1
|
Pajulas A, Fu Y, Cheung CCL, Chu M, Cannon A, Alakhras N, Zhang J, Ulrich BJ, Nelson AS, Zhou B, Kaplan MH. Interleukin-9 promotes mast cell progenitor proliferation and CCR2-dependent mast cell migration in allergic airway inflammation. Mucosal Immunol 2023; 16:432-445. [PMID: 37172907 PMCID: PMC10482122 DOI: 10.1016/j.mucimm.2023.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023]
Abstract
Allergic asthma is a chronic lung disease characterized by airway hyperresponsiveness and cellular infiltration that is exacerbated by immunoglobulin E-dependent mast cell (MC) activation. Interleukin-9 (IL-9) promotes MC expansion during allergic inflammation but precisely how IL-9 expands tissue MCs and promotes MC function is unclear. In this report, using multiple models of allergic airway inflammation, we show that both mature MCs (mMCs) and MC progenitors (MCp) express IL-9R and respond to IL-9 during allergic inflammation. IL-9 acts on MCp in the bone marrow and lungs to enhance proliferative capacity. Furthermore, IL-9 in the lung stimulates the mobilization of CCR2+ mMC from the bone marrow and recruitment to the allergic lung. Mixed bone marrow chimeras demonstrate that these are intrinsic effects in the MCp and mMC populations. IL-9-producing T cells are both necessary and sufficient to increase MC numbers in the lung in the context of allergic inflammation. Importantly, T cell IL-9-mediated MC expansion is required for the development of antigen-induced and MC-dependent airway hyperreactivity. Collectively, these data demonstrate that T cell IL-9 induces lung MC expansion and migration by direct effects on the proliferation of MCp and the migration of mMC to mediate airway hyperreactivity.
Collapse
Affiliation(s)
- Abigail Pajulas
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, USA
| | - Yongyao Fu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, USA
| | - Cherry C L Cheung
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, USA
| | - Michelle Chu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, USA
| | - Anthony Cannon
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, USA
| | - Nada Alakhras
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, USA
| | - Jilu Zhang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, USA
| | - Benjamin J Ulrich
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, USA
| | - Andrew S Nelson
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, USA
| | - Baohua Zhou
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, USA
| | - Mark H Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, USA.
| |
Collapse
|
2
|
Ro M, Lee AJ, Kim JH. 5-/12-Lipoxygenase-linked cascade contributes to the IL-33-induced synthesis of IL-13 in mast cells, thus promoting asthma development. Allergy 2018; 73:350-360. [PMID: 28857185 DOI: 10.1111/all.13294] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND As asthma progresses, the levels of IL-33 in serum are markedly increased and contribute to asthmatic development and exacerbation. Mast cells, one of the principal effector cells in the pathogenesis of asthma, express high levels of the IL-33 receptor ST2 and have been shown to be activated by IL-33. Thus, IL-33 stimulates mast cells to produce Th2-type cytokines such as IL-13, thus contributing to asthmatic development. However, the signaling mechanism for IL-33-induced synthesis of Th2 cytokines, particularly IL-13, has not been fully elucidated in mast cells. METHODS The role of 5- or 12-LO in the IL-33-induced synthesis of IL-13 was investigated using knockdown or pharmacological inhibitors in bone marrow-derived mast cells (BMMCs) and animal model. RESULTS Blockade of 5- or 12-LO significantly suppressed IL-33-induced synthesis of IL-13 in BMMCs. The subsequent action of 5- and 12-LO metabolites through their specific receptor, BLT2, was also critical for IL-33-induced synthesis of IL-13. We also demonstrated that the MyD88-p38 kinase cascade lies upstream of 5-/12-LO and that NF-κB lies downstream of 5-/12-LO to mediate the IL-33-induced synthesis of IL-13 in mast cells. Consistent with these findings, we observed that in an IL-33-administered asthmatic airway inflammation model, IL-13 levels were markedly increased in bronchoalveolar lavage fluid, but its levels were markedly suppressed by treatment with inhibitors of 5-LO, 12-LO or BLT2, further suggesting roles of 5-/12-LO in IL-33-induced IL-13 production. CONCLUSION Our results suggest that "MyD88-5-/12-LO-BLT2-NF-κB" cascade significantly contributes to the IL-33-induced synthesis of IL-13 in mast cells, thus potentially contributing to asthmatic development and exacerbation.
Collapse
Affiliation(s)
- MyungJa Ro
- School of Life Sciences and Biotechnology; Korea University; Seoul Korea
| | - A-Jin Lee
- School of Life Sciences and Biotechnology; Korea University; Seoul Korea
| | - Jae-Hong Kim
- School of Life Sciences and Biotechnology; Korea University; Seoul Korea
| |
Collapse
|
3
|
Tasaniyananda N, Chaisri U, Tungtrongchitr A, Chaicumpa W, Sookrung N. Mouse Model of Cat Allergic Rhinitis and Intranasal Liposome-Adjuvanted Refined Fel d 1 Vaccine. PLoS One 2016; 11:e0150463. [PMID: 26954254 PMCID: PMC4783078 DOI: 10.1371/journal.pone.0150463] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/15/2016] [Indexed: 12/19/2022] Open
Abstract
Cats (Felis domesticus) are rich source of airborne allergens that prevailed in the environment and sensitized a number of people to allergy. In this study, a mouse model of allergic rhinitis caused by the cat allergens was developed for the first time and the model was used for testing therapeutic efficacy of a novel intranasal liposome-entrapped vaccines made of native Fel d 1 (major cat allergen) in comparison with the vaccine made of crude cat hair extract (cCE). BALB/c mice were sensitized with cCE mixed with alum intraperitoneally and intranasally. The allergic mice were treated with eight doses of either liposome (L)-entrapped native Fel d 1 (L-nFD1), L-cCE), or placebo on every alternate day. Vaccine efficacy evaluation was performed one day after provoking the treated mice with aerosolic cCE. All allergenized mice developed histological features of allergic rhinitis with rises of serum specific-IgE and Th2 cytokine gene expression. Serum IgE and intranasal mucus production of allergic mice reduced significantly after vaccination in comparison with the placebo mice. The vaccines also caused a shift of the Th2 response (reduction of Th2 cytokine expressions) towards the non-pathogenic responses: Th1 (down-regulation of the Th1 suppressive cytokine gene, IL-35) and Treg (up-regulation of IL-10 and TGF-β). In conclusions, a mouse model of allergic rhinitis to cat allergens was successfully developed. The intranasal, liposome-adjuvanted vaccines, especially the refined single allergen formulation, assuaged the allergic manifestations in the modeled mice. The prototype vaccine is worthwhile testing further for clinical use in the pet allergic patients.
Collapse
Affiliation(s)
- Natt Tasaniyananda
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Urai Chaisri
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Anchalee Tungtrongchitr
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Wanpen Chaicumpa
- Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Nitat Sookrung
- Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
- * E-mail:
| |
Collapse
|
4
|
O'Connell KE, Mikkola AM, Stepanek AM, Vernet A, Hall CD, Sun CC, Yildirim E, Staropoli JF, Lee JT, Brown DE. Practical murine hematopathology: a comparative review and implications for research. Comp Med 2015; 65:96-113. [PMID: 25926395 PMCID: PMC4408895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 11/09/2014] [Accepted: 12/25/2014] [Indexed: 06/04/2023]
Abstract
Hematologic parameters are important markers of disease in human and veterinary medicine. Biomedical research has benefited from mouse models that recapitulate such disease, thus expanding knowledge of pathogenetic mechanisms and investigative therapies that translate across species. Mice in health have many notable hematologic differences from humans and other veterinary species, including smaller erythrocytes, higher percentage of circulating reticulocytes or polychromasia, lower peripheral blood neutrophil and higher peripheral blood and bone marrow lymphocyte percentages, variable leukocyte morphologies, physiologic splenic hematopoiesis and iron storage, and more numerous and shorter-lived erythrocytes and platelets. For accurate and complete hematologic analyses of disease and response to investigative therapeutic interventions, these differences and the unique features of murine hematopathology must be understood. Here we review murine hematology and hematopathology for practical application to translational investigation.
Collapse
Affiliation(s)
- Karyn E O'Connell
- Department of Comparative Pathology, New England Primate Research Center, Harvard Medical School, Southboro, Massachusetts, USA
| | - Amy M Mikkola
- Center for Comparative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Aaron M Stepanek
- Center for Comparative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA; Public Health and Professional Degree Program, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Andyna Vernet
- Center for Comparative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA; Wyss Institute for Biologically Inspired Engineering, Harvard Medical School, Boston, Massachusetts, USA
| | - Christopher D Hall
- Center for Comparative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Chia C Sun
- Program in Anemia Signaling Research, Nephrology Division, Massachusetts General Hospital, Boston, Massachusetts, USA; Program in Membrane Biology, Center for Systems Biology, Massachusetts General Hospital, Boston, Massachusetts, Cellular and Translational Immunology, EMD Serono Research and Development Institute, Billerica, Massachusetts, USA
| | - Eda Yildirim
- Department of Molecular Biology, Center for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - John F Staropoli
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Department of Pathology, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, USA; Biogen Idec, Cambridge, Massachusetts, USA
| | - Jeannie T Lee
- Department of Molecular Biology, Center for Human Genetic Research, Department of Pathology, Harvard Medical School, Howard Hughes Medical Institute, Harvard Medical School, Massachusetts General Hospital, Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Diane E Brown
- Center for Comparative Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA; Department of Pathology, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
5
|
Buniello A, Hardisty-Hughes RE, Pass JC, Bober E, Smith RJ, Steel KP. Headbobber: a combined morphogenetic and cochleosaccular mouse model to study 10qter deletions in human deafness. PLoS One 2013; 8:e56274. [PMID: 23457544 PMCID: PMC3572983 DOI: 10.1371/journal.pone.0056274] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 01/08/2013] [Indexed: 02/07/2023] Open
Abstract
The recessive mouse mutant headbobber (hb) displays the characteristic behavioural traits associated with vestibular defects including headbobbing, circling and deafness. This mutation was caused by the insertion of a transgene into distal chromosome 7 affecting expression of native genes. We show that the inner ear of hb/hb mutants lacks semicircular canals and cristae, and the saccule and utricle are fused together in a single utriculosaccular sac. Moreover, we detect severe abnormalities of the cochlear sensory hair cells, the stria vascularis looks severely disorganised, Reissner's membrane is collapsed and no endocochlear potential is detected. Myo7a and Kcnj10 expression analysis show a lack of the melanocyte-like intermediate cells in hb/hb stria vascularis, which can explain the absence of endocochlear potential. We use Trp2 as a marker of melanoblasts migrating from the neural crest at E12.5 and show that they do not interdigitate into the developing strial epithelium, associated with abnormal persistence of the basal lamina in the hb/hb cochlea. We perform array CGH, deep sequencing as well as an extensive expression analysis of candidate genes in the headbobber region of hb/hb and littermate controls, and conclude that the headbobber phenotype is caused by: 1) effect of a 648 kb deletion on distal Chr7, resulting in the loss of three protein coding genes (Gpr26, Cpmx2 and Chst15) with expression in the inner ear but unknown function; and 2) indirect, long range effect of the deletion on the expression of neighboring genes on Chr7, associated with downregulation of Hmx3, Hmx2 and Nkx1.2 homeobox transcription factors. Interestingly, deletions of the orthologous region in humans, affecting the same genes, have been reported in nineteen patients with common features including sensorineural hearing loss and vestibular problems. Therefore, we propose that headbobber is a useful model to gain insight into the mechanisms underlying deafness in human 10qter deletion syndrome.
Collapse
Affiliation(s)
- Annalisa Buniello
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | | | - Johanna C. Pass
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Eva Bober
- Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | | | - Karen P. Steel
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
- MRC Institute of Hearing Research, Nottingham, United Kingdom
- * E-mail:
| |
Collapse
|
6
|
Rodewald HR, Feyerabend TB. Widespread immunological functions of mast cells: fact or fiction? Immunity 2012; 37:13-24. [PMID: 22840840 DOI: 10.1016/j.immuni.2012.07.007] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Indexed: 12/29/2022]
Abstract
Immunological functions of mast cells are currently considered to be much broader than the original role of mast cells in IgE-driven allergic disease. The spectrum of proposed mast cell functions includes areas as diverse as the regulation of innate and adaptive immune responses, protective immunity against viral, microbial, and parasitic pathogens, autoimmunity, tolerance to graft rejection, promotion of or protection from cancer, wound healing, angiogenesis, cardiovascular diseases, diabetes, obesity, and others. The vast majority of in vivo mast cell data have been based on mast cell-deficient Kit mutant mice. However, work in new mouse mutants with unperturbed Kit function, which have a surprisingly normal immune system, has failed to corroborate some key immunological aspects, formerly attributed to mast cells. Here, we consider the implications of these recent developments for the state of the field as well as for future work, aiming at deciphering the physiological functions of mast cells.
Collapse
Affiliation(s)
- Hans-Reimer Rodewald
- Division for Cellular Immunology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany.
| | | |
Collapse
|
7
|
Zhang J, Shi GP. Mast cells and metabolic syndrome. Biochim Biophys Acta Mol Basis Dis 2010; 1822:14-20. [PMID: 21185370 DOI: 10.1016/j.bbadis.2010.12.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2010] [Revised: 12/03/2010] [Accepted: 12/16/2010] [Indexed: 12/23/2022]
Abstract
Mast cells are critical effectors in the development of allergic diseases and in many immunoglobulin E-mediated immune responses. These cells exert their physiological and pathological activities by releasing granules containing histamine, cytokines, chemokines, and proteases, including mast cell-specific chymase and tryptase. Like macrophages and T lymphocytes, mast cells are inflammatory cells, and they participate in the pathogenesis of inflammatory diseases such as cardiovascular complications and metabolic disorders. Recent observations suggested that mast cells are involved in insulin resistance and type 2 diabetes. Data from animal models proved the direct participation of mast cells in diet-induced obesity and diabetes. Although the mechanisms by which mast cells participate in these metabolic diseases are not fully understood, established mast cell pathobiology in cardiovascular diseases and effective mast cell inhibitor medications used in pre-formed obesity and diabetes in experimental models offer hope to patients with these common chronic inflammatory diseases. This article is part of a Special Issue entitled: Mast cells in inflammation.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
8
|
Klueh U, Kaur M, Qiao Y, Kreutzer DL. Critical role of tissue mast cells in controlling long-term glucose sensor function in vivo. Biomaterials 2010; 31:4540-51. [PMID: 20226521 PMCID: PMC2850116 DOI: 10.1016/j.biomaterials.2010.02.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Accepted: 02/10/2010] [Indexed: 10/19/2022]
Abstract
Little is known about the specific cells, mediators and mechanisms involved in the loss of glucose sensor function (GSF) in vivo. Since mast cells (MC) are known to be key effector cells in inflammation and wound healing, we hypothesized that MC and their products are major contributors to the skin inflammation and wound healing that controls GSF at sites of sensor implantation. To test this hypothesis we utilized a murine model of continuous glucose monitoring (CGM) in vivo in both normal C57BL/6 mice (mast cell sufficient), as well as mast cell deficient B6.Cg-Kit(W-sh)/HNihrJaeBsmJ (Sash) mice over a 28 day CGM period. As expected, both strains of mice displayed excellent CGM for the first 7 days post sensor implantation (PSI). CGM in the mast cell sufficient C57BL/6 mice was erratic over the remaining 21 days PSI. CGM in the mast cell deficient Sash mice displayed excellent sensor function for the entire 28 day of CGM. Histopathologic evaluation of implantation sites demonstrated that tissue reactions in Sash mice were dramatically less compared to the reactions in normal C57BL/6 mice. Additionally, mast cells were also seen to be consistently associated with the margins of sensor tissue reactions in normal C57BL/6 mice. Finally, direct injection of bone marrow derived mast cells at sites of sensor implantation induced an acute and dramatic loss of sensor function in both C57BL/6 and Sash mice. These results demonstrate the key role of mast cells in controlling glucose sensor function in vivo.
Collapse
Affiliation(s)
- Ulrike Klueh
- Center for Molecular Tissue Engineering, University of Connecticut, School of Medicine, 263 Farmington Ave., Farmington, CT 06030, USA.
| | | | | | | |
Collapse
|