1
|
Ocak I, Colak M, Bilici BN. Comparative Analysis of Plasmapheresis Versus Plasmapheresis Combined With Continuous Renal Replacement Therapy in Adult Liver Failure: A Retrospective Observational Study. Transplant Proc 2025; 57:598-605. [PMID: 40102129 DOI: 10.1016/j.transproceed.2025.02.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 10/09/2024] [Accepted: 02/26/2025] [Indexed: 03/20/2025]
Abstract
BACKGROUND Liver failure constitutes a critical medical condition marked by the rapid decline in hepatic functions. Novel therapeutic approaches, including therapeutic plasma exchange (TPE) and continuous venovenous hemodiafiltration (CVVHDF), have emerged as promising modalities for mitigating the effects of this condition by facilitating detoxification and enhancing liver function. The efficacy of these interventions, whether administered individually or in combination, is a prominent area of investigation in the management of liver failure among adult populations. This study aims to evaluate the role and effectiveness of TPE, both as a standalone treatment and in conjunction with CVVHDF, in the management of liver failure in adult patients. METHODS This retrospective study was conducted in a Liver Transplant Intensive Care Unit (LTICU), focusing on the medical records of adult patients aged 35 to 62 years. The patient cohort consisted of individuals admitted between January 1, 2021, and June 1, 2024, due to acute liver failure or acute-on-chronic liver failure. The analysis specifically included patients who underwent therapeutic plasma exchange (TPE) or those who received continuous renal replacement therapy in conjunction with TPE. For the statistical analysis, a P-value of less than .05 was deemed indicative of statistical significance. The study encompassed a total of 47 patients with liver failure, comprising 23 males and 24 females. Among these patients, 25 (53.2%) received only TPE, while 22 (46.8%) were treated with a combination of TPE and continuous venovenous hemodiafiltration (CVVHDF). RESULTS In the cohort of patients who received only therapeutic plasma exchange (TPE), the median International Normalized Ratio (INR) improved significantly, decreasing from 2 (1.6-2.6) to 1.3 (1.1-1.7). Similarly, alanine aminotransferase levels reduced from 351 (66-1482) to 166 (71-367), while aspartate aminotransferase levels decreased from 259 (132-1392) to 86 (35-160). In the group receiving a combination of TPE and continuous venovenous hemodiafiltration (CVVHDF), notable reductions were also observed: INR decreased from 3 (2.4-4.7) to 1.5 (1.3-2.4), alanine aminotransferase levels dropped from 691 (59-2397) to 162 (70-1060), and aspartate aminotransferase levels fell from 916 (134-1828) to 69 (45-503). These changes were statistically significant, with P-values of less than .05 for each parameter in both treatment groups. Overall, 21 patients achieved survival without requiring a liver transplant, while 7 patients underwent liver transplantation, resulting in a transplant-free survival rate of 44.7%. CONCLUSION The findings from our study on the management of liver failure in adults demonstrate that both therapeutic plasma exchange (TPE) administered alone and in conjunction with continuous venovenous hemodiafiltration (CVVHDF) are effective treatment modalities, particularly as a bridging strategy to liver transplantation. The observed transplant-free survival rate of 44.7% underscores the significant clinical advantages of these therapies. However, to enhance the validity of these results and their applicability in broader clinical contexts, additional multicenter studies are essential for further exploration of these treatment approaches in liver failure management.
Collapse
Affiliation(s)
- Ilhan Ocak
- Liver Transplant Intensive Care Unit, Istanbul Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey.
| | - Mustafa Colak
- Liver Transplant Intensive Care Unit, Istanbul Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| | - Bilge Nur Bilici
- Liver Transplant Intensive Care Unit, Istanbul Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey
| |
Collapse
|
2
|
Ortuño-Costela MC, Pinzani M, Vallier L. Cell therapy for liver disorders: past, present and future. Nat Rev Gastroenterol Hepatol 2025; 22:329-342. [PMID: 40102584 DOI: 10.1038/s41575-025-01050-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/11/2025] [Indexed: 03/20/2025]
Abstract
The liver fulfils a plethora of vital functions and, due to their importance, liver dysfunction has life-threatening consequences. Liver disorders currently account for more than two million deaths annually worldwide and can be classified broadly into three groups, considering their onset and aetiology, as acute liver diseases, inherited metabolic disorders and chronic liver diseases. In the most advanced and severe forms leading to liver failure, liver transplantation is the only treatment available, which has many associated drawbacks, including a shortage of organ donors. Cell therapy via fully mature cell transplantation is an advantageous alternative that may be able to restore a damaged organ's functionality or serve as a bridge until regeneration can occur. Pioneering work has shown that transplanting adult hepatocytes can support liver recovery. However, primary hepatocytes cannot be grown extensively in vitro as they rapidly lose their metabolic activity. Therefore, different cell sources are currently being tested as alternatives to primary cells. Human pluripotent stem cell-derived cells, chemically induced liver progenitors, or 'liver' organoids, hold great promise for developing new cell therapies for acute and chronic liver diseases. This Review focuses on the advantages and drawbacks of distinct cell sources and the relative strategies to address different therapeutic needs in distinct liver diseases.
Collapse
Affiliation(s)
- M Carmen Ortuño-Costela
- Berlin Institute of Health, BIH Centre for Regenerative Therapies, Charité-Universitätsmedizin, Berlin, Germany
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Massimo Pinzani
- University College London Institute for Liver and Digestive Health, Division of Medicine, Royal Free Hospital, London, UK
- University of Pittsburgh Medical Center-Mediterranean Institute for Transplantation and Highly Specialized Therapies (UPMC-ISMETT), Palermo, Italy
| | - Ludovic Vallier
- Berlin Institute of Health, BIH Centre for Regenerative Therapies, Charité-Universitätsmedizin, Berlin, Germany.
- Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
3
|
Qiu C, Zhang W, Zhao Y, Han T, Yang W, Liu Y, Jin P, Chen J, Shuai X, Ren J, Huang P. Reprogramming Glucose Metabolism of Macrophage for Acute Liver Failure Therapy with Itaconate Lipo-Nanodrug. Adv Healthc Mater 2025:e2500019. [PMID: 40249158 DOI: 10.1002/adhm.202500019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/17/2025] [Indexed: 04/19/2025]
Abstract
Acute liver failure (ALF) is a life-threatening disease featuring comprehensive inflammatory response and metabolic disorders in which macrophages exert central roles. A glucose metabolism mediator of macrophages, itaconate, has demonstrated potent anti-inflammatory efficacy in various diseases, implying that itaconate could work in treating ALF. However, systemic administration of itaconate may lead to immune disorder, making targeting the delivery of itaconate to the liver lesion area highly important. Herein, a liposomal nanodrug incorporating itaconate is developed, and its potential in treating acute liver failure in an ALF murine model established by LPS/D-GalN administration is tested. The nanodrug shows preferential liver accumulation to effectively alleviate LPS/D-GalN-induced hepatic histopathological injury by decreasing oxidative stress. Moreover, it reprograms the glucose metabolism of macrophages, resulting in macrophage repolarization toward the anti-inflammatory phenotype. Furthermore, western-blot and immunohistochemical assays verifies that the nanodrug may inhibit aerobic glycolysis of macrophages in an NRF2 and STING-dependent manner. These results underline the promise of the nanodrug for ALF treatment by reprogramming glucose metabolism.
Collapse
Affiliation(s)
- Chen Qiu
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Wei Zhang
- Department of Medical Ultrasound, Laboratory of Novel Optoacoustic (Ultrasonic) Imaging, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yanan Zhao
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Tian Han
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Wende Yang
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yajing Liu
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Peile Jin
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Jifan Chen
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Xintao Shuai
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Jie Ren
- Department of Medical Ultrasound, Laboratory of Novel Optoacoustic (Ultrasonic) Imaging, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Pintong Huang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, 310009, China
| |
Collapse
|
4
|
Suzuki A, MinjunChen. Epidemiology and Risk Determinants of Drug-Induced Liver Injury: Current Knowledge and Future Research Needs. Liver Int 2025; 45:e16146. [PMID: 39494620 DOI: 10.1111/liv.16146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/05/2024] [Accepted: 10/13/2024] [Indexed: 11/05/2024]
Abstract
AIMS Drug-induced liver injury (DILI) is a major global health concern resulting from adverse reactions to medications, supplements or herbal medicines. The relevance of DILI has grown with an aging population, the rising prevalence of chronic diseases and the increased use of biologics, including checkpoint inhibitors. This article aims to summarise current knowledge on DILI epidemiology and risk factors. METHODS This review critically appraises available evidence on DILI frequency, outcomes and risk determinants, focusing on drug properties and non-genetic host factors that may influence susceptibility. RESULTS DILI incidence varies across populations, with hospitalised patients experiencing notably higher rates than outpatients or the general population. Increased medication use, particularly among older adults and women, may partly explain age- and sex-based disparities in DILI incidence and reporting. Physiological changes associated with aging likely increase susceptibility to DILI in older adults, though further exposure-based studies are needed for definitive conclusions. Current evidence does not strongly support that women are inherently more susceptible to DILI than men; rather, susceptibility appears to depend on specific drugs. However, once DILI occurs, older age and female sex are associated with greater severity and poorer outcomes. Other less-studied host-related risk factors are also discussed based on available evidence. CONCLUSIONS This article summarises existing data on DILI frequency, outcomes, drug properties affecting hepatotoxicity and non-genetic host risk factors while identifying critical knowledge gaps. Addressing these gaps through future research could enhance understanding and support preventive measures.
Collapse
Affiliation(s)
- Ayako Suzuki
- Gastroenterology, Duke University, Durham, North Carolina, USA
- Gastroenterology, Durham VA Medical Center, Durham, North Carolina, USA
| | - MinjunChen
- Division of Bioinformatics and Biostatistics, FDA's National Center for Toxicological Research, Jefferson, Arkansas, USA
| |
Collapse
|
5
|
Huang CL, Qu HS, Li AL, Ying CQ, Shao H, Tang YZ, Chen HZ, Tung TH, Zhu JS. Design of a Highly Active Peptide Inhibitor of Farnesyltransferase and Its Protective Effect Against Acute Liver Failure. Drug Des Devel Ther 2025; 19:1909-1926. [PMID: 40098903 PMCID: PMC11912918 DOI: 10.2147/dddt.s505541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/25/2025] [Indexed: 03/19/2025] Open
Abstract
Purpose Acute liver failure (ALF) is a fatal syndrome associated with massive hepatocyte death. Previous studies have found that Farnesyltransferase (FTase) inhibitors improve disease progression in mouse models of endotoxemia, sepsis, and autoimmune hepatitis. PANoptosis is a novel type of programmed cell death (PCD), including pyroptosis, apoptosis, and necrosis, that plays an important role in ALF. This study was designed and investigated whether the FTase inhibitor PD083176 (d2,d3,d5) could attenuate ALF progression by modulating PANoptosis. Methods Combining the technical tools of computational biology, structural biology and pharmacology, we designed and obtained three high-affinity human FTase inhibitors of PD083176(d2,d3,d5). Then, these FTase inhibitors were investigated by animal experiments by administering PD083176(d2,d3,d5) (10 mg/kg) before modeling with LPS (100 μg/kg)/D-GalN (300 mg/kg) or TAA (800 mg/kg). Results We found that ALF induced by LPS/D-GaIN or TAA were associated with increased farnesylated protein in the liver. PD083176(d2,d3,d5) not only inhibited hepatic farnesylated proteins but also significantly attenuated liver injury and mortality in ALF mice. Importantly, PD083176(d2,d3,d5) treatment effectively inhibited hepatocyte apoptosis (Bax, Bcl-xL and TUNEL cell counts), pyroptosis (Caspase-1 and GSDMD), and necrotic apoptosis (RIPK1 and RIPK3). Conclusion Collectively, these findings demonstrate that PD081376(d2,d3,d5) could alleviate LPS/D-GaIN or TAA-induced ALF by regulating apoptosis, pyroptosis, and necrotizing apoptosis, which might provide a new therapeutic strategy and scalability challenge for ALF.
Collapse
Affiliation(s)
- Chun-Lian Huang
- Department of Infectious Diseases, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, 317000, People's Republic of China
| | - Hang-Shuai Qu
- Department of Public Laboratory, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, 317000, People's Republic of China
| | - A-Li Li
- Department of Infectious Diseases, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, 317000, People's Republic of China
| | - Chen-Qian Ying
- Department of Infectious Diseases, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, 317000, People's Republic of China
| | - Hui Shao
- Department of Infectious Diseases, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, 317000, People's Republic of China
| | - Yong-Zhi Tang
- Department of Infectious Diseases, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, 317000, People's Republic of China
| | - Hua-Zhong Chen
- Department of Infectious Diseases, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, 317000, People's Republic of China
| | - Tao-Hsin Tung
- Evidence-Based Medicine Center, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, 317000, People's Republic of China
| | - Jian-Sheng Zhu
- Department of Infectious Diseases, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, 317000, People's Republic of China
| |
Collapse
|
6
|
Lemmer P, Sowa J, Bulut Y, Strnad P, Canbay A. Mechanisms and aetiology-dependent treatment of acute liver failure. Liver Int 2025; 45:e15739. [PMID: 37752801 PMCID: PMC11815625 DOI: 10.1111/liv.15739] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023]
Abstract
This review compiles the mechanisms of acute liver failure (ALF) as well as the current and potential therapeutic approaches, including aetiology-specific treatment, and the issues encountered with such approaches. On a cellular level, ALF is characterized by massive hepatocyte death due to different types of cellular demise. Compensatory hyperplasia and functional recovery are possible when the regenerative capacity is sufficient to sustain hepatic function. ALF has a high mortality of about 30% and can lead to death in a very short time despite maximum therapeutic intervention. Besides aetiology-specific therapy and intensive care, the therapeutic option of emergency liver transplantation has significantly improved the prognosis of patients with ALF. However, due to limiting factors such as organ shortage, many patients die on the waiting list. In addition to graft assessment, machine perfusion may have the potential to recondition marginal organs and thus expand the organ donor pool.
Collapse
Affiliation(s)
- Peter Lemmer
- Department of Gastroenterology, Hepatology, and Infectious DiseasesOtto‐von‐Guericke University MagdeburgMagdeburgGermany
| | - Jan‐Peter Sowa
- Department of MedicineUniversitätsklinikum Knappschaftskrankenhaus Bochum, Ruhr University BochumBochumGermany
| | - Yesim Bulut
- Department of MedicineUniversitätsklinikum Knappschaftskrankenhaus Bochum, Ruhr University BochumBochumGermany
| | - Pavel Strnad
- Department of Internal Medicine IIIUniversity Hospital RWTH AachenAachenGermany
| | - Ali Canbay
- Department of MedicineUniversitätsklinikum Knappschaftskrankenhaus Bochum, Ruhr University BochumBochumGermany
| |
Collapse
|
7
|
Shi R, Hui X, Tong T, Li J, Zhang L, Yang K. Non-bioartificial artificial liver support system in acute liver failure: A comprehensive systematic review and meta-analysis of randomized controlled trials. Clin Res Hepatol Gastroenterol 2025; 49:102527. [PMID: 39800222 DOI: 10.1016/j.clinre.2025.102527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/14/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
BACKGROUND Acute liver failure (ALF) poses a significant threat to patient health with high mortality rates. While Non-Bioartificial Artificial Liver Support system (NBALSS) has been utilized as a transitional intervention to liver transplant, its efficacy remains uncertain, It is also used as a last-line treatment for patients who are not candidates for liver transplantation. OBJECTIVE The aim of this study was to perform a systematic review and meta-analysis of randomized controlled trials (RCTs) to evaluate the efficacy of NBALSS in treating acute liver failure (ALF). The primary outcome was overall survival (OS), while the secondary outcome focused on inflammatory factor levels. METHODS We conducted a comprehensive search across various databases, including PubMed, EMbase, The Cochrane Library, Web of Science, CBM, Wanfang Database, VIP database, and CNKI database. The search spanned from the inception of the databases to July 2023. Two independent reviewers screened literature, extracted data, assessed bias risk in the selected studies and used GRADE (Grades of Recommendation, Assessment, Development, and Evaluation) to rate the certainty of evidence. Random and fixed effects meta-analyses were used to determine the average effect of the interventions on ALF. The sensitivity analysis was conducted using the leave-one-out test. Additionally, subgroup analyses were carried out based on a singular NBALSS treatment or combined treatment of two NBALSS and follow-up duration. RESULTS Twelve RCTs involving 824 patients were identified. The use of NBALSS was associated with a significantly improved overall survival (OS) [RR = 1.42, 95 %CI (1.26, 1.61), low certainty] and notable reductions in total bilirubin (TBIL) [MD = -57.60, 95 %CI (-79.60, -35.59), moderate certainty], alanine aminotransferase (ALT) [MD = -48.28, 95 %CI (-76.57, -19.98), low certainty], tumor necrosis factor (TNF-α) [MD = -1.49, 95 %CI (-2.24, -0.73), very low certainty], and interleukin 6 (IL-6) [MD = -178.72, 95 %CI (-277.37, -80.06), very low certainty]. However, the effects of NBALSS on interleukin-2 (IL-2) [MD = 1.33, 95 %CI (-0.33, 3.00), very low certainty], interleukin-8 (IL-8) [MD = -44.75, 95 %CI (-163.04, 73.55), very low certainty], and Sequential Organ Failure Score (SOFA) [MD = -4.06, 95 %CI (-8.92, 0.80), very low certainty] remained uncertain. CONCLUSIONS Moderate to very low certainty of evidence indicates that NBALSS may improve OS and biochemical indexes, cytokines in patients with ALF. However, the certainty of evidence is limited by risk of bias, incositency and imprecision. High-quality and larger trials are needed to better determine the effect of NBALSS on patient-important outcomes.
Collapse
Affiliation(s)
- Ruizhi Shi
- The First Clinical Medical College of Lanzhou University, 730000, Lanzhou, China; Evidence-Based Medicine Center, School of Basic Medical Science, Lanzhou University, 730000, Lanzhou, China
| | - Xu Hui
- Evidence-Based Medicine Center, School of Basic Medical Science, Lanzhou University, 730000, Lanzhou, China; Centre for Evidence-Based Social Science/Center for Health Technology Assessment, School of Public Health, Lanzhou University, 730000, Lanzhou, China; Gansu Key Laboratory of Evidence-Based Medicine, Lanzhou University, 730000, Lanzhou, China
| | - Ting Tong
- The First Clinical Medical College of Lanzhou University, 730000, Lanzhou, China
| | - Junfeng Li
- The First Clinical Medical College of Lanzhou University, 730000, Lanzhou, China; Department of Hepatology & Infectious Diseases, the First Hospital of Lanzhou University, 730000, Lanzhou, China
| | - Liting Zhang
- The First Clinical Medical College of Lanzhou University, 730000, Lanzhou, China; Department of Hepatology & Infectious Diseases, the First Hospital of Lanzhou University, 730000, Lanzhou, China; Institute of Portal Hypertension, the First Hospital of Lanzhou University, 730000, Lanzhou, China.
| | - Kehu Yang
- Evidence-Based Medicine Center, School of Basic Medical Science, Lanzhou University, 730000, Lanzhou, China; Centre for Evidence-Based Social Science/Center for Health Technology Assessment, School of Public Health, Lanzhou University, 730000, Lanzhou, China; Gansu Key Laboratory of Evidence-Based Medicine, Lanzhou University, 730000, Lanzhou, China.
| |
Collapse
|
8
|
Zhang H, Gao M, Wang H, Zhang J, Wang L, Dong G, Ma Q, Li C, Dai J, Li Z, Yan F, Xiong H. Atractylenolide I prevents acute liver failure in mouse by regulating M1 macrophage polarization. Sci Rep 2025; 15:4015. [PMID: 39893238 PMCID: PMC11787394 DOI: 10.1038/s41598-025-86977-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 01/15/2025] [Indexed: 02/04/2025] Open
Abstract
Acute liver failure (ALF) is a life-threatening clinical syndrome with a substantial risk of mortality. A murine model of lipopolysaccharide (LPS)- and D-galactosamine (D-GalN)-induced ALF is widely used to investigate the underlying mechanisms and potential therapeutic drugs for human liver failure. Atractylenolide I (ATR-I) is an active component of the Atractylodes macrocephala rhizome and possesses various pharmacological activities, including anti-tumor, anti-inflammatory, and anti-oxidant properties. Given the key role of oxidative stress and inflammation in ALF pathogenesis, this study investigates the protective effects of ATR-I on LPS/D-GalN-induced ALF in mice. The results suggest that ATR-I pretreatment significantly ameliorates ALF, as evidenced by decreased serum aminotransferase levels and prolonged mice survival. Additionally, ATR-I pretreatment inhibits oxidative stress. Furthermore, the ATR-I pretreatment markedly suppresses M1 macrophage activation in hepatic mononuclear cells. In vitro experiments with bone marrow-derived macrophages indicate that ATR-I regulates macrophage polarization through the mitogen-activated protein kinase (MAPK) and interferon regulatory factor (IRF) signaling pathways. Collectively, ATR-I pretreatment protects mice from LPS/D-GalN-induced ALF partially by regulating M1 macrophage polarization.
Collapse
Affiliation(s)
- Hui Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Min Gao
- Clinical Laboratory, Jining First People's Hospital, Jining, Shandong, China
| | - Haiyan Wang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Junfeng Zhang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Lin Wang
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Guanjun Dong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Qun Ma
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Chunxia Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Jun Dai
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Zhihua Li
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China
| | - Fenglian Yan
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China.
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China.
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong, China.
- Jining Key Laboratory of Immunology, Jining Medical University, Jining, Shandong, China.
| |
Collapse
|
9
|
Wang L, Dong Z, Zhang Y, Peng L. Emerging Roles of High-mobility Group Box-1 in Liver Disease. J Clin Transl Hepatol 2024; 12:1043-1056. [PMID: 39649031 PMCID: PMC11622203 DOI: 10.14218/jcth.2024.00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 12/10/2024] Open
Abstract
High-mobility group box-1 (HMGB1) is an architectural chromosomal protein with various roles depending on its cellular localization. Extracellular HMGB1 functions as a prototypical damage-associated molecular pattern that triggers inflammation and adaptive immune responses, mediated by specific cell surface receptors, including receptors for advanced glycation end products and toll-like receptors. Post-translational modifications of HMGB1 significantly impact various cellular processes that contribute to the pathogenesis of liver diseases. Recent studies have highlighted the close relationship between HMGB1 and the pathogenesis of acute liver injuries, including acetaminophen-induced liver injury, hepatic ischemia-reperfusion injury, and acute liver failure. In chronic liver diseases, HMGB1 plays a role in nonalcoholic fatty liver disease, alcohol-associated liver disease, liver fibrosis, and hepatocellular carcinoma. Targeting HMGB1 as a therapeutic approach, either by inhibiting its release or blocking its extracellular function, is a promising strategy for treating liver diseases. This review aimed to summarize the available evidence on HMGB1's role in liver disease, focusing on its multifaceted signaling pathways, impact on disease progression, and the translation of these findings into clinical interventions.
Collapse
Affiliation(s)
- Lu Wang
- Department of Diagnostics, Second School of Clinical Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Zhiwei Dong
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yeqiong Zhang
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liang Peng
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Wang Y, Guo J, Zhang D, Shi C, Zhang X, Gong Z. IDH1/MDH1 deacetylation promotes NETosis by regulating OPA1 and autophagy. Int Immunopharmacol 2024; 143:113270. [PMID: 39353390 DOI: 10.1016/j.intimp.2024.113270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND As a heterogeneous and life-threatening disease, the pathogenesis of acute liver failure (ALF) is complex. Our previous study has shown that IDH1/MDH1 deacetylation promotes ALF by regulating NETosis (a novel mode of cell death). In this article, we explore the manners of IDH1/MDH1 deacetylation regulates NETosis. METHODS In vitro experiments, the formation of NETs was detected by immunofluorescence staining and Western blotting. LC3 fluorescence staining was used to detect autophagosome formation. To observe mitochondrial morphology, cells were stained by Mito-Tracker Red. Western blotting was used to detect the levels of autophagy protein and mitochondrial dynamin. In vivo experiments, the ALF model in mouse was established with LPS/D-gal, and the formation of NETs was detected by immunofluorescence staining and Western blotting. The autophagy levels were detected by Western blotting in liver samples. RESULTS In dHL-60 cells, Western blotting results showed that the expression of OPA1 was higher in the IDH1/MDH1 deacetylated group compared with the IDH1/MDH1 WT group. And histone deacetylase inhibitor 6 (HDAC6i, ACY1215) decreased the expression level of OPA1 in IDH1/MDH1 deacetylated group. IDH1/MDH1 deacetylation increased the expression levels of both LC3B-II and Beclin 1, while decreasing the expression level of P62. It was reversed by ACY1215. Combined with our previous experiments, IDH1/MDH1 deacetylation upregulated autophagy concomitant with the increased expression of the markers of NETs formation. In a mouse model of ALF, ACY1215 further decreased the expression levels of LC3B-II and Beclin 1, while increasing the expression level of P62 in IDH1/MDH1 deacetylated mice. CONCLUSIONS IDH1/MDH1 deacetylation promoted NETosis by regulating autophagy and OPA1 in vitro. The regulation of neutrophil autophagy on NETosis during IDH1/MDH1 deacetylation might be masked in mice. ACY1215 might attenuate NETosis by regulating neutrophil autophagy, which alleviated ALF aggravated by IDH1/MDH1 deacetylation.
Collapse
Affiliation(s)
- Yukun Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Jin Guo
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Danmei Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Chunxia Shi
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Xiaoya Zhang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 430060 Wuhan, China
| | - Zuojiong Gong
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, 430060 Wuhan, China.
| |
Collapse
|
11
|
Chen S, Cao Y, Fan Z, Xu L, Pan Z, Gao Y, Wei L, Wei Q, Tian Y, Zhang X, Liu M, Ren F. Depressed TFAM promotes acetaminophen-induced hepatotoxicity regulated by DDX3X-PGC1α-NRF2 signaling pathway. Mol Med 2024; 30:246. [PMID: 39701936 DOI: 10.1186/s10020-024-01017-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/28/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Acetaminophen (APAP)-induced acute liver injury (AILI) is the most prevalent cause of acute liver failure and mitochondrial dysfunction plays a dominant role in the pathogenesis of AILI. Mitochondrial transcription factor A (TFAM) is an important marker for maintaining mitochondrial functional homeostasis, but its functions in AILI are unclear. This study aimed to investigate the function of TFAM and its regulatory molecular mechanism in the progression of AILI. METHODS The roles of TFAM and DEAD (Asp-Glu-Ala-Asp) box polypeptide 3 X-linked (DDX3X) in AILI were determined with TFAM overexpression and DDX3X knockdown, respectively. RESULTS TFAM expression was suppressed in AILI patients. TFAM overexpression alleviated liver necrosis and mitochondrial dysfunction. Treatment of the AILI mice model with N-acetylcysteine (NAC), a drug used to treat APAP overdose, resulted in significant TFAM activation. In vivo experiments confirmed that TFAM expression was negatively regulated by DDX3X. Mechanistic studies showed that nuclear respiratory factor 2 (NRF-2), a key regulator of TFAM, was selectively activated after DDX3X knockdown via activated peroxisome proliferator-activated receptor γ coactivator 1 (PGC-1α), in vivo and in vitro. CONCLUSIONS This study demonstrates that depressed hepatic TFAM plays a key role in the pathogenesis of AILI, which is regulated by the DDX3X-PGC1α-NRF2 signaling pathway.
Collapse
Affiliation(s)
- Sisi Chen
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, No. 8, XitouTiao Road, Youwai Street, Fengtai District, Beijing, 100069, China
- Department of Liver Oncology, Beijing Youan Hospital, Capital Medical University, No. 8, Xitou Tiao Road, Youwai Street, Fengtai District, Beijing, 100069, China
| | - Yaling Cao
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, No. 8, XitouTiao Road, Youwai Street, Fengtai District, Beijing, 100069, China
| | - Zihao Fan
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, No. 8, XitouTiao Road, Youwai Street, Fengtai District, Beijing, 100069, China
| | - Ling Xu
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, No. 8, XitouTiao Road, Youwai Street, Fengtai District, Beijing, 100069, China
| | - Zhenzhen Pan
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, No. 8, XitouTiao Road, Youwai Street, Fengtai District, Beijing, 100069, China
| | - Yao Gao
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, No. 8, XitouTiao Road, Youwai Street, Fengtai District, Beijing, 100069, China
| | - Linlin Wei
- The Second Department of Liver Disease Center, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Qiaoxin Wei
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, No. 8, XitouTiao Road, Youwai Street, Fengtai District, Beijing, 100069, China
- Department of Liver Oncology, Beijing Youan Hospital, Capital Medical University, No. 8, Xitou Tiao Road, Youwai Street, Fengtai District, Beijing, 100069, China
| | - Yuan Tian
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, No. 8, XitouTiao Road, Youwai Street, Fengtai District, Beijing, 100069, China
| | - Xiangying Zhang
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, No. 8, XitouTiao Road, Youwai Street, Fengtai District, Beijing, 100069, China
| | - Mei Liu
- Department of Liver Oncology, Beijing Youan Hospital, Capital Medical University, No. 8, Xitou Tiao Road, Youwai Street, Fengtai District, Beijing, 100069, China.
| | - Feng Ren
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, No. 8, XitouTiao Road, Youwai Street, Fengtai District, Beijing, 100069, China.
| |
Collapse
|
12
|
Panackel C, Raja K, Fawas M, Jacob M. Prognostic models in acute liver failure-historic evolution and newer updates "prognostic models in acute liver failure". Best Pract Res Clin Gastroenterol 2024; 73:101957. [PMID: 39709212 DOI: 10.1016/j.bpg.2024.101957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/22/2024] [Indexed: 12/23/2024]
Abstract
Acute liver failure (ALF) is a rare and dynamic syndrome occurring as a sequela of severe acute liver injury (ALI). Its mortality ranges from 50% to 75% based on the aetiology, patients age and severity of encephalopathy at admission. With improvement in intensive care techniques, transplant-free survival in ALF has improved over time. Timely recognition of patients who are unlikely to survive with medical intervention alone is crucial since these individuals may rapidly develop multiorgan failure and render liver transplantation futile. Various predictive models, biomarkers and AI-based models are currently used in clinical practice, each with its fallacies. The King's College Hospital criteria (KCH) were initially established in 1989 to identify patients with acute liver failure (ALF) caused by paracetamol overdose or other causes who are unlikely to improve with conventional treatment and would benefit from a liver transplant. Since then, various models have been developed and validated worldwide. Most models include age, aetiology of liver disease, encephalopathy grade, and liver injury markers like INR, lactate, factor V level, factor VIII/V ratio and serum bilirubin. But none of the currently available models are dynamic and lack accuracy in predicting transplant free survival. There is an increasing interest in developing prognostic serum biomarkers that when used alone or in combination with clinical models enhance the accuracy of predicting outcomes in ALF. Genomics, transcriptomics, proteomics, and metabolomics as well as machine learning and artificial intelligence (AI) algorithms are areas of interest for developing higher-precision predictive models. Overall, the future of prognostic models in ALF is promising, with ongoing research paving the way for more accurate, personalized, and dynamic risk assessment tools that can potentially save lives in this challenging condition. This article summarizes the history of prognostic models in ALF and future trends.
Collapse
Affiliation(s)
| | | | - Mohammed Fawas
- Aster Integrated Liver Care, Aster Medcity, Kochi, India
| | - Mathew Jacob
- Aster Integrated Liver Care, Aster Medcity, Kochi, India
| |
Collapse
|
13
|
Saner FH, Scarlatescu E, Gold A, Abufarhaneh E, Alghamdi SA, Tolba Y, Aljudaibi B, Broering DC, Raptis DA, Bezinover D. Advanced strategies for intensive care management of acute liver failure. Best Pract Res Clin Gastroenterol 2024; 73:101962. [PMID: 39709216 DOI: 10.1016/j.bpg.2024.101962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/21/2024] [Accepted: 11/21/2024] [Indexed: 12/23/2024]
Abstract
Acute liver failure (ALF) is defined as the loss of hepatic function in conjunction with hepatic encephalopathy and coagulopathy. There is histological evidence of profound hepatocyte damage. If it is not aggressively managed, ALF can be fatal within a few days. It is a rare disease, often occurring in patients without prior liver disease. Despite numerous causes, ALF usually presents as acute liver necrosis with a clinical picture that includes cognitive dysfunction, increased aminotransferases, and severe coagulopathy. It is essential to distinguish between ALF and acute-on-chronic liver failure (ACLF). Causes for ALF include paracetamol Acute liver failure (ALF) is characterized by acute liver dysfunction associated with overdose, right heart failure (ischemic liver injury), viral hepatitis (A, B, D and E), autoimmune hepatitis and drug-induced liver injury (including some herbal and nutritional supplements). In developed countries, the prevalence of ALF is 1:1,000,000. Survival rates have increased due to improved ICU management.
Collapse
Affiliation(s)
- Fuat H Saner
- Hospital & Research Center, Organ Transplant Center of Excellence, Riyadh, Saudi Arabia.
| | - Ecaterina Scarlatescu
- Department of Anesthesia and Intensive Care Medicine III, Fundeni Clinical Institute, Bucharest, Romania; University of Medicine and Pharmacy "Carol Davila", Anesthesia and Intensive Care Department, Bucharest, Romania
| | - Andrew Gold
- Department of Anesthesiology and Critical Care, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ehab Abufarhaneh
- Hospital & Research Center, Organ Transplant Center of Excellence, Riyadh, Saudi Arabia
| | - Saad Ali Alghamdi
- Hospital & Research Center, Organ Transplant Center of Excellence, Riyadh, Saudi Arabia
| | - Yasser Tolba
- Hospital & Research Center, Organ Transplant Center of Excellence, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Bandar Aljudaibi
- Hospital & Research Center, Organ Transplant Center of Excellence, Riyadh, Saudi Arabia
| | - Dieter C Broering
- Hospital & Research Center, Organ Transplant Center of Excellence, Riyadh, Saudi Arabia
| | - Dimitri A Raptis
- Hospital & Research Center, Organ Transplant Center of Excellence, Riyadh, Saudi Arabia
| | - Dmitri Bezinover
- Department of Anesthesiology and Critical Care, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
14
|
Liu Y, Wu Y, He S. Clinical value of microRNA-130a as a marker of acute liver failure and its involvement in disease development. Hum Immunol 2024; 85:111173. [PMID: 39566434 DOI: 10.1016/j.humimm.2024.111173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/17/2024] [Accepted: 10/29/2024] [Indexed: 11/22/2024]
Abstract
OBJECTIVE This study was to investigate the clinical value of microRNA (miR)-130a in acute liver failure (ALF). METHODS ALF patients (n = 120, ALF group) and 106 healthy subjects (control group) were enrolled. Serum was collected to detect alanine aminotransferase (ALT), aspartate aminotransferase (AST), and total bilirubin (TBIL) by automatic biochemical analyzer, and miR-130a by real-time fluorescence quantitative PCR. According to the Child-Pugh score, ALF patients could be divided into grades A, B, and C, and levels of ALT, AST, TBIL, and miR-130a in each grade were observed. Pearson correlation coefficient method was employed to analyze the correlation between miR-130a and Child-Pugh scores and liver function indices. ALF patients were divided into high-low miR-130a expression groups, and poor prognoses were observed. The influence of miR-130a on prognosis was analyzed by Kaplan-Meier curve, and the prognostic value of miR-130a was analyzed by the ROC curve. RESULTS miR-130a, ALT, AST, and TBIL were increased in the ALF group. miR-130a, ALT, AST, and TBIL increased with the increase of the Child-Pugh grade. miR-130a levels were positively correlated with ALT, AST, and TBIL levels. The incidence of poor prognoses was 58.33% in the miR-130a high expression group and 30% in the miR-130a low expression group. The prognosis of the miR-130a low expression group was better than that of the miR-130a high expression group, and miR-130a had predictive value for the prognosis of ALF patients. CONCLUSION miR-130a is increased in ALF, and it has high value for both diagnosis and prognosis in ALF patients, and patients with high levels of miR-130a have a poor prognosis.
Collapse
Affiliation(s)
- Yanguo Liu
- Department of Hepatobiliary and Pancreatic Surgery, East Hospital of Yantai Mountain Hospital, Yantai 264000, Shandong Province, China
| | - Yanfang Wu
- Department of Hepatobiliary and Pancreatic Surgery, East Hospital of Yantai Mountain Hospital, Yantai 264000, Shandong Province, China
| | - Shujie He
- Department of Hepatobiliary and Pancreatic Surgery, East Hospital of Yantai Mountain Hospital, Yantai 264000, Shandong Province, China.
| |
Collapse
|
15
|
Ge D, An R, Xue L, Qiu M, Zhu Y, Wen G, Shi Y, Ren H, Li W, Wang J. Developing Cell-Membrane-Associated Liposomes for Liver Diseases. ACS NANO 2024; 18:29421-29438. [PMID: 39404084 DOI: 10.1021/acsnano.4c12122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Over the past decade, a marked escalation in the prevalence of hepatic pathologies has been observed, adversely impacting the quality of life for many. The predominant therapeutic strategy for liver diseases has been pharmacological intervention; however, its efficacy is often constrained. Currently, liposomes are tiny structures that can deliver drugs directly to targeted areas, enhancing their effectiveness. Specifically, cell membrane-associated liposomes have gained significant attention. Despite this, there is still much to learn about the binding mechanism of this type of liposome. Thus, this review comprehensively summarizes relevant information on cell membrane-associated liposomes, including their clinical applications and future development directions. First, we will briefly introduce the composition and types of cell membrane-associated liposomes. We will provide an overview of their structure and discuss the various types of liposomes associated with cell membranes. Second, we will thoroughly discuss various strategies of drug delivery using these liposomes. Lastly, we will discuss the application and clinical challenges associated with using cell membrane-associated liposomes in treating liver diseases. We will explore their potential benefits while also addressing the obstacles that need to be overcome. Furthermore, we will provide prospects for future development in this field. In summary, this review underscores the promise of cell membrane-associated liposomes in enhancing liver disease treatment and highlights the need for further research to optimize their utilization. In summary, this review underscores the promise of cell membrane-associated liposomes in enhancing liver disease treatment and highlights the need for further research to optimize their utilization.
Collapse
Affiliation(s)
- Dongxue Ge
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Ran An
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Lingling Xue
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Mengdi Qiu
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Yawen Zhu
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Gaolin Wen
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Yunpeng Shi
- Department of Hepatobiliary and Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Haozhen Ren
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Wei Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Jinglin Wang
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing 210008, China
| |
Collapse
|
16
|
Lebbe A, Aboulwafa A, Bayraktar N, Mushannen B, Ayoub S, Sarker S, Abdalla MN, Mohammed I, Mushannen M, Yagan L, Zakaria D. New Onset of Acute and Chronic Hepatic Diseases Post-COVID-19 Infection: A Systematic Review. Biomedicines 2024; 12:2065. [PMID: 39335578 PMCID: PMC11428502 DOI: 10.3390/biomedicines12092065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/30/2024] Open
Abstract
The SARS-CoV-2 virus caused a pandemic in the 2020s, which affected almost every aspect of life. As the world is recovering from the effect of the coronavirus, the concept of post-COVID-19 syndrome has emerged. Multiple organ systems have been implicated, including the liver. We aim to identify and analyze the reported cases of severe and long-term parenchymal liver injury post-COVID-19 infection. Several databases were used to conduct a comprehensive literature search to target studies reporting cases of severe and long-term parenchymal liver injury post-COVID-19 infection. Screening, data extraction, and cross checking were performed by two independent reviewers. Only 22 studies met our inclusion criteria. Our results revealed that liver steatosis, non-alcoholic fatty liver disease (NAFLD), and cirrhosis were the most reported liver associated complications post-COVID-19 infection. Moreover, complications like acute liver failure, hepatitis, and liver hemorrhage were also reported. The mechanism of liver injury post-COVID-19 infection is not fully understood. The leading proposed mechanisms include the involvement of the angiotensin-converting enzyme-2 (ACE-2) receptor expressed in the liver and the overall inflammatory state caused by COVID-19 infection. Future studies should incorporate longer follow-up periods, spanning several years, for better insight into the progression and management of such diseases.
Collapse
Affiliation(s)
- Ahamed Lebbe
- Medical Department, Weill Cornell Medicine-Qatar, Doha 24144, Qatar
| | - Ali Aboulwafa
- Medical Department, Weill Cornell Medicine-Qatar, Doha 24144, Qatar
| | - Nuran Bayraktar
- Medical Department, Weill Cornell Medicine-Qatar, Doha 24144, Qatar
| | - Beshr Mushannen
- Medical Department, Weill Cornell Medicine-Qatar, Doha 24144, Qatar
| | - Sama Ayoub
- Medical Department, Weill Cornell Medicine-Qatar, Doha 24144, Qatar
| | - Shaunak Sarker
- Medical Department, Weill Cornell Medicine-Qatar, Doha 24144, Qatar
| | | | - Ibrahim Mohammed
- Department of Medicine, Albany Medical College, New York, NY 12208, USA
| | - Malik Mushannen
- Department of Medicine, New York-Presbyterian Brooklyn Methodist Hospital, New York, NY 12208, USA
| | - Lina Yagan
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dalia Zakaria
- Premedical Department, Weill Cornell Medicine-Qatar, Doha 24144, Qatar
| |
Collapse
|
17
|
Xing ZY, Zhang CJ, Liu LJ. Targeting both ferroptosis and pyroptosis may represent potential therapies for acute liver failure. World J Gastroenterol 2024; 30:3791-3798. [PMID: 39351426 PMCID: PMC11438622 DOI: 10.3748/wjg.v30.i33.3791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/10/2024] [Accepted: 08/16/2024] [Indexed: 09/02/2024] Open
Abstract
In this editorial, we comment on the article published in the recent issue of the World Journal of Gastroenterology. Acute liver failure (ALF) is a fatal disease that causes uncontrolled massive hepatocyte death and rapid loss of liver function. Ferroptosis and pyroptosis, cell death forms that can be initiated or blocked concurrently, can play significant roles in developing inflammation and various malignancies. However, their roles in ALF remain unclear. The article discovered the positive feedback between ferroptosis and pyroptosis in the progression of ALF, and revealed that the silent information regulator sirtuin 1 (SIRT1) inhibits both pathways through p53, dramatically reducing inflammation and protecting hepatocytes. This suggests the potential use of SIRT1 and its downstream molecules as therapeutics for ALF. Thus, we will discuss the role of ferroptosis and pyroptosis in ALF and the crosstalk between these cell death mechanisms. Additionally, we address potential treatments that could alleviate ALF by simultaneously inhibiting both cell death pathways, as well as examples of SIRT1 activators being used as disease treatment strategies, providing new insights into the therapy of ALF.
Collapse
Affiliation(s)
- Zhong-Yuan Xing
- Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Chuan-Jie Zhang
- Department of Children Health Care, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430061, Hubei Province, China
| | - Li-Juan Liu
- Department of Medical Microbiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, Hubei Province, China
| |
Collapse
|
18
|
Fernández J, Bassegoda O, Toapanta D, Bernal W. Acute liver failure: A practical update. JHEP Rep 2024; 6:101131. [PMID: 39170946 PMCID: PMC11337735 DOI: 10.1016/j.jhepr.2024.101131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 08/23/2024] Open
Abstract
Acute liver failure is a rare and dynamic condition, with a broad aetiology and an incompletely understood pathophysiology. Management of this life-threatening disease requires critical care and organ support and frequently early liver transplantation. Proper identification, prevention and treatment of complications such as intracranial hypertension and sepsis are critical to optimising outcomes. The identification of the cause of acute liver failure and the prompt initiation of the aetiological treatment can also improve prognosis. Survival has progressively improved in parallel to advances in medical treatment. Intracranial hypertension complicating hepatic encephalopathy is less frequent than in the past and intracranial pressure monitoring now relies on non-invasive techniques. Current prognostic models have good accuracy to identify patients who will die without liver transplantation but are not able to identify those in whom transplantation is futile. New prognostic markers to select patients for transplantation are still in the pipeline. Therapeutic plasma exchange and, in some centers, early renal replacement therapy are well established treatments for the disease. The use of other artificial liver devices in clinical practice is not supported by evidence. This review is intended to provide a clinical update on the management of acute liver failure, incorporating the most recent advances in the field.
Collapse
Affiliation(s)
- Javier Fernández
- Liver ICU, Liver Unit, Hospital Clinic, University of Barcelona, IDIBAPS and CIBERehd, Spain
- EF Clif, EASL-CLIF Consortium, Barcelona, Spain
| | - Octavi Bassegoda
- Liver ICU, Liver Unit, Hospital Clinic, University of Barcelona, IDIBAPS and CIBERehd, Spain
| | - David Toapanta
- Liver ICU, Liver Unit, Hospital Clinic, University of Barcelona, IDIBAPS and CIBERehd, Spain
| | - William Bernal
- Liver Intensive Therapy Unit, Institute of Liver Studies, Kings College Hospital, London, United Kingdom
| |
Collapse
|
19
|
He J, Feng X, Liu Y, Wang Y, Ge C, Liu S, Jiang Y. Graveoline attenuates D-GalN/LPS-induced acute liver injury via inhibition of JAK1/STAT3 signaling pathway. Biomed Pharmacother 2024; 177:117163. [PMID: 39018876 DOI: 10.1016/j.biopha.2024.117163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/19/2024] Open
Abstract
Graveoline exhibits various biological activities. However, only limited studies have focused on its hepatoprotective properties. This study evaluated the anti-inflammatory and hepatoprotective activities of graveoline, a minor 2-phenylquinolin-4-one alkaloid isolated from Ruta graveolens L., in a liver injury model in vitro and in vivo. A network pharmacology approach was used to investigate the potential signaling pathway associated with the hepatoprotective activity of graveoline. Subsequently, biological experiments were conducted to validate the findings. Topological analysis of the KEGG pathway enrichment revealed that graveoline mediates its hepatoprotective activity through genes associated with the hepatitis B viral infection pathway. Biological experiments demonstrated that graveoline effectively reduced the levels of alanine transaminase and aspartate transaminase in lipopolysaccharide (LPS)-induced HepG2 cells. Graveoline exerted antihepatitic activity by inhibiting the pro-inflammatory cytokine tumor necrosis factor-α (TNF-α) and elevated the anti-inflammatory cytokines interleukin-4 (IL-4) and interleukin-10 (IL-10) in vitro and in vivo. Additionally, graveoline exerted its hepatoprotective activity by inhibiting JAK1 and STAT3 phosphorylation both in vitro and in vivo. In summary, graveoline can attenuate acute liver injury by inhibiting the TNF-α inflammasome, activating IL-4 and IL-10, and suppressing the JAK1/STAT3 signaling pathway. This study sheds light on the potential of graveoline as a promising therapeutic agent for treating liver injury.
Collapse
Affiliation(s)
- Jia He
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xu Feng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yanyang Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Department of Pharmacy, Mianyang 404 Hospital, Mianyang, Sichuan 621000, China
| | - Yuxin Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; College of pharmacy, Dali University, Dali, Yunan 671000, China
| | - Chengyu Ge
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Shao Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Yueping Jiang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; College of Pharmacy, Changsha Medical University, Changsha, Hunan 410219, China.
| |
Collapse
|
20
|
Hong W, Zeng X, Wang H, Tan X, Tian Y, Hu H, Ashrafizadeh M, Sethi G, Huang H, Duan C. PGC-1α loss promotes mitochondrial protein lactylation in acetaminophen-induced liver injury via the LDHB-lactate axis. Pharmacol Res 2024; 205:107228. [PMID: 38810904 DOI: 10.1016/j.phrs.2024.107228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/19/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
Coronavirus disease 2019 (COVID-19) affected people worldwide, and fever is one of the major symptoms of this disease. Although Acetaminophen (APAP) is a common fever-reducing medication, it can also mediate liver injury. However, the role of PGC-1α in regulating mitochondrial quality control by lactate dehydrogenase B (LDHB), a vital enzyme catalyzing the conversion of lactate to pyruvate, in APAP-induced hepatotoxicity, is unclear. Here, gene expression omnibus data of patients with APAP-induced liver injury were used to explore gene expression profiles. AML12 cells and C57/BL6 mice were used to establish models of APAP-induced acute liver injury. SIRT1 and PGC-1α were overexpressed in vitro via lentiviral transfection to establish stable cell lines. The results showed that APAP treatment decreased SIRT1/PGC-1α/LDHB expression and increased protein lactylation, mitochondrial lactate levels, and pathological damage in liver mitochondria. PGC-1α upregulation or activation ameliorated APAP-induced damage in the cells and liver. Furthermore, PGC-1α overexpression increased LDHB synthesis, reduced lactylation, and induced a switch from lactate to pyruvate production. These results suggest that PGC-1α and LDHB play a role in APAP-induced liver injury by regulating mitochondrial quality control and lactate metabolic reprogramming. Therefore, the PGC-1α/LDHB axis is a potential therapeutic target for APAP-induced liver injury.
Collapse
Affiliation(s)
- Weilong Hong
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Xue Zeng
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China; Institute for Brain Science and Disease, Chongqing Medical University, Chongqing 400010, PR China
| | - Houping Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Xuxin Tan
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Yu Tian
- Research Center, Huizhou Central People's Hospital, Guangdong Medical University, Huizhou 516008, PR China
| | - Hongtao Hu
- Department of Orthopedic, Affiliated Hospital of Weifang Medical Univerisity, Weifang, Shandong 261000, PR China
| | - Milad Ashrafizadeh
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - He Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China.
| | - Chenyang Duan
- Department of Anesthesiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China.
| |
Collapse
|
21
|
Martínez-Martínez LM, Rosales-Sotomayor G, Jasso-Baltazar EA, Torres-Díaz JA, Aguirre-Villarreal D, Hurtado-Díaz de León I, Páez-Zayas VM, Sánchez-Cedillo A, Martínez-Vázquez SE, Tadeo-Espinoza HN, Guerrero-Cabrera JP, García-Alanis M, García-Juárez I. Acute liver failure: Management update and prognosis. REVISTA DE GASTROENTEROLOGIA DE MEXICO (ENGLISH) 2024; 89:404-417. [PMID: 39033039 DOI: 10.1016/j.rgmxen.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/30/2024] [Indexed: 07/23/2024]
Abstract
Acute liver failure is a rare but serious syndrome, with an incidence of approximately 2,000 to 3,000 cases per year in North America. Its pathophysiology and clinical course vary, depending on the cause of the primary liver injury, and can lead to high morbidity and mortality or the need for liver transplantation, despite available therapies. This syndrome involves excessive activation of the immune system, with damage in other organs, contributing to its high mortality rate. The most accepted definition includes liver injury with hepatic encephalopathy and coagulopathy within the past 26 weeks in a patient with no previous liver disease. The main causes are paracetamol poisoning, viral hepatitis, and drug-induced liver injury, among others. Identifying the cause is crucial, given that it influences prognosis and treatment. Survival has improved with supportive measures, intensive therapy, complication prevention, and the use of medications, such as N-acetylcysteine. Liver transplantation is a curative option for nonresponders to medical treatment, but adequate evaluation of transplantation timing is vital for improving results. Factors such as patient age, underlying cause, and severity of organ failure influence the post-transplant outcomes and survival.
Collapse
Affiliation(s)
- L M Martínez-Martínez
- Departamento de Medicina Interna, Hospital Central Dr. Ignacio Morones Prieto, San Luis Potosí, Mexico
| | - G Rosales-Sotomayor
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - E A Jasso-Baltazar
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - J A Torres-Díaz
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - D Aguirre-Villarreal
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - I Hurtado-Díaz de León
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - V M Páez-Zayas
- Departamento de Trasplante de Órganos, Hospital General de México Dr. Eduardo Liceaga, Mexico City, Mexico
| | - A Sánchez-Cedillo
- Departamento de Trasplante de Órganos, Hospital General de México Dr. Eduardo Liceaga, Mexico City, Mexico
| | - S E Martínez-Vázquez
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - H N Tadeo-Espinoza
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - J P Guerrero-Cabrera
- Departamento de Gastroenterología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - M García-Alanis
- Departamento de Neurología y Psiquiatría, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - I García-Juárez
- Departamento de Gastroenterología, Clínica de Hígado y Trasplante Hepático, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.
| |
Collapse
|
22
|
Premkumar M, Karvellas CJ, Kulkarni AV, Bhujade H, Reddy KR. Role of point-of-care ultrasound (POCUS) in clinical hepatology. Hepatology 2024:01515467-990000000-00946. [PMID: 38954829 DOI: 10.1097/hep.0000000000000990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024]
Abstract
Hospitalized patients with cirrhosis frequently require critical care management for sepsis, HE, respiratory failure, acute variceal bleeding, acute kidney injury (AKI), shock, and optimization for liver transplantation, while outpatients have unique care considerations. Point-of-care ultrasonography (POCUS) enhances bedside examination of the hepatobiliary system and relevant extrahepatic sites. POCUS includes cardiac US and is used to assess volume status and hemodynamic parameters like cardiac output, systemic vascular resistance, cardiac contractility, and pulmonary artery pressure, which aid in the early and accurate diagnosis of heart failure, cirrhotic cardiomyopathy, porto-pulmonary hypertension, hepatopulmonary syndrome, arrhythmia, and pulmonary embolism. This also helps in fluid management and vasopressor use in the resuscitation of patients with cirrhosis. Lung ultrasound (LUS) can help in differentiating pneumonia, effusion, and edema. Further, US guides interventions such as line placement, drainage of abdominal collections/abscesses, relief of tension pneumothorax, drainage of pleural and pericardial effusions, and biliary drainage in cholangitis. Additionally, its role is essential to assess liver masses foci of sepsis, for appropriate sites for paracentesis, and to assess for vascular disorders such as portal vein or hepatic vein thrombosis. Renal US can identify renal and postrenal causes of AKI and aid in diagnosis of prerenal AKI through volume assessment. In this review, we address the principles and methods of POCUS in hospitalized patients and in outpatients with cirrhosis and discuss the application of this diverse modality in clinical hepatology.
Collapse
Affiliation(s)
- Madhumita Premkumar
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Constantine J Karvellas
- Department of Critical Care Medicine, Division of Gastroenterology (Liver Unit), University of Alberta, Edmonton, Alberta, Canada
| | - Anand V Kulkarni
- Department of Hepatology, Asian Institute of Gastroenterology, Hyderabad, India
| | - Harish Bhujade
- Department of Radiodiagnosis and Interventional Radiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - K Rajender Reddy
- Division of Gastroenterology and Hepatology, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
23
|
Cai S, Su Y, Shi M, Wang D, Chen DDY, Yan B. Simultaneous quantification of six proteins related to liver injury using nano liquid chromatography-tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2024; 38:e9754. [PMID: 38605420 DOI: 10.1002/rcm.9754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/13/2024]
Abstract
RATIONALE In clinical diagnosis of liver injury, which is an important health concern, serum aminotransferase assays have been the go-to method used worldwide. However, the measurement of serum enzyme activity has limitations, including inadequate disease specificity and enzyme specificity. METHODS With the high selectivity and specificity provided by nano liquid chromatography-tandem mass spectrometry (LC/MS/MS), this work describes a method for the simultaneous determination of six proteins in liver that can be potentially used as biomarkers for liver injury: glutamic-pyruvic transaminase 1 (GPT1), glutamic oxaloacetic transaminase 1 (GOT1), methionine adenosyl transferase 1A (MAT1A), glutathione peroxidase 1 (GPX1), cytokeratin 18 (KRT18) and apolipoprotein E (APOE). RESULTS In validation, the method was shown to have good selectivity and sensitivity (limits of detection at pg/mL level). The analytical method revealed that, compared with normal mice, in carbon tetrachloride-induced acute liver injury mice, liver MAT1A and GPX1 were significantly lower (p < 0.01 and p < 0.05, respectively), KRT18 was significantly higher (p < 0.05) and APOE and GPT1 were marginally significantly lower (p between 0.05 and 0.1). This is the first work reporting the absolute contents of GPT1, GOT1, MAT1A, GPX1 and KRT18 proteins based on LC/MS. CONCLUSIONS The proposed method provides a basis for establishing more specific diagnostic indicators of liver injury.
Collapse
Affiliation(s)
- Siyu Cai
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China
| | - Yuan Su
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China
| | - Mengtian Shi
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China
| | - Dandan Wang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China
| | - David Da Yong Chen
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Binjun Yan
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
24
|
De Gasperi A, Petrò L, Amici O, Scaffidi I, Molinari P, Barbaglio C, Cibelli E, Penzo B, Roselli E, Brunetti A, Neganov M, Giacomoni A, Aseni P, Guffanti E. Major liver resections, perioperative issues and posthepatectomy liver failure: A comprehensive update for the anesthesiologist. World J Crit Care Med 2024; 13:92751. [PMID: 38855273 PMCID: PMC11155507 DOI: 10.5492/wjccm.v13.i2.92751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/15/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024] Open
Abstract
Significant advances in surgical techniques and relevant medium- and long-term outcomes over the past two decades have led to a substantial expansion in the indications for major liver resections. To support these outstanding results and to reduce perioperative complications, anesthesiologists must address and master key perioperative issues (preoperative assessment, proactive intraoperative anesthesia strategies, and implementation of the Enhanced Recovery After Surgery approach). Intensive care unit monitoring immediately following liver surgery remains a subject of active and often unresolved debate. Among postoperative complications, posthepatectomy liver failure (PHLF) occurs in different grades of severity (A-C) and frequency (9%-30%), and it is the main cause of 90-d postoperative mortality. PHLF, recently redefined with pragmatic clinical criteria and perioperative scores, can be predicted, prevented, or anticipated. This review highlights: (1) The systemic consequences of surgical manipulations anesthesiologists must respond to or prevent, to positively impact PHLF (a proactive approach); and (2) the maximal intensive treatment of PHLF, including artificial options, mainly based, so far, on Acute Liver Failure treatment(s), to buy time waiting for the recovery of the native liver or, when appropriate and in very selected cases, toward liver transplant. Such a clinical context requires a strong commitment to surgeons, anesthesiologists, and intensivists to work together, for a fruitful collaboration in a mandatory clinical continuum.
Collapse
Affiliation(s)
- Andrea De Gasperi
- Former Head, Anesthesia and Critical Care Service 2, Grande Ospedale Metropolitano Niguarda ASST GOM Niguarda, Milan 20163, Italy
| | - Laura Petrò
- AR1, Ospedale Papa Giovanni 23, Bergamo 24100, Italy
| | - Ombretta Amici
- Anesthesia and Critical Care Service 2, Grande Ospedale Metropolitano Niguarda AR2, ASST GOM Niguarda, Milan 20163, Italy
| | - Ilenia Scaffidi
- Anesthesia and Critical Care Service 2, Grande Ospedale Metropolitano Niguarda AR2, ASST GOM Niguarda, Milan 20163, Italy
| | - Pietro Molinari
- Anesthesia and Critical Care Service 2, Grande Ospedale Metropolitano Niguarda AR2, ASST GOM Niguarda, Milan 20163, Italy
| | - Caterina Barbaglio
- Anesthesia and Critical Care Service 2, Grande Ospedale Metropolitano Niguarda AR2, ASST GOM Niguarda, Milan 20163, Italy
| | - Eva Cibelli
- Anesthesia and Critical Care Service 2, Grande Ospedale Metropolitano Niguarda AR2, ASST GOM Niguarda, Milan 20163, Italy
| | - Beatrice Penzo
- Anesthesia and Critical Care Service 2, Grande Ospedale Metropolitano Niguarda AR2, ASST GOM Niguarda, Milan 20163, Italy
| | - Elena Roselli
- Anesthesia and Critical Care Service 2, Grande Ospedale Metropolitano Niguarda AR2, ASST GOM Niguarda, Milan 20163, Italy
| | - Andrea Brunetti
- Anesthesia and Critical Care Service 2, Grande Ospedale Metropolitano Niguarda AR2, ASST GOM Niguarda, Milan 20163, Italy
| | - Maxim Neganov
- Anestesia e Terapia Intensiva Generale, Istituto Clinico Humanitas, Rozzano 20089, Italy
| | - Alessandro Giacomoni
- Chirurgia Oncologica Miniinvasiva, Grande Ospedale Metropolitano Niguarda ASST GOM Niguarda, Milan 20163, Italy
| | - Paolo Aseni
- Dipartimento di Medicina d’Urgenza ed Emergenza, Grande Ospedale Metropolitano Niguarda ASST GOM Niguarda, Milano 20163, MI, Italy
| | - Elena Guffanti
- Anesthesia and Critical Care Service 2, Grande Ospedale Metropolitano Niguarda AR2, ASST GOM Niguarda, Milan 20163, Italy
| |
Collapse
|
25
|
Zhang T, Zhong Y, Shi Y, Feng C, Xu L, Chen Z, Sun X, Zhao Y, Sun X. Multi-omics reveals that 5-O-methylvisammioside prevention acute liver injury in mice by regulating the TNF/MAPK/NF-κB/arachidonic acid pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155550. [PMID: 38522313 DOI: 10.1016/j.phymed.2024.155550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/09/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND The pathogenesis of acute liver injury (ALI) has been a pressing issue in the medical scientific community. We previously found that 5-O-methylvisammioside (MeV) from Saposhnikovia divaricata (Turcz.) Schischk has excellent anti-inflammatory properties. However, the mechanism by which MeV protects against ALI still needs to be deeply investigated. PURPOSE In the present study, we established an acetaminophen (APAP) -induced ALI mouse model and pre-protected the mice with MeV. METHODS & RESULTS Our findings indicate that MeV (5 and 10 mg/kg) lowered the blood levels of alanine aminotransferase and aspartate aminotransferase and reduced the infiltration of inflammatory cells in the liver. MeV initially showed an inhibitory effect on ALI. We then analyzed the molecular mechanisms underlying the effects of MeV by transcriptomic and metabolomic analyzes. Through transcriptomic analysis, we identified 4675 differentially expressed genes between the APAP+MeV group and the APAP-induced ALI group, which were mainly enriched in the MAPK pathway, the TNF pathway, and the NF-κB pathway. Through metabolomic analysis, we found that 249 metabolites in the liver were differentially regulated between the APAP+MeV group and the APAP- induced ALI group, which were mainly enriched in the arachidonic acid pathway. The mRNA expression levels of key genes (encoding TNF-α, p38, AP-1, RelB, IL-1β, and Ptges), as determined by RT-PCR analysis, were consistent with the RNA-seq data. The ELISA results indicate that MeV markedly decreased the serum levels of TNF-α and IL-1β in mice. Finally, the key proteins in the NF-κB and MAPK pathways were examined using immunoblotting. The results showed that MeV decreased IκB-α phosphorylation and inhibited the nuclear translocation of NF-κB. In addition, MeV reduced the hepatic inflammatory burst mainly by inhibiting the phosphorylation of p38 and JNK in the MAPK pathway. CONCLUSION The present study demonstrated (i) that MeV could ameliorate APAP-induced ALI by inhibiting arachidonic acid metabolism and the TNF, MAPK, and NF-κB pathways, and (ii) that MeV is a promising drug candidate for the prevention of ALI.
Collapse
Affiliation(s)
- Tingwen Zhang
- College of Pharmacy, Jilin Medical University, No. 5, Jilin Street, Fengman District, Jilin City, Jilin Province, China
| | - Yue Zhong
- College of Pharmacy, Jilin Medical University, No. 5, Jilin Street, Fengman District, Jilin City, Jilin Province, China
| | - Yan Shi
- College of Pharmacy, Jilin Medical University, No. 5, Jilin Street, Fengman District, Jilin City, Jilin Province, China
| | - Chengcheng Feng
- College of Pharmacy, Jilin Medical University, No. 5, Jilin Street, Fengman District, Jilin City, Jilin Province, China
| | - Lu Xu
- College of Pharmacy, Jilin Medical University, No. 5, Jilin Street, Fengman District, Jilin City, Jilin Province, China
| | - Zheng Chen
- Jilin Hospital of Integrated Traditional Chinese and Western Medicine, No.9 Changchun Road, Chuanying District, Jilin City, Jilin Province, China
| | - Xin Sun
- College of Pharmacy, Jilin Medical University, No. 5, Jilin Street, Fengman District, Jilin City, Jilin Province, China
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agricultural University, No. 2888, Xincheng Street, Nanguan District, Changchun City, Jilin Province, China.
| | - Xialin Sun
- College of Pharmacy, Jilin Medical University, No. 5, Jilin Street, Fengman District, Jilin City, Jilin Province, China.
| |
Collapse
|
26
|
Ye JF, Liu W, Hou Q, Bai SQ, Xiang Z, Wang J, Qiao L. Patrinia villosa (Thunb.) Juss alleviates CCL 4-induced acute liver injury by restoring bile acid levels and inhibiting apoptosis/autophagy. Front Pharmacol 2024; 15:1409971. [PMID: 38841374 PMCID: PMC11150553 DOI: 10.3389/fphar.2024.1409971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 04/19/2024] [Indexed: 06/07/2024] Open
Abstract
Background Patrinia villosa (Thunb.) Juss is one of the plant resources of the famous traditional Chinese medicine "Bai jiang cao (herba patriniae)," and it is considered to function at the liver meridian, thereby treating diseases of the liver as demonstrated by the traditional theory of TCM. Unfortunately, the therapeutic mechanism of the whole plant of PV is so far unknown. Method UPLC QTOF-MS/MS was used to analyze the profile of PV. Male Sprague-Dawley rats were categorized into five groups, and PV groups (125 and 375 mg/kg) were administered by oral gavage for seven consecutive days. The model of liver injury was induced by intraperitoneal injection of 40% CCl4 oil solution. H&E staining was performed for histological evaluation. The ELISA method was used to assess the serum level of ALT, AST, and T-BIL. Serum and liver bile acid (BA) profiling was analyzed by LC-MS/MS. TUNEL-stained liver sections were used to monitor apoptosis caused by CCl4. HepG2 cells were used to detect autophagy caused by CCl4. Results A total of 16 compounds were identified from the 70% methanol extract of PV. PV (125 and 375 mg/kg) could reverse the ectopic overexpression of AST, ALT, and T-BIL caused by CCl4 administration. H&E staining indicated that PV (125 and 375 mg/kg) could reduce the infiltration of inflammatory cells and restore liver tissue and hepatocyte structures. Six bile acids, including DCA, HDCA, GCA, TCA, TCDCA, and TUDCA, were significantly altered both in the serum and liver tissue after CCl4 administration, and the level of all these six bile acids was restored by PV treatment. Moreover, PV inhibited apoptosis caused by CCl4 stimulation in liver tissue and suppressed autophagy in HepG2 cells treated with CCl4. Conclusion The results in this paper for the first time reveal the alteration of the bile acid profile in CCl4-induced liver injury and demonstrate that inhibiting apoptosis and autophagy was involved in P. villosa-elicited liver protection, providing a scientific basis for the clinical utilization of P. villosa as a natural hepatic protective agent.
Collapse
Affiliation(s)
- Ji-Feng Ye
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Liu
- School of Pharmaceutical Science, Liaoning University, Shenyang, China
- Shenyang Key Laboratory for Causes and Drug Discovery of Chronic Diseases, Liaoning University, Shenyang, China
| | - Qishu Hou
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shu-Qi Bai
- Liaoning Inspection, Examination and Certification Centre, Liaoning Province Product Quality Supervision and Inspection Institute, Shenyang, China
| | - Zheng Xiang
- School of Pharmaceutical Science, Liaoning University, Shenyang, China
- Shenyang Key Laboratory for Causes and Drug Discovery of Chronic Diseases, Liaoning University, Shenyang, China
| | - Jiaqi Wang
- School of Pharmaceutical Science, Liaoning University, Shenyang, China
- Shenyang Key Laboratory for Causes and Drug Discovery of Chronic Diseases, Liaoning University, Shenyang, China
| | - Liman Qiao
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
27
|
Luo J, Liu H, Xu Y, Yu N, Steiner RA, Wu X, Si S, Jin ZG. Hepatic Sirt6 activation abrogates acute liver failure. Cell Death Dis 2024; 15:283. [PMID: 38649362 PMCID: PMC11035560 DOI: 10.1038/s41419-024-06537-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 04/25/2024]
Abstract
Acute liver failure (ALF) is a deadly illness due to insufficient detoxification in liver induced by drugs, toxins, and other etiologies, and the effective treatment for ALF is very limited. Among the drug-induced ALF, acetaminophen (APAP) overdose is the most common cause. However, the molecular mechanisms underlying APAP hepatoxicity remain incompletely understood. Sirtuin 6 (Sirt6) is a stress responsive protein deacetylase and plays an important role in regulation of DNA repair, genomic stability, oxidative stress, and inflammation. Here, we report that genetic and pharmacological activation of Sirt6 protects against ALF in mice. We first observed that Sirt6 expression was significantly reduced in the liver tissues of human patients with ALF and mice treated with an overdose of APAP. Then we developed an inducible Sirt6 transgenic mice for Cre-mediated overexpression of the human Sirt6 gene in systemic (Sirt6-Tg) and hepatic-specific (Sirt6-HepTg) manners. Both Sirt6-Tg mice and Sirt6-HepTg mice exhibited the significant protection against APAP hepatoxicity. In contrast, hepatic-specific Sirt6 knockout mice exaggerated APAP-induced liver damages. Mechanistically, Sirt6 attenuated APAP-induced hepatocyte necrosis and apoptosis through downregulation of oxidative stress, inflammation, the stress-activated kinase JNK activation, and apoptotic caspase activation. Moreover, Sirt6 negatively modulated the level and activity of poly (ADP-ribose) polymerase 1 (PARP1) in APAP-treated mouse liver tissues. Importantly, the specific Sirt6 activator MDL-800 exhibited better therapeutic potential for APAP hepatoxicity than the current drug acetylcysteine. Furthermore, in the model of bile duct ligation induced ALF, hepatic Sirt6-KO exacerbated, but Sirt6-HepTg mitigated liver damage. Collectively, our results demonstrate that Sirt6 protects against ALF and suggest that targeting Sirt6 activation could be a new therapeutic strategy to alleviate ALF.
Collapse
Affiliation(s)
- Jinque Luo
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box CVRI, Rochester, NY, 14642, USA
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), No. 1 Tiantan Xili, Beijing, 100050, China
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, "The 14th Five-Year Plan" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), College of Pharmacy, Changsha Medical University, Changsha, 410219, Hunan, China
| | - Huan Liu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box CVRI, Rochester, NY, 14642, USA
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Yanni Xu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), No. 1 Tiantan Xili, Beijing, 100050, China
| | - Nanhui Yu
- The 2nd Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Rebbeca A Steiner
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box CVRI, Rochester, NY, 14642, USA
| | - Xiaoqian Wu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box CVRI, Rochester, NY, 14642, USA
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Science, Guangzhou Medical University, Guangzhou, China
| | - Shuyi Si
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), No. 1 Tiantan Xili, Beijing, 100050, China.
| | - Zheng Gen Jin
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box CVRI, Rochester, NY, 14642, USA.
| |
Collapse
|
28
|
Xu J, Chen J, Deng J, Chen X, Du R, Yu Z, Gao S, Chen B, Wang Y, Cai X, Duan H, Cai Y, Zheng G. Naringenin inhibits APAP-induced acute liver injury through activating PPARA-dependent signaling pathway. Exp Cell Res 2024; 437:114028. [PMID: 38582338 DOI: 10.1016/j.yexcr.2024.114028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/22/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Acute liver injury (ALI) refers to the damage to the liver cells of patients due to drugs, food, and diseases. In this work, we used a network pharmacology approach to analyze the relevant targets and pathways of the active ingredients in Citri Reticulatae Pericarpium (CRP) for the treatment of ALI and conducted systematic validation through in vivo and in vitro experiments. The network pharmacologic results predicted that naringenin (NIN) was the main active component of CRP in the treatment of ALI. GO functional annotation and KEGG pathway enrichment showed that its mechanism may be related to the regulation of PPARA signaling pathway, PPARG signaling pathway, AKT1 signaling pathway, MAPK3 signaling pathway and other signaling pathways. The results of in vivo experiments showed that (NIN) could reduce the liver lesions, liver adipose lesions, hepatocyte injury and apoptosis in mice with APAP-induced ALI, and reduce the oxidative stress damage of mouse liver cells and the inflammation-related factors to regulate ALI. In vitro experiments showed that NIN could inhibit the proliferation, oxidative stress and inflammation of APAP-induced LO2 cells, promote APAP-induced apoptosis of LO2 cells, and regulate the expression of apoptotic genes in acute liver injury. Further studies showed that NIN inhibited APAP-induced ALI mainly by regulating the PPARA-dependent signaling pathway. In conclusion, this study provides a preliminary theoretical basis for the screening of active compounds in CRP for the prevention and treatment of ALI.
Collapse
Affiliation(s)
- Jiepei Xu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jiamin Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jinji Deng
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiaojing Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Rong Du
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhiqian Yu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shuhan Gao
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Baizhong Chen
- Guangdong Xinbaotang Biological Technology Co., Ltd, Guangdong, Jiangmen, 529000, China
| | - Yuxin Wang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiaoting Cai
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Huiying Duan
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yi Cai
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Guodong Zheng
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
29
|
Durak K, Nubbemeyer K, Zayat R, Spillner J, Dineva S, Kalverkamp S, Kersten A. De Ritis Ratio to Predict Clinical Outcomes of Intermediate- and High-Risk Pulmonary Embolisms. J Clin Med 2024; 13:2104. [PMID: 38610869 PMCID: PMC11012845 DOI: 10.3390/jcm13072104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/23/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
Background: Abnormal liver function tests can identify severe cardiopulmonary failure. The aspartate transaminase/alanine transaminase (AST/ALT) ratio, or the De Ritis ratio, is commonly used to evaluate acute liver damage. However, its prognostic value in pulmonary embolism (PE) is unknown. Methods: Two cohorts, including patients with intermediate- and high-risk PEs, were established: one with an abnormal baseline AST/ALT ratio (>1) and another with a normal baseline AST/ALT ratio (<1). The primary outcome was a 60-day mortality. Secondary outcomes included peak N-terminal pro-brain-natriuretic-peptide (NT-proBNP) levels, complications, and the need for critical care treatment. To assess the effect of abnormal AST/ALT ratios, inverse probability weighted (IPW) analyses were performed. Results: In total, 230 patients were included in the analysis, and 52 (23%) had an abnormal AST/ALT ratio. After the IPW correction, patients with an abnormal AST/ALT ratio had a significantly higher mortality rate and peak NT-proBNP levels. The relative risks of 60-day mortality, shock development, use of inotropes/vasopressors, mechanical ventilation, and extracorporeal life support were 9.2 (95% confidence interval: 3.3-25.3), 10.1 (4.3-24), 2.7 (1.4-5.2), 2.3 (1.4-3.7), and 5.7 (1.4-23.1), respectively. Conclusions: The baseline AST/ALT ratio can be a predictor of shock, multiorgan failure, and mortality in patients with a pulmonary embolism.
Collapse
Affiliation(s)
- Koray Durak
- Department of Thoracic Surgery, Faculty of Medicine, RWTH University Hospital, 52074 Aachen, Germany; (K.N.); (R.Z.); (J.S.); (S.D.); (S.K.)
| | - Katharina Nubbemeyer
- Department of Thoracic Surgery, Faculty of Medicine, RWTH University Hospital, 52074 Aachen, Germany; (K.N.); (R.Z.); (J.S.); (S.D.); (S.K.)
| | - Rashad Zayat
- Department of Thoracic Surgery, Faculty of Medicine, RWTH University Hospital, 52074 Aachen, Germany; (K.N.); (R.Z.); (J.S.); (S.D.); (S.K.)
| | - Jan Spillner
- Department of Thoracic Surgery, Faculty of Medicine, RWTH University Hospital, 52074 Aachen, Germany; (K.N.); (R.Z.); (J.S.); (S.D.); (S.K.)
| | - Slavena Dineva
- Department of Thoracic Surgery, Faculty of Medicine, RWTH University Hospital, 52074 Aachen, Germany; (K.N.); (R.Z.); (J.S.); (S.D.); (S.K.)
| | - Sebastian Kalverkamp
- Department of Thoracic Surgery, Faculty of Medicine, RWTH University Hospital, 52074 Aachen, Germany; (K.N.); (R.Z.); (J.S.); (S.D.); (S.K.)
| | - Alexander Kersten
- Department of Cardiology, Pneumology, Angiology, and Intensive Care, Faculty of Medicine, RWTH University Hospital, 52074 Aachen, Germany;
| |
Collapse
|
30
|
Li WY, Wang LW, Dong J, Wang Y. Evaluation of G3BP1 in the prognosis of acute and acute-on-chronic liver failure after the treatment of artificial liver support system. World J Hepatol 2024; 16:251-263. [PMID: 38495274 PMCID: PMC10941744 DOI: 10.4254/wjh.v16.i2.251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/24/2023] [Accepted: 01/15/2024] [Indexed: 02/27/2024] Open
Abstract
BACKGROUND The increased expression of G3BP1 was positively correlated with the prognosis of liver failure. AIM To investigate the effect of G3BP1 on the prognosis of acute liver failure (ALF) and acute-on-chronic liver failure (ACLF) after the treatment of artificial liver support system (ALSS). METHODS A total of 244 patients with ALF and ACLF were enrolled in this study. The levels of G3BP1 on admission and at discharge were detected. The validation set of 514 patients was collected to verify the predicted effect of G3BP1 and the viability of prognosis. RESULTS This study was shown that lactate dehydrogenase (LDH), alpha-fetoprotein (AFP) and prothrombin time were closely related to the prognosis of patients. After the ALSS treatment, the patient' amount of decreased G3BP1 index in difference of G3BP1 between the value of discharge and admission (difG3BP1) < 0 group had a nearly 10-fold increased risk of progression compared with the amount of increased G3BP1 index. The subgroup analysis showed that the difG3BP1 < 0 group had a higher risk of progression, regardless of model for end-stage liver disease high-risk or low-risk group. At the same time, compared with the inflammatory marks [tumor necrosis factor-α, interleukin (IL)-1β and IL-18], G3BP1 had higher discrimination and was more stable in the model analysis and validation set. When combined with AFP and LDH, concordance index was respectively 0.84 and 0.8 in training and validation cohorts. CONCLUSION This study indicated that G3BP1 could predict the prognosis of ALF or ACLF patients treated with ALSS. The combination of G3BP1, AFP and LDH could accurately evaluate the disease condition and predict the clinical endpoint of patients.
Collapse
Affiliation(s)
- Wen-Yuan Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Lu-Wen Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Jin Dong
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Yao Wang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China.
| |
Collapse
|
31
|
Visser M, Hof WFJ, Broek AM, van Hoek A, de Jong JJ, Touw DJ, Dekkers BGJ. Unexpected Amanita phalloides-Induced Hematotoxicity-Results from a Retrospective Study. Toxins (Basel) 2024; 16:67. [PMID: 38393145 PMCID: PMC10891511 DOI: 10.3390/toxins16020067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
INTRODUCTION Amanita phalloides poisoning is a serious health problem with a mortality rate of 10-40%. Poisonings are characterized by severe liver and kidney toxicity. The effect of Amanita phalloides poisonings on hematological parameters has not been systematically evaluated thus far. METHODS Patients with suspected Amanita phalloides poisonings were retrospectively selected from the hospital database of the University Medical Center Groningen (UMCG). Medical data-including demographics; liver, kidney, and blood parameters; treatment; and outcomes-were collected. The severity of the poisoning was scored using the poison severity score. RESULTS Twenty-eight patients were identified who were admitted to the UMCG with suspected Amanita phalloides poisoning between 1994 and 2022. A time-dependent decrease was observed for hemoglobin and hematocrit concentrations, leukocytes, and platelets. Six out of twenty-eight patients developed acute liver failure (ALF). Patients with ALF showed a higher increase in liver enzymes, international normalized ratios, and PSS compared to patients without ALF. Conversely, hemoglobin and platelet numbers were decreased even further in these patients. Three out of six patients with ALF died and one patient received a liver transplant. CONCLUSION Our study shows that Amanita phalloides poisonings may be associated with hematotoxicity in patients. The quantification of hematological parameters is of relevance in intoxicated patients, especially in those with ALF.
Collapse
Affiliation(s)
- Miranda Visser
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen (UMCG), 9713 GZ Groningen, The Netherlands; (M.V.); (W.F.J.H.); (A.M.B.); (A.v.H.); (J.J.d.J.); (D.J.T.)
| | - Willemien F. J. Hof
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen (UMCG), 9713 GZ Groningen, The Netherlands; (M.V.); (W.F.J.H.); (A.M.B.); (A.v.H.); (J.J.d.J.); (D.J.T.)
| | - Astrid M. Broek
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen (UMCG), 9713 GZ Groningen, The Netherlands; (M.V.); (W.F.J.H.); (A.M.B.); (A.v.H.); (J.J.d.J.); (D.J.T.)
| | - Amanda van Hoek
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen (UMCG), 9713 GZ Groningen, The Netherlands; (M.V.); (W.F.J.H.); (A.M.B.); (A.v.H.); (J.J.d.J.); (D.J.T.)
| | - Joyce J. de Jong
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen (UMCG), 9713 GZ Groningen, The Netherlands; (M.V.); (W.F.J.H.); (A.M.B.); (A.v.H.); (J.J.d.J.); (D.J.T.)
| | - Daan J. Touw
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen (UMCG), 9713 GZ Groningen, The Netherlands; (M.V.); (W.F.J.H.); (A.M.B.); (A.v.H.); (J.J.d.J.); (D.J.T.)
- Department of Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Bart G. J. Dekkers
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen (UMCG), 9713 GZ Groningen, The Netherlands; (M.V.); (W.F.J.H.); (A.M.B.); (A.v.H.); (J.J.d.J.); (D.J.T.)
| |
Collapse
|
32
|
Zheng L, Gong H, Zhang J, Guo L, Zhai Z, Xia S, Hu Z, Chang J, Jiang Y, Huang X, Ge J, Zhang B, Yan M. Strategies to improve the therapeutic efficacy of mesenchymal stem cell-derived extracellular vesicle (MSC-EV): a promising cell-free therapy for liver disease. Front Bioeng Biotechnol 2023; 11:1322514. [PMID: 38155924 PMCID: PMC10753838 DOI: 10.3389/fbioe.2023.1322514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/29/2023] [Indexed: 12/30/2023] Open
Abstract
Liver disease has emerged as a significant worldwide health challenge due to its diverse causative factors and therapeutic complexities. The majority of liver diseases ultimately progress to end-stage liver disease and liver transplantation remains the only effective therapy with the limitations of donor organ shortage, lifelong immunosuppressants and expensive treatment costs. Numerous pre-clinical studies have revealed that extracellular vesicles released by mesenchymal stem cells (MSC-EV) exhibited considerable potential in treating liver diseases. Although natural MSC-EV has many potential advantages, some characteristics of MSC-EV, such as heterogeneity, uneven therapeutic effect, and rapid clearance in vivo constrain its clinical translation. In recent years, researchers have explored plenty of ways to improve the therapeutic efficacy and rotation rate of MSC-EV in the treatment of liver disease. In this review, we summarized current strategies to enhance the therapeutic potency of MSC-EV, mainly including optimization culture conditions in MSC or modifications of MSC-EV, aiming to facilitate the development and clinical application of MSC-EV in treating liver disease.
Collapse
Affiliation(s)
- Lijuan Zheng
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Hui Gong
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Jing Zhang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Linna Guo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Zhuofan Zhai
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Shuang Xia
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Zhiyu Hu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Jing Chang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Yizhu Jiang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Xinran Huang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Jingyi Ge
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| | - Miao Yan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, China
| |
Collapse
|
33
|
Wu J, Duan C, Yang Y, Wang Z, Tan C, Han C, Hou X. Insights into the liver-eyes connections, from epidemiological, mechanical studies to clinical translation. J Transl Med 2023; 21:712. [PMID: 37817192 PMCID: PMC10566185 DOI: 10.1186/s12967-023-04543-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 09/19/2023] [Indexed: 10/12/2023] Open
Abstract
Maintenance of internal homeostasis is a sophisticated process, during which almost all organs get involved. Liver plays a central role in metabolism and involves in endocrine, immunity, detoxification and storage, and therefore it communicates with distant organs through such mechanisms to regulate pathophysiological processes. Dysfunctional liver is often accompanied by pathological phenotypes of distant organs, including the eyes. Many reviews have focused on crosstalk between the liver and gut, the liver and brain, the liver and heart, the liver and kidney, but with no attention paid to the liver and eyes. In this review, we summarized intimate connections between the liver and the eyes from three aspects. Epidemiologically, we suggest liver-related, potential, protective and risk factors for typical eye disease as well as eye indicators connected with liver status. For molecular mechanism aspect, we elaborate their inter-organ crosstalk from metabolism (glucose, lipid, proteins, vitamin, and mineral), detoxification (ammonia and bilirubin), and immunity (complement and inflammation regulation) aspect. In clinical application part, we emphasize the latest advances in utilizing the liver-eye axis in disease diagnosis and therapy, involving artificial intelligence-deep learning-based novel diagnostic tools for detecting liver disease and adeno-associated viral vector-based gene therapy method for curing blinding eye disease. We aim to focus on and provide novel insights into liver and eyes communications and help resolve existed clinically significant issues.
Collapse
Affiliation(s)
- Junhao Wu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei China
| | - Caihan Duan
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei China
| | - Yuanfan Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Zhe Wang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei China
| | - Chen Tan
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei China
| | - Chaoqun Han
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei China
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022 Hubei China
| |
Collapse
|
34
|
Li G, Li Q, Zhang C, Yu Q, Li Q, Zhou X, Yang R, Yang X, Liu H, Yang Y. The impact of gene polymorphism and hepatic insufficiency on voriconazole dose adjustment in invasive fungal infection individuals. Front Genet 2023; 14:1242711. [PMID: 37693307 PMCID: PMC10484623 DOI: 10.3389/fgene.2023.1242711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
Voriconazole (VRZ) is a broad-spectrum antifungal medication widely used to treat invasive fungal infections (IFI). The administration dosage and blood concentration of VRZ are influenced by various factors, posing challenges for standardization and individualization of dose adjustments. On the one hand, VRZ is primarily metabolized by the liver, predominantly mediated by the cytochrome P450 (CYP) 2C19 enzyme. The genetic polymorphism of CYP2C19 significantly impacts the blood concentration of VRZ, particularly the trough concentration (Ctrough), thereby influencing the drug's efficacy and potentially causing adverse drug reactions (ADRs). Recent research has demonstrated that pharmacogenomics-based VRZ dose adjustments offer more accurate and individualized treatment strategies for individuals with hepatic insufficiency, with the possibility to enhance therapeutic outcomes and reduce ADRs. On the other hand, the security, pharmacokinetics, and dosing of VRZ in individuals with hepatic insufficiency remain unclear, making it challenging to attain optimal Ctrough in individuals with both hepatic insufficiency and IFI, resulting in suboptimal drug efficacy and severe ADRs. Therefore, when using VRZ to treat IFI, drug dosage adjustment based on individuals' genotypes and hepatic function is necessary. This review summarizes the research progress on the impact of genetic polymorphisms and hepatic insufficiency on VRZ dosage in IFI individuals, compares current international guidelines, elucidates the current application status of VRZ in individuals with hepatic insufficiency, and discusses the influence of CYP2C19, CYP3A4, CYP2C9, and ABCB1 genetic polymorphisms on VRZ dose adjustments and Ctrough at the pharmacogenomic level. Additionally, a comprehensive summary and analysis of existing studies' recommendations on VRZ dose adjustments based on CYP2C19 genetic polymorphisms and hepatic insufficiency are provided, offering a more comprehensive reference for dose selection and adjustments of VRZ in this patient population.
Collapse
Affiliation(s)
- Guolin Li
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qinhui Li
- Department of Medical, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Changji Zhang
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Qin Yu
- College of Pharmacy, Southwest Medical University, Luzhou, China
| | - Qi Li
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoshi Zhou
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Rou Yang
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xuerong Yang
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hailin Liu
- Department of Pharmacy, The People’s Hospital of Chongqing Liangjiang New Area, Chongqing, China
| | - Yong Yang
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
35
|
Artru F, Goldberg D, Kamath PS. Should patients with acute-on-chronic liver failure grade 3 receive higher priority for liver transplantation? J Hepatol 2023; 78:1118-1123. [PMID: 37208098 DOI: 10.1016/j.jhep.2022.12.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 05/21/2023]
Abstract
In this debate, the authors consider whether patients with acute-on-chronic liver failure grade 3 (ACLF-3) should receive higher liver transplant priority, with reference to the following clinical case: a 62-year-old male with a history of decompensated alcohol-associated cirrhosis, with recurrent ascites and hepatic encephalopathy, and metabolic comorbidities (type 2 diabetes mellitus, arterial hypertension and a BMI of 31 kg/m2). A few days following evaluation for liver transplantation (LT), the patient was admitted to the intensive care unit and placed on mechanical ventilation for neurological failure, FiO2 of 0.3 with a SpO2 of 98%, and started on norepinephrine at 0.62 μg/kg/min. He had been abstinent since the diagnosis of cirrhosis a year prior. Laboratory results at admission were: leukocyte count 12.1 G/L, international normalised ratio 2.1, creatinine 2.4 mg/dl, sodium 133 mmol/L, total bilirubin 7 mg/dl, lactate 5.5 mmol/L, with a MELD-Na score of 31 and a CLIF-C ACLF score of 67. On the 7th day after admission, the patient was placed on the LT waiting list. On the same day, he had massive variceal bleed with hypovolemic shock requiring terlipressin, transfusion of three red blood cell units, and endoscopic band ligation. On day 10, the patient was stabilised with a low dose of norepinephrine 0.03 μg/kg/min, with no new sepsis or bleeding. However, the patient was still intubated for grade 2 hepatic encephalopathy and on renal replacement therapy with a lactate level of 3.1 mmol/L. The patient is currently categorised as having ACLF-3, with five organ failures (liver, kidney, coagulation, circulation, and respiration). Based on the severity of his liver disease and multiorgan failure, the patient is at an exceedingly high risk of death without LT. Is it appropriate to perform LT in such a patient?
Collapse
Affiliation(s)
- Florent Artru
- Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - David Goldberg
- Division of Digestive Health and Liver Diseases, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Patrick S Kamath
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA.
| |
Collapse
|
36
|
Didamoony MA, Atwa AM, Abd El-Haleim EA, Ahmed LA. Bromelain ameliorates D-galactosamine-induced acute liver injury: role of SIRT1/LKB1/AMPK, GSK3β/Nrf2 and NF-κB p65/TNF-α/caspase-8, -9 signalling pathways. J Pharm Pharmacol 2022; 74:1765-1775. [PMID: 36227279 DOI: 10.1093/jpp/rgac071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2022] [Indexed: 11/14/2022]
Abstract
OBJECTIVES The present research focused on estimating, for the first time, the potential protective effects of bromelain against D-galactosamine-induced acute liver injury in rats as well as identifying the possible underlying mechanisms. METHODS Silymarin (100 mg/kg/day, p.o.) as a reference drug or bromelain (20 and 40 mg/kg/day, p.o.) were administered for 10 days, and on the 8th day of the experiment, a single dose of galactosamine (400 mg/kg/i.p.) induced acute liver injury. KEY FINDINGS Pretreatment with bromelain improved liver functions and histopathological alterations induced by galactosamine. Bromelain ameliorated oxidative stress by inducing SIRT1 protein expression and increasing LKB1 content. This resulted in phosphorylating the AMPK/GSK3β axis, which stimulated Nrf2 activation in hepatic cells and thus increased the activity of its downstream antioxidant enzymes [HO-1 and NQO1]. Besides, bromelain exerted significant anti-apoptotic and anti-inflammatory effects by suppressing hepatic contents of TNF-α, NF-κB p65, as well as caspase-8 and caspase-9. The protective effects of bromelain40 were proved to be better than silymarin and bromelain20 in most of the assessed parameters. CONCLUSIONS Our results highlight the significant hepatoprotective effects of bromelain against acute liver injury through modulation of SIRT1/LKB1/AMPK, GSK3β/Nrf2 signalling in addition to NF-κB p65/TNF-α/ caspase-8 and -9 pathway.
Collapse
Affiliation(s)
- Manar A Didamoony
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian Russian University, Egypt
| | - Ahmed M Atwa
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian Russian University, Egypt
| | - Enas A Abd El-Haleim
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Egypt
| | - Lamiaa A Ahmed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Egypt
| |
Collapse
|
37
|
Dong J, Ping L, Meng Y, Zhang K, Tang H, Liu D, Li B, Huo G. Bifidobacterium longum BL-10 with Antioxidant Capacity Ameliorates Lipopolysaccharide-Induced Acute Liver Injury in Mice by the Nuclear Factor-κB Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8680-8692. [PMID: 35797025 DOI: 10.1021/acs.jafc.2c02950] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bifidobacterium longum is frequently utilized and has broad prospects for preventing liver injury. The current research assessed the antioxidant capacity of B. longum BL-10 and probed its mechanism for ameliorating lipopolysaccharide (LPS)-induced acute liver injury (ALI). B. longum BL-10-encoded 15 antioxidant genes showed strong reducing power activity and scavenging activity of DPPH, hydroxyl radicals, and superoxide anions. The intragastric administration of B. longum BL-10 resulting in a marked reduction in liver function indicators (alanine aminotransferase, aspartate aminotransferase, total bilirubin, and total bile acid) and proinflammatory cytokines (TNF-α, IFN-γ, and IL-6) was indicative of ALI recovery. Following 16s RNA analysis, B. longum BL-10 significantly altered the richness of genera, as for the Escherichia-Shigella, Lachnospiraceae_NK4A136_group, and Clostridia_UCG-014, dramatically contributing to the formation of acetic acid and butyric acid. Meanwhile, their metabolites regulated the TLR4/NF-κB signaling pathways to alleviate hepatic injury symptoms. Overall, all the results demonstrated that B. longum BL-10 had excellent efficiency in preventing LPS-induced ALI.
Collapse
Affiliation(s)
- Jiahuan Dong
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Lijun Ping
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Yueyue Meng
- Dalian Minzu University, Ministry of Education, Dalian 116600, China
- College of Life Sciences, Key Laboratory of Biotechnology and Bioresources Utilization, Dalian 116600, China
| | - Kangyong Zhang
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Hongwei Tang
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Deyu Liu
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Bailiang Li
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Guicheng Huo
- Food College, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
38
|
Hong W, Peng X, Zhou X, Li P, Ye Z, Liang W. FXR/ASS1 axis attenuates the TAA-induced liver injury through arginine metabolism. Biochem Biophys Res Commun 2022; 611:31-37. [PMID: 35477090 DOI: 10.1016/j.bbrc.2022.04.073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/15/2022] [Indexed: 11/19/2022]
Abstract
Previous studies demonstrated that arginine biosynthesis was frequently impaired in acute liver injury. However, the underlying mechanisms remain elusive. In this study, we found that Argininosuccinate synthetase 1 (ASS1), a rate-limiting enzyme in arginine metabolism, was downregulated in the TAA-induced liver injury model. Single-cell RNA-seq data found that ASS1 was highly enriched in the hepatocytes. The reduction of ASS1 was attributed to the decreased expression of Farnesoid X receptor (FXR), which is a bile acid-activated nuclear hormone receptor with high expression in the liver. Subsequent studies demonstrated that activation of FXR by its agonist obeticholic acid (OCA) directly promoted ASS1 transcription and enhanced arginine synthesis, leading to the alleviation of TAA-mediated liver injury. Further experiments found that OCA, ASS1, and arginine supplement can rescue TAA-mediated hepatocytes apoptosis by decreasing the protein levels of Cyto C, PARP, and Caspase 3. Taken together, our study illustrated a protective role of the FXR/ASS1 axis in TAA-induced liver injury by targeting arginine metabolism, which might shed light on the development of novel therapeutic approaches for acute liver injury.
Collapse
Affiliation(s)
- Weilong Hong
- Department of Emergency, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Xuyun Peng
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China; Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Xue Zhou
- Department of Ultrasonic Medicine, Guangzhou Women and Children's Medical Center, Guangzhou, PR China
| | - Panlong Li
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China; Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Zhiqiang Ye
- Department of Emergency, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China.
| | - Weicheng Liang
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China; Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China; Vaccine Research Institute, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|