adverse safety issues were observed.
Collapse
Affiliation(s)
- M Shimoji
- Otomagnetics, Inc., Rockville, MD 20852, United States of America.
| | - B Ramaswamy
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, United States of America
| | - M I Shukoor
- Otomagnetics, Inc., Rockville, MD 20852, United States of America
| | - P Benhal
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, United States of America
| | - A Broda
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, United States of America
| | - S Kulkarni
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, United States of America
| | - P Malik
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, United States of America
| | - B McCaffrey
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, United States of America
| | | | - A Nacev
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, United States of America
| | - I N Weinberg
- Otomagnetics, Inc., Rockville, MD 20852, United States of America
| | - B Shapiro
- Otomagnetics, Inc., Rockville, MD 20852, United States of America; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, United States of America; Institute for Systems Research (ISR), University of Maryland, College Park, MD 20742, United States of America
| | - D A Depireux
- Otomagnetics, Inc., Rockville, MD 20852, United States of America; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, United States of America; Institute for Systems Research (ISR), University of Maryland, College Park, MD 20742, United States of America
| |
Collapse
|
31
|
Aykal K, Ardıç FN, Tümkaya F, Yücel E, Akarsu M, Kara CO, Erdem E. Preliminary Results of a New Experimental Model for Intratympanic Treatment. Turk Arch Otorhinolaryngol 2018; 56:188-192. [PMID: 30701112 PMCID: PMC6340320 DOI: 10.5152/tao.2018.3467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/14/2018] [Indexed: 03/23/2024] Open
Abstract
OBJECTIVE Corticosteroids have been applied via transtympanic route for a long time to treat the inner ear disorders. A few animal models were used to answer the questions, "How much drug goes into the inner ear?" and "How far does the drug reach through the scala tympani and/or scala vestibuli?" However, the cerebrospinal fluid contamination poses a major problem. The aims of this study were to create a new sampling model showing the dexamethasone distribution in the inner ear and to provide more reliable data about drug concentrations. METHODS Ten Hartley strain albino guinea pigs that weighted between 400 and 600 g were used. After dexamethasone application to the left ear, they were sacrificed at two time points: after 0.5 hours (Exp 1) and after 2 hours (Exp 2). The temporal bones were immediately dissected and put into liquid nitrogen for freezing. The apex, second turn, and basal turns of the cochlea and vestibule were separated, while the bone was in the frozen state. The samples were prepared and measured with ultraviolet (UV) spectroscopy. RESULTS The total amount of dexamethasone was statistically higher in the left ear than the control ear. Although the basal turn and vestibule were the most prominent parts, there was no statistical difference between the different parts of the inner ear at 0.5 hours. The vestibule and the apex showed the highest level of dexamethasone at 2 hours. CONCLUSION Although the model has some limitations, it can measure dexamethasone concentrations and show the time variability in the inner ear.
Collapse
Affiliation(s)
- Kamil Aykal
- Department of Otorhinolaryngology, Pamukkale University School of Medicine, Denizli, Turkey
| | - Fazıl Necdet Ardıç
- Department of Otorhinolaryngology, Pamukkale University School of Medicine, Denizli, Turkey
| | - Funda Tümkaya
- Department of Otorhinolaryngology, Pamukkale University School of Medicine, Denizli, Turkey
| | - Emrah Yücel
- Department of Otorhinolaryngology, Pamukkale University School of Medicine, Denizli, Turkey
| | - Mehri Akarsu
- Department of Chemistry, Pamukkale University School of Medicine, Denizli, Turkey
| | - Cüneyt Orhan Kara
- Department of Otorhinolaryngology, Pamukkale University School of Medicine, Denizli, Turkey
| | - Emin Erdem
- Department of Chemistry, Pamukkale University School of Medicine, Denizli, Turkey
| |
Collapse
|
32
|
Salt AN, Hartsock JJ, Piu F, Hou J. Dexamethasone and Dexamethasone Phosphate Entry into Perilymph Compared for Middle Ear Applications in Guinea Pigs. Audiol Neurootol 2018; 23:245-257. [PMID: 30497073 DOI: 10.1159/000493846] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/10/2018] [Indexed: 12/20/2022] Open
Abstract
Dexamethasone phosphate is widely used for intratympanic therapy in humans. We assessed the pharmacokinetics of dexamethasone entry into perilymph when administered as a dexamethasone phosphate solution or as a micronized dexamethasone suspension, with and without inclusion of poloxamer gel in the medium. After a 1-h application to guinea pigs, 10 independent samples of perilymph were collected from the lateral semicircular canal of each animal, allowing entry at the round window and stapes to be independently assessed. Both forms of dexamethasone entered the perilymph predominantly at the round window (73%), with a lower proportion entering at the stapes (22%). When normalized by applied concentration, dexamethasone phosphate was found to enter perilymph far more slowly than dexamethasone, in accordance with its calculated lipid solubility and polar surface area properties. Dexamethasone phosphate therefore has a problematic combination of kinetic properties when used for local therapy of the ear. It is relatively impermeable and enters perilymph only slowly from the middle ear. It is then metabolized in the ear to dexamethasone, which is more permeable through tissue boundaries and is rapidly lost from perilymph. Understanding the influence of molecular properties on the distribution of drugs in perilymph provides a new level of understanding which may help optimize drug therapies of the ear.
Collapse
Affiliation(s)
- Alec N Salt
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, Missouri, USA,
| | - Jared J Hartsock
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | |
Collapse
|
33
|
Marques P, Duan M, Perez-Fernandez N, Spratley J. Gentamicin delivery to the inner ear: Does endolymphatic hydrops matter? PLoS One 2018; 13:e0207467. [PMID: 30440019 PMCID: PMC6237362 DOI: 10.1371/journal.pone.0207467] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/31/2018] [Indexed: 12/13/2022] Open
Abstract
Introduction Middle ear application of gentamicin is a common medical treatment for uncontrolled Ménière’s disease. The objective of the study was to evaluate the impact of endolymphatic hydrops on inner ear delivery. Methods Perilymph gentamicin concentrations and correlation with endolymphatic hydrops in an animal model were assessed. A group of 24 guinea pigs was submitted to surgical obstruction of the endolymphatic sac and duct of the right ear. Gentamicin was applied either to the right ear’s round window niche or through a transtympanic injection. Perilymph specimens were collected at different times. Histologic morphometry was used to evaluate both turn-specific and overall hydrops degree. Results In animals with endolymphatic hydrops, lower concentrations of gentamicin were observed after 20 or 120 minutes of exposure and in both types of administration, when compared to controls. This difference reached statistical significance in the round window niche application group (Mann-Whitney, p = 0,007). A negative correlation between perilymphatic gentamicin concentration and hydrops degree could be observed in both groups, after 120 minutes of exposure (Spearman correlation, round window niche p<0,001; TT p = 0,005). Conclusions The study indicates that the endolymphatic hydrops degree has a negative interference on the delivery of gentamicin into the inner ear following middle ear application.
Collapse
Affiliation(s)
- Pedro Marques
- Department of Otorhinolaryngology, S.João Hospital Centre, Porto, Portugal
- Unit of Otorhinolaryngology, Department of Surgery and Physiology, University of Porto Medical School, Porto, Portugal
- * E-mail:
| | - Maoli Duan
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
- Department of Otolaryngology, Head and Neck Surgery, Karolinska Universisty Hospital, Karolinska Institutet, Stockholm, Sweden
| | | | - Jorge Spratley
- Department of Otorhinolaryngology, S.João Hospital Centre, Porto, Portugal
- Unit of Otorhinolaryngology, Department of Surgery and Physiology, University of Porto Medical School, Porto, Portugal
- Center for Health Technology and Services Research (CINTESIS), University of Porto Medical School, Porto, Portugal
| |
Collapse
|
34
|
Creber NJ, Eastwood HT, Hampson AJ, Tan J, O'Leary SJ. Adjuvant agents enhance round window membrane permeability to dexamethasone and modulate basal to apical cochlear gradients. Eur J Pharm Sci 2018; 126:69-81. [PMID: 30107228 DOI: 10.1016/j.ejps.2018.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/22/2018] [Accepted: 08/09/2018] [Indexed: 01/09/2023]
Abstract
Glucocorticoids have direct anti-inflammatory, anti-oxidant and anti-apoptotic effects on cochlear hair cells. Cochlear glucocorticoid therapy has gained particular attention for its ability to enhance the protection of residual hearing following hearing preservation cochlear implantation. Local drug delivery methods achieve high drug concentrations within the inner ear fluids but are reliant upon diffusion across the round window membrane. Diffusion has been shown to demonstrate large individual variability. This study explores the role of "adjuvant agents", which when administered with glucocorticoids, enhance inner ear absorption and distribution. Guinea pig cochleae were administered either dexamethasone alone or in combination with hyaluronic acid, histamine, or combination histamine and hyaluronic acid, targeted at the round window membrane. Control subjects received saline. Perilymph was sampled from the cochlear apex, and basal to apical dexamethasone concentrations recorded with mass spectroscopy. Cochleae were harvested, and immunohistochemistry employed to explore dexamethasone tissue penetration and distribution. Basal to apical gradients were observed along the scala tympani, with higher dexamethasone concentrations observed at the cochlear base. Gradients were more pronounced and uniform when administered on a hyaluronic acid sponge, while histamine increased absolute concentrations reaching the inner ear. Tissue penetration correlated with perilymph concentration. Our results demonstrate that adjuvant agents can be employed to enhance dexamethasone absorption and distribution in the inner ear, thus proposing therapeutic strategies that may enhance steroid facilitated hearing protection.
Collapse
Affiliation(s)
- Nathan J Creber
- Otolaryngology, Department of Surgery, University of Melbourne, East Melbourne 3002, Australia.
| | - Hayden T Eastwood
- Otolaryngology, Department of Surgery, University of Melbourne, East Melbourne 3002, Australia
| | - Amy J Hampson
- Otolaryngology, Department of Surgery, University of Melbourne, East Melbourne 3002, Australia
| | - Justin Tan
- Otolaryngology, Department of Surgery, University of Melbourne, East Melbourne 3002, Australia
| | - Stephen J O'Leary
- Otolaryngology, Department of Surgery, University of Melbourne, East Melbourne 3002, Australia; Royal Victorian Eye and Ear Hospital, East Melbourne 3002, Australia
| |
Collapse
|
35
|
Glueckert R, Johnson Chacko L, Rask-Andersen H, Liu W, Handschuh S, Schrott-Fischer A. Anatomical basis of drug delivery to the inner ear. Hear Res 2018; 368:10-27. [PMID: 30442227 DOI: 10.1016/j.heares.2018.06.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 06/16/2018] [Accepted: 06/25/2018] [Indexed: 12/19/2022]
Abstract
The isolated anatomical position and blood-labyrinth barrier hampers systemic drug delivery to the mammalian inner ear. Intratympanic placement of drugs and permeation via the round- and oval window are established methods for local pharmaceutical treatment. Mechanisms of drug uptake and pathways for distribution within the inner ear are hard to predict. The complex microanatomy with fluid-filled spaces separated by tight- and leaky barriers compose various compartments that connect via active and passive transport mechanisms. Here we provide a review on the inner ear architecture at light- and electron microscopy level, relevant for drug delivery. Focus is laid on the human inner ear architecture. Some new data add information on the human inner ear fluid spaces generated with high resolution microcomputed tomography at 15 μm resolution. Perilymphatic spaces are connected with the central modiolus by active transport mechanisms of mesothelial cells that provide access to spiral ganglion neurons. Reports on leaky barriers between scala tympani and the so-called cortilymph compartment likely open the best path for hair cell targeting. The complex barrier system of tight junction proteins such as occludins, claudins and tricellulin isolates the endolymphatic space for most drugs. Comparison of relevant differences of barriers, target cells and cell types involved in drug spread between main animal models and humans shall provide some translational aspects for inner ear drug applications.
Collapse
Affiliation(s)
- R Glueckert
- Department of Otolaryngology, Medical University of Innsbruck, Innsbruck, Austria; University Clinics Innsbruck, Tirol Kliniken, University Clinic for Ear, Nose and Throat Medicine Innsbruck, Austria.
| | - L Johnson Chacko
- Department of Otolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| | - H Rask-Andersen
- Department of Surgical Sciences, Section of Otolaryngology, Uppsala University Hospital, SE-751 85, Uppsala, Sweden
| | - W Liu
- Department of Surgical Sciences, Section of Otolaryngology, Uppsala University Hospital, SE-751 85, Uppsala, Sweden
| | - S Handschuh
- VetImaging, VetCore Facility for Research, University of Veterinary Medicine, Vienna, Austria
| | - A Schrott-Fischer
- Department of Otolaryngology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
36
|
Salt AN, Hirose K. Communication pathways to and from the inner ear and their contributions to drug delivery. Hear Res 2018; 362:25-37. [PMID: 29277248 PMCID: PMC5911243 DOI: 10.1016/j.heares.2017.12.010] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 11/08/2017] [Accepted: 12/05/2017] [Indexed: 01/04/2023]
Abstract
The environment of the inner ear is highly regulated in a manner that some solutes are permitted to enter while others are excluded or transported out. Drug therapies targeting the sensory and supporting cells of the auditory and vestibular systems require the agent to gain entry to the fluid spaces of the inner ear, perilymph or endolymph, which surround the sensory organs. Access to the inner ear fluids from the vasculature is limited by the blood-labyrinth barriers, which include the blood-perilymph and blood-strial barriers. Intratympanic applications provide an alternative approach in which drugs are applied locally. Drug from the applied solution enters perilymph through the round window membrane, through the stapes, and under some circumstances, through thin bone in the otic capsule. The amount of drug applied to the middle ear is always substantially more than the amount entering perilymph. As a result, significant amounts of the applied drug can pass to the digestive system, to the vasculature, and to the brain. Drugs in perilymph pass to the vasculature and to cerebrospinal fluid via the cochlear aqueduct. Conversely, drugs applied to cerebrospinal fluid, including those given intrathecally, can enter perilymph through the cochlear aqueduct. Other possible routes in or out of the ear include passage by neuronal pathways, passage via endolymph and the endolymphatic sac, and possibly via lymphatic pathways. A better understanding of the pathways for drug movements in and out of the ear will enable better intervention strategies.
Collapse
Affiliation(s)
- Alec N Salt
- Department of Otolaryngology, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, USA.
| | - Keiko Hirose
- Department of Otolaryngology, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO, USA
| |
Collapse
|
37
|
Pharmacokinetic principles in the inner ear: Influence of drug properties on intratympanic applications. Hear Res 2018; 368:28-40. [PMID: 29551306 DOI: 10.1016/j.heares.2018.03.002] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 02/06/2018] [Accepted: 03/02/2018] [Indexed: 01/12/2023]
Abstract
Local drug delivery to the ear has gained wide clinical acceptance, with the choice of drug and application protocol in humans largely empirically-derived. Here, we review the pharmacokinetics underlying local therapy of the ear using the drugs commonly used in clinical practice as examples. Based on molecular properties and perilymph measurements interpreted through computer simulations we now better understand the principles underlying entry and distribution of these and other drugs in the ear. From our analysis, we have determined that dexamethasone-phosphate, a pro-drug widely-used clinically, has molecular and pharmacokinetic properties that make it ill-suited for use as a local therapy for hearing disorders. This polar form of dexamethasone, used as a more soluble agent in intravenous preparations, passes less readily through lipid membranes, such as those of the epithelia restricting entry at the round window membrane and stapes. Once within the inner ear, dexamethasone-phosphate is cleaved to the active form, dexamethasone, which is less polar, passes more readily through lipid membranes of the blood-perilymph barrier and is rapidly eliminated from perilymph without distributing to apical cochlear regions. Dexamethasone-phosphate therefore provides only a brief exposure of the basal regions of the cochlea to active drug. Other steroids, such as triamcinolone-acetonide, exhibit pharmacokinetic properties more appropriate to the ear and merit more detailed consideration.
Collapse
|
38
|
Mäder K, Lehner E, Liebau A, Plontke SK. Controlled drug release to the inner ear: Concepts, materials, mechanisms, and performance. Hear Res 2018; 368:49-66. [PMID: 29576310 DOI: 10.1016/j.heares.2018.03.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/21/2018] [Accepted: 03/06/2018] [Indexed: 12/01/2022]
Abstract
Progress in drug delivery to the ear has been achieved over the last few years. This review illustrates the main mechanisms of controlled drug release and the resulting geometry- and size-dependent release kinetics. The potency, physicochemical properties, and stability of the drug molecules are key parameters for designing the most suitable drug delivery system. The most important drug delivery systems for the inner ear include solid foams, hydrogels, and different nanoscale drug delivery systems (e.g., nanoparticles, liposomes, lipid nanocapsules, polymersomes). Their main characteristics (i.e., general structure and materials) are discussed, with special attention given to underlining the link between the physicochemical properties (e.g., surface areas, glass transition temperature, microviscosity, size, and shape) and release kinetics. An appropriate characterization of the drug, the excipients used, and the formulated drug delivery systems is necessary to achieve a deeper understanding of the release process and decrease variability originating from the drug delivery system. This task cannot be solved by otologists alone. The interdisciplinary cooperation between otology/neurotology, pharmaceutics, physics, and other disciplines will result in improved drug delivery systems for the inner ear.
Collapse
Affiliation(s)
- Karsten Mäder
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, D-06120 Halle (Saale), Germany.
| | - Eric Lehner
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, D-06120 Halle (Saale), Germany
| | - Arne Liebau
- Department of Otorhinolaryngology, Head & Neck Surgery, Martin Luther University Halle-Wittenberg, University Medicine Halle, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Stefan K Plontke
- Department of Otorhinolaryngology, Head & Neck Surgery, Martin Luther University Halle-Wittenberg, University Medicine Halle, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| |
Collapse
|
39
|
Tsounis M, Psillas G, Tsalighopoulos M, Vital V, Maroudias N, Markou K. Systemic, intratympanic and combined administration of steroids for sudden hearing loss. A prospective randomized multicenter trial. Eur Arch Otorhinolaryngol 2017; 275:103-110. [PMID: 29168028 DOI: 10.1007/s00405-017-4803-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/07/2017] [Indexed: 10/18/2022]
Abstract
PURPOSE The purpose of this prospective, randomized, multicenter clinical trial was to compare the therapeutic efficacy of systemic versus intratympanic versus combined administration of steroids in the treatment of idiopathic sudden sensorineural hearing loss. METHODS 102 patients with an up to 14 days history of idiopathic sudden sensorineural hearing loss were randomized to 1 of 3 arms and followed prospectively. Group A (35 patients) received prednisolone intravenously followed by methylprednisolone orally, whereas Group B (34 patients) were administered intratympanic methylprednisolone. Patients in Group C (33 patients) were administered the combination of the above-mentioned treatment modalities. The patients were followed-up with pure tone audiograms on days 1 (initiation of treatment), 3, 5, 10, 30 and 90. RESULTS The final mean hearing gain was 29.0 dB HL for Group A, 27.0 dB HL for Group B and 29.8 dB HL for Group C. The differences between the three groups were not statistically significant. When hearing improvement was assessed according to Siegel's criteria, no statistically significant difference was recorded either. Furthermore, patients younger than 60 years old achieved significantly better hearing outcomes. CONCLUSIONS The results demonstrated that systemic, intratympanic and combined steroid administration have similar results in the primary treatment of idiopathic sudden hearing loss. Younger patients are more likely to achieve better hearing outcomes.
Collapse
Affiliation(s)
- Michael Tsounis
- Department of Otorhinolaryngology, Health Directorate of Hellenic Police Headquarters, 153 Piraeus Street, 11854, Athens, Greece
| | - George Psillas
- 1st Academic ENT Department, AHEPA Hospital, Aristotle University of Thessaloniki, 1 St. Kyriakidi Street, 54636, Thessaloniki, Greece
| | - Miltiadis Tsalighopoulos
- 1st Academic ENT Department, AHEPA Hospital, Aristotle University of Thessaloniki, 1 St. Kyriakidi Street, 54636, Thessaloniki, Greece
| | - Victor Vital
- 1st Academic ENT Department, AHEPA Hospital, Aristotle University of Thessaloniki, 1 St. Kyriakidi Street, 54636, Thessaloniki, Greece
| | - Nicolas Maroudias
- Department of Otorhinolaryngology, Konstantopouleio Hospital of Nea Ionia, 3-5 St Olga's Street, 14233, Athens, Greece
| | - Konstantinos Markou
- 2nd Academic ENT Department, Papageorgiou Hospital, Aristotle University of Thessaloniki, Ring Road, Municipality of Pavlos Melas Area of N. Efkarpia, 56403, Thessaloniki, Greece.
| |
Collapse
|
40
|
Reduction of permanent hearing loss by local glucocorticoid application : Guinea pigs with acute acoustic trauma. HNO 2017; 65:59-67. [PMID: 27878601 DOI: 10.1007/s00106-016-0266-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND High-intensity noise exposure from impulse and blast noise events often leads to acute hearing loss and may cause irreversible permanent hearing loss as a long-term consequence. Here, a treatment regime was developed to limit permanent damage based on a preclinical animal model of acute noise trauma. AIM To develop clinical trials for the treatment of acute noise traumas using approved drugs. The otoprotective potential of glucocorticoids applied locally to the inner ear was examined. MATERIALS AND METHODS A series of experiments with different impulse noise exposures were performed. Permanent hearing loss and hair cell density were assessed 14 days after exposure. Hearing and hair cell preservation were investigated as a function of the glucocorticoid dose. RESULTS After impulse noise exposure, local application to the round window of the cochlea of high-dose prednisolone (25 mg/ml) or methylprednisolone (12.5 mg/ml) resulted in a statistically significant reduction in hearing loss compared with the control group. CONCLUSION The local application of high doses of the drugs to the round window of the cochlea appears to be an effective treatment for acute noise trauma.
Collapse
|
41
|
Abstract
HYPOTHESIS Assessing the maximum safe dose for local bisphosphonate delivery to the cochlea enables efficient delivery without ototoxicity. BACKGROUND Otosclerosis is a disease of abnormal bone metabolism affecting the otic capsule, which can cause conductive hearing loss. Larger otosclerotic lesions involving the cochlear endosteum and spiral ligament can result in sensorineural hearing loss. Bisphosphonates are used to treat patients with metabolic bone diseases, including otosclerosis. Local delivery is the most efficient way of delivery to the cochlea while avoiding systemic side effects. To attain intracochlear bisphosphonate delivery without ototoxicity, the maximum safe dose of bisphosphonates requires definition. In the present study, we tested increasing concentrations of zoledronate, a third-generation bisphosphonate in an intracochlear delivery system. We measured ototoxicity by monitoring distortion product otoacoustic emissions and compound action potentials. METHODS Artificial perilymph and increasing molar concentrations of zoledronate were administered to the cochlea in guinea pigs via a cochleostomy. Hearing was measured at multiple time points. A fluorescently labeled zoledronate derivative (6-FAM-ZOL) was coadministered as an internal control for drug delivery. Specimens embedded in the resin blocks were ground to a mid-modiolar section and fluorescent photomicrographs were taken. RESULTS No significant shift in hearing was observed in animals treated either with artificial perilymph or with 4% of the human systemic zoledronate dose. However, compound action potentials thresholds increased during infusion of 8% of the human systemic zoledronate dose, improved 4 hours later, and then increased again 4 weeks later. Using fluorescent photomicrography, intracochlear bisphosphonate delivery up to the apical cochlear turn was confirmed by visualizing 6-FAM-ZOL. CONCLUSION These findings provide reference values for intracochlear bisphosphonate delivery in the treatment of cochlear otosclerosis and describe a useful method for tracking cochlear drug delivery.
Collapse
|
42
|
Lee JJ, Jang JH, Choo OS, Lim HJ, Choung YH. Steroid intracochlear distribution differs by administration method: Systemic versus intratympanic injection. Laryngoscope 2017; 128:189-194. [PMID: 28304075 DOI: 10.1002/lary.26562] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 01/13/2017] [Accepted: 02/07/2017] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Steroids have been widely used to treat inner-ear diseases such as sudden sensorineural hearing loss, tinnitus, and Meniere's disease. They can be given via either systemic or intratympanic (IT) injection. The purpose of the present study was to explore differences in intracochlear steroid distribution by the administration method employed (systemic vs. IT injection). STUDY DESIGN Animal study. METHODS Twenty-three Sprague-Dawley rats were given fluorescein isothiocyanate-labeled dexamethasone (FITC-DEX) three times (on successive days) via intraperitoneal (IP) or IT injection. Cochlear uptake of FITC-DEX was evaluated via immunohistochemistry and flow cytometry at 6 hours, and 3 and 7 days after the final injection. RESULTS FITC-DEX uptake was evident in spiral ganglion cells (SGs), the organ of Corti (OC), and the lateral walls (LWs), the basal turns of which were stained relatively prominently in both groups. Animals receiving IP injections exhibited higher FITC-DEX uptakes by the SGs and OC, whereas IT injection triggered higher-level FITC-DEX accumulation by the OC and LWs. Flow cytometry revealed that intracochlear FITC-DEX uptake by IT-injected animals was higher and more prolonged than in animals subjected to IP injections. CONCLUSION We thus describe differences in cochlear steroid distributions after systemic and IT injections. This finding could help our understanding of the pharmacokinetics of steroids in the cochlea. LEVEL OF EVIDENCE NA. Laryngoscope, 128:189-194, 2018.
Collapse
Affiliation(s)
- Jong Joo Lee
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jeong Hun Jang
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Oak-Sung Choo
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea
| | | | - Yun-Hoon Choung
- Department of Otolaryngology, Ajou University School of Medicine, Suwon, Republic of Korea.,Bk21 Plus Research Center for Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
43
|
Murillo-Cuesta S, Vallecillo N, Cediel R, Celaya AM, Lassaletta L, Varela-Nieto I, Contreras J. A Comparative Study of Drug Delivery Methods Targeted to the Mouse Inner Ear: Bullostomy Versus Transtympanic Injection. J Vis Exp 2017. [PMID: 28362376 PMCID: PMC5407703 DOI: 10.3791/54951] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We present two minimally invasive microsurgical techniques in rodents for specific drug delivery into the middle ear so that it may reach the inner ear. The first procedure consists of perforation of the tympanic bulla, termed bullostomy; the second one is a transtympanic injection. Both emulate human clinical intratympanic procedures. Chitosan-glycerophosphate (CGP) and Ringer´s Lactate buffer (RL) were used as biocompatible vehicles for local drug delivery. CGP is a nontoxic biodegradable polymer widely used in pharmaceutical applications. It is a viscous liquid at RT but it congeals to a semi solid phase at body temperature. RL is an isotonic solution used for intravenous administrations in humans. A small volume of this vehicle is precisely placed on the Round Window (RW) niche by means of a bullostomy. A transtympanic injection fills the middle ear and allows less control but broader access to the inner ear. The safety profiles of both techniques were studied and compared by using functional and morphological tests. Hearing was evaluated by registering the Auditory Brainstem Response (ABR) before and several times after microsurgery. The cytoarchitecture and preservation level of cochlear structures were studied by conventional histological techniques in paraformaldehyde-fixed and decalcified cochlear samples. In parallel, unfixed cochlear samples were taken and immediately frozen to analyze gene expression profiles of inflammatory markers by quantitative Reverse Transcriptase Polymerase Chain Reaction (qRT-PCR). Both procedures are suitable as drug delivery methods into the mouse middle ear, although transtympanic injection proved to be less invasive compared to bullostomy.
Collapse
Affiliation(s)
- Silvia Murillo-Cuesta
- Instituto de Investigaciones Biomédicas (IIBm) Alberto Sols CSIC-UAM; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII); Instituto de Investigación Sanitaria La Paz (IdiPAZ);
| | - Néstor Vallecillo
- Instituto de Investigaciones Biomédicas (IIBm) Alberto Sols CSIC-UAM
| | - Rafael Cediel
- Instituto de Investigaciones Biomédicas (IIBm) Alberto Sols CSIC-UAM; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII); Facultad de Veterinaria, Universidad Complutense de Madrid
| | - Adelaida M Celaya
- Instituto de Investigaciones Biomédicas (IIBm) Alberto Sols CSIC-UAM; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII)
| | - Luis Lassaletta
- Instituto de Investigación Sanitaria La Paz (IdiPAZ); Departmento de Otorrino laringología, Hospital Universitario La Paz
| | - Isabel Varela-Nieto
- Instituto de Investigaciones Biomédicas (IIBm) Alberto Sols CSIC-UAM; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII); Instituto de Investigación Sanitaria La Paz (IdiPAZ)
| | - Julio Contreras
- Instituto de Investigaciones Biomédicas (IIBm) Alberto Sols CSIC-UAM; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII); Facultad de Veterinaria, Universidad Complutense de Madrid
| |
Collapse
|
44
|
Müller M, Tisch M, Maier H, Löwenheim H. Begrenzung chronischer Hörverluste durch lokale Glukokortikoidgabe. HNO 2016; 64:831-840. [DOI: 10.1007/s00106-016-0256-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
45
|
Salt AN, Hartsock JJ, Gill RM, King E, Kraus FB, Plontke SK. Perilymph pharmacokinetics of locally-applied gentamicin in the guinea pig. Hear Res 2016; 342:101-111. [PMID: 27725177 DOI: 10.1016/j.heares.2016.10.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/20/2016] [Accepted: 10/06/2016] [Indexed: 01/08/2023]
Abstract
Intratympanic gentamicin therapy is widely used clinically to suppress the vestibular symptoms of Meniere's disease. Dosing in humans was empirically established and we still know remarkably little about where gentamicin enters the inner ear, where it reaches in the inner ear and what time course it follows after local applications. In this study, gentamicin was applied to the round window niche as a 20 μL bolus of 40 mg/ml solution. Ten 2 μL samples of perilymph were collected sequentially from the lateral semi-circular canal (LSCC) at times from 1 to 4 h after application. Gentamicin concentration was typically highest in samples originating from the vestibule and was lower in samples originating from scala tympani. To interpret these results, perilymph elimination kinetics for gentamicin was quantified by loading the entire perilymph space by injection at the LSCC with a 500 μg/ml gentamicin solution followed by sequential perilymph sampling from the LSCC after different delay times. This allowed concentration decline in perilymph to be followed with time. Gentamicin was retained well in scala vestibuli and the vestibule but declined rapidly at the base of scala tympani, dominated by interactions of perilymph with CSF, as reported for other substances. Quantitative analysis, taking into account perilymph kinetics for gentamicin, showed that more gentamicin entered at the round window membrane (57%) than at the stapes (35%) but the lower concentrations found in scala tympani were due to greater losses there. The gentamicin levels found in perilymph of the vestibule, which are higher than would be expected from round window entry alone, undoubtedly contribute to the vestibulotoxic effects of the drug. Furthermore, calculations of gentamicin distribution following targeted applications to the RW or stapes are more consistent with cochleotoxicity depending on the gentamicin concentration in scala vestibuli rather than that in scala tympani.
Collapse
Affiliation(s)
- A N Salt
- Department of Otolaryngology, Washington University School of Medicine, 660 South Euclid Avenue, St Louis MO, USA.
| | - J J Hartsock
- Department of Otolaryngology, Washington University School of Medicine, 660 South Euclid Avenue, St Louis MO, USA
| | - R M Gill
- Department of Otolaryngology, Washington University School of Medicine, 660 South Euclid Avenue, St Louis MO, USA
| | - E King
- Bionics Institute of Australia, Melbourne VIC, Australia
| | - F B Kraus
- Zentrallabor, Department of Laboratory Medicine, University Hospital Halle, Ernst Grube Str. 40, 06120 Halle (Saale), Germany
| | - S K Plontke
- Department of Otorhinolaryngology, Head and Neck Surgery, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
46
|
Primary treatment of idiopathic sudden sensorineural hearing loss with intratympanic dexamethasone. Curr Opin Otolaryngol Head Neck Surg 2016; 24:407-12. [DOI: 10.1097/moo.0000000000000288] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
Takeda H, Kurioka T, Kaitsuka T, Tomizawa K, Matsunobu T, Hakim F, Mizutari K, Miwa T, Yamada T, Ise M, Shiotani A, Yumoto E, Minoda R. Protein transduction therapy into cochleae via the round window niche in guinea pigs. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:16055. [PMID: 27579336 PMCID: PMC4988354 DOI: 10.1038/mtm.2016.55] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 07/02/2016] [Accepted: 07/04/2016] [Indexed: 12/18/2022]
Abstract
Cell-penetrating peptides (CPPs) are short sequences of amino acids that facilitate the penetration of conjugated cargoes across mammalian cell membranes, and as such, they may provide a safe and effective method for drug delivery to the inner ear. Simple polyarginine peptides have been shown to induce significantly higher cell penetration rates among CPPs. Herein, we show that a peptide consisting of nine arginines ("9R") effectively delivered enhanced green fluorescent protein (EGFP) into guinea pig cochleae via the round window niche without causing any deterioration in auditory function. A second application, 24 hours after the first, prolonged the presence of EGFP. To assess the feasibility of protein transduction using 9R-CPPs via the round window, we used "X-linked inhibitor of apoptosis protein" (XIAP) bonded to a 9R peptide (XIAP-9R). XIAP-9R treatment prior to acoustic trauma significantly reduced putative hearing loss and the number of apoptotic hair cells loss in the cochleae. Thus, the topical application of molecules fused to 9R-CPPs may be a simple and promising strategy for treating inner ear diseases.
Collapse
Affiliation(s)
- Hiroki Takeda
- Department of Otolaryngology-Head and Neck Surgery, Kumamoto University , Kumamoto, Japan
| | - Takaomi Kurioka
- Department of Otolaryngology, National Defense Medical College , Tokorozawa, Japan
| | - Taku Kaitsuka
- Department of Molecular Physiology, Kumamoto University , Kumamoto, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Kumamoto University , Kumamoto, Japan
| | - Takeshi Matsunobu
- Department of Otolaryngology, National Defense Medical College , Tokorozawa, Japan
| | - Farzana Hakim
- Department of Molecular Physiology, Kumamoto University , Kumamoto, Japan
| | - Kunio Mizutari
- Department of Otolaryngology, National Defense Medical College , Tokorozawa, Japan
| | - Toru Miwa
- Department of Otolaryngology-Head and Neck Surgery, Kumamoto University , Kumamoto, Japan
| | - Takao Yamada
- Department of Otolaryngology-Head and Neck Surgery, Kumamoto University , Kumamoto, Japan
| | - Momoko Ise
- Department of Otolaryngology-Head and Neck Surgery, Kumamoto University , Kumamoto, Japan
| | - Akihiro Shiotani
- Department of Otolaryngology, National Defense Medical College , Tokorozawa, Japan
| | - Eiji Yumoto
- Department of Otolaryngology-Head and Neck Surgery, Kumamoto University , Kumamoto, Japan
| | - Ryosei Minoda
- Department of Otolaryngology-Head and Neck Surgery, Kumamoto University , Kumamoto, Japan
| |
Collapse
|
48
|
Honeder C, Zhu C, Schöpper H, Gausterer JC, Walter M, Landegger LD, Saidov N, Riss D, Plasenzotti R, Gabor F, Arnoldner C. Effects of sustained release dexamethasone hydrogels in hearing preservation cochlear implantation. Hear Res 2016; 341:43-49. [PMID: 27519654 DOI: 10.1016/j.heares.2016.08.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 06/28/2016] [Accepted: 08/08/2016] [Indexed: 01/12/2023]
Abstract
It has been shown that glucocorticoids reduce the hearing threshold shifts associated with cochlear implantation. Previous studies evaluated the administration of glucocorticoids immediately before surgery or the repeated pre- or perioperative systemic application of glucocorticoids. The aim of this study was to evaluate the effects of a sustained release dexamethasone hydrogel in hearing preservation cochlear implantation. To address this issue, a guinea pig model of cochlear implantation was used. 30 normal hearing pigmented guinea pigs were randomized into a group receiving a single dose of a dexamethasone/poloxamer407 hydrogel one day prior to surgery, a second group receiving the hydrogel seven days prior to surgery and a control group. A silicone cochlear implant electrode designed for the use in guinea pigs was inserted to a depth of 5 mm through a cochleostomy. Compound action potentials of the auditory nerve (frequency range 0.5-32 kHz) were measured preoperatively, directly postoperatively and on postoperative days 3, 7, 14, 21 and 28. Following the last audiometry, temporal bones were harvested and histologically evaluated. Dexamethasone hydrogel application one day prior to surgery resulted in significantly reduced hearing threshold shifts at low, middle and high frequencies measured at postoperative day 28 (p < 0.05). Application of the hydrogel seven days prior to surgery did not show such an effect. Dexamethasone application one day prior to surgery resulted in increased outer hair cell counts in the cochlear apex and in reduced spiral ganglion cell counts in the basal and middle turn of the cochlea, a finding that was associated with a higher rate of electrode translocation in this group. In this study, we were able to demonstrate functional benefits of a single preoperative intratympanic application of a sustained release dexamethasone hydrogel in a guinea pig model of cochlear implantation.
Collapse
Affiliation(s)
- Clemens Honeder
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Chengjing Zhu
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Hanna Schöpper
- Department of Pathobiology, Institute of Anatomy, Histology and Embryology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Julia Clara Gausterer
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria
| | - Manuel Walter
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | | | - Nodir Saidov
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Dominik Riss
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Roberto Plasenzotti
- Department of Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Franz Gabor
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria
| | - Christoph Arnoldner
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
49
|
Zou J, Ostrovsky S, Israel LL, Feng H, Kettunen MI, Lellouche JPM, Pyykkö I. Efficient penetration of ceric ammonium nitrate oxidant-stabilized gamma-maghemite nanoparticles through the oval and round windows into the rat inner ear as demonstrated by MRI. J Biomed Mater Res B Appl Biomater 2016; 105:1883-1891. [DOI: 10.1002/jbm.b.33719] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 04/04/2016] [Accepted: 05/09/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Jing Zou
- Department of Otolaryngology-Head and Neck Surgery; Center for Otolaryngology-Head & Neck Surgery of Chinese PLA, Changhai Hospital, Second Military Medical University; Shanghai China
- Hearing and Balance Research Unit, Field of Oto-laryngology, School of Medicine, University of Tampere; Tampere Finland
| | - Stella Ostrovsky
- Laboratory of Nanoscale Materials and Systems, Department of Chemistry, Bar-Ilan University; Ramat-Gan Israel
| | - Liron L. Israel
- Laboratory of Nanoscale Materials and Systems, Department of Chemistry, Bar-Ilan University; Ramat-Gan Israel
| | - Hao Feng
- Hearing and Balance Research Unit, Field of Oto-laryngology, School of Medicine, University of Tampere; Tampere Finland
| | - Mikko I. Kettunen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland; Kuopio Finland
| | - Jean-Paul Moshe Lellouche
- Laboratory of Nanoscale Materials and Systems, Department of Chemistry, Bar-Ilan University; Ramat-Gan Israel
| | - Ilmari Pyykkö
- Hearing and Balance Research Unit, Field of Oto-laryngology, School of Medicine, University of Tampere; Tampere Finland
| |
Collapse
|
50
|
Cho HS, Lee KY, Choi H, Jang JH, Lee SH. Dexamethasone Is One of the Factors Minimizing the Inner Ear Damage from Electrode Insertion in Cochlear Implantation. Audiol Neurootol 2016; 21:178-86. [PMID: 27229744 DOI: 10.1159/000445099] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/29/2016] [Indexed: 11/19/2022] Open
Abstract
The aim of this study was to investigate the efficacy of preoperative and intraoperative steroid administration for inner ear protection in cochlear implantation (CI). Nineteen subjects who underwent CI were included in the study, and 10 subjects were enrolled as controls (steroid-administered group, n = 19; control group, n = 10). Dexamethasone (dexamethasone sodium phosphate, 5 mg/ml) was systemically administered preoperatively (1 ml) and topically applied during CI (0.5 ml). The extent of hearing preservation (HP) after CI and the change in the bithermal caloric response were evaluated. Hearing level was calculated using mean thresholds [(250 Hz + 500 Hz + 1,000 Hz + 2,000 Hz)/4]. Preoperative hearing thresholds were similar in the steroid-administered and control groups (100.92 ± 12.60 vs. 103.29 ± 14.39 dB, p = 0.650). The mean thresholds significantly increased in both groups after surgery (108.46 ± 14.08 dB, p = 0.006, for the steroid-administered group; 117.50 ± 6.34 dB, p = 0.027, for the control group), and the difference between the groups was also significant (p = 0.027). The postoperative shift in the hearing thresholds at frequencies of 500 and 1,000 Hz was significant in the steroid-administered group and that at the frequencies of 500, 1,000 and 2,000 Hz was significant in the control group. However, the extent of the shift in hearing threshold levels at each frequency was not significantly different between the groups. Preservation of hearing thresholds was compared between the groups, and there were significantly more subjects with complete and partial HP in the steroid-administered group than in the control group (p = 0.008). The preoperative caloric response was maintained after CI in the steroid-administered group. This study suggests that the perioperative use of a steroid could minimize the inner ear damage after CI.
Collapse
Affiliation(s)
- Hyun Soo Cho
- Department of Otorhinolaryngology, Head and Neck Surgery, Kyungpook National University College of Medicine, Daegu, South Korea
| | | | | | | | | |
Collapse
|