1
|
Tuset MP, Cooper JN, Ebode D, Mittal J, Garnham C, Melchionna T, Hessler R, Schilp S, Godur D, McKenna K, Mittal R, Eshraghi AA. Intracochlear Drug Delivery Using a Catheter and Dexamethasone-Eluting Electrode Preserves Residual Hearing Post-Cochlear Implantation. Otolaryngol Head Neck Surg 2025. [PMID: 40277148 DOI: 10.1002/ohn.1252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/08/2025] [Accepted: 03/20/2025] [Indexed: 04/26/2025]
Abstract
OBJECTIVES This study aims to assess the feasibility and safety of a cochlear catheter (cannula) for inner ear drug delivery during cochlear implantation. We evaluated the otoprotective effect of L-N-acetylcysteine (L-NAC) administered via a cannula in combination with a dexamethasone-eluting cochlear implant (CI). STUDY DESIGN An animal model study. SETTING Animal facility of an academic institution. METHODS Animals were divided into 8 groups: (1) implantation with a CI; (2) implantation with a dexamethasone-eluting CI (CIDexel); (3) cannula injection of artificial perilymph (Can+AP); (4) cannula injection of Ringer (Can+R); (5) cannula injection of R and CI (Can+CI); (6) cannula injection of R and Dexel (Can+Dexel); (7) cannula injection of 2 mM L-NAC and CI (Can L-NAC 2 mM+CI); or (8) cannula injection of 2mM L-NAC and Dexel (Can L-NAC 2 mM++Dexel). The contralateral ear served as the control group. Hearing thresholds were determined preoperatively, and at postoperative day (POD 7) and POD 30 post-cochlear implantation, using auditory brainstem responses (ABRs). The organ of Corti dissections were performed at POD 30 for hair cell (HC) viability, and oxidative stress assessment using immunostaining. RESULTS The L-NAC (2 mM) and dexamethasone-eluting electrode group had significantly lower hearing thresholds than the standard CI, Can L-NAC 2 mM, and Dexel groups. The animal group treated with L-NAC (2 mM) and dexamethasone-eluting electrode showed higher HC viability and reduced oxidative stress. CONCLUSION An intracochlear cannula can deliver pharmaceutical interventions without causing additional hearing loss. L-NAC presents strong anti-apoptotic potential and administration through a cannula together with Dexel implantation, and achieves a synergistic effect enhancing the otoprotection.
Collapse
Affiliation(s)
- Maria-Pia Tuset
- Department of Otolaryngology, Hearing Research and Cochlear Implant Laboratory, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jaimee N Cooper
- Department of Otolaryngology, Hearing Research and Cochlear Implant Laboratory, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Dario Ebode
- Department of Otolaryngology, Hearing Research and Cochlear Implant Laboratory, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jeenu Mittal
- Department of Otolaryngology, Hearing Research and Cochlear Implant Laboratory, University of Miami Miller School of Medicine, Miami, Florida, USA
| | | | | | | | | | - Dimitri Godur
- Department of Otolaryngology, Hearing Research and Cochlear Implant Laboratory, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Keelin McKenna
- Department of Otolaryngology, Hearing Research and Cochlear Implant Laboratory, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Rahul Mittal
- Department of Otolaryngology, Hearing Research and Cochlear Implant Laboratory, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Adrien A Eshraghi
- Department of Otolaryngology, Hearing Research and Cochlear Implant Laboratory, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Biomedical Engineering, University of Miami, Coral Gables, Florida, USA
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
2
|
Prenzler N, Salcher R, Büchner A, Warnecke A, Kley D, Batsoulis C, Vormelcher S, Mitterberger-Vogt M, Morettini S, Schilp S, Hochmair I, Lenarz T. Cochlear implantation with a dexamethasone-eluting electrode array: First-in-human safety and performance results. Hear Res 2025; 461:109255. [PMID: 40158223 DOI: 10.1016/j.heares.2025.109255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 04/02/2025]
Abstract
Cochlear implantation is the standard of care for individuals with severe-to-profound sensorineural hearing loss. However, implantation itself can degrade residual hearing, for example due to insertional trauma and subsequent inflammatory processes. One potential method to mitigate this loss of residual hearing is through the local and sustained delivery of anti-inflammatory drugs released from the electrode array. To this end, a dexamethasone eluting electrode array (FLEX28 DEX) was developed by MED-EL. Here we present the results from a first-in-human feasibility study of the CIDEXEL system (the Mi1200 SYNCHRONY cochlear implant combined with the FLEX28 DEX array). A single-arm, exploratory, open-label, prospective, longitudinal, and monocentric study design with sequential block enrolment was used. Nine participants were implanted with the CIDEXEL and were followed up to 9 months post first fitting. The primary aim was to evaluate the safety of the device. The secondary aims were to assess: 1) electrode impedance levels; 2) hearing preservation rates; 3) speech perception outcomes; and 4) subjective feedback from the surgeons regarding their experience with the device during the operation. There were no device- or procedure-related serious adverse events. Low and stable impedance levels were observed across all electrode sites (basal, medial and apical). In the majority of participants, good preservation of residual hearing (≤15 dB hearing loss) was achieved. The participants showed speech perception test results which were comparable to those with a non-eluting FLEX28 array. Surgeons reported that the CIDEXEL had similar handling and insertion properties to a conventional electrode array.
Collapse
Affiliation(s)
- Nils Prenzler
- Department of Otorhinolaryngology, Hannover Medical School, Hannover, Germany.
| | - Rolf Salcher
- Department of Otorhinolaryngology, Hannover Medical School, Hannover, Germany
| | - Andreas Büchner
- Department of Otorhinolaryngology, Hannover Medical School, Hannover, Germany
| | - Athanasia Warnecke
- Department of Otorhinolaryngology, Hannover Medical School, Hannover, Germany
| | - Daniel Kley
- Department of Otorhinolaryngology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | - Thomas Lenarz
- Department of Otorhinolaryngology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
3
|
Shah DD, Carter P, Shivdasani MN, Fong N, Duan W, Esrafilzadeh D, Poole-Warren LA, Aregueta Robles UA. Deciphering platinum dissolution in neural stimulation electrodes: Electrochemistry or biology? Biomaterials 2024; 309:122575. [PMID: 38677220 DOI: 10.1016/j.biomaterials.2024.122575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/28/2024] [Accepted: 04/13/2024] [Indexed: 04/29/2024]
Abstract
Platinum (Pt) is the metal of choice for electrodes in implantable neural prostheses like the cochlear implants, deep brain stimulating devices, and brain-computer interfacing technologies. However, it is well known since the 1970s that Pt dissolution occurs with electrical stimulation. More recent clinical and in vivo studies have shown signs of corrosion in explanted electrode arrays and the presence of Pt-containing particulates in tissue samples. The process of degradation and release of metallic ions and particles can significantly impact on device performance. Moreover, the effects of Pt dissolution products on tissue health and function are still largely unknown. This is due to the highly complex chemistry underlying the dissolution process and the difficulty in decoupling electrical and chemical effects on biological responses. Understanding the mechanisms and effects of Pt dissolution proves challenging as the dissolution process can be influenced by electrical, chemical, physical, and biological factors, all of them highly variable between experimental settings. By evaluating comprehensive findings on Pt dissolution mechanisms reported in the fuel cell field, this review presents a critical analysis of the possible mechanisms that drive Pt dissolution in neural stimulation in vitro and in vivo. Stimulation parameters, such as aggregate charge, charge density, and electrochemical potential can all impact the levels of dissolved Pt. However, chemical factors such as electrolyte types, dissolved gases, and pH can all influence dissolution, confounding the findings of in vitro studies with multiple variables. Biological factors, such as proteins, have been documented to exhibit a mitigating effect on the dissolution process. Other biological factors like cells and fibro-proliferative responses, such as fibrosis and gliosis, impact on electrode properties and are suspected to impact on Pt dissolution. However, the relationship between electrical properties of stimulating electrodes and Pt dissolution remains contentious. Host responses to Pt degradation products are also controversial due to the unknown chemistry of Pt compounds formed and the lack of understanding of Pt distribution in clinical scenarios. The cytotoxicity of Pt produced via electrical stimulation appears similar to Pt-based compounds, including hexachloroplatinates and chemotherapeutic agents like cisplatin. While the levels of Pt produced under clinical and acute stimulation regimes were typically an order of magnitude lower than toxic concentrations observed in vitro, further research is needed to accurately assess the mass balance and type of Pt produced during long-term stimulation and its impact on tissue response. Finally, approaches to mitigating the dissolution process are reviewed. A wide variety of approaches, including stimulation strategies, coating electrode materials, and surface modification techniques to avoid excess charge during stimulation and minimise tissue response, may ultimately support long-term and safe operation of neural stimulating devices.
Collapse
Affiliation(s)
- Dhyey Devashish Shah
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| | - Paul Carter
- Cochlear Ltd, Macquarie University, NSW, Australia
| | | | - Nicole Fong
- Cochlear Ltd, Macquarie University, NSW, Australia
| | - Wenlu Duan
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| | - Dorna Esrafilzadeh
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| | - Laura Anne Poole-Warren
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia; The Tyree Foundation Institute of Health Engineering, University of New South Wales, Sydney, Australia.
| | | |
Collapse
|
4
|
Huang Y, Yao K, Zhang Q, Huang X, Chen Z, Zhou Y, Yu X. Bioelectronics for electrical stimulation: materials, devices and biomedical applications. Chem Soc Rev 2024; 53:8632-8712. [PMID: 39132912 DOI: 10.1039/d4cs00413b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Bioelectronics is a hot research topic, yet an important tool, as it facilitates the creation of advanced medical devices that interact with biological systems to effectively diagnose, monitor and treat a broad spectrum of health conditions. Electrical stimulation (ES) is a pivotal technique in bioelectronics, offering a precise, non-pharmacological means to modulate and control biological processes across molecular, cellular, tissue, and organ levels. This method holds the potential to restore or enhance physiological functions compromised by diseases or injuries by integrating sophisticated electrical signals, device interfaces, and designs tailored to specific biological mechanisms. This review explains the mechanisms by which ES influences cellular behaviors, introduces the essential stimulation principles, discusses the performance requirements for optimal ES systems, and highlights the representative applications. From this review, we can realize the potential of ES based bioelectronics in therapy, regenerative medicine and rehabilitation engineering technologies, ranging from tissue engineering to neurological technologies, and the modulation of cardiovascular and cognitive functions. This review underscores the versatility of ES in various biomedical contexts and emphasizes the need to adapt to complex biological and clinical landscapes it addresses.
Collapse
Affiliation(s)
- Ya Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Kuanming Yao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Qiang Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xingcan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Zhenlin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yu Zhou
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
5
|
Callejón-Leblic MA, Lazo-Maestre M, Fratter A, Ropero-Romero F, Sánchez-Gómez S, Reina-Tosina J. A full-head model to investigate intra and extracochlear electric fields in cochlear implant stimulation. Phys Med Biol 2024; 69:155010. [PMID: 38925131 DOI: 10.1088/1361-6560/ad5c38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
Objective.Despite the widespread use and technical improvement of cochlear implant (CI) devices over past decades, further research into the bioelectric bases of CI stimulation is still needed. Various stimulation modes implemented by different CI manufacturers coexist, but their true clinical benefit remains unclear, probably due to the high inter-subject variability reported, which makes the prediction of CI outcomes and the optimal fitting of stimulation parameters challenging. A highly detailed full-head model that includes a cochlea and an electrode array is developed in this study to emulate intracochlear voltages and extracochlear current pathways through the head in CI stimulation.Approach.Simulations based on the finite element method were conducted under monopolar, bipolar, tripolar (TP), and partial TP modes, as well as for apical, medial, and basal electrodes. Variables simulated included: intracochlear voltages, electric field (EF) decay, electric potentials at the scalp and extracochlear currents through the head. To better understand CI side effects such as facial nerve stimulation, caused by spurious current leakage out from the cochlea, special emphasis is given to the analysis of the EF over the facial nerve.Main results.The model reasonably predicts EF magnitudes and trends previously reported in CI users. New relevant extracochlear current pathways through the head and brain tissues have been identified. Simulated results also show differences in the magnitude and distribution of the EF through different segments of the facial nerve upon different stimulation modes and electrodes, dependent on nerve and bone tissue conductivities.Significance.Full-head models prove useful tools to model intra and extracochlear EFs in CI stimulation. Our findings could prove useful in the design of future experimental studies to contrast FNS mechanisms upon stimulation of different electrodes and CI modes. The full-head model developed is freely available for the CI community for further research and use.
Collapse
Affiliation(s)
- M A Callejón-Leblic
- Otorhinolaryngology Department, Virgen Macarena University Hospital, Seville 41009, Spain
- Oticon Medical, 28108 Madrid, Spain
- Dept. Signal Theory and Communications, Biomedical Engineering Group, University of Seville, Seville 41092, Spain
| | - M Lazo-Maestre
- Otorhinolaryngology Department, Virgen Macarena University Hospital, Seville 41009, Spain
| | - A Fratter
- Oticon Medical, 06220 Vallauris, France
| | - F Ropero-Romero
- Otorhinolaryngology Department, Virgen Macarena University Hospital, Seville 41009, Spain
| | - S Sánchez-Gómez
- Otorhinolaryngology Department, Virgen Macarena University Hospital, Seville 41009, Spain
| | - J Reina-Tosina
- Dept. Signal Theory and Communications, Biomedical Engineering Group, University of Seville, Seville 41092, Spain
| |
Collapse
|
6
|
Alahmadi A, Abdelsamad Y, Yousef M, Almuhawas F, Hafez A, Alzhrani F, Hagr A. Cochlear Implantation: Long-Term Effect of Early Activation on Electrode Impedance. J Clin Med 2024; 13:3299. [PMID: 38893010 PMCID: PMC11172931 DOI: 10.3390/jcm13113299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Objectives: The growing adoption of cochlear implants (CIs) necessitates understanding the factors influencing long-term performance and improved outcomes. This work investigated the long-term effect of early activation of CIs on electrode impedance in a large sample of CI users at different time points. Methods: A retrospective study on 915 ears from CI patients who were implanted between 2015 and 2020. According to their CI audio processor activation time, the patients were categorized into early activation (activated 1 day after surgery, n = 481) and classical activation (activated 4 weeks after surgery, n = 434) groups. Then, the impact of the activation times on the electrode impedance values, along the electrode array contacts, at different time points up to two years was studied and analyzed. Results: The early activation group demonstrated lower impedance values across all the electrode array sections compared to the classical activation at 1 month, 1 year, and 2 years post-implantation. At 1 month, early activation was associated with a reduction of 0.34 kΩ, 0.46 kΩ, and 0.37 kΩ in the apical, middle, and basal sections, respectively. These differences persisted at subsequent intervals. Conclusions: Early activation leads to sustained reductions in the electrode impedance compared to classical activation (CA), suggesting that earlier activation might positively affect long-term CI outcomes.
Collapse
Affiliation(s)
- Asma Alahmadi
- King Abdullah Ear Specialist Center (KAESC), King Saud Medical City, King Saud University, Riyadh 11411, Saudi Arabia; (M.Y.); (F.A.); (F.A.); (A.H.)
| | - Yassin Abdelsamad
- Research Department, MED-EL GmbH, Riyadh 11563, Saudi Arabia; (Y.A.); (A.H.)
| | - Medhat Yousef
- King Abdullah Ear Specialist Center (KAESC), King Saud Medical City, King Saud University, Riyadh 11411, Saudi Arabia; (M.Y.); (F.A.); (F.A.); (A.H.)
- Audio Vestibular Unit, ENT Department, Menoufia University, Menoufia 32928, Egypt
| | - Fida Almuhawas
- King Abdullah Ear Specialist Center (KAESC), King Saud Medical City, King Saud University, Riyadh 11411, Saudi Arabia; (M.Y.); (F.A.); (F.A.); (A.H.)
| | - Ahmed Hafez
- Research Department, MED-EL GmbH, Riyadh 11563, Saudi Arabia; (Y.A.); (A.H.)
| | - Farid Alzhrani
- King Abdullah Ear Specialist Center (KAESC), King Saud Medical City, King Saud University, Riyadh 11411, Saudi Arabia; (M.Y.); (F.A.); (F.A.); (A.H.)
| | - Abdulrahman Hagr
- King Abdullah Ear Specialist Center (KAESC), King Saud Medical City, King Saud University, Riyadh 11411, Saudi Arabia; (M.Y.); (F.A.); (F.A.); (A.H.)
| |
Collapse
|
7
|
Nieratschker M, Liepins R, Honeder C, Auinger AB, Gausterer JC, Baumgartner WD, Riss D, Arnoldner C, Dahm V. A Single Intratympanic Triamcinolone Acetonide Administration Elicits Long-Term Reduction in Impedances Following Cochlear Implantation. J Otolaryngol Head Neck Surg 2024; 53:19160216241288819. [PMID: 39415405 PMCID: PMC11526200 DOI: 10.1177/19160216241288819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 07/27/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Intracochlear fibrosis and inflammation remain important limitations in cochlear implantation (CI). Glucocorticoids are routinely used to ameliorate the inflammatory response following CI. This study investigates the long-term effects of an intratympanically-applied triamcinolone-acetonide suspension on intracochlear impedance changes in CI recipients and investigates differences in drug concentrations and timepoints of injection. METHODS A total of 87 patients were included in the study, of whom 39 received an intratympanically-applied triamcinolone-acetonide suspension at either 10 or 40 mg/ml, 1 hour or 24 hours prior to cochlear implantation, while 48 patients served as an untreated control group. Electrode impedances were measured and compared over a period of 3 years following cochlear implantation. RESULTS The preoperative intratympanic application of a triamcinolone-acetonide suspension resulted in significantly lower mean impedances following cochlear implantation compared with an untreated control group at first fitting (4.66 ± 1.3 kΩ to 5.90 ± 1.4 kΩ, P = .0001), with sustained reduction observed over 3 months. A sustained reduction was observed after spatial grouping of the electrode contacts, with significant improvements in both the middle cochlear region over a 24 month period (from 3.97 ± 1.3 kΩ to 5.85 ± 1.3 kΩ, P = .049) and the basal region over a 6 month period (from 5.02 ± 1.3 kΩ to 5.85 ± 1.3 kΩ, P = .008). The injection of 10 mg/ml of triamcinolone-acetonide 1 hour prior to cochlear implantation resulted in higher impedances compared with 40 mg/ml and 24 hour time interval until surgery. CONCLUSION A single preoperative intratympanic injection of triamcinolone-acetonide significantly reduces electrode impedances across the entire cochlea. This effect is sustained for up to 2 years, after which impedances gradually equalize between the groups. A preoperative triamcinolone-acetonide injection could therefore be a favorable approach to attenuate the immediate tissue response following cochlear implantation.
Collapse
Affiliation(s)
- Michael Nieratschker
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Rudolfs Liepins
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Clemens Honeder
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Alice Barbara Auinger
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Julia Clara Gausterer
- Division of Pharmaceutical Technology and Biopharmaceutics, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Wolf-Dieter Baumgartner
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Dominik Riss
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Christoph Arnoldner
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| | - Valerie Dahm
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Konrad S, Büchner A, Lenarz T, Paasche G. Impedance development after implantation of hybrid-L24 cochlear implant electrodes. Int J Audiol 2023; 62:1137-1144. [PMID: 36193989 DOI: 10.1080/14992027.2022.2125914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 09/13/2022] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Shorter and thinner electrodes were developed for preserving residual hearing after cochlear implantation by minimising trauma. As trauma is regarded as one of the causes of fibrous tissue formation after implantation, and increase in impedance is considered to be connected to fibrous tissue formation, the aim of the current study was to evaluate impedance development after implantation of Hybrid-L electrodes. DESIGN Impedance values were retrospectively collected from our clinical database and evaluated for all active contacts and basal, middle and apical contacts separately for up to 10 years. STUDY SAMPLES All 137 adult patients received a Hybrid-L electrode and had to be implanted for at least 1 year. RESULTS On average impedances increased to 13 kOhm before first fitting and dropped to 5-7 kOhm under electrical stimulation with lower values measured on apical contacts. Mean values remained stable over years, but variability increased. Values before first fitting were independent of age at implantation whereas lower values were found later in patients of higher age at implantation. CONCLUSION Despite smaller contacts, impedance values after start of electrical stimulation were comparable to published values of Contour electrodes. This might suggest less tissue growth with the Hybrid-L electrode array.
Collapse
Affiliation(s)
- Simon Konrad
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Andreas Büchner
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
- Hearing4all Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Thomas Lenarz
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
- Hearing4all Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - Gerrit Paasche
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
- Hearing4all Cluster of Excellence, Hannover Medical School, Hannover, Germany
| |
Collapse
|
9
|
Weiss N. [Cochlear implantation - Adverse effects on the cochlea and the vestibular organ]. Laryngorhinootologie 2023; 102:381-389. [PMID: 37141880 DOI: 10.1055/a-1961-5815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Cochlear implantation is the treatment of choice for patients with profound hearing loss and deafness. At the same time, inserting a cochlear implant (CI) leaves damage to the inner ear. The preservation of inner ear structure and function has become a central issue in CI surgery. The reasons for this are i) electroacoustic stimulation (EAS), i.e., the option of joint stimulation by a hearing aid and a CI; ii) an improved audiologic outcome in electric-only stimulation; iii) the preservation of structures and residual hearing for potential future therapy options; and iv) the avoidance of side effects, such as vertigo. The exact mechanisms that determine the extent of damage to the inner ear and which factors contribute to preservation of residual hearing are not yet fully understood. In addition to the surgical technique, electrode selection may play a role. This article provides an overview of what is known about the direct and indirect adverse effects of cochlear implantation on the inner ear, of the methods available to monitor inner ear function during cochlear implantation, and of the focus of future research on preservation of inner ear structure and function.
Collapse
|
10
|
Alshalan A, Abdelsamad Y, Yousef M, Alahmadi A, Almuhawas F, Hagr A. Early activation after cochlear implantation: a systematic review. Eur Arch Otorhinolaryngol 2023:10.1007/s00405-023-07965-3. [PMID: 37097468 DOI: 10.1007/s00405-023-07965-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 04/04/2023] [Indexed: 04/26/2023]
Abstract
PURPOSE To systematically review the outcomes of early activation following cochlear implantation (CI) based on the findings from different studies in the literature. METHODS A comprehensive search strategy was conducted through different databases to identify relevant articles. Our outcomes included impedance levels, rates of complications, hearing and speech perception performance, and patients' satisfaction levels. RESULTS The total number of included studies in this systematic review is 19, which recruited 1157 patients, including 857 who underwent early activation following CI. Seventeen studies investigated impedance levels or feasibility rates of early activation approaches. Most of these studies (n = 10) reported that mean impedance levels remarkably decreased within the first day-to-month (first measurement) post-activation. In addition, all 17 studies showed that impedance levels finally normalize and become comparable with intraoperative levels or the conventional activation group. Seventeen studies reported the occurrence of complications in their population. Ten of these studies indicated that none of their patients developed any post-operative complications after early activation. Seven studies reported the development of some minor complications, including pain 9.2% (28/304), infection 4.7% (13/275), swelling 8.2% (25/304), vertigo 15.1% (8/53), skin hyperemia 2.2% (5/228), and others 16.4% (9/55). Hearing and speech perception was assessed in six studies, which showed a remarkable improvement in their patients. Three studies investigated patients' satisfaction and showed high satisfaction levels. Only one report investigated the economic advantages of early activation. CONCLUSION Early activation is safe and feasible and does not impact the hearing and speech outcomes of the patients undergoing CI procedures.
Collapse
Affiliation(s)
- Afrah Alshalan
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Jouf University, PO Box 72418, Skaka, 23235, Saudi Arabia.
| | | | - Medhat Yousef
- King Abdullah Ear Specialist Center (KAESC), College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Audiology Unit, ENT Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | - Asma Alahmadi
- King Abdullah Ear Specialist Center (KAESC), College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Fida Almuhawas
- King Abdullah Ear Specialist Center (KAESC), College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Abdulrahman Hagr
- King Abdullah Ear Specialist Center (KAESC), College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
11
|
Razmovski T, Bester C, Collins A, Tan E, O'Leary SJ. Four-Point Impedance Changes After Cochlear Implantation for Lateral Wall and Perimodiolar Implants. Otol Neurotol 2022; 43:e1107-e1114. [PMID: 36351225 DOI: 10.1097/mao.0000000000003732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Monitor four-point impedance in cochlear implant recipients over time and determine if implant type, surgical approach, and electrode positioning affected impedance measurements. STUDY DESIGN Prospective observational. SETTING Hospital. PATIENTS Adult cochlear implant recipients implanted with a perimodiolar or lateral wall cochlear implant. MAIN OUTCOME MEASURES Mean values for four-point impedances were calculated for all electrode contacts at perioperative and 3 months after surgery. Linear mixed models were applied to the impedance data to compare between implant types and time points. The angular insertion depth and electrode position relative to the medial and lateral wall, commonly termed the Intracochlear Position Index (ICPI), were collected and compared with impedance measurements. RESULTS Perioperatively, the four-point impedance was similar between implant types, with perimodiolar implants having marginally higher impedance values in the basal region. At 3 months after surgery, impedances significantly increased in the basal half of the electrode array for both implants, with higher impedance values for CI532 implants. There were no significant differences in insertion angle depth between implant types. The ICPI values for the seven most basal electrodes were similar for both implants; however, CI532 arrays were significantly more medially placed along the remaining apical portion of the array, which is expected. ICPI values did not correlate with impedance measurements for either implant. CONCLUSIONS Four-point impedance increases at 3 months after surgery may reflect fibrous tissue formation after cochlear implantation. The higher impedance values in perimodiolar implants may reflect a more extensive fibrosis formation as a result of surgical approaches used, requiring drilling of the cochlea bone.
Collapse
Affiliation(s)
- Tayla Razmovski
- Department of Surgery (Otolaryngology), The University of Melbourne
| | | | - Aaron Collins
- Department of Surgery (Otolaryngology), The University of Melbourne
| | - Eren Tan
- Department of Surgery (Otolaryngology), The University of Melbourne
| | | |
Collapse
|
12
|
Four-point Impedance Changes in the Early Post-Operative Period After Cochlear Implantation. Otol Neurotol 2022; 43:e730-e737. [PMID: 35861642 DOI: 10.1097/mao.0000000000003592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Monitoring four-point impedance changes after cochlear implantation with comparison to conventional impedance measurements. Four-point impedance provides information regarding the bulk biological environment surrounding the electrode array, which is not discernible with conventional impedances. STUDY DESIGN Prospective observational. SETTING Hospital. PATIENTS Adult cochlear implant recipients with no measurable hearing before implantation and implanted with a perimodiolar cochlear implant. MAIN OUTCOME MEASURES Mean values for four-point and common ground impedances were calculated for all electrode contacts at intra-operative, 1 day, 1 week, 4 to 6 weeks, and 3 months post implantation. Linear mixed models were applied to the impedance data to compare between impedances and time points. Furthermore, patients were divided into groups dependent on the normalized change in four-point impedance from intra-operative to 1 day post-operative. The normalized change was then calculated for all other time points and compared across the two groups. RESULTS Significant increases in four-point impedance occurred 1 day and 3 months after surgery, particularly in the basal half of the array. Four-point impedance at 1 day was highly predictive of four-point impedance at 3 months. Four-point impedance at the other time points showed marginal or no increases from intra-operative. Patients with an average increase higher than 10% in four-point impedance from intra-operative to 1 day, had significantly higher values at 3 months ( p = 0.012). These patterns were not observed in common ground impedance. CONCLUSION This is the first study to report increases in four-point impedance within 24 hours of cochlear implantation. The increases at 1 day and 3 months align with the natural timeline of an acute and chronic inflammatory responses.
Collapse
|
13
|
Parys QA, Van Bulck P, Loos E, Verhaert N. Inner Ear Pharmacotherapy for Residual Hearing Preservation in Cochlear Implant Surgery: A Systematic Review. Biomolecules 2022; 12:biom12040529. [PMID: 35454118 PMCID: PMC9032072 DOI: 10.3390/biom12040529] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 02/05/2023] Open
Abstract
Cochlear implantation initiates an inflammatory cascade in which both acute insertion trauma and chronic foreign body reaction lead to intracochlear fibrosis and loss of residual hearing. Several strategies have been proposed to attenuate the local reactive process after implantation, including intracochlear drug delivery. The present study gives an overview of what is being investigated in the field of inner ear therapeutics and cochlear implant surgery. The aim is to evaluate its potential benefit in clinical practice. A systematic search was conducted in PubMed, Embase, and Cochrane Library databases identifying comparative prospective studies examining the effect of direct inner ear drug application on mechanical cochlear trauma. Both animal and human studies were considered and all studies were assessed for quality according to the validated risk of bias tools. Intracochlear administration of drugs is a feasible method to reduce the local inflammatory reaction following cochlear implantation. In animal studies, corticosteroid use had a significant effect on outcome measures including auditory brainstem response, impedance, and histological changes. This effect was, however, only durable with prolonged drug delivery. Significant differences in outcome were predominantly seen in studies where the cochlear damage was extensive. Six additional reports assessing non-steroidal agents were found. Overall, evidence of anti-inflammatory effects in humans is still scarce.
Collapse
Affiliation(s)
- Quentin-Alexandre Parys
- Department of Otorhinolaryngology-Head and Neck Surgery, University Hospitals Leuven, 3000 Leuven, Belgium; (Q.-A.P.); (P.V.B.); (E.L.)
| | - Pauline Van Bulck
- Department of Otorhinolaryngology-Head and Neck Surgery, University Hospitals Leuven, 3000 Leuven, Belgium; (Q.-A.P.); (P.V.B.); (E.L.)
| | - Elke Loos
- Department of Otorhinolaryngology-Head and Neck Surgery, University Hospitals Leuven, 3000 Leuven, Belgium; (Q.-A.P.); (P.V.B.); (E.L.)
- Department of Neurosciences, Research Group Experimental Oto-Rhino-Laryngology (ExpORL), KU Leuven, University of Leuven, 3000 Leuven, Belgium
| | - Nicolas Verhaert
- Department of Otorhinolaryngology-Head and Neck Surgery, University Hospitals Leuven, 3000 Leuven, Belgium; (Q.-A.P.); (P.V.B.); (E.L.)
- Department of Neurosciences, Research Group Experimental Oto-Rhino-Laryngology (ExpORL), KU Leuven, University of Leuven, 3000 Leuven, Belgium
- Correspondence:
| |
Collapse
|
14
|
Wei X, Zhang H, Lu S, Yang M, Chen B, Chen J, Zhang L, Liu S, Xian J, Li Y, Kong Y. Application of Multiplanar Volume Reconstruction Technique for the Assessment of Electrode Location and Analysis of the Correlation to Cochlear Programming and Performance in Common Cavity Deformity. Front Neurol 2022; 12:783225. [PMID: 35087468 PMCID: PMC8787298 DOI: 10.3389/fneur.2021.783225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/06/2021] [Indexed: 11/27/2022] Open
Abstract
Purpose: Owing to the characteristic anatomy, cochlear implantation (CI) for common cavity deformity (CCD) has resulted in varied outcomes and frequent facial and vestibular nerve stimulation. The current study analyzed the correlation among the distance between each electrode and cavity wall (abbreviation, D), programming parameters, and performances outcomes. Materials and Methods: The current, retrospective study included 25 patients (27 ears) with CCD underwent CI. The multiplanar volume reconstruction (MPVR) techniques were employed to reconstruct and evaluate the postoperative temporal bone CT. The D and maximum comfortable level (MCL) 6 months after CI, facial and vestibular nerve stimulation, and outcomes 1, 2, and 3 years after CI pertaining to the questionnaires were documented and analyzed. Results: The patients were divided into symptomatic (10, 37%) and asymptomatic (17, 63%) groups according to with or without facial and vestibular nerve stimulation. The MCL pertaining to the symptomatic group was significantly lower than asymptomatic group, but Categories of Auditory Performance (CAP) scores 1 year after surgery was better (p < 0.05). The subjects were divided into flat (12, 44.4%) and curved (15, 55.6%) groups based on the contour of MCL map. The MCL and D were lower and shorter in the curved group than the flat group, and CAP score 1 year after surgery and Speech Intelligibility Rating (SIR) 3 years after surgery were better (p < 0.05). Conclusion: Although abnormal reactions such as facial and vestibular nerve stimulation were observed to be more frequent, lower MCL and better outcomes were observed in relation to the shorter D.
Collapse
Affiliation(s)
- Xingmei Wei
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Otolaryngology Head and Neck Surgery, Capital Medical University, Ministry of Education, Beijing, China
| | - Huaiyu Zhang
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Simeng Lu
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Otolaryngology Head and Neck Surgery, Capital Medical University, Ministry of Education, Beijing, China
| | - Mengge Yang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Otolaryngology Head and Neck Surgery, Capital Medical University, Ministry of Education, Beijing, China
| | - Biao Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Otolaryngology Head and Neck Surgery, Capital Medical University, Ministry of Education, Beijing, China
| | - Jingyuan Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Otolaryngology Head and Neck Surgery, Capital Medical University, Ministry of Education, Beijing, China
| | - Lifang Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Otolaryngology Head and Neck Surgery, Capital Medical University, Ministry of Education, Beijing, China
| | - Sha Liu
- Key Laboratory of Otolaryngology Head and Neck Surgery, Capital Medical University, Ministry of Education, Beijing, China.,Beijing Institute of Otolaryngology, Capital Medical University, Ministry of Education, Beijing, China
| | - Junfang Xian
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yongxin Li
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China.,Key Laboratory of Otolaryngology Head and Neck Surgery, Capital Medical University, Ministry of Education, Beijing, China
| | - Ying Kong
- Key Laboratory of Otolaryngology Head and Neck Surgery, Capital Medical University, Ministry of Education, Beijing, China.,Beijing Institute of Otolaryngology, Capital Medical University, Ministry of Education, Beijing, China
| |
Collapse
|
15
|
Sunwoo W, Jeon HW, Choi BY. Effect of initial switch-on within 24 hours of cochlear implantation using slim modiolar electrodes. Sci Rep 2021; 11:22809. [PMID: 34815432 PMCID: PMC8611070 DOI: 10.1038/s41598-021-01862-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 11/01/2021] [Indexed: 11/09/2022] Open
Abstract
Reducing electrode impedance is an important factor in improving the functional benefits of cochlear implants (CIs). The immediate effect of early switch-on within 24 h of surgery on impedance among CI recipients with various types of electrodes has been reported previously; however, the immediate change and the evolution of electrode impedances of slim modiolar electrodes after early switch-on within 24 h of implantation has not. Therefore, the focus of this retrospective cohort study of CI patients was to compare the effect of early switch-on (n = 36) and conventional switch-on (n = 72) 2–4 weeks post-operation on impedance. Compared with impedance measured intraoperatively, our results demonstrate a significant decrease in impedance from 11.5 to 8.9 kΩ (p < 0.001) at 2–4 weeks after implantation in the early switch-on group, which sharply contrasted with elevated impedance values for conventional switch-on 2–4 weeks after implantation (from 10.7 to 14.2 kΩ, p = 0.001). Notably, a comparatively lower impedance than the conventional switch-on protocol was observed for up to 2 months post-operation. Most importantly, a much earlier stabilization of impedance can be achieved with the early switch-on protocol coupled with the slim modiolar electrode array compared to the conventional switch-on protocol, offering the advantage of reducing the number of required mapping sessions in the early stages of rehabilitation.
Collapse
Affiliation(s)
- Woongsang Sunwoo
- Department of Otorhinolaryngology-Head and Neck Surgery, Gil Medical Center, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Hyoung Won Jeon
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 300 Gumi-dong, Bundang-gu, Seongnam, 13620, Republic of Korea
| | - Byung Yoon Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 300 Gumi-dong, Bundang-gu, Seongnam, 13620, Republic of Korea.
| |
Collapse
|
16
|
Taylor G, Paladines R, Marti A, Jacobs D, Tint S, Fones A, Hamilton H, Yu L, Amini S, Hettinger J. Electrochemical enhancement of reactively sputtered rhodium, ruthenium, and iridium oxide thin films for neural modulation, sensing, and recording applications. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
17
|
Luo Y, Chen A, Xu M, Chen D, Tang J, Ma D, Zhang H. Preparation, characterization, and in vitro/ vivo evaluation of dexamethasone/poly(ε-caprolactone)-based electrode coatings for cochlear implants. Drug Deliv 2021; 28:1673-1684. [PMID: 34347538 PMCID: PMC8344245 DOI: 10.1080/10717544.2021.1960927] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
With dexamethasone as the model drug and polycaprolactone (PCL) as the carrier material, a drug delivery coating for cochlear electrodes was prepared, to control cochlear fibrosis caused by cochlear implantation. A dexamethasone/poly (ε-caprolactone)-based electrode coating was prepared using the impregnation coating method. Preparation parameters were optimized, yielding 1 impregnation instance, impregnation time of 10 s, and PCL concentration of 10%. The coating was characterized in vitro using scanning electron microscopy, a universal machine, high-performance liquid chromatography, and CCK-8. The surface was porous and uniformly thick (average thickness, 48.67 µm)—with good flexibility, long-term slow drug release, and optimal drug concentration—and was biologically safe. The experimental results show that PCL is an ideal controlled-release material for dexamethasone as a drug carrier coating for cochlear implants.
Collapse
Affiliation(s)
- Yanjing Luo
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Hearing Research Center, Southern Medical University, Guangzhou, China
| | - Anning Chen
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Hearing Research Center, Southern Medical University, Guangzhou, China
| | - Muqing Xu
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Hearing Research Center, Southern Medical University, Guangzhou, China
| | - Dongxiu Chen
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Hearing Research Center, Southern Medical University, Guangzhou, China
| | - Jie Tang
- Hearing Research Center, Southern Medical University, Guangzhou, China.,Department of Physiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
| | - Dong Ma
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, China
| | - Hongzheng Zhang
- Department of Otolaryngology Head & Neck Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Hearing Research Center, Southern Medical University, Guangzhou, China
| |
Collapse
|
18
|
Danielian A, Ishiyama G, Lopez IA, Ishiyama A. Predictors of Fibrotic and Bone Tissue Formation With 3-D Reconstructions of Post-implantation Human Temporal Bones. Otol Neurotol 2021; 42:e942-e948. [PMID: 33710156 PMCID: PMC8282738 DOI: 10.1097/mao.0000000000003106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
HYPOTHESIS Years of implantation, surgical insertion approach, and electrode length will impact the volume of new tissue formation secondary to cochlear implantation. BACKGROUND New tissue formation, fibrosis, and osteoneogenesis after cochlear implantation have been implicated in increasing impedance and affecting performance of the cochlear implant. METHODS 3-D reconstructions of 15 archival human temporal bones from patients with a history of cochlear implantation (CI) were generated from H&E histopathologic slides to study factors which affect volume of tissue formation. RESULTS Years of implantation was a predictor of osteoneogenesis (r = 0.638, p-value = 0.011) and total new tissue formation (r = 0.588, p-value = 0.021), however not of fibrosis (r = 0.235, p-value = 0.399). Median total tissue formation differed between cochleostomy and round window insertions, 25.98 and 10.34%, respectively (Mann-Whitney U = 7, p = 0.018). No correlations were found between electrode length or angular insertion depth and total new tissue (p = 0.192, p = 0.35), osteoneogenesis (p = 0.193, p = 0.27), and fibrosis (p = 0.498, p = 0.83), respectively. However, the type II error for electrode length and angular insertion depth ranged from 0.73 to 0.90, largely due to small numbers of the shorter electrodes. CONCLUSIONS With numbers of cochlear implant recipients increasing worldwide, an understanding of how to minimize intracochlear changes from implantation is important. The present study demonstrates that increasing years of implantation and inserting electrodes via a cochleostomy compared with a round window approach are associated with significantly greater degree of new tissue volume formation. While previous studies have demonstrated increased intracochlear damage in the setting of translocation with longer electrodes, length, and angular insertion depth of CI electrodes were not associated with increased tissue formation.
Collapse
Affiliation(s)
- Arman Danielian
- UCLA David Geffen School of Medicine Department of Head and Neck Surgery, Los Angeles, CA, 90095, USA
| | - Gail Ishiyama
- UCLA David Geffen School of Medicine Department of Neurology, Los Angeles, CA, 90095, USA
| | - Ivan A Lopez
- UCLA David Geffen School of Medicine Department of Head and Neck Surgery, Los Angeles, CA, 90095, USA
| | - Akira Ishiyama
- UCLA David Geffen School of Medicine Department of Head and Neck Surgery, Los Angeles, CA, 90095, USA
| |
Collapse
|
19
|
Abstract
Cochlear implant surgery is a successful procedure for auditory rehabilitation of patients with severe to profound hearing loss. However, cochlear implantation may lead to damage to the inner ear, which decreases residual hearing and alters vestibular function. It is now of increasing interest to preserve residual hearing during this surgery because this is related to better speech, music perception, and hearing in complex listening environments. Thus, different efforts have been tried to reduce cochlear implantation-related injury, including periprocedural glucocorticoids because of their anti-inflammatory properties. Different routes of administration have been tried to deliver glucocorticoids. However, several drawbacks still remain, including their systemic side effects, unknown pharmacokinetic profiles, and complex delivery methods. In the present review, we discuss the role of periprocedural glucocorticoid therapy to decrease cochlear implantation-related injury, thus preserving inner ear function after surgery. Moreover, we highlight the pharmacokinetic evidence and clinical outcomes which would sustain further interventions.
Collapse
|
20
|
Comparison of Hearing Preservation Outcomes Using Extended Versus Single-Dose Steroid Therapy in Cochlear Implantation. Otol Neurotol 2021; 41:e449-e457. [PMID: 32176129 DOI: 10.1097/mao.0000000000002570] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES The purpose of this study was to compare the hearing preservation outcomes of patients who received extended versus single-dose steroid therapy in cochlear implant surgery. DESIGN Case-control. SETTING Tertiary referral centers in Taiwan from April 2017 to 2019. PARTICIPANTS A total of 70 patients aged 1 to 78 years old (mean = 18.04, standard deviation [SD] = 21.51) who received cochlear implantation via the round window approach were included in the study. Prospectively, 35 cases were enrolled for cochlear implantation with single-dose therapy. Thirty-five controls who underwent cochlear implantation with extended therapy were retrospectively enrolled after frequency matching. OUTCOME MEASURES The main outcome measure was the rate of hearing preservation. This was calculated based on the HEARRING Network formula and results were categorized as complete, partial, and minimal. Impedances served as secondary outcomes. RESULTS There was no significant difference in the complete hearing preservation rates between the extended and single-dose groups at 6 months postoperatively. Impedances were significantly lower in the extended group after 1 month and 6 months of follow up. When the complete and partial hearing preservation groups were compared, the size of round window opening and speed of insertion were found to be statistically significant. CONCLUSIONS Both extended and single-dose therapies result in good hearing preservation in patients who undergo cochlear implantation. However, better impedances can be expected from patients who received extended therapy. A slower speed of insertion and a widely opened round window play a role in hearing preservation.
Collapse
|
21
|
O'Leary SJ, Choi J, Brady K, Matthews S, Ozdowska KB, Payne M, McLean T, Rousset A, Lo J, Creber N, Tari S, Dowell R, Briggs R. Systemic methylprednisolone for hearing preservation during cochlear implant surgery: A double blinded placebo-controlled trial. Hear Res 2021; 404:108224. [PMID: 33774594 DOI: 10.1016/j.heares.2021.108224] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 01/13/2023]
Abstract
AIM To assess whether a single, peri-operative, high dose of methylprednisolone can improve the preservation of residual acoustic hearing following cochlear implantation (CI). METHODS This was a double blinded placebo-controlled trial, performed in a tertiary academic centre. The hypothesis was that methylprednisolone would improve the preservation of hearing, and lower electrode impedances. Adult patients (18-85 years) with hearing at 85 dB or better at 500 Hz in the ear to be implanted were randomly allocated to either treatment (methylprednisolone, 1g administered intravenously upon induction of anaesthesia) or control (normal saline infusion). As per standard clinical practice, all patients received a routine dose of dexamethasone (8 mg intravenously) on induction of anaesthesia. Implantation was undertaken with a slim and flexible lateral wall electrode via the round window. Surgical technique was routine, with adherence to soft surgical principles. The primary outcome was hearing preservation within 20 dB at 500 Hz, 12 months following cochlear implantation. Secondary outcomes included hearing preservation at 6 weeks and 3 months, monopolar electrode impedance, and Consonant-Vowel-Consonant (CVC) Phoneme scores at 3 and 12 months after surgery. RESULTS Forty-five patients were enrolled into the control group and 48 patients received the steroid. The number of patients achieving hearing preservation at 12 months did not differ significantly between those receiving methylprednisolone treatment and the controls. There were no differences in hearing preservation at any frequency at either 6 weeks or 3 months after implantation. Neither CVC phoneme scores nor electrode impedances differed between the groups. CONCLUSIONS This paper demonstrates that high-dose local steroid injection at surgery was not effective in preventing a loss of residual hearing, improving speech perception, or lowering electrode impedances. The findings were contrary to the experimental literature, and emerging clinical evidence that steroid elution from implant electrodes influences cochlear biology in humans. We found no evidence to support the widely-held practice of administering intravenous steroids in the perioperative period, in an attempt to preserve residual hearing.
Collapse
Affiliation(s)
- Stephen J O'Leary
- Department of Surgery - Otolaryngology, The University of Melbourne, Royal Victorian Eye and Ear Hospital, 32 Gisborne St RVEEH, Melbourne East 3002,Victoria, Australia; Cochlear Implant Clinic, Royal Victorian Eye and Ear Hospital, 32 Gisborne St, Melbourne East 3002, Australia.
| | - June Choi
- Department of Surgery - Otolaryngology, The University of Melbourne, Royal Victorian Eye and Ear Hospital, 32 Gisborne St RVEEH, Melbourne East 3002,Victoria, Australia; Department of Otorhinolaryngology - Head & Neck Surgery, Ansan Hospital, College of Medicine, Korea University, 123, Jeokgeum-ro (Street), Gojan-dong, Danwon-gu, Ansan-si, Gyeonggi-do 15355, Republic of Korea
| | - Karina Brady
- Department of Surgery - Otolaryngology, The University of Melbourne, Royal Victorian Eye and Ear Hospital, 32 Gisborne St RVEEH, Melbourne East 3002,Victoria, Australia
| | - Sheila Matthews
- Department of Surgery - Otolaryngology, The University of Melbourne, Royal Victorian Eye and Ear Hospital, 32 Gisborne St RVEEH, Melbourne East 3002,Victoria, Australia
| | - Katie Boncza Ozdowska
- Department of Surgery - Otolaryngology, The University of Melbourne, Royal Victorian Eye and Ear Hospital, 32 Gisborne St RVEEH, Melbourne East 3002,Victoria, Australia
| | - Matthew Payne
- Department of Surgery - Otolaryngology, The University of Melbourne, Royal Victorian Eye and Ear Hospital, 32 Gisborne St RVEEH, Melbourne East 3002,Victoria, Australia
| | - Tim McLean
- Department of Surgery - Otolaryngology, The University of Melbourne, Royal Victorian Eye and Ear Hospital, 32 Gisborne St RVEEH, Melbourne East 3002,Victoria, Australia
| | - Alex Rousset
- Department of Surgery - Otolaryngology, The University of Melbourne, Royal Victorian Eye and Ear Hospital, 32 Gisborne St RVEEH, Melbourne East 3002,Victoria, Australia
| | - Jonathon Lo
- Department of Surgery - Otolaryngology, The University of Melbourne, Royal Victorian Eye and Ear Hospital, 32 Gisborne St RVEEH, Melbourne East 3002,Victoria, Australia
| | - Nathan Creber
- Department of Surgery - Otolaryngology, The University of Melbourne, Royal Victorian Eye and Ear Hospital, 32 Gisborne St RVEEH, Melbourne East 3002,Victoria, Australia
| | - Sylvia Tari
- Department of Surgery - Otolaryngology, The University of Melbourne, Royal Victorian Eye and Ear Hospital, 32 Gisborne St RVEEH, Melbourne East 3002,Victoria, Australia
| | - Richard Dowell
- Department of Surgery - Otolaryngology, The University of Melbourne, Royal Victorian Eye and Ear Hospital, 32 Gisborne St RVEEH, Melbourne East 3002,Victoria, Australia; Department of Audiology and Speech Sciences, University of Melbourne, 550 Swanston St, Carlton 3053, Australia
| | - Robert Briggs
- Department of Surgery - Otolaryngology, The University of Melbourne, Royal Victorian Eye and Ear Hospital, 32 Gisborne St RVEEH, Melbourne East 3002,Victoria, Australia; Cochlear Implant Clinic, Royal Victorian Eye and Ear Hospital, 32 Gisborne St, Melbourne East 3002, Australia
| |
Collapse
|
22
|
Alhabib SF, Abdelsamad Y, Yousef M, Alzhrani F, Hagr A. Effect of early activation of cochlear implant on electrode impedance in pediatric population. Int J Pediatr Otorhinolaryngol 2021; 140:110543. [PMID: 33302020 DOI: 10.1016/j.ijporl.2020.110543] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To assess the evolution of electrode impedance after the early fitting of audio processors (activation after one-day) and classical fitting (activation after one-month) over an up-to-one year after cochlear implant (CI) surgery. METHODS A retrospective cohort study on Fifty-two CI recipients divided into two groups. The study group included 24 recipients (40 ears) who underwent early fitting, whereas the control group contained 28 recipients (40 ears) who underwent classical fitting. The electrode impedance was recorded during the surgery, switch-on session and at one, three, six, and twelve-months after the surgery. RESULTS In the study group, electrode impedance values obtained intraoperatively and at switch-on and one, three, six, and twelve-months were 4.89, 3.69, 6.52, 6.24, 6.05, and 5.81 KΩ, respectively, and only the switch-on and one-month values were significantly different (p < 0.0001). In the control group, electrode impedance values obtained intraoperatively and at switch-on and one, three, six, and twelve-months were 4.71, 7.19, 6.40, 6.05, and 5.73 KΩ, respectively. Thus, the electrode impedance value at switch-on was 52.65% (p < 0.001) greater than it intraoperatively. For both groups, the electrode impedance value at twelve-months was significantly higher than the respective intraoperative values (study group: 18.6% higher, P = 0.04; control group: 21.65% higher, P = 0.0001). CONCLUSION Electrode impedance was significantly lower in the study group compared to the control group until one month after the surgery. However, the electrode impedance at twelve-months after the CI was similar in both groups.
Collapse
Affiliation(s)
- Salman F Alhabib
- King Abdullah Ear Specialist Center (KAESC), College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | | | - Medhat Yousef
- King Abdullah Ear Specialist Center (KAESC), College of Medicine, King Saud University, Riyadh, Saudi Arabia; Audiology Unit, Faculty of Medicine, Menoufia University Hospital, Menoufia, Egypt
| | - Farid Alzhrani
- King Abdullah Ear Specialist Center (KAESC), College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Abdulrahman Hagr
- King Abdullah Ear Specialist Center (KAESC), College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
23
|
Abstract
OBJECTIVES Preservation of residual hearing is one of the main goals in present cochlear implantation surgery. Especially for this purpose, smaller and softer electrode carriers were developed that are to be inserted through the round window membrane to minimize trauma. By using these electrodes and insertion technique, residual hearing can be preserved in a large number of patients. Unfortunately, some of these patients with initially preserved residual hearing after cochlear implantation lose it later on. The reason for this is unknown but it is speculated about a correlation with an increase in impedance, since increased impedance values are linked to intracochlear inflammation and tissue reaction. Our hypothesis for this study design was that an increase in impedance predicts changes in residual hearing under clinical conditions. DESIGN Data of all adult patients (N = 122) receiving a Hybrid-L24 cochlear implant at our center between 2005 and early 2015 were retrospectively evaluated. Impedance values in Common Ground mode as measured during clinical routine and referring audiological test data (audiometric thresholds under headphones) were collected. Changes between consecutive measurements were calculated for impedance values and hearing thresholds for each patient. Correlations between changes in impedances and acoustic hearing thresholds were calculated. Average values were compared as well as patients with largest impedance changes within the observation period were evaluated separately. RESULTS Group mean values of impedances were between 5 and 7 kΩ and stable over time with higher values on basal electrode contacts compared with apical contacts. Average hearing thresholds at the time of initial fitting were between 40 to 50 dB (250 Hz) and 90 dB (1 kHz) with a loss of about 10 dB compared with preoperative values. Correlation between impedance changes and threshold changes was found, but too inconsistently to imply a true relationship. When evaluating the 20 patients with the largest impedance changes during the observation period (all >1 kΩ from one appointment to the next one), some patients were found where hearing loss is timely connected and highly correlated with an unusual impedance change. But large impedance changes were also observed without affecting hearing thresholds and hearing loss was found without impedance change. CONCLUSIONS Changes in impedance as measured during clinical routine cannot be taken as an indicator for a late acoustic hearing loss.
Collapse
|
24
|
Richardson RT, Ibbotson MR, Thompson AC, Wise AK, Fallon JB. Optical stimulation of neural tissue. Healthc Technol Lett 2020; 7:58-65. [PMID: 32754339 PMCID: PMC7353819 DOI: 10.1049/htl.2019.0114] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/08/2020] [Accepted: 05/15/2020] [Indexed: 12/23/2022] Open
Abstract
Electrical stimulation has been used for decades in devices such as pacemakers, cochlear implants and more recently for deep brain and retinal stimulation and electroceutical treatment of disease. However, current spread from the electrodes limits the precision of neural activation, leading to a low quality therapeutic outcome or undesired side-effects. Alternative methods of neural stimulation such as optical stimulation offer the potential to deliver higher spatial resolution of neural activation. Direct optical stimulation is possible with infrared light, while visible light can be used to activate neurons if the neural tissue is genetically modified with a light sensitive ion channel. Experimentally, both methods have resulted in highly precise stimulation with little spread of activation at least in the cochlea, each with advantages and disadvantages. Infrared neural stimulation does not require modification of the neural tissue, but has very high power requirements. Optogenetics can achieve precision of activation with lower power, but only in conjunction with targeted insertion of a light sensitive ion channel into the nervous system via gene therapy. This review will examine the advantages and limitations of optical stimulation of neural tissue, using the cochlea as an exemplary model and recent developments for retinal and deep brain stimulation.
Collapse
Affiliation(s)
- Rachael Theresa Richardson
- Bionics Institute, Melbourne 3002, Australia.,University of Melbourne, Medical Bionics Department, Melbourne, 3002, Australia.,University of Melbourne, Department of Surgery (Otolaryngology), Melbourne, 3002, Australia
| | - Michael R Ibbotson
- National Vision Research Institute, Australian College of Optometry, and Department of Optometry and Vision Science, University of Melbourne, Melbourne, Australia
| | | | - Andrew K Wise
- Bionics Institute, Melbourne 3002, Australia.,University of Melbourne, Medical Bionics Department, Melbourne, 3002, Australia.,University of Melbourne, Department of Surgery (Otolaryngology), Melbourne, 3002, Australia
| | - James B Fallon
- Bionics Institute, Melbourne 3002, Australia.,University of Melbourne, Medical Bionics Department, Melbourne, 3002, Australia.,University of Melbourne, Department of Surgery (Otolaryngology), Melbourne, 3002, Australia
| |
Collapse
|
25
|
Comparison of electrode impedance measures between a dexamethasone-eluting and standard Cochlear™ Contour Advance® electrode in adult cochlear implant recipients. Hear Res 2020; 390:107924. [DOI: 10.1016/j.heares.2020.107924] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 02/10/2020] [Accepted: 02/13/2020] [Indexed: 11/22/2022]
|
26
|
Prenzler NK, Salcher R, Lenarz T, Gaertner L, Warnecke A. Dose-Dependent Transient Decrease of Impedances by Deep Intracochlear Injection of Triamcinolone With a Cochlear Catheter Prior to Cochlear Implantation-1 Year Data. Front Neurol 2020; 11:258. [PMID: 32390924 PMCID: PMC7194199 DOI: 10.3389/fneur.2020.00258] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 03/20/2020] [Indexed: 02/02/2023] Open
Abstract
Administration of low-dose steroids via a catheter inserted into the cochlea to apply pharmaceuticals to more apical regions was previously shown not to be sufficient for long-term reduction of electrode impedances. The aim of the present study was to investigate the effect of intra-cochlear high-dose triamcinolone application on impedances in cochlear implant recipients. Patients received low-dose (4 mg/ml; n = 5) or high-dose (20 mg/ml; n = 5) triamcinolone via a cochlear catheter just prior to the insertion of a Med-El Flex28 electrode. Impedances were measured at defined time points from intra-operatively up to 12 months after first fitting and retrospectively compared with a control group (no steroid application). Patients who received a high-dose application of crystalloid triamcinolone showed significantly reduced impedances in the first fitting measurements compared to the control group. This effect was no longer detectable in patients of the low-dose group at that time. Looking at the different regions of the electrode, the impedance values were lowered significantly only at the basal and medial contacts. At later time points, there were no significant differences between any of the groups. This is the first study to demonstrate a dose-dependent reduction of impedances by deep intra-cochlear injection of triamcinolone in cochlear implant patients. With a high-dose, single application of triamcinolone using a cochlear catheter prior to insertion of a Flex28 electrode, the impedances can be significantly reduced up to and including the first fitting. Although the effect was longer lasting than when compared to low-dose triamcinolone, it was also not permanent.
Collapse
Affiliation(s)
- Nils K Prenzler
- Department of Otorhinolaryngology, Head and Neck Surgery, Hanover Medical School, Hanover, Germany.,Cluster of Excellence "Hearing4all2.0" of the German Research Foundation, Hanover, Germany
| | - Rolf Salcher
- Department of Otorhinolaryngology, Head and Neck Surgery, Hanover Medical School, Hanover, Germany.,Cluster of Excellence "Hearing4all2.0" of the German Research Foundation, Hanover, Germany
| | - Thomas Lenarz
- Department of Otorhinolaryngology, Head and Neck Surgery, Hanover Medical School, Hanover, Germany.,Cluster of Excellence "Hearing4all2.0" of the German Research Foundation, Hanover, Germany
| | - Lutz Gaertner
- Department of Otorhinolaryngology, Head and Neck Surgery, Hanover Medical School, Hanover, Germany.,Cluster of Excellence "Hearing4all2.0" of the German Research Foundation, Hanover, Germany
| | - Athanasia Warnecke
- Department of Otorhinolaryngology, Head and Neck Surgery, Hanover Medical School, Hanover, Germany.,Cluster of Excellence "Hearing4all2.0" of the German Research Foundation, Hanover, Germany
| |
Collapse
|
27
|
Yue L, Wuyyuru V, Gonzalez-Calle A, Dorn JD, Humayun MS. Retina–electrode interface properties and vision restoration by two generations of retinal prostheses in one patient—one in each eye. J Neural Eng 2020; 17:026020. [DOI: 10.1088/1741-2552/ab7c8f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
28
|
Liebau A, Schilp S, Mugridge K, Schön I, Kather M, Kammerer B, Tillein J, Braun S, Plontke SK. Long-Term in vivo Release Profile of Dexamethasone-Loaded Silicone Rods Implanted Into the Cochlea of Guinea Pigs. Front Neurol 2020; 10:1377. [PMID: 32038458 PMCID: PMC6987378 DOI: 10.3389/fneur.2019.01377] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/13/2019] [Indexed: 11/29/2022] Open
Abstract
Glucocorticoids are used intra-operatively in cochlear implant surgeries to reduce the inflammatory reaction caused by insertion trauma and the foreign body response against the electrode carrier after cochlear implantation. To prevent higher systemic concentrations of glucocorticoids that might cause undesirable systemic side effects, the drug should be applied locally. Since rapid clearance of glucocorticoids occurs in the inner ear fluid spaces, sustained application is supposedly more effective in suppressing foreign body and tissue reactions and in preserving neuronal structures. Embedding of the glucocorticoid dexamethasone into the cochlear implant electrode carrier and its continuous release may solve this problem. The aim of the present study was to examine how dexamethasone concentrations in the electrode carrier influence drug levels in the perilymph at different time points. Silicone rods were implanted through a cochleostomy into the basal turn of the scala tympani of guinea pigs. The silicone rods were loaded homogeneously with 0.1, 1, and 10% concentrations of dexamethasone. After implantation, dexamethasone concentrations in perilymph and cochlear tissue were measured at several time points over a period of up to 7 weeks. The kinetic was concentration-dependent and showed an initial burst release in the 10%- and the 1%-dexamethasone-loaded electrode carrier dummies. The 10%-loaded electrode carrier resulted in a more elevated and longer lasting burst release than the 1%-loaded carrier. Following this initial burst release phase, sustained dexamethasone levels of about 60 and 100 ng/ml were observed in the perilymph for the 1 and 10% loaded rods, respectively, during the remainder of the observation time. The 0.1% loaded carrier dummy achieved very low perilymph drug levels of about 0.5 ng/ml. The cochlear tissue drug concentration shows a similar dynamic to the perilymph drug concentration, but only reaches about 0.005–0.05% of the perilymph drug concentration. Dexamethasone can be released from silicone electrode carrier dummies in a controlled and sustained way over a period of several weeks, leading to constant drug concentrations in the scala tympani perilymph. No accumulation of dexamethasone was observed in the cochlear tissue. In consideration of experimental studies using similar drug depots and investigating physiological effects, an effective dose range between 50 and 100 ng/ml after burst release is suggested for the CI insertion trauma model.
Collapse
Affiliation(s)
- Arne Liebau
- Department of Otorhinolaryngology, Head and Neck Surgery, Martin Luther University Halle-Wittenberg, Halle, Germany
| | | | | | - Ilona Schön
- Department of Otorhinolaryngology, Head and Neck Surgery, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Michel Kather
- Center for Biological Systems Analysis ZBSA, Albert-Ludwigs-University Freiburg, Freiburg, Germany.,Hermann Staudinger Graduate School, University of Freiburg, Freiburg, Germany
| | - Bernd Kammerer
- Center for Biological Systems Analysis ZBSA, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | | | | | - Stefan K Plontke
- Department of Otorhinolaryngology, Head and Neck Surgery, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
29
|
Honeder C, Zhu C, Gausterer JC, Schöpper H, Ahmadi N, Saidov N, Nieratschker M, Gabor F, Arnoldner C. Sustained-Release Triamcinolone Acetonide Hydrogels Reduce Hearing Threshold Shifts in a Model for Cochlear Implantation with Hearing Preservation. Audiol Neurootol 2019; 24:237-244. [PMID: 31574511 DOI: 10.1159/000501331] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/04/2019] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION In recent years, the preservation of residual hearing has become a major factor in patients undergoing cochlear implantation (CI). In studies attempting to pharmaceutically improve hearing preservation rates, glucocorticoids (GCs) applied perioperatively in many institutions have emerged as a promising treatment regimen. Although dexamethasone is most commonly used and has been applied successfully by various research groups, recently pharmacological properties have been reported to be relatively unsuitable for topical delivery to the inner ear. Consequently other glucocorticoids merit further evaluation. The aim of this study was therefore to evaluate the otoprotective effects of the topical application of a sustained-release triamcinolone acetonide (TAAC) hydrogel in CI with hearing preservation. METHODS Normal-hearing pigmented guinea pigs were randomized into a group receiving a single dose of a 6% TAAC poloxamer 407 hydrogel, a group receiving a 30% TAAC hydrogel and a control group. All hydrogel applications were performed 1 day prior to CI. After a cochleostomy was drilled, a specifically designed silicone electrode was inserted into the scala tympani for 5 mm. Frequency-specific compound action potentials of the auditory nerve (0.5-32 kHz) were measured pre- and directly postoperatively as well as on days 3, 7, 14, 21, and 28. Finally, temporal bones were harvested for histological evaluation. RESULTS Application of the TAAC hydrogels resulted in significantly reduced hearing threshold shifts in low, middle and high frequencies and improved spiral ganglion cell survival in the second turn of the cochlea. Outer hair cell numbers in the basal and second turn of the cochlea were slightly reduced after TAAC application. CONCLUSION In summary, we were able to demonstrate functional benefits of a single preoperative application of a TAAC hydrogel in a guinea pig model for CI, which persisted until the end of the observational period, that is, 28 days after surgery.
Collapse
Affiliation(s)
- Clemens Honeder
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Chengjing Zhu
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Julia Clara Gausterer
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria
| | - Hanna Schöpper
- Department of Pathobiology, Institute of Anatomy, Histology and Embryology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Navid Ahmadi
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Nodir Saidov
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Michael Nieratschker
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| | - Franz Gabor
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Vienna, Austria,
| | - Christoph Arnoldner
- Department of Otorhinolaryngology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
30
|
Glucocorticoid for Hearing Preservation After Cochlear Implantation: A Systemic Review and Meta-analysis of Animal Studies. Otol Neurotol 2019; 40:1178-1185. [DOI: 10.1097/mao.0000000000002383] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
31
|
Electrical Impedance as a Biomarker for Inner Ear Pathology Following Lateral Wall and Peri-modiolar Cochlear Implantation. Otol Neurotol 2019; 40:e518-e526. [DOI: 10.1097/mao.0000000000002227] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
32
|
Single Intravenous High Dose Administration of Prednisolone Has No Influence on Postoperative Impedances in the Majority of Cochlear Implant Patients. Otol Neurotol 2018; 39:e1002-e1009. [DOI: 10.1097/mao.0000000000002033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
33
|
Ralli M, Rolesi R, Anzivino R, Turchetta R, Fetoni AR. Acquired sensorineural hearing loss in children: current research and therapeutic perspectives. ACTA OTORHINOLARYNGOLOGICA ITALICA 2018; 37:500-508. [PMID: 29327735 PMCID: PMC5782428 DOI: 10.14639/0392-100x-1574] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 05/02/2017] [Indexed: 01/03/2023]
Abstract
The knowledge of mechanisms responsible for acquired sensorineural hearing loss in children, such as viral and bacterial infections, noise exposure, aminoglycoside and cisplatin ototoxicity, is increasing and progressively changing the clinical management of affected patients. Viral infections are by far the most relevant cause of acquired hearing loss, followed by aminoglycoside and platinum derivative ototoxicity; moreover, cochlear damage induced by noise overexposure, mainly in adolescents, is an emerging topic. Pharmacological approaches are still challenging to develop a truly effective cochlear protection; however, the use of steroids, antioxidants, antiviral drugs and other small molecules is encouraging for clinical practice. Most of evidence on the effectiveness of antioxidants is still limited to experimental models, while the use of corticosteroids and antiviral drugs has a wide correspondence in literature but with controversial safety. Future therapeutic perspectives include innovative strategies to transport drugs into the cochlea, such as molecules incorporated in nanoparticles that can be delivered to a specific target. Innovative approaches also include the gene therapy designed to compensate for abnormal genes or to make proteins by introducing genetic material into cells; finally, regenerative medicine (including stem cell approaches) may play a central role in the upcoming years in hearing preservation and restoration even if its role in the inner ear is still debated.
Collapse
Affiliation(s)
- M Ralli
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, Italy
| | - R Rolesi
- Department of Otolaryngology, Catholic University of Sacred Heart, Rome, Italy
| | - R Anzivino
- Department of Otolaryngology, Catholic University of Sacred Heart, Rome, Italy
| | - R Turchetta
- Department of Sense Organs, Sapienza University of Rome, Italy
| | - A R Fetoni
- Department of Otolaryngology, Catholic University of Sacred Heart, Rome, Italy
| |
Collapse
|
34
|
Chambers S, Newbold C, Stathopoulos D, Needham K, Miller C, Risi F, Enke YL, Timbol G, Cowan R. Protecting against electrode insertion trauma using dexamethasone. Cochlear Implants Int 2018; 20:1-11. [PMID: 30126345 DOI: 10.1080/14670100.2018.1509531] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
OBJECTIVE To compare the benefits of a dexamethasone-eluting array for hearing preservation and cochlear histopathology in low trauma (soft-surgery) and high trauma models of cochlear implant surgery. METHODS Adult guinea pigs were implanted with an intra-cochlear array using two different surgical procedures: either a soft-surgery approach or following generation of electrode insertion trauma (high trauma). Two methods of dexamethasone delivery were evaluated: elution from an electrode array alone, and elution from a cochlear implant electrode array in combination with a pre-operative systemic injection. All electrode arrays were implanted for a period of 4 weeks. Outcome measures at 4 weeks post-implantation included auditory brainstem response (ABR) thresholds, histological analysis of spiral ganglion neuron density, fibrotic tissue, new bone growth, and cochlear damage. RESULTS Animals exposed to high surgical trauma showed greater hearing loss than those in the low trauma model, irrespective of the presence of dexamethasone. Whilst the area of intra-cochlear fibrotic tissue growth post-implantation was also independent of dexamethasone administration, new bone growth was significantly reduced in its presence. Our high trauma model effectively obliterated the organ of Corti and significantly reduced spiral ganglion neuron densities in the lower basal turn. This trauma-induced reduction in spiral ganglion neuron survival decreased with the inclusion of a dexamethasone-eluting array. A pre-operative systemic injection of dexamethasone did not significantly improve any outcome measures beyond those provided with a dexamethasone-eluting array alone. CONCLUSION Dexamethasone-eluting intra-cochlear arrays may inhibit osteoneogenesis, and reduce spiral ganglion neuron loss following traumatic cochlear implantation.
Collapse
Affiliation(s)
- Scott Chambers
- a The HEARing CRC , Carlton , Australia.,b Department of Audiology and Speech Pathology , The University of Melbourne , Carlton , Australia
| | - Carrie Newbold
- a The HEARing CRC , Carlton , Australia.,b Department of Audiology and Speech Pathology , The University of Melbourne , Carlton , Australia.,c Otolaryngology, Department of Surgery , The University of Melbourne , East Melbourne , Australia
| | - Dimitra Stathopoulos
- a The HEARing CRC , Carlton , Australia.,b Department of Audiology and Speech Pathology , The University of Melbourne , Carlton , Australia
| | - Karina Needham
- a The HEARing CRC , Carlton , Australia.,b Department of Audiology and Speech Pathology , The University of Melbourne , Carlton , Australia.,c Otolaryngology, Department of Surgery , The University of Melbourne , East Melbourne , Australia
| | - Chris Miller
- d Cochlear Ltd at Macquarie University , Sydney , NSW , Australia
| | - Frank Risi
- d Cochlear Ltd at Macquarie University , Sydney , NSW , Australia
| | - Ya Lang Enke
- d Cochlear Ltd at Macquarie University , Sydney , NSW , Australia
| | - Godofredo Timbol
- d Cochlear Ltd at Macquarie University , Sydney , NSW , Australia
| | - Robert Cowan
- a The HEARing CRC , Carlton , Australia.,b Department of Audiology and Speech Pathology , The University of Melbourne , Carlton , Australia
| |
Collapse
|
35
|
Kuthubutheen J, Joglekar S, Smith L, Friesen L, Smilsky K, Millman T, Ng A, Shipp D, Coates H, Arnoldner C, Nedzelski J, Chen J, Lin V. The Role of Preoperative Steroids for Hearing Preservation Cochlear Implantation: Results of a Randomized Controlled Trial. Audiol Neurootol 2018; 22:292-302. [DOI: 10.1159/000485310] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 11/14/2017] [Indexed: 12/22/2022] Open
Abstract
Objectives: To determine whether preoperative steroids can improve hearing outcomes in cochlear implantation (CI). Methods: This is a randomized controlled trial involving 30 postlingual deaf CI patients. Subjects had preoperative thresholds of better than or equal to 80 dB at 125 and 250 Hz, and better than or equal to 90 dB at 500 and 1,000 Hz. The subjects were randomized to a control group, an oral steroid group (receiving 1 mg/kg/day of prednisolone for 6 days prior to surgery), or a transtympanic steroid group (receiving a single dose of 0.5 mL of 10 mg/mL dexamethasone at 24 h prior to surgery). Results: The subjects receiving transtympanic steroids had a significant decrease in the pure tone average over 3 months compared to the control and oral steroid group, which persisted over 12 months (p < 0.05). Conclusion: A single dose of preoperative transtympanic steroids prior to CI appears to have a beneficial effect, at least in the short term, with minimal effects seen in the longer term.
Collapse
|
36
|
|
37
|
Dencker F, Dreyer L, Müller D, Zernetsch H, Paasche G, Sindelar R, Glasmacher B. A silicone fiber coating as approach for the reduction of fibroblast growth on implant electrodes. J Biomed Mater Res B Appl Biomater 2016; 105:2574-2580. [PMID: 27701814 DOI: 10.1002/jbm.b.33798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 08/19/2016] [Accepted: 09/12/2016] [Indexed: 11/11/2022]
Abstract
In cochlear implant (CI) patients, an increase in electrode impedance due to fibrotic encapsulation is frequently observed. Several attempts have been proposed to reduce fibroblast growth at the electrode contacts, but none proved to be satisfactory so far. Here, a silicone fiber coating of the electrode contacts is presented that provides a complex micro-scale surface topography and increases hydrophobicity to inhibit fibroblast growth and adhesion. A silicone fiber electrospinning process was developed to create a thin and porous fiber mesh. Fiber coatings were applied on graphite specimen holders, glass cover slips and CI electrode contacts. For characterization of the coating's pore distribution, water contact angle and electrical impedance were analyzed. Cytotoxicity and in vitro fibroblast growth were evaluated to assess biological efficacy of the coatings. It could be shown that the silicone fiber mesh itself had only minor influence on electrode impedance. A uniform, hydrophobic fiber coating could be achieved that decreased fibroblast growth without showing toxic effects. Finally, CI electrode contacts were successfully coated in order to present this promising approach for a long-term improvement of CI electrodes. We are one of the first groups that could successfully adapt the electrospinning technique on the utilization of silicone. Silicone was chosen because of its high hydrophobicity, chemical stability and excellent biocompatibility and as it is one of the biomaterials already used in CIs. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2574-2580, 2017.
Collapse
Affiliation(s)
- Folke Dencker
- Department of Material Science, Faculty II, University of Applied Sciences and Arts Hannover, Germany.,Institute of Micro Production Technology, Leibniz Universität Hannover, Germany
| | - Lutz Dreyer
- Institute for Multiphase Processes, Leibniz Universität Hannover, Germany
| | - Dietrich Müller
- Department of Material Science, Faculty II, University of Applied Sciences and Arts Hannover, Germany
| | - Holger Zernetsch
- Institute for Multiphase Processes, Leibniz Universität Hannover, Germany
| | - Gerrit Paasche
- Department of Otolaryngology, Hannover Medical School, Germany.,Cluster of Excellence "Hearing4all", Hannover Medical School, Germany
| | - Ralf Sindelar
- Department of Material Science, Faculty II, University of Applied Sciences and Arts Hannover, Germany
| | - Birgit Glasmacher
- Institute for Multiphase Processes, Leibniz Universität Hannover, Germany
| |
Collapse
|
38
|
Bas E, Bohorquez J, Goncalves S, Perez E, Dinh CT, Garnham C, Hessler R, Eshraghi AA, Van De Water TR. Electrode array-eluted dexamethasone protects against electrode insertion trauma induced hearing and hair cell losses, damage to neural elements, increases in impedance and fibrosis: A dose response study. Hear Res 2016; 337:12-24. [DOI: 10.1016/j.heares.2016.02.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/30/2015] [Accepted: 02/11/2016] [Indexed: 12/13/2022]
|
39
|
Kuthubutheen J, Smith L, Hwang E, Lin V. Preoperative steroids for hearing preservation cochlear implantation: A review. Cochlear Implants Int 2016; 17:63-74. [PMID: 26913646 DOI: 10.1080/14670100.2016.1148319] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Preoperative steroids have been shown to be beneficial in reducing the hearing loss associated with cochlear implantation. This review article discusses the mechanism of action, effects of differing routes of administration, and side effects of steroids administered to the inner ear. Studies on the role of preoperative steroids in animal and human studies are also examined and future directions for research in this area are discussed.
Collapse
Affiliation(s)
- Jafri Kuthubutheen
- a Department of Otolaryngology - Head and Neck Surgery , University of Toronto, Sunnybrook Health Sciences Centre , Ontario , Canada.,b Department of Otolaryngology - Head and Neck Surgery , School of Surgery, University of Western Australia , Perth , Australia
| | - Leah Smith
- a Department of Otolaryngology - Head and Neck Surgery , University of Toronto, Sunnybrook Health Sciences Centre , Ontario , Canada
| | - Euna Hwang
- a Department of Otolaryngology - Head and Neck Surgery , University of Toronto, Sunnybrook Health Sciences Centre , Ontario , Canada
| | - Vincent Lin
- a Department of Otolaryngology - Head and Neck Surgery , University of Toronto, Sunnybrook Health Sciences Centre , Ontario , Canada
| |
Collapse
|
40
|
Impedance Changes and Fibrous Tissue Growth after Cochlear Implantation Are Correlated and Can Be Reduced Using a Dexamethasone Eluting Electrode. PLoS One 2016; 11:e0147552. [PMID: 26840740 PMCID: PMC4739581 DOI: 10.1371/journal.pone.0147552] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 01/05/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The efficiency of cochlear implants (CIs) is affected by postoperative connective tissue growth around the electrode array. This tissue formation is thought to be the cause behind post-operative increases in impedance. Dexamethasone (DEX) eluting CIs may reduce fibrous tissue growth around the electrode array subsequently moderating elevations in impedance of the electrode contacts. METHODS For this study, DEX was incorporated into the silicone of the CI electrode arrays at 1% and 10% (w/w) concentration. Electrodes prepared by the same process but without dexamethasone served as controls. All electrodes were implanted into guinea pig cochleae though the round window membrane approach. Potential additive or synergistic effects of electrical stimulation (60 minutes) were investigated by measuring impedances before and after stimulation (days 0, 7, 28, 56 and 91). Acoustically evoked auditory brainstem responses were recorded before and after CI insertion as well as on experimental days 7, 28, 56, and 91. Additionally, histology performed on epoxy embedded samples enabled measurement of the area of scala tympani occupied with fibrous tissue. RESULTS In all experimental groups, the highest levels of fibrous tissue were detected in the basal region of the cochlea in vicinity to the round window niche. Both DEX concentrations, 10% and 1% (w/w), significantly reduced fibrosis around the electrode array of the CI. Following 3 months of implantation impedance levels in both DEX-eluting groups were significantly lower compared to the control group, the 10% group producing a greater effect. The same effects were observed before and after electrical stimulation. CONCLUSION To our knowledge, this is the first study to demonstrate a correlation between the extent of new tissue growth around the electrode and impedance changes after cochlear implantation. We conclude that DEX-eluting CIs are a means to reduce this tissue reaction and improve the functional benefits of the implant by attenuating electrode impedance.
Collapse
|
41
|
Jia H, François F, Bourien J, Eybalin M, Lloyd RV, Van De Water TR, Puel JL, Venail F. Prevention of trauma-induced cochlear fibrosis using intracochlear application of anti-inflammatory and antiproliferative drugs. Neuroscience 2015; 316:261-78. [PMID: 26718602 DOI: 10.1016/j.neuroscience.2015.12.031] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 12/14/2015] [Accepted: 12/16/2015] [Indexed: 12/20/2022]
Abstract
Cochlear fibrosis is a common finding following cochlear implantation. Evidence suggests that cochlear fibrosis could be triggered by inflammation and epithelial-to-mesenchymal cell transition (EMT). In this study, we investigate the mechanisms of cochlear fibrosis and the risk/benefit ratio of local administration of the anti-inflammatory drug dexamethasone (DEX) and antimitotic drug aracytine (Ara-C). Cochlear fibrosis was evaluated in cochlear fibrosis models of rat cochlear slices in vitro and in KLH-induced immune labyrinthitis and platinum wire cochlear implantation-induced fibrosis in vivo. Cochleae were invaded with tissue containing fibroblastic cells expressing α-SMA (alpha smooth muscle actin), which along with collagen I, fibronectin, and laminin in the extracellular matrix, suggests the involvement of a fibrotic process triggered by EMT in vitro and in vivo. After perilymphatic injection of an adenoviral vector expressing GFP in vivo, we demonstrated that the fibroblastic cells derived from the mesothelial cells of the scalae tympani and vestibuli. Activation of inflammatory and EMT pathways was further assessed by ELISA analysis of the expression of IL-1β and TGF-β1. Both markers were elevated in vitro and in vivo, and DEX and Ara-C were able to reduce IL-1β and TGF-β1 production. After 5days of culture in vitro, quantification of calcein-positive cells revealed that Ara-C was 30-fold more efficient in preventing fibrosis, and provoked less sensory hair cell loss, than DEX. In KLH-induced immune labyrinthitis and platinum wire-implanted models, Ara-C was more efficient in preventing proliferation of fibrosis with less side effects on hair cells and neurons than DEX. In conclusion, DEX and Ara-C both prevent fibrosis in the cochlea. Analysis of the risk/benefit ratio favors the use of Ara-C for preventing cochlear fibrosis.
Collapse
Affiliation(s)
- H Jia
- INSERM - UMR 1051, Institute for Neurosciences of Montpellier, Montpellier, France; University Montpellier 1 & 2, Montpellier, France; Department of ORL H&N Surgery, Xinhua Hospital - Ear Institute, Shanghai Jiaotong University School of Medicine, China.
| | - F François
- INSERM - UMR 1051, Institute for Neurosciences of Montpellier, Montpellier, France; University Montpellier 1 & 2, Montpellier, France.
| | - J Bourien
- INSERM - UMR 1051, Institute for Neurosciences of Montpellier, Montpellier, France; University Montpellier 1 & 2, Montpellier, France.
| | - M Eybalin
- INSERM - UMR 1051, Institute for Neurosciences of Montpellier, Montpellier, France; University Montpellier 1 & 2, Montpellier, France.
| | - R V Lloyd
- ENT Department, The Tunbridge Wells Hospital, Tunbridge Wells, UK.
| | - T R Van De Water
- Department of Otolaryngology, University of Miami Ear Institute, Miami, FL, USA.
| | - J-L Puel
- INSERM - UMR 1051, Institute for Neurosciences of Montpellier, Montpellier, France; University Montpellier 1 & 2, Montpellier, France.
| | - F Venail
- INSERM - UMR 1051, Institute for Neurosciences of Montpellier, Montpellier, France; University Montpellier 1 & 2, Montpellier, France; ENT Department, University Hospital Gui de Chauliac, Montpellier, France.
| |
Collapse
|
42
|
Kopelovich JC, Robinson BK, Soken H, Verhoeven KJ, Kirk JR, Goodman SS, Hansen MR. Acoustic Hearing After Murine Cochlear Implantation: Effects of Trauma and Implant Type. Ann Otol Rhinol Laryngol 2015; 124:931-9. [PMID: 26091845 PMCID: PMC7607423 DOI: 10.1177/0003489415592162] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVES To model the contribution of implant material and insertion trauma on loss of acoustic hearing after cochlear implantation in an appropriate animal model. METHODS Sixty-five C57Bl/6J mice underwent unilateral implantation with implant grade materials: 2 implant grade silicones and a third uncoated platinum wire. A sham surgery group was included as a control. Serial auditory brainstem response (ABR) thresholds and distortion product otoacoustic emissions (DPOAEs) were used to discern effects on hearing over 22 weeks. Histologic measurements of damage to the organ of Corti and spiral ganglion were correlated with degree of hearing loss and material type. RESULTS Organ of Corti damage correlated with rate of hearing loss soon after implantation (0-2 weeks) but not subsequently (2-22 weeks). Organ of Corti damage did not depend on implant type and was present even in sham surgery subjects when hearing was severely damaged. Spiral ganglia appeared unaffected. There was no evidence of an inflammatory or toxic effect of the materials beyond the site of implant insertion. CONCLUSIONS Hearing loss and cochlear damage appear to be related to insertion trauma, with minimal effect on delayed hearing loss caused by different materials. In the C57Bl/6J mouse model, the sensory epithelium appears to be the location of damage after cochlear implantation.
Collapse
Affiliation(s)
- Jonathan C Kopelovich
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa, USA Department of Pediatric Otolaryngology, Children's Hospital Colorado, Aurora, Colorado, USA
| | - Barbara K Robinson
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa, USA
| | - Hakan Soken
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa, USA Eskisehir Military Hospital, Eskisehir, Turkey
| | | | - Jonathon R Kirk
- Cochlear Ltd, Research and Technology Laboratories, Centennial, Colorado, USA
| | - Shawn S Goodman
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, Iowa, USA
| | - Marlan R Hansen
- Department of Otolaryngology-Head and Neck Surgery, University of Iowa, Iowa City, Iowa, USA Department of Neurosurgery, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
43
|
Pfingst BE, Zhou N, Colesa DJ, Watts MM, Strahl SB, Garadat SN, Schvartz-Leyzac KC, Budenz CL, Raphael Y, Zwolan TA. Importance of cochlear health for implant function. Hear Res 2015; 322:77-88. [PMID: 25261772 PMCID: PMC4377117 DOI: 10.1016/j.heares.2014.09.009] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 08/14/2014] [Accepted: 09/16/2014] [Indexed: 01/17/2023]
Abstract
Amazing progress has been made in providing useful hearing to hearing-impaired individuals using cochlear implants, but challenges remain. One such challenge is understanding the effects of partial degeneration of the auditory nerve, the target of cochlear implant stimulation. Here we review studies from our human and animal laboratories aimed at characterizing the health of the implanted cochlea and the auditory nerve. We use the data on cochlear and neural health to guide rehabilitation strategies. The data also motivate the development of tissue-engineering procedures to preserve or build a healthy cochlea and improve performance obtained by cochlear implant recipients or eventually replace the need for a cochlear implant. This article is part of a Special Issue entitled .
Collapse
Affiliation(s)
- Bryan E Pfingst
- Department of Otolaryngology, University of Michigan, Ann Arbor, MI, USA.
| | - Ning Zhou
- Department of Otolaryngology, University of Michigan, Ann Arbor, MI, USA; East Carolina University, Greenville, NC, USA
| | - Deborah J Colesa
- Department of Otolaryngology, University of Michigan, Ann Arbor, MI, USA
| | - Melissa M Watts
- Department of Otolaryngology, University of Michigan, Ann Arbor, MI, USA
| | | | - Soha N Garadat
- Department of Otolaryngology, University of Michigan, Ann Arbor, MI, USA; The University of Jordan, Amman, Jordan
| | | | - Cameron L Budenz
- Department of Otolaryngology, University of Michigan, Ann Arbor, MI, USA
| | - Yehoash Raphael
- Department of Otolaryngology, University of Michigan, Ann Arbor, MI, USA
| | - Teresa A Zwolan
- Department of Otolaryngology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
44
|
Schendzielorz P, Schmitz T, Moseke C, Gbureck U, FrFlich K, Rak K, Groll JR, Hagen R, Radeloff A. Plasma-Assisted Hydrophilization of Cochlear Implant Electrode Array Surfaces Enables Adhesion of Neurotrophin-Secreting Cells. ORL J Otorhinolaryngol Relat Spec 2014; 76:257-65. [DOI: 10.1159/000368321] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 09/09/2014] [Indexed: 11/19/2022]
|
45
|
Stathopoulos D, Chambers S, Adams L, Robins-Browne R, Miller C, Enke YL, Wei BPC, O'Leary S, Cowan R, Newbold C. Meningitis and a safe dexamethasone-eluting intracochlear electrode array. Cochlear Implants Int 2014; 16:201-7. [DOI: 10.1179/1754762814y.0000000099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
46
|
Newbold C, Farrington A, Peters L, Cowan R, Needham K. Electropermeabilization of Adherent Cells with Cochlear Implant Electrical Stimulation in vitro. Audiol Neurootol 2014; 19:283-92. [DOI: 10.1159/000362588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 03/31/2014] [Indexed: 11/19/2022] Open
|
47
|
Wrzeszcz A, Steffens M, Balster S, Warnecke A, Dittrich B, Lenarz T, Reuter G. Hydrogel coated and dexamethasone releasing cochlear implants: quantification of fibrosis in guinea pigs and evaluation of insertion forces in a human cochlea model. J Biomed Mater Res B Appl Biomater 2014; 103:169-78. [PMID: 24811046 DOI: 10.1002/jbm.b.33187] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 04/05/2014] [Indexed: 12/18/2022]
Abstract
The insertion of cochlear implants (CIs) often causes fibrous tissue growth around the electrode, which leads to attenuation of function of CIs. Inhibition of fibrosis in vivo using dexamethasone (Dex) released from the implant base material (polydimethylsiloxane [PDMS]) coated with a protein repelling hydrogel (star-shaped polyethylene glycol prepolymer, sPEG) was, therefore, the aim of the study. PDMS filaments with Dex or sPEG were implanted into guinea pigs. The hearing status after implantation did not differ significantly in the treated groups. Using confocal laser scanning microscopy in transparent whole mount preparations, Dex, Dex/sPEG, as well as sPEG showed a tendency toward reduced formation of connective tissue around the implant. To apply such coatings for glass fibers for optical stimulation of the inner ear, insertion forces were measured into a human scala tympani model using fibers with sPEG coating. The results show that the hydrogel did not reduce insertion forces compared to the uncoated samples. However, PDMS-embedded fibers provide comparable insertion forces and depth to those measured with conventional CI electrodes, demonstrating the suitability of laser fibers for a minimal traumatic cochlear implantation.
Collapse
Affiliation(s)
- Antonina Wrzeszcz
- Department of Otolaryngology, Hannover Medical School, Hannover, 30625, Germany
| | | | | | | | | | | | | |
Collapse
|
48
|
Chen KH, Dammann JF, Boback JL, Tenore FV, Otto KJ, Gaunt RA, Bensmaia SJ. The effect of chronic intracortical microstimulation on the electrode-tissue interface. J Neural Eng 2014; 11:026004. [PMID: 24503702 PMCID: PMC8129589 DOI: 10.1088/1741-2560/11/2/026004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Somatosensation is critical for effective object manipulation, but current upper limb prostheses do not provide such feedback to the user. For individuals who require use of prosthetic limbs, this lack of feedback transforms a mundane task into one that requires extreme concentration and effort. Although vibrotactile motors and sensory substitution devices can be used to convey gross sensations, a direct neural interface is required to provide detailed and intuitive sensory feedback. The viability of intracortical microstimulation (ICMS) as a method to deliver feedback depends in part on the long-term reliability of implanted electrodes used to deliver the stimulation. The objective of the present study is to investigate the effects of chronic ICMS on the electrode-tissue interface. APPROACH We stimulate the primary somatosensory cortex of three Rhesus macaques through chronically implanted electrodes for 4 h per day over a period of six months, with different electrodes subjected to different regimes of stimulation. We measure the impedance and voltage excursion as a function of time and of ICMS parameters. We also test the sensorimotor consequences of chronic ICMS by having animals grasp and manipulate small treats. MAIN RESULTS We show that impedance and voltage excursion both decay with time but stabilize after 10-12 weeks. The magnitude of this decay is dependent on the amplitude of the ICMS and, to a lesser degree, the duration of individual pulse trains. Furthermore, chronic ICMS does not produce any deficits in fine motor control. SIGNIFICANCE The results suggest that chronic ICMS has only a minor effect on the electrode-tissue interface and may thus be a viable means to convey sensory feedback in neuroprosthetics.
Collapse
Affiliation(s)
- Kevin H Chen
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Impedance, neural response telemetry, and speech perception outcomes after reimplantation of cochlear implants in children. Otol Neurotol 2014; 35:1385-93. [PMID: 24662639 DOI: 10.1097/mao.0000000000000362] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To compare mean impedance levels, neural response telemetry (NRT), and auditory perception after initial and explant-reimplant pediatric cochlear implants. STUDY DESIGN Retrospective case review. SETTING Tertiary referral hospital and cochlear implant program. PATIENTS Children 0 to 16 years inclusive who have undergone explant-reimplant of their cochlear implant. INTERVENTION Impedance levels, NRT, and speech perception performance. MAIN OUTCOME MEASURES Impedance, NRT, and auditory perception at switch on, 3 months, 12 months, 3 years, and 5 years after initial cochlear implant and reimplantation. RESULTS The explant-reimplant group receiving Cochlear contour array had significantly (p < 0.001) raised impedance at switch on, 3 months, 12 months, and 3 years, compared with their initial implant. The explant-reimplant group receiving Cochlear straight array had marginally significant (p = 0.045) raised impedance at switch on, 3 months, 12 months, and 3 and 5 years. Infection was associated with greater increases in impedance in the reimplant Contour group. NRT was increased in the explant-reimplant group but not significantly (p = 0.06). Auditory perception returned to preexplant levels within 6 months in 61% of children. CONCLUSION Impedance is higher after explant-reimplant and remains increased for years after explant-reimplant with Cochlear contour and to a lesser degree the straight array device.
Collapse
|
50
|
Hassarati RT, Dueck WF, Tasche C, Carter PM, Poole-Warren LA, Green RA. Improving Cochlear Implant Properties Through Conductive Hydrogel Coatings. IEEE Trans Neural Syst Rehabil Eng 2014; 22:411-8. [DOI: 10.1109/tnsre.2014.2304559] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|