1
|
Tranidou A, Siargkas A, Magriplis E, Tsakiridis I, Apostolopoulou A, Chourdakis M, Dagklis T. Relationship Between Amino Acid Intake in Maternal Diet and Risk of Gestational Diabetes Mellitus: Results from the BORN 2020 Pregnant Cohort in Northern Greece. Nutrients 2025; 17:173. [PMID: 39796608 PMCID: PMC11723356 DOI: 10.3390/nu17010173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
Background/Objectives: Maternal amino acid intake and its biological value may influence glucose regulation and insulin sensitivity, impacting the risk of developing gestational diabetes mellitus (GDM). This study aimed to evaluate the association between amino acid intake from maternal diet before and during pregnancy and the risk of GDM. Methods: This study is part of the ongoing BORN2020 epidemiological Greek cohort. A validated semi-quantitative Food Frequency Questionnaire (FFQ) was used. Amino acid intakes were quantified from the FFQ responses. A multinomial logistic regression model, with adjustments made for maternal characteristics, lifestyle habits, and pregnancy-specific factors, was used. Results: A total of 797 pregnant women were recruited, of which 14.7% developed GDM. Higher cysteine intake during pregnancy was associated with an increase in GDM risk (adjusted odds ratio [aOR]: 5.75; 95% confidence interval [CI]: 1.42-23.46), corresponding to a 476% increase in risk. Additionally, higher intakes of aspartic acid (aOR: 1.32; 95% CI: 1.05-1.66), isoleucine (aOR: 1.48; 95% CI: 1.03-2.14), phenylalanine (aOR: 1.6; 95% CI: 1.04-2.45), and threonine (aOR: 1.56; 95% CI: 1.0-2.43) during pregnancy were also associated with increased GDM risk. Furthermore, total essential amino acid (EAA) (aOR: 1.04; 95% CI: 1.0-1.09) and non-essential amino acid (NEAA) (aOR: 1.05; 95% CI: 1.0-1.1) intakes during pregnancy were also linked to an increased risk of GDM. A secondary dose-response analysis affected by timing of assessment revealed that higher intake levels of specific amino acids showed a more pronounced risk. Conclusions: Optimizing the balance of certain amino acids during pregnancy may guide personalized nutritional interventions to mitigate GDM risk.
Collapse
Affiliation(s)
- Antigoni Tranidou
- 3rd Department of Obstetrics and Gynecology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (A.T.); (A.S.); (I.T.); (A.A.)
- Laboratory of Hygiene, Social & Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | - Antonios Siargkas
- 3rd Department of Obstetrics and Gynecology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (A.T.); (A.S.); (I.T.); (A.A.)
- Laboratory of Hygiene, Social & Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | - Emmanuela Magriplis
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Oos 75, 118 55 Athens, Greece;
| | - Ioannis Tsakiridis
- 3rd Department of Obstetrics and Gynecology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (A.T.); (A.S.); (I.T.); (A.A.)
| | - Aikaterini Apostolopoulou
- 3rd Department of Obstetrics and Gynecology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (A.T.); (A.S.); (I.T.); (A.A.)
- Laboratory of Hygiene, Social & Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | - Michail Chourdakis
- Laboratory of Hygiene, Social & Preventive Medicine and Medical Statistics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece;
| | - Themistoklis Dagklis
- 3rd Department of Obstetrics and Gynecology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece; (A.T.); (A.S.); (I.T.); (A.A.)
| |
Collapse
|
2
|
Li C, Gao L, Lv C, Li Z, Fan S, Liu X, Rong X, Huang Y, Liu J. Active role of amino acid metabolism in early diagnosis and treatment of diabetic kidney disease. Front Nutr 2023; 10:1239838. [PMID: 37781128 PMCID: PMC10539689 DOI: 10.3389/fnut.2023.1239838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/23/2023] [Indexed: 10/03/2023] Open
Abstract
Diabetic Kidney Disease (DKD) is one of the significant microvascular consequences of type 2 diabetes mellitus with a complex etiology and protracted course. In the early stages of DKD, the majority of patients experience an insidious onset and few overt clinical symptoms and indicators, but they are prone to develop end-stage renal disease in the later stage, which is life-threatening. The abnormal amino acid metabolism is tightly associated with the development of DKD, which involves several pathological processes such as oxidative stress, inflammatory response, and immune response and is also closely related to autophagy, mitochondrial dysfunction, and iron death. With a focus on taurine, branched-chain amino acids (BCAAs) and glutamine, we explored the biological effects of various amino acid mechanisms linked to DKD, the impact of amino acid metabolism in the early diagnosis of DKD, and the role of amino acid metabolism in treating DKD, to offer fresh objectives and guidelines for later early detection and DKD therapy.
Collapse
Affiliation(s)
- Chenming Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lidong Gao
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chunxiao Lv
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ziqiang Li
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shanshan Fan
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinyue Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinyi Rong
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuhong Huang
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jia Liu
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
3
|
Zhang X, Su M, Du J, Zhou H, Li X, Zhang M, Hu Y, Ye Z. Analysis of the free amino acid content and profile of 129 peach (Prunus persica (L.) Batsch) germplasms using LC-MS/MS without derivatization. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
4
|
Rivas-Tumanyan S, Pacheco LS, Haslam DE, Liang L, Tucker KL, Joshipura KJ, Bhupathiraju SN. Novel Plasma Metabolomic Markers Associated with Diabetes Progression in Older Puerto Ricans. Metabolites 2022; 12:513. [PMID: 35736445 PMCID: PMC9227184 DOI: 10.3390/metabo12060513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 05/25/2022] [Indexed: 11/30/2022] Open
Abstract
We assessed longitudinal associations between plasma metabolites, their network-derived clusters, and type 2 diabetes (T2D) progression in Puerto Rican adults, a high-risk Hispanic subgroup with established health disparities. We used data from 1221 participants free of T2D and aged 40-75 years at baseline in the Boston Puerto Rican Health and San Juan Overweight Adult Longitudinal Studies. We used multivariable Poisson regression models to examine associations between baseline concentrations of metabolites and incident T2D and prediabetes. Cohort-specific estimates were combined using inverse-variance weighted fixed-effects meta-analyses. A cluster of 13 metabolites of branched chain amino acids (BCAA), and aromatic amino acid metabolism (pooled IRR = 1.87, 95% CI: 1.28; 2.73), and a cell membrane component metabolite cluster (pooled IRR = 1.54, 95% CI: 1.04; 2.27) were associated with a higher risk of incident T2D. When the metabolites were tested individually, in combined analysis, 5 metabolites involved in BCAA metabolism were associated with incident T2D. These findings highlight potential prognostic biomarkers to identify Puerto Rican adults who may be at high risk for diabetes. Future studies should examine whether diet and lifestyle can modify the associations between these metabolites and progression to T2D.
Collapse
Affiliation(s)
- Sona Rivas-Tumanyan
- Office of the Assistant Dean of Research and Department of Surgical Sciences, School of Dental Medicine, University of Puerto Rico, San Juan, PR 00936, USA;
| | - Lorena S. Pacheco
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA; (L.S.P.); (D.E.H.)
| | - Danielle E. Haslam
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA; (L.S.P.); (D.E.H.)
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Liming Liang
- Departments of Epidemiology and Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA;
| | - Katherine L. Tucker
- Center for Population Health and Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA;
| | - Kaumudi J. Joshipura
- Center for Clinical Research and Health Promotion, School of Dental Medicine, University of Puerto Rico, San Juan, PR 00936, USA;
- Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Shilpa N. Bhupathiraju
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA; (L.S.P.); (D.E.H.)
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
5
|
Supruniuk E, Żebrowska E, Chabowski A. Branched chain amino acids-friend or foe in the control of energy substrate turnover and insulin sensitivity? Crit Rev Food Sci Nutr 2021; 63:2559-2597. [PMID: 34542351 DOI: 10.1080/10408398.2021.1977910] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Branched chain amino acids (BCAA) and their derivatives are bioactive molecules with pleiotropic functions in the human body. Elevated fasting blood BCAA concentrations are considered as a metabolic hallmark of obesity, insulin resistance, dyslipidaemia, nonalcoholic fatty liver disease, type 2 diabetes and cardiovascular disease. However, since increased BCAA amount is observed both in metabolically healthy and obese subjects, a question whether BCAA are mechanistic drivers of insulin resistance and its morbidities or only markers of metabolic dysregulation, still remains open. The beneficial effects of BCAA on body weight and composition, aerobic capacity, insulin secretion and sensitivity demand high catabolic potential toward amino acids and/or adequate BCAA intake. On the opposite, BCAA-related inhibition of lipogenesis and lipolysis enhancement may preclude impairment in insulin sensitivity. Thereby, the following review addresses various strategies pertaining to the modulation of BCAA catabolism and the possible roles of BCAA in energy homeostasis. We also aim to elucidate mechanisms behind the heterogeneity of ramifications associated with BCAA modulation.
Collapse
Affiliation(s)
- Elżbieta Supruniuk
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Ewa Żebrowska
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
6
|
Liu C, Sun YV. Anticipation of Precision Diabetes and Promise of Integrative Multi-Omics. Endocrinol Metab Clin North Am 2021; 50:559-574. [PMID: 34399961 DOI: 10.1016/j.ecl.2021.05.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Precision diabetes is a concept of customizing delivery of health practices based on variability of diabetes. The authors reviewed recent research on type 2 diabetes heterogeneity and -omic biomarkers, including genomic, epigenomic, and metabolomic markers associated with type 2 diabetes. The emerging multiomics approach integrates complementary and interconnected molecular layers to provide systems level understanding of disease mechanisms and subtypes. Although the multiomic approach is not currently ready for routine clinical applications, future studies in the context of precision diabetes, particular in populations from diverse ethnic and demographic groups, may lead to improved diagnosis, treatment, and management of diabetes and diabetic complications.
Collapse
Affiliation(s)
- Chang Liu
- Department of Epidemiology, Emory University Rollins School of Public Health, 1518 Clifton Road Northeast, Atlanta, GA 30322, USA
| | - Yan V Sun
- Department of Epidemiology, Emory University Rollins School of Public Health, 1518 Clifton Road Northeast, Atlanta, GA 30322, USA; Atlanta VA Healthcare System, 1670 Clairmont Road, Decatur, GA 30033, USA.
| |
Collapse
|
7
|
Vikøren LA, Drotningsvik A, Midttun Ø, McCann A, Bergseth MT, Austgulen MH, Mellgren G, Ueland PM, Gudbrandsen OA. Baked cod consumption delayed the development of kidney and liver dysfunction and affected plasma amino acid concentrations, but did not affect blood pressure, blood glucose or liver triacylglycerol concentrations in obese fa/fa Zucker rats. Nutr Res 2021; 92:72-83. [PMID: 34274556 DOI: 10.1016/j.nutres.2021.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 05/13/2021] [Accepted: 05/23/2021] [Indexed: 10/21/2022]
Abstract
Obesity is associated with changes in amino acid metabolism, and studies show that ingestion of fish proteins influence amino acid composition in plasma and urine, in addition to affecting risk factors for metabolic syndrome. Since the majority of fish proteins consumed by humans are as fish fillet, it is of interest to investigate if cod fillet intake affects amino acid composition and metabolic disorders. We hypothesized that a modified AIN-93G diet containing cod fillet would affect amino acid compositions in plasma and urine in obese rats, and also affect risk factors for metabolic syndrome when compared to rats fed a regular AIN-93G diet with casein as the protein source. Obese Zucker fa/fa rats, a rat model of metabolic syndrome, received diets containing 25% protein from lyophilized baked cod fillet and 75% protein from casein (Baked cod diet), or a Control diet with casein for four weeks. The Baked cod diet affected the amino acid composition in plasma, with e.g., lower glycine, histidine, homoarginine, homocysteine, methionine, proline and tyrosine concentrations, but did not affect amino acid concentrations in urine. The concentrations of markers for kidney and liver dysfunction were lower in the Baked cod group, however blood pressure development, fasting and postprandial glucose, and hepatic triacylglycerol concentrations were similar to the Control group. To conclude, substituting 25% of dietary protein with baked cod fillet affected concentrations of some amino acids in plasma and delayed development of kidney and liver dysfunction, but did not affect blood pressure, glucose concentration or fatty liver.
Collapse
Affiliation(s)
- Linn A Vikøren
- Dietary Protein Research Group, Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway; Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Aslaug Drotningsvik
- Dietary Protein Research Group, Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway
| | | | | | - Marthe T Bergseth
- Dietary Protein Research Group, Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway
| | - Maren H Austgulen
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Gunnar Mellgren
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Haukeland University Hospital, 5020 Bergen, Norway; Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, 5021 Bergen, Norway
| | | | - Oddrun A Gudbrandsen
- Dietary Protein Research Group, Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway.
| |
Collapse
|
8
|
Zakaria NF, Hamid M, Khayat ME. Amino Acid-Induced Impairment of Insulin Signaling and Involvement of G-Protein Coupling Receptor. Nutrients 2021; 13:nu13072229. [PMID: 34209599 PMCID: PMC8308393 DOI: 10.3390/nu13072229] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/18/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
Amino acids are needed for general bodily function and well-being. Despite their importance, augmentation in their serum concentration is closely related to metabolic disorder, insulin resistance (IR), or worse, diabetes mellitus. Essential amino acids such as the branched-chain amino acids (BCAAs) have been heavily studied as a plausible biomarker or even a cause of IR. Although there is a long list of benefits, in subjects with abnormal amino acids profiles, some amino acids are correlated with a higher risk of IR. Metabolic dysfunction, upregulation of the mammalian target of the rapamycin (mTOR) pathway, the gut microbiome, 3-hydroxyisobutyrate, inflammation, and the collusion of G-protein coupled receptors (GPCRs) are among the indicators and causes of metabolic disorders generating from amino acids that contribute to IR and the onset of type 2 diabetes mellitus (T2DM). This review summarizes the current understanding of the true involvement of amino acids with IR. Additionally, the involvement of GPCRs in IR will be further discussed in this review.
Collapse
Affiliation(s)
- Nur Fatini Zakaria
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Muhajir Hamid
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Mohd Ezuan Khayat
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Correspondence:
| |
Collapse
|
9
|
Aloo SO, Ofosu FK, Daliri EBM, Oh DH. UHPLC-ESI-QTOF-MS/MS Metabolite Profiling of the Antioxidant and Antidiabetic Activities of Red Cabbage and Broccoli Seeds and Sprouts. Antioxidants (Basel) 2021; 10:852. [PMID: 34073543 PMCID: PMC8229501 DOI: 10.3390/antiox10060852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 11/16/2022] Open
Abstract
The antioxidant and antidiabetic properties and metabolite profiling of ethanol extracts of red cabbage (RC) and broccoli (BR) seeds and sprouts were investigated in this study. The total phenolic, flavonoid, and saponin contents were in the ranges of 385.4-480.4 mg FAE/100 g, 206.9-215.6 mg CE/100 g, and 17.8-27.0 mg soysaponin BE/100 g, respectively. BR seed had the highest total phenolic (480.4 mg FAE/100 g) and flavonoid (216.9 mg CE/100 g) contents, whereas BR sprout had the highest saponin content (27.0 soysaponin BE/100g). RC sprout demonstrated the highest antioxidant capacity, with DPPH and ABTS radical scavenging activity levels of 71.5% and 88.5%, respectively. Furthermore, BR and RC sprouts showed the most potent inhibition against α-glucosidase (91.32% and 93.11%, respectively) and pancreatic lipase (60.19% and 61.66%, respectively). BR seed (60.37%) demonstrated the lowest AGE inhibition. A total of 24 metabolites, predominantly amino acids and phenolic compounds, were characterized using UHPLC-QTOF-MS/MS. Germination not only improved the levels of metabolites but also resulted in the synthesis of new compounds. Therefore, these findings show that germination effectively enhanced the functional properties and metabolite profiles of broccoli and red cabbage seeds, making their sprouts more applicable as functional ingredients.
Collapse
Affiliation(s)
| | | | | | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea; (S.-O.A.); (F.-K.O.); (E.-B.-M.D.)
| |
Collapse
|
10
|
Yuan S, Ming-Wei L, Qi-Qiang H, Larsson SC. Egg, cholesterol and protein intake and incident type 2 diabetes mellitus: Results of repeated measurements from a prospective cohort study. Clin Nutr 2021; 40:4180-4186. [PMID: 33593662 DOI: 10.1016/j.clnu.2021.01.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 12/15/2020] [Accepted: 01/28/2021] [Indexed: 02/01/2023]
Abstract
BACKGROUND & AIMS Epidemiological evidence on the associations of egg, cholesterol and protein intake with risk of type 2 diabetes is inconsistent. Therefore, we conducted this study to explore these associations among Chinese adults. METHODS Data from 4 waves (2004, 2006, 2009 and 2011) of the China Health and Nutrition Survey were used. A multistage random-cluster sampling method was employed to recruit the participants in both rural and urban areas. We included individuals who participated in 2004 and any waves afterwards. Those 1) below 18 years of age; 2) with diabetes at baseline; or 3) with extreme energy intake (men: <800 kcal or >6000 kcal; women: <600 kcal or >4000 kcal) were excluded. Respondents were classified into four groups according to quartiles of egg, cholesterol and protein intake per day. Numbers of eggs per day were calculated by dividing egg intake in grams by 50 g. Diagnosis of type 2 diabetes was self-reported. Logistic generalized estimation equation models were employed. RESULTS There were 7312 individuals included in 2004, 6390 in 2006, 4826 in 2009 and 4963 in 2011. The mean age of participants at baseline was 48.3 years and 47.2% were men. Over an average of 5.8-y follow-up, 209 developed type 2 diabetes. After adjustment for demographic, lifestyle and dietary confounders, the odds ratio of type 2 diabetes for those in the highest compared with the lowest protein intake quartile was 2.38 (95% CI: 1.43, 3.98). The odds ratio of individuals with ≥3 eggs/day versus none was 3.76 (95% CI, 2.05, 6.90). Cholesterol intake was not associated with type 2 diabetes. CONCLUSIONS Individuals with the highest protein intake had over a 2-fold increased risk of type 2 diabetes compared with those with the lowest protein intake. A high intake of egg, but not dietary cholesterol, was associated with type 2 diabetes. This association warrants further investigation.
Collapse
Affiliation(s)
- Shuai Yuan
- School of Health Sciences, Wuhan University, Donghu Rd. 115, Wuhan City, Hubei Province, Wuhan, PR China; Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| | - Liu Ming-Wei
- School of Health Sciences, Wuhan University, Donghu Rd. 115, Wuhan City, Hubei Province, Wuhan, PR China.
| | - He Qi-Qiang
- School of Health Sciences, Wuhan University, Donghu Rd. 115, Wuhan City, Hubei Province, Wuhan, PR China.
| | - Susanna C Larsson
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
11
|
Sun S, He D, Luo C, Lin X, Wu J, Yin X, Jia C, Pan Q, Dong X, Zheng F, Li H, Zhou J. Metabolic Syndrome and Its Components Are Associated With Altered Amino Acid Profile in Chinese Han Population. Front Endocrinol (Lausanne) 2021; 12:795044. [PMID: 35058883 PMCID: PMC8765338 DOI: 10.3389/fendo.2021.795044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/08/2021] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVE Recent studies have found that the levels of plasma amino acids, such as branched-chain amino acids and aromatic amino acids, were associated with visceral obesity, insulin resistance, future development of diabetes and cardiovascular diseases. However, few studies have involved a Chinese Han population. This study aimed to examine the association between amino acid profile and metabolic syndrome (MetS) and its components in the Chinese Han population. METHODS This is a cross-sectional study, which enrolled a cohort of 473 participants from a community. We employed the isotope internal standard method to determine the plasma concentrations of 28 amino acids using high-performance liquid chromatography-tandem mass spectrometry (LC/MS). Participants were divided into MetS (n = 72) and non-MetS groups (n = 401) to analyze the association between amino acids and MetS and its components. RESULTS The prevalence of MetS was 15.2% according to the criteria. Plasma concentrations of isoleucine (Ile), leucine (Leu), valine (Val), tyrosine (Tyr), tryptophan (Trp), phenylalanine (Phe), glutamic acid (Glu), aspartic acid (Asp), alanine (Ala), histidine (His), methionine (Met), asparagine (Asn), and proline (Pro) were significantly higher in the MetS group than those in the non-MetS group (P < 0.05), but taurine (Tau) was significantly lower (P < 0.05). When MetS components were increased, the concentrations of these 13 amino acids significantly increased (P < 0.05), but Tau concentration was significantly decreased (P < 0.05). We extracted the amino acid profile by principal component analysis (PCA), PC1 and PC2, which extracted from the 14 amino acids, were significantly associated with MetS (odds ratio, 95% confidence interval: 1.723, 1.325-2.085 and 1.325, 1.043-1.684, respectively). A total of 260 non-MetS participants were followed up effectively, and 42 participants developed new-onset MetS within 5 years. We found that the amino acid profile of PC1 was linked to the occurrence of future MetS. Decreased Tau was correlated with the future development of MetS. CONCLUSION Participants with MetS exhibit an abnormal amino acid profile, and its components gradually increase when these amino acids are altered. Amino acid PCA profile can be employed for assessing and monitoring MetS risk. Finally, decreased Tau may be linked to the future development of MetS.
Collapse
Affiliation(s)
- Shuiya Sun
- Department of Endocrinology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dongjuan He
- Department of Endocrinology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Endocrinology, People’s Hospital of Quzhou, Quzhou, China
| | - Cheng Luo
- Department of Endocrinology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Endocrinology, People’s Hospital of Quzhou, Quzhou, China
| | - Xihua Lin
- Department of Endocrinology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiahua Wu
- Department of Endocrinology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xueyao Yin
- Department of Endocrinology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengfang Jia
- Department of Endocrinology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qianqian Pan
- Department of Endocrinology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuehong Dong
- Department of Endocrinology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fenping Zheng
- Department of Endocrinology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Li
- Department of Endocrinology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Jiaqiang Zhou, ; Hong Li,
| | - Jiaqiang Zhou
- Department of Endocrinology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Jiaqiang Zhou, ; Hong Li,
| |
Collapse
|
12
|
Prodhan UK, Milan AM, Thorstensen EB, Barnett MPG, Stewart RAH, Benatar JR, Cameron-Smith D. Altered Dairy Protein Intake Does Not Alter Circulatory Branched Chain Amino Acids in Healthy Adults: A Randomized Controlled Trial. Nutrients 2018; 10:nu10101510. [PMID: 30326639 PMCID: PMC6213722 DOI: 10.3390/nu10101510] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/08/2018] [Accepted: 10/12/2018] [Indexed: 02/07/2023] Open
Abstract
Dairy, as a major component of a high protein diet, is a critical dietary source of branched chain amino acids (BCAA), which are biomarkers of health and diseases. While BCAA are known to be key stimulators of protein synthesis, elevated circulatory BCAA is an independent risk factor for type 2 diabetes mellitus. This study examined the impact of altered dairy intake on plasma BCAA and their potential relationship to insulin sensitivity. Healthy adults (n = 102) were randomized to receive dietary advice to reduce, maintain, or increase habitual dairy intake for 1 month. Food intake was recorded with food frequency questionnaires. Self-reported protein intake from dairy was reported to be reduced (−14.6 ± 3.0 g/day), maintained (−4.0 ± 2.0 g/day) or increased (+13.8 ± 4.1 g/day) according to group allocation. No significant alterations in circulating free amino acids (AA), including BCAA, were measured. Insulin sensitivity, as assessed by homeostatic model assessment-insulin resistance (HOMA-IR), was also unaltered. A significant change in dairy protein intake showed no significant effect on fasting circulatory BCAA and insulin sensitivity in healthy populations.
Collapse
Affiliation(s)
- Utpal K Prodhan
- Liggins Institute, The University of Auckland, 85 Park Road, Grafton, Private Bag 92019, Auckland 1023, New Zealand.
- Department of Food Technology and Nutritional Science, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh.
- Riddet Institute, Palmerston North 4442, New Zealand.
| | - Amber M Milan
- Liggins Institute, The University of Auckland, 85 Park Road, Grafton, Private Bag 92019, Auckland 1023, New Zealand.
| | - Eric B Thorstensen
- Liggins Institute, The University of Auckland, 85 Park Road, Grafton, Private Bag 92019, Auckland 1023, New Zealand.
| | - Matthew P G Barnett
- Riddet Institute, Palmerston North 4442, New Zealand.
- Food Nutrition & Health Team, AgResearch Limited, Private Bag 11008, Palmerston North 4442, New Zealand.
- The High-Value Nutrition National Science Challenge, Auckland-1023, New Zealand.
| | - Ralph A H Stewart
- School of Medicine, Faculty of Medical and Health Sciences, The University of Auckland, 85 Park Road, Grafton, Private Bag 92019, Auckland 1023, New Zealand.
- Green Lane Cardiovascular Service, Auckland City Hospital, Auckland 1030, New Zealand.
| | - Jocelyn R Benatar
- School of Medicine, Faculty of Medical and Health Sciences, The University of Auckland, 85 Park Road, Grafton, Private Bag 92019, Auckland 1023, New Zealand.
- Green Lane Cardiovascular Service, Auckland City Hospital, Auckland 1030, New Zealand.
| | - David Cameron-Smith
- Liggins Institute, The University of Auckland, 85 Park Road, Grafton, Private Bag 92019, Auckland 1023, New Zealand.
- Riddet Institute, Palmerston North 4442, New Zealand.
- Food & Bio-Based Products Group, AgResearch Limited, Private Bag 11008, Palmerston North 4442, New Zealand.
| |
Collapse
|
13
|
Elshorbagy AK, Samocha-Bonet D, Jernerén F, Turner C, Refsum H, Heilbronn LK. Food Overconsumption in Healthy Adults Triggers Early and Sustained Increases in Serum Branched-Chain Amino Acids and Changes in Cysteine Linked to Fat Gain. J Nutr 2018; 148:1073-1080. [PMID: 29901727 DOI: 10.1093/jn/nxy062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 03/06/2018] [Indexed: 01/03/2023] Open
Abstract
Background Plasma concentrations of branched-chain amino acids (BCAAs) and the sulfur-containing amino acid cysteine are associated with obesity and insulin resistance. BCAAs predict future diabetes. Objective We investigated amino acid changes during food overconsumption. Methods Forty healthy men and women with a body mass index (mean ± SEM) of 25.6 ± 0.6 were overfed by 1250 kcal/d for 28 d, increasing consumption of all macronutrients. Insulin sensitivity and body composition were assessed at baseline (day 0) and day 28. Fasting serum amino acids were measured at days 0, 3, and 28. Linear mixed-effects models evaluated the effect of time in the total group and separately in those with low and high body fat gain (below compared with at or above median fat gain, 1.95 kg). At days 0 and 28, insulin-induced suppression of serum amino acids during a hyperinsulinemic-euglycemic clamp test and, in a subset (n = 20), adipose tissue mRNA expression of selected amino acid metabolizing enzymes were assessed. Results Weight increased by 2.8 kg. High fat gainers gained 2.6 kg fat mass compared with 1.1 kg in low fat gainers. Valine and isoleucine increased at day 3 (+17% and +22%, respectively; P ≤ 0.002) and remained elevated at day 28, despite a decline in valine (P = 0.019) from day 3 values. Methionine, cystathionine, and taurine were unaffected. Serum total cysteine (tCys) transiently increased at day 3 (+11%; P = 0.022) only in high fat gainers (P-interaction = 0.043), in whom the cysteine catabolic enzyme cysteine dioxygenase (CDO1) was induced (+26%; P = 0.025) in adipose tissue (P-interaction = 0.045). Overconsumption did not alter adipose tissue mRNA expression of the BCAA-metabolizing enzymes branched-chain keto acid dehydrogenase E1α polypeptide (BCKDHA) or branched-chain amino transferase 1 (BCAT1). In the total population at day 0, insulin infusion decreased all serum amino acids (-11% to -47%; P < 0.01), except for homocysteine and tCys, which were unchanged, and glutathione, which was increased by 54%. At day 28, insulin increased tCys (+8%), and the insulin-induced suppression of taurine and phenylalanine observed at day 0, but not that of BCAAs, was significantly impaired. Conclusions These findings highlight the role of nutrient oversupply in increasing fasting BCAA concentrations in healthy adults. The link between cysteine availability, CDO1 expression, and fat gain deserves investigation. This trial was registered at www.clinicaltrials.gov as NCT00562393.
Collapse
Affiliation(s)
- Amany K Elshorbagy
- Department of Physiology, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Dorit Samocha-Bonet
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia.,Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, Australia
| | - Fredrik Jernerén
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom.,Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Cheryl Turner
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Helga Refsum
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom.,Institute of Basic Medical Sciences, Department of Nutrition, University of Oslo, Oslo, Norway
| | - Leonie K Heilbronn
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, Australia.,Discipline of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
14
|
Lee SG, Yim YS, Lee YH, Lee BW, Kim HS, Kim KS, Lee YW, Kim JH. Fasting serum amino acids concentration is associated with insulin resistance and pro-inflammatory cytokines. Diabetes Res Clin Pract 2018; 140:107-117. [PMID: 29601913 DOI: 10.1016/j.diabres.2018.03.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/10/2018] [Accepted: 03/20/2018] [Indexed: 12/17/2022]
Abstract
AIMS We evaluated specific alterations in amino acids (AAs) profile in patients with type 2 diabetes mellitus (T2DM) and impaired fasting glucose (IFG) compared with healthy controls. In addition, we tried to find the mechanisms behind these AA alterations. METHODS Twenty AAs, TNF-α, and IL-6 were analyzed in fasting serum samples from a total of 198 individuals (56 drug-naïve patients with T2DM, 69 patients IFG, and 73 healthy controls). The C2C12 mouse myoblast cell lines were used to examine the changes of MAFbx and MuRF1 expressions, which are muscle specific E3 ligases acting as major mediators of skeletal muscle proteolysis, after development of insulin resistance induced by palmitate treatment. RESULTS In addition to branched chain amino acids BCAAs, fasting serum AAs such as glutamic acid, lysine, phenylalanine, arginine, alanine, tyrosine, aspartic acid, were higher in patients with T2DM and intermediately elevated in patients with IFG compared with normoglycemic controls. These serum AA concentrations positively correlated with fasting glucose, homeostasis model assessment of insulin resistance (HOMA-IR), and pro-inflammatory cytokines. In addition, HOMA-IR and pro-inflammatory cytokines were two important independent predictors of serum AA levels. In vitro experiments showed that palmitate treatment in C2C12 myotubes induced insulin resistance, increased pro-inflammatory cytokine gene expression, and increased MAFbx gene and protein expression. CONCLUSIONS The increase in fasting serum AAs can be an early manifestation of insulin resistance. Increased muscle proteolysis induced by insulin resistance and inflammatory cytokines can be a possible mechanism for the rise in serum AA levels.
Collapse
Affiliation(s)
- Sang-Guk Lee
- Departments of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ye Seal Yim
- Departments of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong-Ho Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Byung-Wan Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyon-Suk Kim
- Departments of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyung-Sup Kim
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong-Wha Lee
- Department of Laboratory Medicine and Genetics, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Republic of Korea
| | - Jeong-Ho Kim
- Departments of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Abstract
Branched-chain amino acids (BCAA) have increasingly been studied as playing a role in diabetes, with the PubMed search string "diabetes" AND "branched chain amino acids" showing particular growth in studies of the topic over the past decade (Fig. ). In the Young Finn's Study, BCAA and, to a lesser extent, the aromatic amino acids phenylalanine and tyrosine were associated with insulin resistance (IR) in men but not in women, whereas the gluconeogenic amino acids alanine, glutamine, or glycine, and several other amino acids (i.e. histidine, arginine, and tryptophan) did not show an association with IR. Obesity may track more strongly than metabolic syndrome and diabetes with elevated BCAA. In a study of 1302 people aged 40-79; higher levels of BCAA tracked with older age, male sex, and metabolic syndrome, as well as with obesity, cardiovascular risk, dyslipidemia, hypertension, and uric acid. Medium- and long-chain acylcarnitines, by-products of mitochondrial catabolism of BCAAs, as well as branched-chain keto acids and the BCAA themselves distinguished obese people having versus not having features of IR, and in a study of 898 patients with essential hypertension, the BCAA and tyrosine and phenylalanine were associated with metabolic syndrome and impaired fasting glucose. In a meta-analysis of three genome-wide association studies, elevations in BCAA and, to a lesser extent, in alanine tracked with IR, whereas higher levels of glutamine and glycine were associated with lesser likelihood of IR. Given these associations with IR, it is not surprising that a number of studies have shown higher BCAA levels in people with and prior to development of type 2 diabetes (T2D), although this has particularly been shown in Caucasian and Asian ethnic groups while not appearing to occur in African Americans. Similarly, higher BCAA levels track with cardiovascular disease. [Figure: see text] The metabolism of BCAA involves two processes: (i) a reversible process catalysed by a branched-chain aminotransferase (BCAT), either cytosolic or mitochondrial, requiring pyridoxal to function as an amino group carrier, by which the BCAA with 2-ketoglutarate produce a branched-chain keto acid plus glutamate; and (ii) the irreversible mitochondrial process catalysed by branched-chain keto acid dehydrogenase (BCKDH) leading to formation of acetyl-coenzyme A (CoA), propionyl-CoA, and 2-methylbutyryl-CoA from leucine, valine, and isoleucine, respectively, which enter the tricarboxylic acid (Krebs) cycle as acetyl-CoA, propionyl-CoA, and 2-methylbutyryl-CoA, respectively, leading to ATP formation. The BCAA stimulate secretion of both insulin and glucagon and, when given orally, of both glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), with oral administration leading to greater and more prolonged insulin and glucagon secretion. Insulin may particularly reduce BCAA turnover to a greater extent than that of other amino acids, and decreases the appearance and increases the uptake of amino acids. However, older studies of the effect of glucose or insulin on BCAA concentrations and rates of leucine appearance and oxidation showed no reduction in T2D, although the higher baseline levels of BCAA in obesity have long been recognized. Impaired function of BCAT and BCKDH has been posited, either as a primary genetic abnormality or due to effects of elevated fatty acids, proinflammatory cytokines, or insulin levels with consequent accumulation of branched-chain keto acids and metabolites such as diacylglycerol and ceramide, potentially contributing to the development of further insulin resistance, and decreased skeletal muscle BCAT and BCKDH expression has been shown in people with diabetes, supporting this concept. A Mendelian randomization study used measured variation in genes involved in BCAA metabolism to test the hypothesis of a causal effect of modifiable exposure on IR, showing that variants in protein phosphatase, Mg2+ /Mn2+ dependent 1K (PPM1K), a gene encoding the mitochondrial phosphatase activating the BCKDH complex, are associated with T2D, but another such study suggested that genetic variations associated with IR are causally related to higher BCAA levels. Another hypothesis involves the mammalian target of rapamycin complex 1 (mTORC1), which is activated by BCAA, as well as by insulin and glucose via cellular ATP availability. If this is the relevant pathway, BCAA overload may cause insulin resistance by activation of mammalian target of rapamycin (mTOR), as well as by leading to increases in acylcarnitines, with mTOR seen in this scenario as a central signal of cross-talk between the BCAA and insulin. At this point, whether whole-body or tissue-specific BCAA metabolism is increased or decreased in states of insulin-resistant obesity and T2D is uncertain. Insulin action in the hypothalamus induces but overfeeding decreases hepatic BCKDH, leading to the concept that hypothalamic insulin resistance impairs BCAA metabolism in obesity and diabetes, so that plasma BCAAs may be markers of hypothalamic insulin action rather than direct mediators of changes in IR. A way to address this may be to understand the effects of changes in diet and other interventions on BCAA, as well as on IR and T2D. In an animal model, lowering dietary BCAA increased energy expenditure and improved insulin sensitivity. Two large human population studies showed an association of estimated dietary BCAA intake with T2D risk, although another population study showed higher dietary BCAA to be associated with lower T2D risk. Ethnic differences, reflecting underlying differences in genetic variants, may be responsible for such differences. In the study of Asghari et al. in the current issue of the Journal of Diabetes, BCAA intake was associated with the development of subsequent IR. Studies of bariatric surgery suggest lower basal and post-insulin infusion BCAA levels are associated with greater insulin sensitivity, with reductions in BCAA not seen with weight loss per se with gastric band procedures, but occurring after Roux-en-Y gastric bypass, an intervention that may have metabolic benefits over and above those from reduction in body weight. The gut microbiota may be important for the supply of the BCAA to mammalian hosts, either by de novo biosynthesis or by modifying nutrient absorption. A final fascinating preliminary set of observations is that of the effects of empagliflozin on metabolomics; evidence of increased Krebs cycle activation and of higher levels of BCAA metabolites, such as acylcarnitines, suggests that sodium-glucose cotransporter 2 (SGLT2) inhibition may, to some extent, involve BCAA metabolism. Certainly, we do not yet have a full understanding of these complex associations. However, the suggestion of multiple roles of BCAA in the development of IR promises to be important and to lead to the development of novel effective T2D therapies.
Collapse
|
16
|
Furuta C, Murakami H. A Novel Concept of Amino Acid Supplementation to Improve the Growth of Young Malnourished Male Rats. ANNALS OF NUTRITION AND METABOLISM 2018. [PMID: 29518784 DOI: 10.1159/000487603] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUNDS/AIMS This study was aimed at understanding the relationship between plasma amino acids and protein malnutrition and at determining whether amino acid supplementation associated with malnutrition and growth improves linear growth in growing rats. METHODS Body length and plasma amino acids were measured in young male rats that were fed the following diet for 3 weeks, mimicking a low and imbalanced protein diets based on maize, a major staple consumed in developing countries: a 70% calorically restricted cornmeal-based diet (C), C + micronutrients (CM), CM + casein (CMC), CM + soy protein (CMS) or CMS + 0.3% lysine. RESULTS A correlation analysis of linear growth and plasma amino acids indicated that lysine, tryptophan, branched-chain amino acids, methionine, and phenylalanine significantly correlated with body length. Supplementation with these 5 amino acids (AA1) significantly improved the body length in rats compared to CMC treatment whereas, nitrogen-balanced amino acid supplemented controls (AA2) did not (CM +1.2 ± 0.2, CMC +2.7 ± 0.3, CMS +2.1 ± 0.3, AA1 +2.8 ± 0.2, and AA2 +2.5 ± 0.3 cm). CONCLUSION With securing proper amino acid balance, supplementing growth-related amino acids is more effective in improving linear growth in malnourished growing male rats. Analysis of the correlation between plasma amino acids and growth represents a powerful tool to determine candidate amino acids for supplementation to prevent malnutrition. This technology is adaptable to children in developing countries.
Collapse
|
17
|
Konieczna L, Pyszka M, Okońska M, Niedźwiecki M, Bączek T. Bioanalysis of underivatized amino acids in non-invasive exhaled breath condensate samples using liquid chromatography coupled with tandem mass spectrometry. J Chromatogr A 2018; 1542:72-81. [DOI: 10.1016/j.chroma.2018.02.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/22/2018] [Accepted: 02/11/2018] [Indexed: 12/21/2022]
|
18
|
Wolak-Dinsmore J, Gruppen EG, Shalaurova I, Matyus SP, Grant RP, Gegen R, Bakker SJL, Otvos JD, Connelly MA, Dullaart RPF. A novel NMR-based assay to measure circulating concentrations of branched-chain amino acids: Elevation in subjects with type 2 diabetes mellitus and association with carotid intima media thickness. Clin Biochem 2018; 54:92-99. [PMID: 29432757 DOI: 10.1016/j.clinbiochem.2018.02.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 12/22/2017] [Accepted: 02/03/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Plasma branched-chain amino acid (BCAA) levels, measured on nuclear magnetic resonance (NMR) metabolomics research platforms or by mass spectrometry, have been shown to be associated with type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD). We developed a new test for quantification of BCAA on a clinical NMR analyzer and used this test to determine the clinical correlates of BCAA in 2 independent cohorts. DESIGN AND METHODS The performance of the NMR-based BCAA assay was evaluated. A method comparison study was performed with mass spectrometry (LC-MS/MS). Plasma BCAA were measured in the Insulin Resistance Atherosclerosis Study (IRAS, n = 1209; 376 T2DM subjects) and in a Groningen cohort (n = 123; 67 T2DM subjects). In addition, carotid intima media thickness (cIMT) was measured successfully in 119 subjects from the Groningen cohort. RESULTS NMR-based BCAA assay results were linear over a range of concentrations. Coefficients of variation for inter- and intra-assay precision ranged from 1.8-6.0, 1.7-5.4, 4.4-9.1, and 8.8-21.3%, for total BCAA, valine, leucine, and isoleucine, respectively. BCAA quantified from the same samples using NMR and LC-MS/MS were highly correlated (R2 = 0.97, 0.95 and 0.90 for valine, leucine and isoleucine). In both cohorts total and individual BCAA were elevated in T2DM (P = 0.01 to ≤0.001). Moreover, cIMT was associated with BCAA independent of age, sex, T2DM and metabolic syndrome (MetS) categorization or alternatively of individual MetS components. CONCLUSIONS BCAA levels, measured by NMR in the clinical laboratory, are elevated in T2DM and may be associated with cIMT, a proxy of subclinical atherosclerosis.
Collapse
Affiliation(s)
| | - Eke G Gruppen
- Department of Endocrinology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Irina Shalaurova
- Laboratory Corporation of America Holdings (LabCorp), Morrisville, Burlington, NC, USA.
| | - Steven P Matyus
- Laboratory Corporation of America Holdings (LabCorp), Morrisville, Burlington, NC, USA.
| | - Russell P Grant
- Laboratory Corporation of America Holdings (LabCorp), Morrisville, Burlington, NC, USA.
| | - Ray Gegen
- Laboratory Corporation of America Holdings (LabCorp), Morrisville, Burlington, NC, USA.
| | - Stephan J L Bakker
- Department of Endocrinology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - James D Otvos
- Laboratory Corporation of America Holdings (LabCorp), Morrisville, Burlington, NC, USA.
| | - Margery A Connelly
- Laboratory Corporation of America Holdings (LabCorp), Morrisville, Burlington, NC, USA.
| | - Robin P F Dullaart
- Department of Endocrinology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
19
|
Du T, Lu S, Jiang Q, Li Y, Ma K. Quantitative Proteomic Analysis of Hepatic Tissue of T2DM Rhesus Macaque. J Diabetes Res 2017; 2017:3601708. [PMID: 29404372 PMCID: PMC5748286 DOI: 10.1155/2017/3601708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/09/2017] [Indexed: 12/19/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disorder that severely affects human health, but the pathogenesis of the disease remains unknown. The high-fat/high-sucrose diets combined with streptozotocin- (STZ-) induced nonhuman primate animal model of diabetes are a valuable research source of T2DM. Here, we present a study of a STZ rhesus macaque model of T2DM that utilizes quantitative iTRAQ-based proteomic method. We compared the protein profiles in the liver of STZ-treated macaques as well as age-matched healthy controls. We identified 171 proteins differentially expressed in the STZ-treated groups, about 70 of which were documented as diabetes-related gene in previous studies. Pathway analyses indicated that the biological functions of differentially expressed proteins were related to glycolysis/gluconeogenesis, fatty acid metabolism, complements, and coagulation cascades. Expression change in tryptophan metabolism pathway was also found in this study which may be associations with diabetes. This study is the first to explore genome-wide protein expression in hepatic tissue of diabetes macaque model using HPLC-Q-TOF/MS technology. In addition to providing potential T2DM biomarkers, this quantitative proteomic study may also shed insights regarding the molecular pathogenesis of T2DM.
Collapse
Affiliation(s)
- Tingfu Du
- Center for Drug Safety Evaluation and Research, Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming 650118, China
- Medical Primate Research Center & Neuroscience Center, Chinese Academy of Medical Sciences, Beijing 100005, China
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Diseases, Kunming 650118, China
| | - Shuaiyao Lu
- Center for Drug Safety Evaluation and Research, Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming 650118, China
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Diseases, Kunming 650118, China
| | - Qinfang Jiang
- Center for Drug Safety Evaluation and Research, Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming 650118, China
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Diseases, Kunming 650118, China
| | - Yun Li
- Center for Drug Safety Evaluation and Research, Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming 650118, China
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Diseases, Kunming 650118, China
| | - Kaili Ma
- Center for Drug Safety Evaluation and Research, Institute of Medical Biology, Chinese Academy of Medical Sciences, Kunming 650118, China
- Medical Primate Research Center & Neuroscience Center, Chinese Academy of Medical Sciences, Beijing 100005, China
- Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Diseases, Kunming 650118, China
| |
Collapse
|
20
|
Siomkajło M, Rybka J, Mierzchała-Pasierb M, Gamian A, Stankiewicz-Olczyk J, Bolanowski M, Daroszewski J. Specific plasma amino acid disturbances associated with metabolic syndrome. Endocrine 2017; 58:553-562. [PMID: 29075976 PMCID: PMC5693976 DOI: 10.1007/s12020-017-1460-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 10/17/2017] [Indexed: 12/14/2022]
Abstract
PURPOSE The primary objective of the present study was to examine the association between branched chain and aromatic amino acid profiles (BCAA and AAA respectively) and the metabolic syndrome (MS), and to evaluate the clinical utility of these associations in the diagnostic process. METHODS Two hundred and sixty three healthy men with MS [MS(+): n = 165] and without MS [MS(-): n = 98] were enrolled in the observational study. Anthropometrical, biochemical, and amino acid measurements were performed. The ability of the BCAA and AAA to discriminate subjects with MS and insulin resistance was tested. Based on logistic discrimination, a multivariate early MS diagnostic model was built, and its discrimination properties were evaluated. RESULTS Two functionally independent amino acid clusters were identified. BCAA and phenylalanine differed significantly between MS(+) and MS(-) participants (P = 0.003). These factors were also found to be indicators of MS(+) individuals (AUC: 0.66; 95% CI: 0.5757-0.7469), and correlated with cardiometabolic factors. No statistically significant differences in amino acid concentrations between those with and without insulin resistance were noted, and none of the amino groups were indicators of insulin resistance. The proposed MS multivariate diagnostic model consisted of phenylalanine, insulin, leptin, and adiponectin, and had good discrimination properties [AUC 0.79; 95% CI: 0.7239-0.8646]. CONCLUSIONS MS is associated with selective BCAA and AAA profile disturbances, which could be part of cardiometabolic disease pathogenesis and derive neither directly from insulin sensitivity impairment, nor obesity or muscle mass. The MS diagnostic model developed and described herein should be validated in future studies.
Collapse
Affiliation(s)
- Marta Siomkajło
- Department of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, L. Pasteur 4, Wroclaw, 50-367, Poland
| | - Jacek Rybka
- Laboratory of Medical Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigl 12, Wroclaw, 53-114, Poland
| | | | - Andrzej Gamian
- Laboratory of Medical Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigl 12, Wroclaw, 53-114, Poland
- Department of Medical Biochemistry, Wroclaw Medical University, Chalubinskiego 10, Wroclaw, 50-368, Poland
| | - Joanna Stankiewicz-Olczyk
- Department of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, L. Pasteur 4, Wroclaw, 50-367, Poland
| | - Marek Bolanowski
- Department of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, L. Pasteur 4, Wroclaw, 50-367, Poland
| | - Jacek Daroszewski
- Department of Endocrinology, Diabetes and Isotope Therapy, Wroclaw Medical University, L. Pasteur 4, Wroclaw, 50-367, Poland.
| |
Collapse
|
21
|
Yamakado M, Tanaka T, Nagao K, Imaizumi A, Komatsu M, Daimon T, Miyano H, Tani M, Toda A, Yamamoto H, Horimoto K, Ishizaka Y. Plasma amino acid profile associated with fatty liver disease and co-occurrence of metabolic risk factors. Sci Rep 2017; 7:14485. [PMID: 29101348 PMCID: PMC5670226 DOI: 10.1038/s41598-017-14974-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 10/19/2017] [Indexed: 02/08/2023] Open
Abstract
Fatty liver disease (FLD) increases the risk of diabetes, cardiovascular disease, and steatohepatitis, which leads to fibrosis, cirrhosis, and hepatocellular carcinoma. Thus, the early detection of FLD is necessary. We aimed to find a quantitative and feasible model for discriminating the FLD, based on plasma free amino acid (PFAA) profiles. We constructed models of the relationship between PFAA levels in 2,000 generally healthy Japanese subjects and the diagnosis of FLD by abdominal ultrasound scan by multiple logistic regression analysis with variable selection. The performance of these models for FLD discrimination was validated using an independent data set of 2,160 subjects. The generated PFAA-based model was able to identify FLD patients. The area under the receiver operating characteristic curve for the model was 0.83, which was higher than those of other existing liver function-associated markers ranging from 0.53 to 0.80. The value of the linear discriminant in the model yielded the adjusted odds ratio (with 95% confidence intervals) for a 1 standard deviation increase of 2.63 (2.14–3.25) in the multiple logistic regression analysis with known liver function-associated covariates. Interestingly, the linear discriminant values were significantly associated with the progression of FLD, and patients with nonalcoholic steatohepatitis also exhibited higher values.
Collapse
Affiliation(s)
- Minoru Yamakado
- Center for Multiphasic Health Testing and Services, Mitsui Memorial Hospital, 1 Kanda, Izumicho, Chiyoda-ku, Tokyo, 101-8643, Japan
| | - Takayuki Tanaka
- Institute for Innovation, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki, 210-8681, Japan
| | - Kenji Nagao
- Institute for Innovation, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki, 210-8681, Japan.
| | - Akira Imaizumi
- Institute for Innovation, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki, 210-8681, Japan
| | - Michiharu Komatsu
- Department of Gastroenterology and Hepatology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Takashi Daimon
- Department of Biostatistics, Hyogo College of Medicine, 1-1, Mukogawa-cho, Nishinomiya, 663-8131, Japan
| | - Hiroshi Miyano
- Institute for Innovation, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki, 210-8681, Japan
| | - Mizuki Tani
- Center for Multiphasic Health Testing and Services, Mitsui Memorial Hospital, 1 Kanda, Izumicho, Chiyoda-ku, Tokyo, 101-8643, Japan
| | - Akiko Toda
- Center for Multiphasic Health Testing and Services, Mitsui Memorial Hospital, 1 Kanda, Izumicho, Chiyoda-ku, Tokyo, 101-8643, Japan
| | - Hiroshi Yamamoto
- Institute for Innovation, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki, 210-8681, Japan
| | - Katsuhisa Horimoto
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, 2-4-7, Aomi, Koto-ku Tokyo, 135-0064, Japan
| | - Yuko Ishizaka
- Center for Multiphasic Health Testing and Services, Mitsui Memorial Hospital, 1 Kanda, Izumicho, Chiyoda-ku, Tokyo, 101-8643, Japan
| |
Collapse
|