1
|
Wang T, Wang Y, Zhao S, Han Y, Li Q, Liu P, Li X, Xiao C. Target-specific affinity separation of the bioactive compounds from herbal extract using the spin column packed with the immobilized protein microspheres prior to LC-MS analysis. J Chromatogr A 2024; 1734:465322. [PMID: 39217733 DOI: 10.1016/j.chroma.2024.465322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Excellent pretreatments before instrumental analysis are critical for separation and determination of target compounds for discovery of new drugs from herb medicines. We developed a rapid and highly-selective method to separate the bioactive compounds from herbal extract using protein affinity-selection spin column, which was packed with the new sorbent materials from integrating the recombinant β2-adrenoceptor (β2-AR) directly out of cell lysates onto the surface of microspheres. Protein affinity-selection spin column was placed in a centrifugal tube, where after the non-specific binders were released to the filtrate under the operational centrifugation, the specific binders on the spin column were cleaned with a washing solvent for LC-MS analysis. The known agonists of β2-AR were retained/released on protein affinity-selection spin column but not on control column, demonstrating the method with good recovery (79.4∼95.7 %) and high repeatability (RSD < 3.5 %). The adsorption features of three ligands on the spin column were described best by Prism saturation binding model, and the high-affinity binding and the large binding capacity of the spin column make it feasible to trap the trace analytes effectively. It was applied in separating bioactive compounds from Alstoniae Scholaris extract, two of which were identified as picrinine and oleanolic acid in combination with LC-MS and verified as the potential agonists towards β2-AR though molecular docking and cell experiments. Our study demonstrated that, the spin column with the immobilized protein sorbents in the centrifugal filter device represents a promising tool, enabling rapid and target-specific affinity separation of the bioactive compounds from herbal extract.
Collapse
Affiliation(s)
- Taotao Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Yunshan Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Shoucheng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Yaokun Han
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Qian Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, PR China
| | - Pei Liu
- Shaanxi Institute for Food and Drug Control, Xi'an 710065, PR China
| | - Xia Li
- Shaanxi Institute for Food and Drug Control, Xi'an 710065, PR China.
| | - Chaoni Xiao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an 710069, PR China.
| |
Collapse
|
2
|
Wu Z, Sun X, Su J, Zhang X, Hu J, Li C. Revealing the graded activation mechanism of neurotensin receptor 1. Int J Biol Macromol 2024; 278:134488. [PMID: 39111461 DOI: 10.1016/j.ijbiomac.2024.134488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024]
Abstract
Graded activation contributes to the precise regulation of GPCR activity, presenting new opportunities for drug design. In this work, a total of 10 μs enhanced-sampling simulations are performed to provide molecular insights into the binding dynamics differences of the neurotensin receptor 1 (NTSR1) to the full agonist SRI-9829, partial agonist RTI-3a and inverse agonist SR48692. The possible graded activation mechanism of NTSR1 is revealed by an integrated analysis utilizing the reweighted potential of mean force (PMF), deep learning (DL) and transfer entropy (TE). Specifically, the orthosteric pocket is observed to undergo expansion and contraction, with the G-protein-binding site experiencing interconversions among the inactive, intermediate and active-like states. Detailed structural comparisons capture subtle conformational differences arising from ligand binding in allosteric signaling, which can well explain the graded activation. Critical microswitches that contribute to graded activation are efficiently identified with the DL model. TE calculations enable the visualization of allosteric communication networks within the receptor, elucidating the driver-responder relationships associated with signal transduction. Fortunately, the dissociation of the full agonist from the orthosteric pocket is observed. The current findings systematically reveal the mechanism of NTSR1 graded activation, and also provide implications for structure-based drug design.
Collapse
Affiliation(s)
- Zhixiang Wu
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Xiaohan Sun
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Jingjie Su
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Xinyu Zhang
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China
| | - Jianping Hu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, School of Pharmacy, Chengdu University, Chengdu, China.
| | - Chunhua Li
- College of Chemistry and Life Science, Beijing University of Technology, Beijing, China.
| |
Collapse
|
3
|
Cazzola M, Page CP, Hanania NA, Calzetta L, Matera MG, Rogliani P. Asthma and Cardiovascular Diseases: Navigating Mutual Pharmacological Interferences. Drugs 2024; 84:1251-1273. [PMID: 39327397 PMCID: PMC11512905 DOI: 10.1007/s40265-024-02086-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2024] [Indexed: 09/28/2024]
Abstract
Asthma and cardiovascular disease (CVD) often co-exist. When a patient has both conditions, management requires an approach that addresses the unique challenges of each condition separately, while also considering their potential interactions. However, specific guidance on the management of asthma in patients with CVD and on the management of CVD in patients with asthma is still lacking. Nevertheless, health care providers need to adopt a comprehensive approach that includes both respiratory and CVD health. The management of CVD in patients with asthma requires a delicate balance between controlling respiratory symptoms and minimising potential cardiovascular (CV) risks. In the absence of specific guidelines for the management of patients with both conditions, the most prudent approach would be to follow established guidelines for each condition independently. Careful selection of asthma medications is essential to avoid exacerbation of CV symptoms. In addition, optimal management of CV risk factors is essential. However, close monitoring of these patients is important as there is evidence that some asthma medications may have adverse effects on CVD and, conversely, that some CVD medications may worsen asthma symptoms. On the other hand, there is also increasing evidence of the potential beneficial effects of asthma medications on CVD and, conversely, that some CVD medications may reduce the severity of asthma symptoms. We aim to elucidate the potential risks and benefits associated with the use of asthma medications in patients with CVD, and the potential pulmonary risks and benefits for patients with asthma who are prescribed CVD medications.
Collapse
Affiliation(s)
- Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome 'Tor Vergata', Rome, Italy.
| | - Clive P Page
- Institute of Pharmaceutical Science, King's College London, London, UK
| | - Nicola A Hanania
- Section of Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Luigino Calzetta
- Department of Medicine and Surgery, Respiratory Disease and Lung Function Unit, University of Parma, Parma, Italy
| | - Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome 'Tor Vergata', Rome, Italy
| |
Collapse
|
4
|
Stolz D, Matera MG, Rogliani P, van den Berge M, Papakonstantinou E, Gosens R, Singh D, Hanania N, Cazzola M, Maitland-van der Zee AH, Fregonese L, Mathioudakis AG, Vestbo J, Rukhadze M, Page CP. Current and future developments in the pharmacology of asthma and COPD: ERS seminar, Naples 2022. Breathe (Sheff) 2023; 19:220267. [PMID: 37377851 PMCID: PMC10292790 DOI: 10.1183/20734735.0267-2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/28/2023] [Indexed: 06/29/2023] Open
Abstract
Pharmacological management of airway obstructive diseases is a fast-evolving field. Several advances in unravelling disease mechanisms as well as intracellular and molecular pathways of drug action have been accomplished. While the clinical translation and implementation of in vitro results to the bedside remains challenging, advances in comprehending the mechanisms of respiratory medication are expected to assist clinicians and scientists in identifying meaningful read-outs and designing clinical studies. This European Respiratory Society Research Seminar, held in Naples, Italy, 5-6 May 2022, focused on current and future developments of the drugs used to treat asthma and COPD; on mechanisms of drug action, steroid resistance, comorbidities and drug interactions; on prognostic and therapeutic biomarkers; on developing novel drug targets based on tissue remodelling and regeneration; and on pharmacogenomics and emerging biosimilars. Related European Medicines Agency regulations are also discussed, as well as the seminar's position on the above aspects.
Collapse
Affiliation(s)
- Daiana Stolz
- Clinic of Pulmonary Medicine, Department of Internal Medicine, Medical Center University of Freiburg, Freiburg, Germany
- Clinic of Respiratory Medicine and Pulmonary Cell Research, University Hospital of Basel, Basel, Switzerland
| | - Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Department Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Maarten van den Berge
- Groningen Research Institute for Asthma and COPD, and Department of Pulmonology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Eleni Papakonstantinou
- Clinic of Pulmonary Medicine, Department of Internal Medicine, Medical Center University of Freiburg, Freiburg, Germany
- Clinic of Respiratory Medicine and Pulmonary Cell Research, University Hospital of Basel, Basel, Switzerland
| | - Reinoud Gosens
- Groningen Research Institute for Asthma and COPD, and Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dave Singh
- Medicines Evaluation Unit, Manchester University NHS Foundation Trust, University of Manchester, Manchester, UK
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester and Manchester University NHS Foundation Trust, Manchester, UK
| | - Nicola Hanania
- Section of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department Experimental Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | | | | | - Alexander G. Mathioudakis
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester and Manchester University NHS Foundation Trust, Manchester, UK
| | - Jørgen Vestbo
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester and Manchester University NHS Foundation Trust, Manchester, UK
| | - Maia Rukhadze
- Center of Allergy and Immunology, Teaching University Geomedi LLC, Tbilisi, Georgia
| | - Clive P. Page
- Sackler Institute of Pulmonary Pharmacology, Institute of Pharmaceutical Science, King's College London, London, UK
| |
Collapse
|
5
|
Cazzola M, Rogliani P, Ora J, Calzetta L, Matera MG. Cardiovascular diseases or type 2 diabetes mellitus and chronic airway diseases: mutual pharmacological interferences. Ther Adv Chronic Dis 2023; 14:20406223231171556. [PMID: 37284143 PMCID: PMC10240559 DOI: 10.1177/20406223231171556] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/06/2023] [Indexed: 06/08/2023] Open
Abstract
Chronic airway diseases (CAD), mainly asthma and chronic obstructive pulmonary disease (COPD), are frequently associated with different comorbidities. Among them, cardiovascular disease (CVD) and type 2 diabetes mellitus (T2DM) pose problems for the simultaneous treatment of CAD and comorbidity. Indeed, there is evidence that some drugs used to treat CAD negatively affect comorbidity, and, conversely, some drugs used to treat comorbidity may aggravate CAD. However, there is also growing evidence of some beneficial effects of CAD drugs on comorbidities and, conversely, of the ability of some of those used to treat comorbidity to reduce the severity of lung disease. In this narrative review, we first describe the potential cardiovascular risks and benefits for patients using drugs to treat CAD and the potential lung risks and benefits for patients using drugs to treat CVD. Then, we illustrate the possible negative and positive effects on T2DM of drugs used to treat CAD and the potential negative and positive impact on CAD of drugs used to treat T2DM. The frequency with which CAD and CVD or T2DM are associated requires not only considering the effect that drugs used for one disease condition may have on the other but also providing an opportunity to develop therapies that simultaneously favorably impact both diseases.
Collapse
Affiliation(s)
- Mario Cazzola
- Chair of Respiratory Medicine, Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Paola Rogliani
- Chair of Respiratory Medicine, Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
- Division of Respiratory Medicine, University Hospital Tor Vergata, Rome, Italy
| | - Josuel Ora
- Division of Respiratory Medicine, University Hospital Tor Vergata, Rome, Italy
| | - Luigino Calzetta
- Respiratory Disease and Lung Function Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Maria Gabriella Matera
- Chair of Pharmacology, Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| |
Collapse
|
6
|
Chiesa L, Kellenberger E. One class classification for the detection of β2 adrenergic receptor agonists using single-ligand dynamic interaction data. J Cheminform 2022; 14:74. [PMID: 36309734 PMCID: PMC9617447 DOI: 10.1186/s13321-022-00654-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 10/17/2022] [Indexed: 11/22/2022] Open
Abstract
G protein-coupled receptors are involved in many biological processes, relaying the extracellular signal inside the cell. Signaling is regulated by the interactions between receptors and their ligands, it can be stimulated by agonists, or inhibited by antagonists or inverse agonists. The development of a new drug targeting a member of this family requires to take into account the pharmacological profile of the designed ligands in order to elicit the desired response. The structure-based virtual screening of chemical libraries may prioritize a specific class of ligands by combining docking results and ligand binding information provided by crystallographic structures. The performance of the method depends on the relevance of the structural data, in particular the conformation of the targeted site, the binding mode of the reference ligand, and the approach used to compare the interactions formed by the docked ligand with those formed by the reference ligand in the crystallographic structure. Here, we propose a new method based on the conformational dynamics of a single protein–ligand reference complex to improve the biased selection of ligands with specific pharmacological properties in a structure-based virtual screening exercise. Interactions patterns between a reference agonist and the receptor, here exemplified on the β2 adrenergic receptor, were extracted from molecular dynamics simulations of the agonist/receptor complex and encoded in graphs used to train a one-class machine learning classifier. Different conditions were tested: low to high affinity agonists, varying simulation duration, considering or ignoring hydrophobic contacts, and tuning of the classifier parametrization. The best models applied to post-process raw data from retrospective virtual screening obtained by docking of test libraries effectively filtered out irrelevant poses, discarding inactive and non-agonist ligands while identifying agonists. Taken together, our results suggest that consistency of the binding mode during the simulation is a key to the success of the method.
Collapse
Affiliation(s)
- Luca Chiesa
- Laboratoire d'innovation Thérapeutique, Faculté de Pharmacie, UMR7200 CNRS Université de Strasbourg, 67400, Illkirch, France
| | - Esther Kellenberger
- Laboratoire d'innovation Thérapeutique, Faculté de Pharmacie, UMR7200 CNRS Université de Strasbourg, 67400, Illkirch, France.
| |
Collapse
|
7
|
Lui KL, Daher N, López D, Kim V, Tan L, Cohen PM, Alismail A. Surgical mask wearing behaviour in COVID-19 pandemic and influenza seasons: a cross-sectional study on healthcare professional students and staff's perspective in Southern California. BMJ Open 2022; 12:e064677. [PMID: 36220314 PMCID: PMC9556740 DOI: 10.1136/bmjopen-2022-064677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/30/2022] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE To investigate healthcare professional staff and students' perception of wearing surgical masks before and after their experience with the COVID-19 pandemic, and to evaluate the impact on mask wearing behaviour in future influenza seasons. DESIGN Cross-sectional study using anonymous survey. SETTING AND PARTICIPANTS Healthcare students and staff from a healthcare academic institution in Southern California participated in the mask survey study. Survey results were collected from June to November 2021. A total of 305 respondents responded to the survey, with 173 being healthcare students and 132 being working healthcare staff. OUTCOMES The study examined respondents' perceptions and hospital mask wearing behaviour before and after their COVID-19 pandemic experience, as well as during previous and future influenza seasons. RESULTS Two hundred and sixty-four (86.6%) respondents agreed that wearing a surgical mask reduces infection and limits transmission of infectious disease, yet prior to the pandemic, only a small proportion wore a mask in the hospital or during patient care. After experiencing the COVID-19 pandemic, more respondents indicated that they would continue to wear a mask when they are in a hospital in general (n=145, 47.5%), during patient care (n=262, 85.9%), during influenza seasons throughout the hospital (n=205, 67.2%) and during influenza seasons during patient care (n=270, 88.5%). CONCLUSION The pandemic experience has greatly influenced the health prevention behaviours of healthcare students and staff. After the pandemic, many respondents will continue to practice surgical mask wearing behaviour in the hospital, especially during face-to-face patient care. This demonstrates a significant change in health prevention perceptions among the current and the future generation of healthcare professionals.
Collapse
Affiliation(s)
- Kin Long Lui
- Department of Cardiopulmonary Sciences, Loma Linda University Health, Loma Linda, California, USA
- Respiratory Department, Adventist Health White Memorial, Los Angeles, California, USA
| | - Noha Daher
- Allied Health Studies, Loma Linda University, Loma Linda, California, USA
| | - David López
- Cardiopulmonary Sciences, Loma Linda University, Loma Linda, California, USA
| | - Veronica Kim
- Department of Cardiopulmonary Sciences, Loma Linda University Health, Loma Linda, California, USA
| | - Laren Tan
- Department of Cardiopulmonary Sciences, Loma Linda University Health, Loma Linda, California, USA
- Department of Pulmonary, Critical Care, Hyperbaric, Allergy and Sleep Medicine, Loma Linda University Medical Center, Loma Linda, California, USA
- Department of Medicine, Loma Linda University, Loma Linda, California, USA
| | - Pamela Monterroso Cohen
- Department of Cardiopulmonary Sciences, Loma Linda University Health, Loma Linda, California, USA
| | - Abdullah Alismail
- Cardiopulmonary Sciences, Loma Linda University, Loma Linda, California, USA
- Department of Medicine, Loma Linda University, Loma Linda, California, USA
| |
Collapse
|
8
|
Salomon A, Boffa J, Moyo S, Chikovore J, Sulis G, Daniels B, Kwan A, Mkhombo T, Wu S, Pai M, Daftary A. Prescribing practices for presumptive TB among private general practitioners in South Africa: a cross-sectional, standardised patient study. BMJ Glob Health 2022; 7:bmjgh-2021-007456. [PMID: 35042710 PMCID: PMC8768922 DOI: 10.1136/bmjgh-2021-007456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022] Open
Abstract
Introduction Medicine prescribing practices are integral to quality of care for leading infectious diseases such as tuberculosis (TB). We describe prescribing practices in South Africa’s private health sector, where an estimated third of people with TB symptoms first seek care. Methods Sixteen standardised patients (SPs) presented one of three cases during unannounced visits to private general practitioners (GPs) in Durban and Cape Town: TB symptoms, HIV-positive; TB symptoms, a positive molecular test for TB, HIV-negative; and TB symptoms, history of incomplete TB treatment, HIV-positive. Prescribing practices were recorded in standardised exit interviews and analysed based on their potential to contribute to negative outcomes, including increased healthcare expenditures, antibiotic overuse or misuse, and TB diagnostic delay. Factors associated with antibiotic use were assessed using Poisson regression with a robust variance estimator. Results Between August 2018 and July 2019, 511 SP visits were completed with 212 GPs. In 88.5% (95% CI 85.2% to 91.1%) of visits, at least one medicine (median 3) was dispensed or prescribed and most (93%) were directly dispensed. Antibiotics, which can contribute to TB diagnostic delay, were the most common medicine (76.5%, 95% CI 71.7% to 80.7% of all visits). A majority (86.1%, 95% CI 82.9% to 88.5%) belonged to the WHO Access group; fluoroquinolones made up 8.8% (95% CI 6.3% to 12.3%). Factors associated with antibiotic use included if the SP was asked to follow-up if symptoms persisted (RR 1.14, 95% CI 1.04 to 1.25) and if the SP presented as HIV-positive (RR 1.11, 95% CI 1.01 to 1.23). An injection was offered in 31.9% (95% CI 27.0% to 37.2%) of visits; 92% were unexplained. Most (61.8%, 95% CI 60.2% to 63.3%) medicines were not listed on the South African Primary Healthcare Essential Medicines List. Conclusion Prescribing practices among private GPs for persons presenting with TB-like symptoms in South Africa raise concern about inappropriate antimicrobial use, private healthcare costs and TB diagnostic delay.
Collapse
Affiliation(s)
- Angela Salomon
- School of Medicine, Queen's University, Kingston, Ontario, Canada
- McGill International TB Centre, McGill University, Montréal, Quebec, Canada
| | - Jody Boffa
- Division of Biostatistics and Epidemiology, Stellenbosch University, Stellenbosch, South Africa
- Centre for Rural Health, University of KwaZulu-Natal, Durban, South Africa
| | - Sizulu Moyo
- Human and Social Capabilities Programme, Human Sciences Research Council, Cape Town, South Africa
- School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | - Jeremiah Chikovore
- Human and Social Capabilities Programme, Human Sciences Research Council, Cape Town, South Africa
| | - Giorgia Sulis
- McGill International TB Centre, McGill University, Montréal, Quebec, Canada
- School of Population and Global Health, McGill University, Montreal, Québec, Canada
| | - Benjamin Daniels
- McCourt School of Public Policy, Georgetown University, Washington, DC, USA
| | - Ada Kwan
- Division of Pulmonary and Critical Care Medicine, University of California School of Medicine, San Francisco, California, USA
| | - Tsatsawani Mkhombo
- Human and Social Capabilities Programme, Human Sciences Research Council, Durban, South Africa
| | - Sarah Wu
- Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Madhukar Pai
- McGill International TB Centre, McGill University, Montréal, Quebec, Canada
- School of Population and Global Health, McGill University, Montreal, Québec, Canada
| | - Amrita Daftary
- School of Global Health & Dahdaleh Institute of Global Health Research, York University, Toronto, Ontario, Canada
- Centre for the AIDS Programme of Research, Durban, KwaZulu-Natal, South Africa
| |
Collapse
|
9
|
Xing G, Woo AYH, Pan L, Lin B, Cheng MS. Recent Advances in β 2-Agonists for Treatment of Chronic Respiratory Diseases and Heart Failure. J Med Chem 2020; 63:15218-15242. [PMID: 33213146 DOI: 10.1021/acs.jmedchem.0c01195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
β2-Adrenoceptor (β2-AR) agonists are widely used as bronchodilators. The emerge of ultralong acting β2-agonists is an important breakthrough in pulmonary medicine. In this review, we will provide mechanistic insights into the application of β2-agonists in asthma, chronic obstructive pulmonary disease (COPD), and heart failure (HF). Recent studies in β-AR signal transduction have revealed opposing functions of the β1-AR and the β2-AR on cardiomyocyte survival. Thus, β2-agonists and β-blockers in combination may represent a novel strategy for HF management. Allosteric modulation and biased agonism at the β2-AR also provide a theoretical basis for developing drugs with novel mechanisms of action and pharmacological profiles. Overlap of COPD and HF presents a substantial clinical challenge but also a unique opportunity for evaluation of the cardiovascular safety of β2-agonists. Further basic and clinical research along these lines can help us develop better drugs and innovative strategies for the management of these difficult-to-treat diseases.
Collapse
Affiliation(s)
- Gang Xing
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.,Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Anthony Yiu-Ho Woo
- Department of Pharmacology, School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Li Pan
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.,Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bin Lin
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.,Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mao-Sheng Cheng
- Department of Medicinal Chemistry, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.,Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
10
|
Gao Y, Sun F, Jiang W, Fang Y, Yue L, Lin X, Li X. Beliefs towards the COVID-19 pandemic among patients with emotional disorders in China. Gen Psychiatr 2020; 33:e100231. [PMID: 32574346 PMCID: PMC7287490 DOI: 10.1136/gpsych-2020-100231] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/11/2020] [Accepted: 05/17/2020] [Indexed: 02/07/2023] Open
Abstract
Background The novel coronavirus disease 2019 (COVID-19) pandemic has given rise to fear and panic in the public. Although hospitals in China reduced outpatient visits and restricted inpatient admission to lower the risk of transmission of COVID-19, this has significantly affected patients in need of medical attention, for example, patients with emotional disorders. Aims This study aimed to compare the beliefs towards COVID-19 among outpatients with emotional disorders (ie, anxiety or depression) with those of family caregivers and the general public and examine factors that shape the beliefs towards COVID-19 among outpatients with emotional disorders. Methods Survey data from 570 outpatients with anxiety or depression disorders, 449 family caregivers and 470 general public subjects were collected. Multiple stepwise regression analyses were used to describe participants' level of concern, prevention attitude and positive expectations towards the COVID-19 outbreak. Results About 70.9% of outpatients had to postpone their mental health treatment; 43.2% of patients admitted that their mental health was adversely affected by the COVID-19 outbreak-these patients tended to be older, male and less educated. After controlling for age and education level, outpatients with emotional disorders had significantly lower levels of concerns but more negative expectations towards COVID-19, compared with family caregivers and the public. Multivariate linear stepwise regression analysis showed that age, education and the perception of the impact of COVID-19 on one's existing mental illness were significantly associated with outpatients' beliefs about the epidemic. Conclusion Outpatients with anxiety or depression disorders were relatively less focused on the COVID-19 outbreak, but the impact of the infection was found to be independently associated with their beliefs towards COVID-19. In addition, outpatients who were older and of low educational levels particularly held more negative beliefs about the epidemic, which may place them at a higher risk for poor mental health.
Collapse
Affiliation(s)
- Yining Gao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fei Sun
- School of Social Work, Michigan State University, East Lansing, Michigan, USA
| | - Wenwen Jiang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Fang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Yue
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang Lin
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xia Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
11
|
Ultra-LABAs for the treatment of asthma. Respir Med 2019; 156:47-52. [PMID: 31425937 DOI: 10.1016/j.rmed.2019.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/08/2019] [Accepted: 08/12/2019] [Indexed: 11/22/2022]
Abstract
The term ultra-LABA indicates once-daily β2-AR agonists (abediterol, indacaterol, olodaterol and vilanterol) that are single enantiomers of the (R)-configuration. All have a near full-agonist profile at human β2-AR. They can be prescribed in asthmatics only when associated with an with ICS, although further confirmations need to clarify what really these agents add if used in association to ICS and in what asthmatic patients this association may have more value. They are also under development in triple inhalers that include an ultra-LABA, a LAMA and an ICS. The once-daily posology might increase adherence in long-term treatment of asthma but superiority to twice-daily LABAs has not yet been fully demonstrated. In any case, still no ultra-LABA can be recommended as preferred.
Collapse
|
12
|
Ueda T, Kofuku Y, Okude J, Imai S, Shiraishi Y, Shimada I. Function-related conformational dynamics of G protein-coupled receptors revealed by NMR. Biophys Rev 2019; 11:409-418. [PMID: 31102199 PMCID: PMC6557943 DOI: 10.1007/s12551-019-00539-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 04/26/2019] [Indexed: 11/26/2022] Open
Abstract
G protein-coupled receptors (GPCRs) function as receptors for various neurotransmitters, hormones, cytokines, and metabolites. GPCR ligands impart differing degrees of signaling in the G protein and arrestin pathways, in phenomena called biased signaling, and each ligand for a given GPCR has a characteristic level of ability to activate or deactivate its target, which is referred to as its efficacy. The ligand efficacies and biased signaling of GPCRs remarkably affect the therapeutic properties of the ligands. However, these features of GPCRs can only be partially understood from the crystallography data, although numerous GPCR structures have been solved. NMR analyses have revealed that GPCRs have multiple interconverting substates, exchanging on various timescales, and that the exchange rates are related to the ligand efficacies and biased signaling. In addition, NMR analyses of GPCRs in the lipid bilayer environment of rHDLs revealed that the exchange rates are modulated by the lipid bilayer environment, highlighting the importance of the function-related dynamics in the lipid bilayer. In this review, we will describe several solution NMR studies that have clarified the conformational dynamics related to the ligand efficacy and biased signaling of GPCRs.
Collapse
Affiliation(s)
- Takumi Ueda
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Yutaka Kofuku
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Junya Okude
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Shunsuke Imai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yutaro Shiraishi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Ichio Shimada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
13
|
Kilic O, Yoon A, Shah SR, Yong HM, Ruiz-Valls A, Chang H, Panettieri RA, Liggett SB, Quiñones-Hinojosa A, An SS, Levchenko A. A microphysiological model of the bronchial airways reveals the interplay of mechanical and biochemical signals in bronchospasm. Nat Biomed Eng 2019; 3:532-544. [PMID: 31150010 PMCID: PMC6653686 DOI: 10.1038/s41551-019-0366-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 02/07/2019] [Indexed: 01/08/2023]
Abstract
In asthma, airway smooth muscle (ASM) contraction and the subsequent decrease in airflow involve a poorly understood set of mechanical and biochemical events. Organ-level and molecular-scale models of the airway are frequently based on purely mechanical or biochemical considerations and do not account for physiological mechanochemical couplings. Here, we present a microphysiological model of the airway that allows for the quantitative analysis of the interactions between mechanical and biochemical signals triggered by compressive stress on epithelial cells. We show that a mechanical stimulus mimicking a bronchospastic challenge triggers the marked contraction and delayed relaxation of ASM, and that this is mediated by the discordant expression of cyclooxygenase genes in epithelial cells and regulated by the mechanosensor and transcriptional co-activator YAP (Yes-associated protein). A mathematical model of the intercellular feedback interactions recapitulates aspects of obstructive disease of the airways, including pathognomonic features of severe, difficult-to-treat asthma. The microphysiological model could be used to investigate the mechanisms of asthma pathogenesis and to develop therapeutic strategies that disrupt the positive feedback loop that leads to persistent airway constriction.
Collapse
Affiliation(s)
- Onur Kilic
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA. .,Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Arum Yoon
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Sagar R Shah
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Hwan Mee Yong
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Alejandro Ruiz-Valls
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Hao Chang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Reynold A Panettieri
- Institute for Translational Medicine and Science, Rutgers University, New Brunswick, NJ, USA
| | - Stephen B Liggett
- Department of Medical Engineering, University of South Florida, Tampa, FL, USA.,Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | | | - Steven S An
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA. .,Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA. .,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA. .,Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.
| | - Andre Levchenko
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA. .,Department of Biomedical Engineering, Yale University, New Haven, CT, USA. .,Yale Systems Biology Institute, Yale University, West Haven, CT, USA.
| |
Collapse
|
14
|
GPCR drug discovery: integrating solution NMR data with crystal and cryo-EM structures. Nat Rev Drug Discov 2018; 18:59-82. [PMID: 30410121 DOI: 10.1038/nrd.2018.180] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The 826 G protein-coupled receptors (GPCRs) in the human proteome regulate key physiological processes and thus have long been attractive drug targets. With the crystal structures of more than 50 different human GPCRs determined over the past decade, an initial platform for structure-based rational design has been established for drugs that target GPCRs, which is currently being augmented with cryo-electron microscopy (cryo-EM) structures of higher-order GPCR complexes. Nuclear magnetic resonance (NMR) spectroscopy in solution is one of the key approaches for expanding this platform with dynamic features, which can be accessed at physiological temperature and with minimal modification of the wild-type GPCR covalent structures. Here, we review strategies for the use of advanced biochemistry and NMR techniques with GPCRs, survey projects in which crystal or cryo-EM structures have been complemented with NMR investigations and discuss the impact of this integrative approach on GPCR biology and drug discovery.
Collapse
|
15
|
Zhou W, Wang J, Zhao Y, Yu L, Fang Y, Jin H, Zhou H, Zhang P, Liu Y, Zhang X, Liang X. Discovery of β2- adrenoceptor agonists in Curcuma zedoaria Rosc using label-free cell phenotypic assay combined with two-dimensional liquid chromatography. J Chromatogr A 2018; 1577:59-65. [PMID: 30309706 DOI: 10.1016/j.chroma.2018.09.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/15/2018] [Accepted: 09/24/2018] [Indexed: 10/28/2022]
|
16
|
Tritium-labeled agonists as tools for studying adenosine A 2B receptors. Purinergic Signal 2018; 14:223-233. [PMID: 29752618 DOI: 10.1007/s11302-018-9608-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/27/2018] [Indexed: 12/11/2022] Open
Abstract
A selective agonist radioligand for A2B adenosine receptors (A2BARs) is currently not available. Such a tool would be useful for labeling the active conformation of the receptors. Therefore, we prepared BAY 60-6583, a potent and functionally selective A2BAR (partial) agonist, in a tritium-labeled form. Despite extensive efforts, however, we have not been able to establish a radioligand binding assay using [3H]BAY 60-6583. This is probably due to its high non-specific binding and its moderate affinity, which had previously been overestimated based on functional data. As an alternative, we evaluated the non-selective A2BAR agonist [3H]NECA for its potential to label A2BARs. [3H]NECA showed specific, saturable, and reversible binding to membrane preparations of Chinese hamster ovary (CHO) or human embryonic kidney (HEK) cells stably expressing human, rat, or mouse A2BARs. In competition binding experiments, the AR agonists 2-chloroadenosine (CADO) and NECA displayed significantly higher affinity when tested versus [3H]NECA than versus the A2B-antagonist radioligand [3H]PSB-603 while structurally diverse AR antagonists showed the opposite effects. Although BAY 60-6583 is an A2BAR agonist, it displayed higher affinity versus [3H]PSB-603 than versus [3H]NECA. These results indicate that nucleoside and non-nucleoside agonists are binding to very different conformations of the A2BAR. In conclusion, [3H]NECA is currently the only useful radioligand for determining the affinity of ligands for an active A2BAR conformation.
Collapse
|
17
|
Ichikawa O, Fujimoto K, Yamada A, Okazaki S, Yamazaki K. G-Protein/β-Arrestin-Linked Fluctuating Network of G-Protein-Coupled Receptors for Predicting Drug Efficacy and Bias Using Short-Term Molecular Dynamics Simulation. PLoS One 2016; 11:e0155816. [PMID: 27187591 PMCID: PMC4871340 DOI: 10.1371/journal.pone.0155816] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 05/04/2016] [Indexed: 01/14/2023] Open
Abstract
The efficacy and bias of signal transduction induced by a drug at a target protein are closely associated with the benefits and side effects of the drug. In particular, partial agonist activity and G-protein/β-arrestin-biased agonist activity for the G-protein-coupled receptor (GPCR) family, the family with the most target proteins of launched drugs, are key issues in drug discovery. However, designing GPCR drugs with appropriate efficacy and bias is challenging because the dynamic mechanism of signal transduction induced by ligand—receptor interactions is complicated. Here, we identified the G-protein/β-arrestin-linked fluctuating network, which initiates large-scale conformational changes, using sub-microsecond molecular dynamics (MD) simulations of the β2-adrenergic receptor (β2AR) with a diverse collection of ligands and correlation analysis of their G protein/β-arrestin efficacy. The G-protein-linked fluctuating network extends from the ligand-binding site to the G-protein-binding site through the connector region, and the β-arrestin-linked fluctuating network consists of the NPxxY motif and adjacent regions. We confirmed that the averaged values of fluctuation in the fluctuating network detected are good quantitative indexes for explaining G protein/β-arrestin efficacy. These results indicate that short-term MD simulation is a practical method to predict the efficacy and bias of any compound for GPCRs.
Collapse
Affiliation(s)
- Osamu Ichikawa
- Genomic Science Laboratories, Sumitomo Dainippon Pharma. Co. Ltd, Osaka, Osaka, Japan
| | - Kazushi Fujimoto
- Department of Applied Chemistry, Nagoya University, Nagoya, Aichi, Japan
| | - Atsushi Yamada
- Department of Applied Chemistry, Nagoya University, Nagoya, Aichi, Japan
| | - Susumu Okazaki
- Department of Applied Chemistry, Nagoya University, Nagoya, Aichi, Japan
| | - Kazuto Yamazaki
- Genomic Science Laboratories, Sumitomo Dainippon Pharma. Co. Ltd, Osaka, Osaka, Japan
| |
Collapse
|
18
|
Abroug F, Dachraoui F, Ouanes-Besbes L. Our paper 20 years later: the unfulfilled promises of nebulised adrenaline in acute severe asthma. Intensive Care Med 2016; 42:429-431. [PMID: 26825950 DOI: 10.1007/s00134-016-4210-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 01/01/2016] [Indexed: 10/22/2022]
Affiliation(s)
- Fekri Abroug
- Intensive Care Unit, CHU Fatouma Bourguiba, 5000, Monastir, Tunisia. .,Research Laboratory LR12SP15, University of Monastir, Monastir, Tunisia.
| | - Fahmi Dachraoui
- Intensive Care Unit, CHU Fatouma Bourguiba, 5000, Monastir, Tunisia.,Research Laboratory LR12SP15, University of Monastir, Monastir, Tunisia
| | - Lamia Ouanes-Besbes
- Intensive Care Unit, CHU Fatouma Bourguiba, 5000, Monastir, Tunisia.,Research Laboratory LR12SP15, University of Monastir, Monastir, Tunisia
| |
Collapse
|
19
|
Tan DWS, Wong JL, Tie ST, Abisheganaden JA, Lim AYH, Wong WSF. β 2-adrenoceptor in obstructive airway diseases: Agonism, antagonism or both? World J Respirol 2015; 5:199-206. [DOI: 10.5320/wjr.v5.i3.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/27/2015] [Accepted: 10/08/2015] [Indexed: 02/06/2023] Open
Abstract
Obstructive airway disease is a complex disease entity including several maladies characterized by bronchoconstriction and abnormal airway inflammation. Reversing bronchoconstriction leads to symptomatic relief and improvement in quality of life, both in reversible (bronchial asthma) and partially reversible (chronic obstructive airway disease) obstructive airway diseases. β2-adrenoceptor expressed in human airway is the main β-receptor subtype, and its activation in airway smooth muscle cells leads to bronchodilatation. Drugs targeting β-adrenoceptors have been around for many years, for which agonists of the receptors are used in bronchodilation while antagonists are used in cardiovascular diseases. This review article summarizes the effect and usage of β2-agonist in obstructive airway disease, addressing the benefits and potential risks of β2-agonist. The article also looks at the safety of β-blocker usage for cardiovascular disease in patients with obstructive airway disease. There is also emerging evidence that non-selective β-blockers with inverse agonism ironically can have long-term beneficial effects in obstructive airway disease that is beyond cardiovascular protection. Further trials are urgently needed in this area as it might lead to a dramatic turnaround in clinical practice for obstructive airway diseases as has already been seen in the usage of β-blockers for heart failure.
Collapse
|
20
|
Incorvaia C, Moingeon P, Buttafava S, Frati F. Focusing the mechanism of action to dissect the different treatments of respiratory allergy. Expert Rev Clin Immunol 2015; 11:1005-13. [PMID: 26143936 DOI: 10.1586/1744666x.2015.1064768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The treatment of respiratory allergy is based on several drugs with different mechanisms of action, which encompass an effect only on symptoms, limited factors of inflammation or the whole process of inflammation. Dissecting the different treatments by their mechanism of action is relevant for the management of allergic patients. Corticosteroids, administered as nasal sprays in rhinitis or by inhalation devices in asthma, and allergen immunotherapy (AIT) are the most effective treatments for respiratory allergy, achieving the control on inflammation by a number of cellular and molecular mechanisms. What distinguishes corticosteroids from AIT is the duration of clinical outcomes that ends with treatment withdrawal for the former but persists after stopping for AIT, due to its disease-modifying effect.
Collapse
|
21
|
|
22
|
Cazzola M, Beeh KM, Price D, Roche N. Assessing the clinical value of fast onset and sustained duration of action of long-acting bronchodilators for COPD. Pulm Pharmacol Ther 2015; 31:68-78. [DOI: 10.1016/j.pupt.2015.02.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 02/09/2015] [Accepted: 02/12/2015] [Indexed: 01/05/2023]
|
23
|
Guidelines for severe uncontrolled asthma. Arch Bronconeumol 2015; 51:235-46. [PMID: 25677358 DOI: 10.1016/j.arbres.2014.12.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/02/2014] [Accepted: 12/06/2014] [Indexed: 01/29/2023]
Abstract
Since the publication, 9 years ago, of the latest SEPAR (Spanish Society of Pulmonology and Thoracic Surgery) Guidelines on Difficult-to-Control Asthma (DCA), much progress has been made in the understanding of asthmatic disease. These new data need to be reviewed, analyzed and incorporated into the guidelines according to their level of evidence and recommendation. Recently, consensus documents and clinical practice guidelines (CPG) addressing this issue have been published. In these guidelines, specific mention will be made of what the previous DCA guidelines defined as "true difficult-to-control asthma". This is asthma that remains uncontrolled after diagnosis and a systematic evaluation to rule out factors unrelated to the disease itself that lead to poor control ("false difficult-to-control asthma"), and despite an appropriate treatment strategy (Spanish Guidelines for the Management of Asthma [GEMA] steps 5 and 6): severe uncontrolled asthma. In this respect, the guidelines propose a revised definition, an attempt to classify the various manifestations of this type of asthma, a proposal for a stepwise diagnostic procedure, and phenotype-targeted treatment. A specific section has also been included on DCA in childhood, aimed at assisting healthcare professionals to improve the care of these patients.
Collapse
|
24
|
Abstract
The obstructive lung disease asthma is treated by drugs that target, either directly or indirectly, G protein-coupled receptors (GPCRs). GPCRs coupled to Gq are the primary mediators of airway smooth muscle (ASM) contraction and increased airway resistance, whereas the Gs-coupled beta-2-adrenoceptor (β2AR) promotes pro-relaxant signaling in and relaxation of ASM resulting in greater airway patency and reversal of life-threatening bronchoconstriction. In addition, GPCR-mediated functions in other cell types, including airway epithelium and hematopoietic cells, are involved in the control of lung inflammation that causes most asthma. The capacity of arrestins to regulate GPCR signaling, via either control of GPCR desensitization/resensitization or G protein-independent signaling, renders arrestins an intriguing therapeutic target for asthma and other obstructive lung diseases. This review will focus on the potential role of arrestins in those GPCR-mediated airway cell functions that are dysregulated in asthma.
Collapse
Affiliation(s)
- Raymond B Penn
- Center for Translational Medicine, Department of Medicine, Jefferson Medical College, Thomas Jefferson University, 1025 Walnut Street, Suite 317, Philadelphia, PA, 19107, USA,
| | | | | |
Collapse
|
25
|
Kazani S, Israel E. What doesn't kill may not make you stronger. β-blockers for asthma. Am J Respir Crit Care Med 2013; 187:1281. [PMID: 23767898 DOI: 10.1164/rccm.201305-0815ed] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
26
|
Kofuku Y, Ueda T, Okude J, Shiraishi Y, Kondo K, Maeda M, Tsujishita H, Shimada I. Efficacy of the β₂-adrenergic receptor is determined by conformational equilibrium in the transmembrane region. Nat Commun 2013; 3:1045. [PMID: 22948827 PMCID: PMC3658005 DOI: 10.1038/ncomms2046] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 08/02/2012] [Indexed: 12/18/2022] Open
Abstract
Many drugs that target G-protein-coupled receptors (GPCRs) induce or inhibit their signal transduction with different strengths, which affect their therapeutic properties. However, the mechanism underlying the differences in the signalling levels is still not clear, although several structures of GPCRs complexed with ligands determined by X-ray crystallography are available. Here we utilized NMR to monitor the signals from the methionine residue at position 82 in neutral antagonist- and partial agonist-bound states of β2-adrenergic receptor (β2AR), which are correlated with the conformational changes of the transmembrane regions upon activation. We show that this residue exists in a conformational equilibrium between the inverse agonist-bound states and the full agonist-bound state, and the population of the latter reflects the signal transduction level in each ligand-bound state. These findings provide insights into the multi-level signalling of β2AR and other GPCRs, including the basal activity, and the mechanism of signal transduction mediated by GPCRs. Many drugs exist that target the β-adrenergic receptor, but they have different efficacies. Kofuku et al. use NMR to show that methionine 82 in the transmembrane domain undergoes conformational changes depending on whether agonists or inverse agonists are bound, explaining the differential drug efficacy.
Collapse
Affiliation(s)
- Yutaka Kofuku
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Jiang H, Xie Y, Abel PW, Toews ML, Townley RG, Casale TB, Tu Y. Targeting phosphoinositide 3-kinase γ in airway smooth muscle cells to suppress interleukin-13-induced mouse airway hyperresponsiveness. J Pharmacol Exp Ther 2012; 342:305-11. [PMID: 22543031 PMCID: PMC3400799 DOI: 10.1124/jpet.111.189704] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 04/26/2012] [Indexed: 11/22/2022] Open
Abstract
We recently reported that phosphoinositide 3-kinase γ (PI3Kγ) directly regulates airway smooth muscle (ASM) contraction by modulating Ca(2+) oscillations. Because ASM contraction plays a critical role in airway hyperresponsiveness (AHR) of asthma, the aim of the present study was to determine whether targeting PI3Kγ in ASM cells could suppress AHR in vitro and in vivo. Intranasal administration into mice of interleukin-13 (IL-13; 10 μg per mouse), a key pathophysiologic cytokine in asthma, induced AHR after 48 h, as assessed by invasive tracheostomy. Intranasal administration of a broad-spectrum PI3K inhibitor or a PI3Kγ-specific inhibitor 1 h before AHR assessment attenuated IL-13 effects. Airway responsiveness to bronchoconstrictor agonists was also examined in precision-cut mouse lung slices pretreated without or with IL-13 for 24 h. Acetylcholine and serotonin dose-response curves indicated that IL-13-treated lung slices had a 40 to 50% larger maximal airway constriction compared with controls. Furthermore, acetylcholine induced a larger initial Ca(2+) transient and increased Ca(2+) oscillations in IL-13-treated primary mouse ASM cells compared with control cells, correlating with increased cell contraction. As expected, PI3Kγ inhibitor treatment attenuated IL-13-augmented airway contractility of lung slices and ASM cell contraction. In both control and IL-13-treated ASM cells, small interfering RNA-mediated knockdown of PI3Kγ by 70% only reduced the initial Ca(2+) transient by 20 to 30% but markedly attenuated Ca(2+) oscillations and contractility of ASM cells by 50 to 60%. This report is the first to demonstrate that PI3Kγ in ASM cells is important for IL-13-induced AHR and that acute treatment with a PI3Kγ inhibitor can ameliorate AHR in a murine model of asthma.
Collapse
Affiliation(s)
- Haihong Jiang
- Department of Pharmacology, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Regulator of G protein signaling 2 is a key modulator of airway hyperresponsiveness. J Allergy Clin Immunol 2012; 130:968-76.e3. [PMID: 22704538 DOI: 10.1016/j.jaci.2012.05.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Revised: 03/29/2012] [Accepted: 05/01/2012] [Indexed: 01/28/2023]
Abstract
BACKGROUND Drugs targeting individual G protein-coupled receptors are used as asthma therapies, but this strategy is limited because of G protein-coupled receptor signal redundancy. Regulator of G protein signaling 2 (RGS2), an intracellular selective inhibitor of multiple bronchoconstrictor receptors, may play a central role in the pathophysiology and treatment of asthma. OBJECTIVE We defined functions and mechanisms of RGS2 in regulating airway hyperresponsiveness (AHR), the pathophysiologic hallmark of asthma. METHODS Real-time PCR and Western blot were used to determine changes in RGS2 expression in ovalbumin-sensitized/-challenged mice. We also used immunohistochemistry and real-time PCR to compare RGS2 expression between human asthmatic and control subjects. The AHR of RGS2 knockout mice was assessed by using invasive tracheostomy and unrestrained plethysmography. Effects of loss of RGS2 on mouse airway smooth muscle (ASM) remodeling, contraction, intracellular Ca(2+), and mitogenic signaling were determined in vivo and in vitro. RESULTS RGS2 was highly expressed in human and murine bronchial epithelium and ASM and was markedly downregulated in lungs of ovalbumin-sensitized/-challenged mice. Lung tissues and blood monocytes from asthma patients expressed significantly lower RGS2 protein (lung) and mRNA (monocytes) than from nonasthma subjects. The extent of reduction of RGS2 on human monocytes correlated with increased AHR. RGS2 knockout caused spontaneous AHR in mice. Loss of RGS2 augmented Ca(2+) mobilization and contraction of ASM cells. Loss of RGS2 also increased ASM mass and stimulated ASM cell growth via extracellular signal-regulated kinase and phosphatidylinositol 3-kinase pathways. CONCLUSION We identified RGS2 as a potent modulator of AHR and a potential novel therapeutic target for asthma.
Collapse
|
29
|
Hou Y, Cao X, Dong L, Wang L, Cheng B, Shi Q, Luo X, Bai G. Bioactivity-based liquid chromatography-coupled electrospray ionization tandem ion trap/time of flight mass spectrometry for β₂AR agonist identification in alkaloidal extract of Alstonia scholaris. J Chromatogr A 2012; 1227:203-9. [PMID: 22269170 DOI: 10.1016/j.chroma.2012.01.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 12/21/2011] [Accepted: 01/02/2012] [Indexed: 11/24/2022]
Abstract
Although chromatographic fingerprinting combined with chemometrics, is a rational method for the quality control of traditional Chinese medicine (TCM), chemometrics cannot fully explore the relationship between chemical information and the efficacy of the potential activity. In the present work, a cell-based β₂ adrenergic receptor (β₂AR) agonist functional evaluation model coupled with high-performance liquid chromatography was developed to screen the potential β₂AR agonist components in the alkaloidal extract of Alstonia scholaris leaves. Using a liquid chromatography with ion trap time-of-flight mass spectrometry (LCMS-IT-TOF) system, the potential bioactive compounds in the prescription were identified and deduced based on the mass spectrometric fragmentation patterns, tandem mass spectrometry (MS/MS) data, and relevant literature. Several new β₂AR agonists of indole alkaloids were successfully found, and their activities were confirmed through an in vivo relaxant test on guinea pig tracheal muscles. The developed method is rapid and reliable compared with conventional fingerprinting and showed high sensitivity and resolution for the identification of β₂AR agonists in TCM prescriptions. This strategy clearly demonstrates that bioactivity-integrated fingerprinting is a powerful tool not only in screening and identifying potential lead compounds and in determining the therapeutic material basis of Chinese herbal prescriptions, but also in supplying suitable chemical markers for their quality control.
Collapse
Affiliation(s)
- Yuanyuan Hou
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Burns RN, Moniri NH. Agonist- and hydrogen peroxide-mediated oxidation of the β2 adrenergic receptor: evidence of receptor s-sulfenation as detected by a modified biotin-switch assay. J Pharmacol Exp Ther 2011; 339:914-21. [PMID: 21917560 DOI: 10.1124/jpet.111.185975] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Reactive oxygen species (ROS), including hydrogen peroxide (H(2)O(2)), have recently been shown to be generated upon agonism of several members of the G protein-coupled receptor (GPCR) superfamily, including β(2)-adrenergic receptors (β(2)ARs). Previously, we have demonstrated that inhibition of intracellular ROS generation mitigates β(2)AR signaling, suggesting that β(2)AR-mediated ROS generation is capable of feeding back to regulate receptor function. Given that ROS, specifically H(2)O(2), are able to post-translationally oxidize protein cysteine sulfhydryls to cysteine-sulfenic acids, the goal of the current study was to assess whether ROS are capable of S-sulfenating β(2)AR. Using a modified biotin-switch assay that is selective for cysteine-sulfenic acids, our results demonstrate for the first time that H(2)O(2) treatment facilitates S-sulfenation of transiently overexpressed β(2)AR in human embryonic kidney 293 cells. It is noteworthy that stimulation of cells with the β-agonist isoproterenol produces both dose- and time-dependent S-sulfenation of β(2)AR, an effect that is receptor-dependent, and demonstrates that receptor-generated ROS are also capable of oxidizing the β(2)AR. Receptor-dependent S-sulfenation was inhibited by the chemoselective sulfenic acid alkylator dimedone and the cysteine antioxidant N-acetyl-l-cysteine. Moreover, our results reveal that receptor oxidation occurs in cells that endogenously express physiologically relevant levels of β(2)AR, because treatment of human alveolar epithelial A549 cells with either H(2)O(2) or the β(2)-selective agonist formoterol promoted receptor S-sulfenation. These findings provide the first evidence, to our knowledge, that a mammalian GPCR can be oxidized by S-sulfenation and signify an important first step toward shedding light on the overlooked role of ROS in the regulation of β(2)AR function.
Collapse
Affiliation(s)
- Rebecca N Burns
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Mercer University, 3001 Mercer University Drive, Atlanta, GA 30341, USA
| | | |
Collapse
|
31
|
Abstract
The acute and chronic effects of certain drugs can often be opposite. For example, in congestive heart failure acute administration of β-adrenoceptor agonists results in beneficial improvement in symptoms of the disease, but their chronic use increases mortality. Conversely, certain β-adrenoceptor antagonists/inverse agonists (β-blockers) initially cause a detrimental response by decreasing cardiac contractility in congestive heart failure, whereas chronic treatment with the same β-blockers improves contractility and survival. Furthermore, this time-dependent reversal of outcomes occurs in nonpharmacological interventions, such as exercise, and can even be observed in the response of plants to pruning or other stressors, with the results being a different short-term versus long-term effect. Here, we review some of these phenomena with a special emphasis on the temporal dissociation of pharmacological effects. Although Francis Colpaert used this knowledge to lead a drug discovery project for an analgesic compound that initially produced hyperalgesia, we focused on examples outside the central nervous system.
Collapse
Affiliation(s)
- Richard A Bond
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, Texas 77204-5037, USA.
| | | |
Collapse
|
32
|
Abstract
Despite the passionate debate over the use of β(2) -adrenoceptor agonists in the treatment of airway disorders, these agents are still central in the symptomatic management of asthma and COPD. A variety of β(2) -adrenoceptor agonists with long half-lives, also called ultra long-acting β(2) -adrenoceptor agonists (ultra-LABAs; indacaterol, olodaterol, vilanterol, carmoterol, LAS100977 and PF-610355) are currently under development with the hopes of achieving once-daily dosing. It is likely that the once-daily dosing of a bronchodilator would be a significant convenience and probably a compliance-enhancing advantage, leading to improved overall clinical outcomes. As combination therapy with an inhaled corticosteroid (ICS) and a LABA is important for treating patients suffering from asthma, and a combination with an inhaled long-acting antimuscarinic agent (LAMA) is important for treating COPD patients whose conditions are not sufficiently controlled by monotherapy with a β(2) -adrenoceptor agonist, some novel once-daily combinations of LABAs and ICSs or LAMAs are under development.
Collapse
Affiliation(s)
- Mario Cazzola
- Unit of Respiratory Clinical Pharmacology, Department of Internal Medicine, University of Rome 'Tor Vergata', Italy.
| | | | | |
Collapse
|
33
|
Current world literature. Curr Opin Pulm Med 2011; 17:50-3. [PMID: 21116136 DOI: 10.1097/mcp.0b013e3283418f95] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
34
|
Xiao K, Shenoy SK. Beta2-adrenergic receptor lysosomal trafficking is regulated by ubiquitination of lysyl residues in two distinct receptor domains. J Biol Chem 2011; 286:12785-95. [PMID: 21330366 PMCID: PMC3069478 DOI: 10.1074/jbc.m110.203091] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 02/16/2011] [Indexed: 01/08/2023] Open
Abstract
Agonist stimulation of the β2-adrenergic receptors (β2ARs) leads to their ubiquitination and lysosomal degradation. Inhibition of lysosomal proteases results in the stabilization and retention of internalized full-length β2ARs in the lysosomes, whereas inhibition of proteasomal proteases stabilizes newly synthesized β2ARs in nonlysosomal compartments. Additionally, a lysine-less β2AR (0K-β2AR) that is deficient in ubiquitination and degradation is not sorted to lysosomes unlike the WT β2AR, which is sorted to lysosomes. Thus, lysosomes are the primary sites for the degradation of agonist-activated, ubiquitinated β2ARs. To identify the specific site(s) of ubiquitination required for lysosomal sorting of the β2AR, four mutants, with lysines only in one intracellular domain, namely, loop 1, loop 2, loop 3, and carboxyl tail were generated. All of these receptor mutants coupled to G proteins, recruited β-arrestin2, and internalized just as the WT β2AR. However, only loop 3 and carboxyl tail β2ARs with lysines in the third intracellular loop or in the carboxyl tail were ubiquitinated and sorted for lysosomal degradation. As a complementary approach, we performed MS-based proteomic analyses to directly identify ubiquitination sites within the β2AR. We overexpressed and purified the β2AR from HEK-293 cells with or without prior agonist exposure and subjected trypsin-cleaved β2AR to LC-MS/MS analyses. We identified ubiquitinated lysines in the third intracellular loop (Lys-263 and Lys-270) and in the carboxyl tail (Lys-348, Lys-372, and Lys-375) of the β2AR. These findings introduce a new concept that two distinct domains in the β2AR are involved in ubiquitination and lysosomal degradation, contrary to the generalization that such regulatory mechanisms occur mainly at the carboxyl tails of GPCRs and other transmembrane receptors.
Collapse
Affiliation(s)
- Kunhong Xiao
- From the Departments of Medicine and Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
| | - Sudha K. Shenoy
- From the Departments of Medicine and Cell Biology, Duke University Medical Center, Durham, North Carolina 27710
| |
Collapse
|
35
|
Beta-Adrenergic Agonists. Pharmaceuticals (Basel) 2010; 3:1016-1044. [PMID: 27713285 PMCID: PMC4034018 DOI: 10.3390/ph3041016] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 03/15/2010] [Accepted: 03/26/2010] [Indexed: 12/31/2022] Open
Abstract
Inhaled β2-adrenoceptor (β2-AR) agonists are considered essential bronchodilator drugs in the treatment of bronchial asthma, both as symptoms-relievers and, in combination with inhaled corticosteroids, as disease-controllers. In this article, we first review the basic mechanisms by which the β2-adrenergic system contributes to the control of airway smooth muscle tone. Then, we go on describing the structural characteristics of β2-AR and the molecular basis of G-protein-coupled receptor signaling and mechanisms of its desensitization/ dysfunction. In particular, phosphorylation mediated by protein kinase A and β-adrenergic receptor kinase are examined in detail. Finally, we discuss the pivotal role of inhaled β2-AR agonists in the treatment of asthma and the concerns about their safety that have been recently raised.
Collapse
|