1
|
Alanazi FA, Almaary KS, Dawoud TM, El-Tayeb MA, Elbadawi YB, Mubarak AS, Somily AM. Molecular characterization of putative antibiotic resistance determinant and virulence factors genes of Acinetobacter baumannii strains isolated from intensive care unit patients in Riyadh, Saudi Arabia. J Infect Public Health 2025; 18:102695. [PMID: 39933422 DOI: 10.1016/j.jiph.2025.102695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 02/04/2025] [Accepted: 02/04/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Multidrug resistance in Acinetobacter baumannii (A. baumannii) is a major global health threat. The resistance in A. baumannii is attributed to numerous factors, including antimicrobial resistance and virulence-determinant genes. Hence, the present study aimed to screen antibiotic resistance and virulence factors genes in 67 A. baumannii strains isolated from patients admitted to several hospitals in Riyadh City, Saudi Arabia. METHOD The A. baumannii isolates were confirmed by the VITEK-2 automated system and 16S rRNA phylogenetic relatedness. The phenotypic and genotypic resistance patterns of these isolates were also analyzed using conventional and molecular methods. RESULTS Our finding showed that 94 % of isolated strains were MDR, and more than 94 % were resistant to the β-lactams group, particularly carbapenems, and the ciprofloxacin group. An intermediate resistance pattern was obtained with trimethoprim-sulfamethoxazole (71.6 %) and gentamicin (59.7 %). The lowest resistant patterns showed with colistin (5 %). The distribution of of resistance genes oxa-23, imp-like, oxa-24-like, tem, oxa-40, carb, oxa-58, floR, dfrA1 and qnrS were 100 %, 76.1 %, 64.1 %, 25.3 %, 23.8 %, 16.4 %, 14.9 %, 44.7 %, 5.9 % and 2.9 %, respectively. The distribution of virulence genes baP, pld, paaE, and surA1 was 98.5 %, followed by basD, traT, Omp33-36, and bauA were 97 %, 77.6 %, 74.4 %, and 64.1 %, respectively. CONCLUSION The study showed a strong relationship between virulence factors, especially biofilm formation, and antibiotic resistance.
Collapse
Affiliation(s)
- Faris A Alanazi
- Department of Botany and Microbiology, College of Sciences, King Saud University, P.O. Box: 2455, Riyadh 11451, Saudi Arabia
| | - Khalid S Almaary
- Department of Botany and Microbiology, College of Sciences, King Saud University, P.O. Box: 2455, Riyadh 11451, Saudi Arabia.
| | - Turki M Dawoud
- Department of Botany and Microbiology, College of Sciences, King Saud University, P.O. Box: 2455, Riyadh 11451, Saudi Arabia.
| | - Mohamed A El-Tayeb
- Department of Botany and Microbiology, College of Sciences, King Saud University, P.O. Box: 2455, Riyadh 11451, Saudi Arabia
| | - Yahya B Elbadawi
- Department of Botany and Microbiology, College of Sciences, King Saud University, P.O. Box: 2455, Riyadh 11451, Saudi Arabia
| | - Ayman S Mubarak
- Department of Botany and Microbiology, College of Sciences, King Saud University, P.O. Box: 2455, Riyadh 11451, Saudi Arabia
| | - Ali M Somily
- Department of Pathology and Laboratory Medicine, College of Medicine, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Serwacki PA, Hareza DA, Kujawska A, Pałka A, Jachowicz-Matczak E, Rybka-Grymek A, Świątek-Kwapniewska W, Pawłowska I, Gniadek Z, Gutkowska K, Gajda M, Wójkowska-Mach J. Molecular epidemiology and clinical significance of carbapenemase genes in carbapenem-resistant Acinetobacter baumannii isolates in southern Poland. Pol Arch Intern Med 2024; 134:16734. [PMID: 38656082 PMCID: PMC11615936 DOI: 10.20452/pamw.16734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
INTRODUCTION A complex interplay between Acinetobacter spp., patients, and the environment has made it increasingly difficult to optimally treat patients infected with Acinetobacter spp., mainly due to rising antimicrobial resistance and challenges with surveillance. OBJECTIVES This study evaluated carbapenem‑resistant A. baumannii (CRAB) isolates to determine their resistance profiles and the presence of specific β‑lactamases to inform CRAB surveillance upon hospital admission and regional empiric antibiotic therapies. PATIENTS AND METHODS The study was conducted at 4 hospitals in southern Poland between June and December 2022. Only health care-associated infections caused by A. baumannii were considered. A total of 82 CRAB isolates were included in the analysis. Species identification was performed by matrix‑assisted laser desorption / ionization time‑of‑flight mass spectrometry, antimicrobial susceptibility was determined phenotypically, and polymerase chain reactions were carried out to identify the resistance genes. RESULTS Depending on the hospital, the incidence of CRAB infections varied from 428.6 to 759.5 per 10 000 admissions in intensive care units (ICUs), and from 0.3 to 21 per 10 000 admissions in non‑ICUs. CRAB antibiotic susceptibility was the highest for cefiderocol (100%), colistin (96%), tigecycline (77%), gentamicin (51%), and ampicillin / sulbactam (36%). The most prevalent blaOXA genes were blaOXA‑66‑1 (95%) and blaOXA‑40 (71%), and additionally the extended‑spectrum β‑lactamase gene blaTEM‑1 (41%). CONCLUSION An unexpectedly high incidence of CRAB infections occurred in Polish hospitals. There is a need for effective CRAB prevention and control that includes effective hospital screening, national surveillance, and improved treatment options.
Collapse
Affiliation(s)
- Piotr A Serwacki
- Department of Anesthesiology and Intensive Care, St. Luke’s Provincial Hospital, Tarnów, Poland
| | - Dariusz A Hareza
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Anna Kujawska
- Department of Microbiology, University Hospital in Krakow, Kraków, Poland
| | - Anna Pałka
- Department of Microbiology, University Hospital in Krakow, Kraków, Poland
| | - Estera Jachowicz-Matczak
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Agata Rybka-Grymek
- Laboratory of Microbiology and Epidemiology, District Hospital in Bochnia, Bochnia, Poland
| | | | - Iwona Pawłowska
- Division of Microbiology, St. Barbara Specialized Regional Hospital No. 5, Sosnowiec, Poland
| | - Zofia Gniadek
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Karolina Gutkowska
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Mateusz Gajda
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland.
| | - Jadwiga Wójkowska-Mach
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
3
|
Li YT, Chen XD, Guo YY, Lin SW, Wang MZ, Xu JB, Wang XH, He GH, Tan XX, Zhuo C, Lin ZW. Emergence of eravacycline heteroresistance in carbapenem-resistant Acinetobacter baumannii isolates in China. Front Cell Infect Microbiol 2024; 14:1356353. [PMID: 38601741 PMCID: PMC11004246 DOI: 10.3389/fcimb.2024.1356353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/06/2024] [Indexed: 04/12/2024] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii (CRAB) is resistant to almost all antibiotics. Eravacycline, a newer treatment option, has the potential to treat CRAB infections, however, the mechanism by which CRAB isolates develop resistance to eravacycline has yet to be clarified. This study sought to investigate the features and mechanisms of eravacycline heteroresistance among CRAB clinical isolates. A total of 287 isolates were collected in China from 2020 to 2022. The minimum inhibitory concentration (MIC) of eravacycline and other clinically available agents against A. baumannii were determined using broth microdilution. The frequency of eravacycline heteroresistance was determined by population analysis profiling (PAP). Mutations and expression levels of resistance genes in heteroresistant isolates were determined by polymerase chain reaction (PCR) and quantitative real-time PCR (qRT-PCR), respectively. Antisense RNA silencing was used to validate the function of eravacycline heteroresistant candidate genes. Twenty-five eravacycline heteroresistant isolates (17.36%) were detected among 144 CRAB isolates with eravacycline MIC values ≤4 mg/L while no eravacycline heteroresistant strains were detected in carbapenem-susceptible A. baumannii (CSAB) isolates. All eravacycline heteroresistant strains contained OXA-23 carbapenemase and the predominant multilocus sequence typing (MLST) was ST208 (72%). Cross-resistance was observed between eravacycline, tigecycline, and levofloxacin in the resistant subpopulations. The addition of efflux pump inhibitors significantly reduced the eravacycline MIC in resistant subpopulations and weakened the formation of eravacycline heteroresistance in CRAB isolates. The expression levels of adeABC and adeRS were significantly higher in resistant subpopulations than in eravacycline heteroresistant parental strains (P < 0.05). An ISAba1 insertion in the adeS gene was identified in 40% (10/25) of the resistant subpopulations. Decreasing the expression of adeABC or adeRS by antisense RNA silencing significantly inhibited eravacycline heteroresistance. In conclusion, this study identified the emergence of eravacycline heteroresistance in CRAB isolates in China, which is associated with high expression of AdeABC and AdeRS.
Collapse
Affiliation(s)
- Yi-tan Li
- Key Laboratory of Respiratory Disease, People’s Hospital of Yangjiang, Yangjiang, China
| | - Xian-di Chen
- Key Laboratory of Respiratory Disease, People’s Hospital of Yangjiang, Yangjiang, China
| | - Ying-yi Guo
- Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shan-wen Lin
- Key Laboratory of Respiratory Disease, People’s Hospital of Yangjiang, Yangjiang, China
| | - Ming-zhen Wang
- Key Laboratory of Respiratory Disease, People’s Hospital of Yangjiang, Yangjiang, China
| | - Jian-bo Xu
- Key Laboratory of Respiratory Disease, People’s Hospital of Yangjiang, Yangjiang, China
| | - Xiao-hu Wang
- Key Laboratory of Respiratory Disease, People’s Hospital of Yangjiang, Yangjiang, China
| | - Guo-hua He
- Key Laboratory of Respiratory Disease, People’s Hospital of Yangjiang, Yangjiang, China
| | - Xi-xi Tan
- Key Laboratory of Respiratory Disease, People’s Hospital of Yangjiang, Yangjiang, China
| | - Chao Zhuo
- Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhi-wei Lin
- Key Laboratory of Respiratory Disease, People’s Hospital of Yangjiang, Yangjiang, China
| |
Collapse
|
4
|
Su PW, Yang EC, Moi SH, Yang CH, Chuang LY. Prevalence of Carbapenem Resistance Genes among Acinetobacter baumannii Isolated from a Teaching Hospital in Taiwan. Antibiotics (Basel) 2023; 12:1357. [PMID: 37760654 PMCID: PMC10525170 DOI: 10.3390/antibiotics12091357] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/27/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023] Open
Abstract
The problem of antibiotic-resistant strains has become a global public issue; antibiotic resistance not only limits the choice of treatments but also increases morbidity, mortality and treatment costs. The multi-drug resistant Acinetobacter baumannii is occurring simultaneously in hospitals and has become a major public health issue worldwide. Although many medical units have begun to control the use of antibiotics and paid attention to the issue of drug resistance, understanding the transmission pathways of clinical drug-resistant bacteria and drug-resistant mechanisms can be effective in real-time control and prevent the outbreak of antibiotic-resistant pathogens. In this study, a total of 154 isolates of Acinetobacter baumannii obtained from Chia-Yi Christian Hospital in Taiwan were collected for specific resistance genotyping analysis. Ten genes related to drug resistance, including blaOXA-51-like, blaOXA-23-like, blaOXA-58-like, blaOXA-24-like, blaOXA-143-like, tnpA, ISAba1, blaPER-1, blaNDM and blaADC, and the repetitive element (ERIC2) were selected for genotyping analysis. The results revealed that 135 A. baumannii isolates (87.6%) carried the blaOXA-51-like gene, 4.5% of the isolates harbored the blaOXA-23-like gene, and 3.2% of the isolates carried the blaOXA-58-like gene. However, neither the blaOXA-24-like nor blaOXA-143-like genes were detected in the isolates. Analysis of ESBL-producing strains revealed that blaNDM was not found in the test strains, but 38.3% of the test isolates carried blaPER-1. In addition, blaADC, tnpA and ISAba1genes were found in 64.9%, 74% and 93% of the isolates, respectively. Among the carbapenem-resistant strains of A. baumannii, 68% of the isolates presenting a higher antibiotic resistance carried both tnpA and ISAba1 genes. Analysis of the relationship between their phenotypes (antibiotic resistant and biofilm formation) and genotypes (antibiotic-resistant genes and biofilm-related genes) studied indicated that the bap, ompA, ISAba1and blaOXA-51 genes influenced biofilm formation and antibiotic resistance patterns based on the statistical results of a hierarchical clustering dendrogram. The analysis of the antibiotic-resistant mechanism provides valuable information for the screening, identification, diagnosis, treatment and control of clinical antibiotic-resistant pathogens, and is an important reference pointer to prevent strains from producing resistance.
Collapse
Affiliation(s)
- Pai-Wei Su
- General Education Center, Wenzao Ursuline University of Languages, Kaohsiung 80793, Taiwan;
| | - Emirlyn Cheng Yang
- Department of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Sin-Hua Moi
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Cheng-Hong Yang
- Department of Information Management, Tainan University of Technology, Tainan 71002, Taiwan
- Ph. D. Program in Biomedical Engineering, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Li-Yeh Chuang
- Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung 84001, Taiwan
| |
Collapse
|
5
|
Al-Shamiri MM, Wang J, Zhang S, Li P, Odhiambo WO, Chen Y, Han B, Yang E, Xun M, Han L, Han S. Probiotic Lactobacillus Species and Their Biosurfactants Eliminate Acinetobacter baumannii Biofilm in Various Manners. Microbiol Spectr 2023; 11:e0461422. [PMID: 36920192 PMCID: PMC10100725 DOI: 10.1128/spectrum.04614-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
Acinetobacter baumannii is a critical biofilm-forming pathogen that has presented great challenges in the clinic due to multidrug resistance. Thus, new methods of intervention are needed to control biofilm-associated infections. In this study, among three tested Lactobacillus species, Lactobacillus rhamnosus showed significant antimaturation and antiadherence effects against A. baumannii biofilm. Lactic acid (LA) and acetic acid (AA) were the most effective antibiofilm biosurfactants (BSs) produced by L. rhamnosus. This antibiofilm phenomenon produced by LA and AA was due to the strong bactericidal effect, which worked from very early time points, as determined by colony enumeration and confocal laser scanning microscope. The cell destruction of A. baumannii appeared in both the cell envelope and cytoplasm. A discontinuous cell envelope, the leakage of cell contents, and the increased extracellular activity of ATPase demonstrated the disruption of the cell membrane by LA and AA. These effects also demonstrated the occurrence of protein lysis. In addition, bacterial DNA interacted with and was damaged by LA and AA, resulting in significantly reduced expression of biofilm and DNA repair genes. The results highlight the possibility and importance of using probiotics in clinical prevention. Probiotics can be utilized as novel biocides to block and decrease biofilm formation and microbial contamination in medical equipment and during the treatment of infections. IMPORTANCE A. baumannii biofilm is a significant virulence factor that causes the biofilm colonization of invasive illnesses. Rising bacterial resistance to synthetic antimicrobials has prompted researchers to look at natural alternatives, such as probiotics and their derivatives. In this study, L. rhamnosus and its BSs (LA and AA) demonstrated remarkable antibiofilm and antimicrobial characteristics, with a significant inhibitory effect on A. baumannii. These effects were achieved by several mechanisms, including the disruption of the cell envelope membrane, protein lysis, reduced expression of biofilm-related genes, and destruction of bacterial DNA. The results provide support for the possibility of using probiotics and their derivatives in the clinical prevention and therapy of A. baumannii infections.
Collapse
Affiliation(s)
- Mona Mohamed Al-Shamiri
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Jingdan Wang
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Sirui Zhang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Pu Li
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Woodvine Otieno Odhiambo
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Yanjiong Chen
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Bei Han
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - E. Yang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Meng Xun
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Lei Han
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Shaoshan Han
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
6
|
An Outer Membrane Protein YiaD Contributes to Adaptive Resistance of Meropenem in Acinetobacter baumannii. Microbiol Spectr 2022; 10:e0017322. [PMID: 35377216 PMCID: PMC9045393 DOI: 10.1128/spectrum.00173-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Acinetobacter baumannii is an important nosocomial pathogen that can develop various resistance mechanisms to many antibiotics. However, little is known about how it evolves from an antibiotic sensitive to a resistant phenotype. In this study, we investigated the transition of outer membrane proteins (OMPs) under antibiotic stress and identified YiaD as an OMP marker involved in the development of adaptive resistance to meropenem (MEM) in A. baumannii. Following stimulation of a carbapenem-sensitive strain AB5116 with sub-MIC of MEM, yiaD showed significantly decreased expression, and this decrease continued with prolonged stimulation for 8 h. The downregulation of yiaD was not only observed in clinically sensitive strains but also in 45 carbapenem-resistant isolates that produced the β-lactamases TEM and OXA-23. However, the extent of the reduction of yiaD expression in resistant strains was less than that in sensitive strains. Lack of yiaD resulted in a 4-fold increase in the MIC of AB5116 to MEM. The same level of depressed susceptibility induced by yiaD deletion was observed in both a growth curve test and a survival rate assay. Moreover, the colony shape became enlarged and irregular after loss of yiaD, and the biofilm formation ability of A. baumannii was influenced by YiaD. These results suggest that YiaD could respond to the stimulus of MEM in A. baumannii with a downregulation trend that kept pace with the prolonged stimulation time, indicating that it participates in various routes to benefit MEM resistance evolution in both carbapenem-sensitive and -resistant A. baumannii strains. IMPORTANCEAcinetobacter baumannii can develop various resistance mechanisms to carbapenems. However, the factors involved in the evolutionary process that leads from transition to the sensitive to resistant phenotype are not clear. The outer membrane protein YiaD of A. baumannii was downregulated under the stress of meropenem (MEM), and its expression level was continuously reduced with prolonged stimulation time. The downregulation of yiaD was not only observed in sensitive strains but also in carbapenem-resistant isolates producing the β-lactamases TEM and OXA-23. However, the extent of yiaD reduction was less in resistant strains than in sensitive strains. Lack of yiaD resulted in an increased MEM MIC, enlarged and irregular colonies, and decreased biofilm formation ability. These results suggest that YiaD responds to MEM stimulus in A. baumannii and participates in the adaptive resistance of MEM in both carbapenem-sensitive and -resistant strains.
Collapse
|
7
|
Tsilipounidaki K, Athanasakopoulou Z, Müller E, Burgold-Voigt S, Florou Z, Braun SD, Monecke S, Gatselis NK, Zachou K, Stefos A, Tsagalas I, Sofia M, Spyrou V, Billinis C, Dalekos GN, Ehricht R, Petinaki E. Plethora of Resistance Genes in Carbapenem-Resistant Gram-Negative Bacteria in Greece: No End to a Continuous Genetic Evolution. Microorganisms 2022; 10:microorganisms10010159. [PMID: 35056608 PMCID: PMC8781379 DOI: 10.3390/microorganisms10010159] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 12/02/2022] Open
Abstract
Carbapenem-resistant Gram-negative bacteria are a public health threat that requires urgent action. The fact that these pathogens commonly also harbor resistance mechanisms for several other antimicrobial classes further reduces patient treatment options. The present study aimed to provide information regarding the multidrug resistance genetic background of carbapenem-resistant Gram-negative bacteria in Central Greece. Strains from a tertiary care hospital, collected during routine practice, were characterized using a DNA microarray-based assay. Various different resistance determinants for carbapenems, other beta-lactams, aminoglycosides, quinolones, trimethoprim, sulfonamides and macrolides were detected among isolates of the same sequence type. Eighteen different multidrug resistance genomic profiles were identified among the twenty-four K. pneumoniae ST258, seven different profiles among the eight K. pneumoniae ST11, four profiles among the six A. baumannii ST409 and two among the three K. oxytoca. This report describes the multidrug resistance genomic background of carbapenem-resistant Gram-negative bacteria from a tertiary care hospital in Central Greece, providing evidence of their continuous genetic evolution.
Collapse
Affiliation(s)
- Katerina Tsilipounidaki
- Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece; (K.T.); (Z.F.); (N.K.G.); (K.Z.); (A.S.); (I.T.); (G.N.D.)
| | - Zoi Athanasakopoulou
- Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece; (Z.A.); (M.S.); (C.B.)
| | - Elke Müller
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany; (E.M.); (S.B.-V.); (S.D.B.); (S.M.); (R.E.)
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Sindy Burgold-Voigt
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany; (E.M.); (S.B.-V.); (S.D.B.); (S.M.); (R.E.)
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Zoi Florou
- Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece; (K.T.); (Z.F.); (N.K.G.); (K.Z.); (A.S.); (I.T.); (G.N.D.)
| | - Sascha D. Braun
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany; (E.M.); (S.B.-V.); (S.D.B.); (S.M.); (R.E.)
- InfectoGnostics Research Campus, 07743 Jena, Germany
| | - Stefan Monecke
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany; (E.M.); (S.B.-V.); (S.D.B.); (S.M.); (R.E.)
- InfectoGnostics Research Campus, 07743 Jena, Germany
- Institut fuer Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Dresden, 01307 Dresden, Germany
| | - Nikolaos K. Gatselis
- Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece; (K.T.); (Z.F.); (N.K.G.); (K.Z.); (A.S.); (I.T.); (G.N.D.)
| | - Kalliopi Zachou
- Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece; (K.T.); (Z.F.); (N.K.G.); (K.Z.); (A.S.); (I.T.); (G.N.D.)
| | - Aggelos Stefos
- Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece; (K.T.); (Z.F.); (N.K.G.); (K.Z.); (A.S.); (I.T.); (G.N.D.)
| | - Ilias Tsagalas
- Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece; (K.T.); (Z.F.); (N.K.G.); (K.Z.); (A.S.); (I.T.); (G.N.D.)
| | - Marina Sofia
- Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece; (Z.A.); (M.S.); (C.B.)
| | - Vassiliki Spyrou
- Faculty of Animal Science, University of Thessaly, 41110 Larissa, Greece;
| | - Charalambos Billinis
- Faculty of Veterinary Science, University of Thessaly, 43100 Karditsa, Greece; (Z.A.); (M.S.); (C.B.)
- Faculty of Public and One Health, University of Thessaly, 43100 Karditsa, Greece
| | - George N. Dalekos
- Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece; (K.T.); (Z.F.); (N.K.G.); (K.Z.); (A.S.); (I.T.); (G.N.D.)
| | - Ralf Ehricht
- Leibniz Institute of Photonic Technology (IPHT), 07745 Jena, Germany; (E.M.); (S.B.-V.); (S.D.B.); (S.M.); (R.E.)
- InfectoGnostics Research Campus, 07743 Jena, Germany
- Institute of Physical Chemistry, Friedrich Schiller University Jena, 07737 Jena, Germany
| | - Efthymia Petinaki
- Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece; (K.T.); (Z.F.); (N.K.G.); (K.Z.); (A.S.); (I.T.); (G.N.D.)
- Correspondence:
| |
Collapse
|
8
|
Ababneh Q, Aldaken N, Jaradat Z, Al Sbei S, Alawneh D, Al-Zoubi E, Alhomsi T, Saadoun I. Molecular epidemiology of carbapenem-resistant Acinetobacter baumannii isolated from three major hospitals in Jordan. Int J Clin Pract 2021; 75:e14998. [PMID: 34714567 DOI: 10.1111/ijcp.14998] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/27/2021] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND In the last decade, incidences of carbapenem-resistant Acinetobacter baumannii have been increasingly reported worldwide. Consequently, A. baumannii was included in the World Health Organization's new list of critical pathogens, for which new drugs are desperately needed. The objective of this research was to study the molecular epidemiology and antimicrobial susceptibility of clinical carbapenem-resistant A. baumannii isolated from Jordanian hospitals. METHODS A total of 78 A. baumannii and 8 Acinetobacter spp. isolates were collected from three major hospitals in Jordan during 2018. Disc diffusion and microdilution methods were used to test their susceptibility against 19 antimicrobial agents. Multilocus sequence typing (MLST) was performed using the Pasteur scheme, followed by eBURST analysis for all isolates. PCR was used to detect β-lactam resistance genes, blaOXA-23-like , blaOXA-51-like , and blaNDM-1 . RESULTS Of the 86 tested isolates, 78 (90.6%) exhibited resistance to carbapenems, whereas no resistance was recorded to tigecycline or polymyxins. Based on the resistance profiles, 10.4% and 84.8% of isolates were classified into multidrug resistant (MDR) or extensively drug resistant (XDR), respectively. The most prevalent carbapenems resistance genes amongst isolates were blaOXA-51-Like (89.5%), followed by blaOXA-23-Like (88.3%) and blaNDM-1 (10.4%). MLST revealed the presence of 19 sequence types (STs), belonging to eight different international complexes. The most commonly detected clonal complex (CC) was CC2, representing 64% of all typed isolates. CONCLUSIONS This is the first study to report the clonal diversity of A. baumannii isolates in Jordan. A high incidence of carbapenem resistance was detected in the isolates investigated. In addition, our findings provided evidence for the widespread of blaOXA-23-like harbouring carbapenem-resistant A. baumannii and belonging to CC2. The number of XDR isolates identified in this study is alarming. Thus, periodic surveillance and molecular epidemiological studies of resistance factors are important to improve treatment outcomes and prevent the spread of A. baumannii infections.
Collapse
Affiliation(s)
- Qutaiba Ababneh
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| | - Neda'a Aldaken
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| | - Ziad Jaradat
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| | - Sara Al Sbei
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| | - Dua'a Alawneh
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| | - Esra'a Al-Zoubi
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| | - Tasnim Alhomsi
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| | - Ismail Saadoun
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, UAE
| |
Collapse
|
9
|
Zhang T, Xu X, Xu CF, Bilya SR, Xu W. Mechanical ventilation-associated pneumonia caused by Acinetobacter baumannii in Northeast China region: analysis of genotype and drug resistance of bacteria and patients' clinical features over 7 years. Antimicrob Resist Infect Control 2021; 10:135. [PMID: 34526127 PMCID: PMC8444615 DOI: 10.1186/s13756-021-01005-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 09/01/2021] [Indexed: 11/22/2022] Open
Abstract
Objective To investigate the clinical features and outcomes of patients with mechanical ventilation-associated pneumonia (VAP) caused by Acinetobacter baumannii (Ab), and to characterize the drug resistance of pathogenic strains and carbapenem resistance-associated genes. Methods Clinical data were collected from the PICU of Shengjing Hospital. Patients who met the diagnostic criteria of VAP and for whom Ab was a pathogen were selected as study participants. The patients were divided into carbapenem-resistant A. baumannii (CRAB) and carbapenem-sensitive A. baumannii (CSAB) groups. The genes closely associated with Ab resistance to carbapenems and the efflux pump-related genes were detected by real-time polymerase chain reaction, and results compared between the two groups. Results The total mechanical ventilation time and the administration time of antibiotics after a diagnosis of Ab infection were significantly higher in the CRAB group. And the CRAB group strains were only sensitive to amikacin, cephazolin, compound sulfamethoxazole, and tigecycline. Genetic test results indicated that IPM expression was not significantly different between two groups. The OXA-51 and OXA-23 in the CRAB group was markedly higher than that in the CSAB group, while OXA-24 expression was markedly lower. The expression of AdeABC and AdeFGH was significantly greater in the CRAB compared to CSAB group. Conclusion In pediatric patients with VAP caused by Ab infection, the detection rate of CRAB strains is far higher than that of CSAB strains; The abnormal expression of β-lactamase-producing genes (OXA-23, OXA-24, and OXA-51) and efflux pump-related genes (AdeABC and AdeFGH) is closely related to the production of CRAB.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36, SanHao Street, Shenyang City, 110004, Liaoning Province, People's Republic of China
| | - Xiao Xu
- Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36, SanHao Street, Shenyang City, 110004, Liaoning Province, People's Republic of China
| | - Cai-Fang Xu
- Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36, SanHao Street, Shenyang City, 110004, Liaoning Province, People's Republic of China
| | - Salisu Rabiu Bilya
- Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36, SanHao Street, Shenyang City, 110004, Liaoning Province, People's Republic of China
| | - Wei Xu
- Department of Pediatrics, Shengjing Hospital of China Medical University, No. 36, SanHao Street, Shenyang City, 110004, Liaoning Province, People's Republic of China.
| |
Collapse
|
10
|
Zhang H, Jia P, Zhu Y, Zhang G, Zhang J, Kang W, Duan S, Zhang W, Yang Q, Xu Y. Susceptibility to Imipenem/Relebactam of Pseudomonas aeruginosa and Acinetobacter baumannii Isolates from Chinese Intra-Abdominal, Respiratory and Urinary Tract Infections: SMART 2015 to 2018. Infect Drug Resist 2021; 14:3509-3518. [PMID: 34511942 PMCID: PMC8418378 DOI: 10.2147/idr.s325520] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/17/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose In recent years, less options are available for treating carbapenem-resistant Acinetobacter baumannii and carbapenem-resistant Pseudomonas aeruginosa. The present study investigates the susceptibility rates to imipenem/relebactam for the treatment of intra-abdominal infections (IAIs), respiratory tract infections (RTIs) and urinary tract infections (UTIs) caused by A. baumannii and P. aeruginosa in China. Patients and Methods A total of 1886 P. aeruginosa and 1889 A. baumannii isolates were collected in 21 centers (7 regions) as a part of the global SMART surveillance program between 2015 and 2018. Antimicrobial susceptibility testing was performed according to the Clinical and Laboratory Standards Institute (CLSI) recommendations using the broth microdilution methodology at Peking Union Medical College Hospital. Results For P. aeruginosa, overall susceptibility rates to imipenem/relebactam were 84.2% at a CLSI breakpoint of ≤2 mg/L compared to 55.7% for imipenem. Susceptibility rates of imipenem-non-susceptible P. aeruginosa to imipenem/relebactam were 64.4% and for multidrug-resistance (MDR) P. aeruginosa susceptibility rates were increased from 25.2% for imipenem to 65.8% for imipenem/relebactam. The susceptibilities of imipenem-non-susceptible and MDR P. aeruginosa strains were similarly restored by imipenem/relebactam in non-ICU and ICU wards. The rate of imipenem-non-susceptibilities A. baumannii isolates was 79.0%, whereas the MDR rate was 81.9%. Relebactam did not change the susceptibilities of imipenem-non susceptible or MDR A. baumannii isolates. Conclusion Imipenem/relebactam provides a therapy option to treat infections caused by MDR or imipenem-non-susceptible P. aeruginosa but not A. baumannii infections in China.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Peiyao Jia
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, People's Republic of China
| | - Ying Zhu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China.,Graduate School, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, People's Republic of China
| | - Ge Zhang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Jingjia Zhang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Wei Kang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Simeng Duan
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Weijuan Zhang
- MRL Global Medical Affairs, MSD China, Shanghai, People's Republic of China
| | - Qiwen Yang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Yingchun Xu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| |
Collapse
|
11
|
Jiang M, Chen X, Liu S, Zhang Z, Li N, Dong C, Zhang L, Wu H, Zhao S. Epidemiological Analysis of Multidrug-Resistant Acinetobacter baumannii Isolates in a Tertiary Hospital Over a 12-Year Period in China. Front Public Health 2021; 9:707435. [PMID: 34458227 PMCID: PMC8388840 DOI: 10.3389/fpubh.2021.707435] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/08/2021] [Indexed: 11/13/2022] Open
Abstract
Acinetobacter baumannii is an important nosocomial pathogen, which is multidrug resistant (MDR). Acinetobacter baumannii has become a major threat to public health worldwide due to its ability to easily acquire resistant genes. In order to analyze its epidemiology characteristics and the genetic evolution, A. baumannii isolates obtained from a Chinese tertiary hospital in the past 12 years (2008-2019), 295 isolates of non-repetitive A. baumannii, were recovered from patients and wards environments. The resistance genes were analyzed using antimicrobial susceptibility testing. The genetic relatedness of 295 isolates was identified by multilocus sequence typing (MLST) and eBURST analysis. It was found that the antibiotic-resistant and carbapenemase-resistant genes of all the 295 MDR A. baumannii in the hospital have not changed significantly over the past 12 years; all of them were resistant to multiple antibiotics except the polymyxin E and tigecycline. The results of drug-resistant genes showed that the detection rates of carbapenemase-resistant genes bla OXA-23, bla TEM-1, and bla OXA-66 were 97.6, 75.3, and 71.9%, respectively, which were detected almost every year from 2008 to 2019. Additionally, 16s rRNA methylation enzyme gene armA, aminoglycoside-resistant gene ant(3")-I, and class I integrase gene could also have a high positive rate. By MLST, these isolates were assigned to 12 sequence types (STs), including ST369, ST208, ST195, ST191, ST368, ST530, ST469, ST451, ST229, ST381, ST543, and ST1176. eBURST analysis showed that 9 STs with ST208 as the founder genotype belonged to Group 1 except for ST229, ST530, and ST1176. Therefore, most MDR A. baumannii isolates had a relatively close genetic relationship. Notably, the predominant ST208 and ST369 at the early stage changed to ST451 in 2019, indicating that the complex and diverse genetic background of the prevalence of A. baumannii isolates in the hospital. Overall, further epidemiological surveillance and genetic evolution analysis of A. baumannii are required, which can provide new strategies for the prevention and control of A. baumannii infections.
Collapse
Affiliation(s)
| | - Xia Chen
- Tai'an City Central Hospital, Taian, China
| | - Shuang Liu
- Tai'an City Central Hospital, Taian, China
| | | | - Ning Li
- College of Animal Science and Veterinary Medicine, Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Chao Dong
- Tai'an City Central Hospital, Taian, China
| | - Ling Zhang
- Tai'an City Central Hospital, Taian, China
| | - Haiyan Wu
- Tai'an City Central Hospital, Taian, China
| | | |
Collapse
|
12
|
Phenotypic and genotypic characteristics of Acinetobacter baumannii enrolled in the relationship among antibiotic resistance, biofilm formation and motility. Microb Pathog 2021; 155:104922. [PMID: 33932545 DOI: 10.1016/j.micpath.2021.104922] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 12/30/2022]
Abstract
Acinetobacter baumannii is an important pathogen in clinical. The factors of biofilm formation, antibiotic resistance and motility contribute great to A. baumannii in persisting in stressed environment, and further leads to nosocomial infections. 70 A. baumannii clinical isolates were investigated for their clinical characteristics of infection. Among the tested strains, 54 (77.1%) isolates were obtained from ICUs, with the frequency of multidrug-resistance (MDR) at 55.7%, and that of extensively drug-resistance (XDR) at 31.4%. 97.1% of the clinical isolates could form biofilms, in which 4.3% possessed weak biofilm formation ability, while 41.4% and 51.4% were moderate and strong biofilm producers, respectively. A strong correlation between antibiotic resistance and biofilm formation ability was found that all the resistant strains could form biofilms, with the majority in moderate and strong levels, but 2.9% sensitive isolates had no such ability. However, the sensitive strains that could produce biofilms showed stronger biofilm formation capacity in the early stage before 24 h compared to the resistant isolates, though they became weaker afterwards. 24 biofilm-related genes and two blaOXA genes were found in both biofilm-forming and non-biofilm-forming strains, but with higher prevalence in the strains that could produce biofilms. No correlation was detected between twitching motility with antibiotic susceptibility or biofilm formation. These results raised a viewpoint that examining timepoint is a key factor for determining the biofilm formation ability, and further highlighted the importance of the appropriate surveillance and control measures in preventing the emergence and transmission of MDR and XDR A. baumannii.
Collapse
|
13
|
Govender R, Amoah ID, Kumari S, Bux F, Stenström TA. Detection of multidrug resistant environmental isolates of acinetobacter and Stenotrophomonas maltophilia: a possible threat for community acquired infections? JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 56:213-225. [PMID: 33378222 DOI: 10.1080/10934529.2020.1865747] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 06/12/2023]
Abstract
Acinetobacter spp. and Stenotrophomonas maltophilia are bacteria commonly associated with infections at the clinical settings. Reports of infections caused by environmental isolates are rare. Therefore, this study focused on determination of the antibiotic resistance patterns, antibiotic resistance genes, efflux pumps and virulence signatures of Acinetobacter spp. and S. maltophilia recovered from river water, plant rhizosphere and river sediment samples. The isolates were identified and confirmed using biochemical tests and PCR. The antimicrobial resistance profiles of the isolates were determined using Kirby Bauer disk diffusion assay and presence of antibiotic resistance and virulence genes were detected using PCR. S. maltophilia was more frequent in plant rhizosphere and sediment samples than the water samples. Acinetobacter spp. were mostly resistant to trimethoprim-sulfamethoxazole (96% of isolates), followed by polymyxin b (86%), cefixime (54%), colistin (42%), ampicillin (35%) and meropenem (19%). The S. maltophilia isolates displayed total resistance (100%) to trimethoprim- sulfamethoxazole, meropenem, imipenem, ampicillin and cefixime, while 80% of the isolates were resistant to ceftazidime. Acinetobacter spp. contained different antibiotic resistance genes such as sul1 (24% of isolates), sul2 (29%), blaOXA 23/51 (21%) and blaTEM (29%), while S. maltophilia harbored sul1 (8%) and blaTEM (20%). Additionally, efflux pump genes were present in all S. maltophilia isolates. The presence of multidrug resistant Acinetobacter spp. and Stenotrophomonas maltophilia in surface water raises concerns for community-acquired infections as this water is directly been used by the community for various purposes. Therefore, there is the need to institute measures aimed at reducing the risks of these infections and the resulting burden this may have on the health care system within the study area.
Collapse
Affiliation(s)
- Reshme Govender
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Isaac D Amoah
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Thor A Stenström
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| |
Collapse
|
14
|
Lysin LysMK34 of Acinetobacter baumannii Bacteriophage PMK34 Has a Turgor Pressure-Dependent Intrinsic Antibacterial Activity and Reverts Colistin Resistance. Appl Environ Microbiol 2020; 86:AEM.01311-20. [PMID: 32709718 DOI: 10.1128/aem.01311-20] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/16/2020] [Indexed: 12/20/2022] Open
Abstract
The prevalence of extensively and pandrug-resistant strains of Acinetobacter baumannii leaves little or no therapeutic options for treatment for this bacterial pathogen. Bacteriophages and their lysins represent attractive alternative antibacterial strategies in this regard. We used the extensively drug-resistant A. baumannii strain MK34 to isolate the bacteriophage PMK34 (vB_AbaP_PMK34). This phage shows fast adsorption and lacks virulence genes; nonetheless, its narrow host spectrum based on capsule recognition limits broad application. PMK34 is a Fri1virus member of the Autographiviridae and has a 41.8-kb genome (50 open reading frames), encoding an endolysin (LysMK34) with potent muralytic activity (1,499.9 ± 131 U/μM), a typical mesophilic thermal stability up to 55°C, and a broad pH activity range (4 to 10). LysMK34 has an intrinsic antibacterial activity up to 4.8 and 2.4 log units for A. baumannii and Pseudomonas aeruginosa strains, respectively, but only when a high turgor pressure is present. The addition of 0.5 mM EDTA or application of an osmotic shock after treatment can compensate for the lack of a high turgor pressure. The combination of LysMK34 and colistin results in up to 32-fold reduction of the MIC of colistin, and colistin-resistant strains are resensitized in both Mueller-Hinton broth and 50% human serum. As such, LysMK34 may be used to safeguard the applicability of colistin as a last-resort antibiotic.IMPORTANCE A. baumannii is one of the most challenging pathogens for which development of new and effective antimicrobials is urgently needed. Colistin is a last-resort antibiotic, and even colistin-resistant A. baumannii strains exist. Here, we present a lysin that sensitizes A. baumannii for colistin and can revert colistin resistance to colistin susceptibility. The lysin also shows a strong, turgor pressure-dependent intrinsic antibacterial activity, providing new insights in the mode of action of lysins with intrinsic activity against Gram-negative bacteria.
Collapse
|
15
|
Detection of Antimicrobial Resistance Genes Associated with Carbapenem Resistance from the Whole-Genome Sequence of Acinetobacter baumannii Isolates from Malaysia. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2020; 2020:5021064. [PMID: 32318127 PMCID: PMC7154965 DOI: 10.1155/2020/5021064] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/20/2019] [Accepted: 01/09/2020] [Indexed: 12/20/2022]
Abstract
Background The spread of carbapenem-resistant A. baumannii (CrAb) is gaining worldwide attention. The spread of this pathogen is largely due to its ability to acquire various resistance genes of intrinsic and extrinsic origins that confer unpredictable susceptibility to β-lactams. The aim of this study was to analyze β-lactamase genetic compositions of CrAb in Malaysia. Methods Whole-genome sequencing (WGS) was carried out on 13 CrAb isolates from clinical samples in Malaysia from 2011 to 2016. Results Endotracheal aspirate was the dominant clinical sample source (n = 6), and only one isolate was obtained from wound swab. A total of 6 sequence types (STs) of the Oxford scheme were identified, including 4 reported STs and 2 novel STs. Eleven isolates were classified into clonal complex 92 (CC92/ICII), among which ST195 and ST208 were the most prevalent STs. All 13 CrAb isolates harbored multiple β-lactamase genes. blaOXA-23 (n = 13) and blaOXA-66 (n = 11) were the dominant carbapenemase gene families found in these isolates. All isolates harbor blaADC, blaOXA-51-like, and blaOXA-23-like genes. blaTEM (n = 7), blaNDM-1 (n = 3), blaCARB-8 (n = 1), and blaPER-3 (n = 1) are amongst other β-lactamase genes found in this study. ISAba1 was found upstream to blaOXA-23 (n = 13), blaOXA-66 (n = 1), and blaADC (n = 11). All blaNDM-1 isolates had ISAba125 (mobile genetic element) upstream to the genes. All isolates were positive for Tn2006/2008 and Tn2009 but were negative for Tn2007. Conclusion Most of the isolates were grouped under the CC92 clonal complex which belongs to international clonal lineage 2. These findings predict that carriage of carbapenem-resistant genes possibly constitutes the underlying basis of high level of international clone II prevalence. Therefore, molecular surveillance and antimicrobial stewardship are essential in implementing policies to prevent and control the spread of CrAb in hospital settings.
Collapse
|
16
|
Lima WG, Silva Alves GC, Sanches C, Antunes Fernandes SO, de Paiva MC. Carbapenem-resistant Acinetobacter baumannii in patients with burn injury: A systematic review and meta-analysis. Burns 2019; 45:1495-1508. [DOI: 10.1016/j.burns.2019.07.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/09/2019] [Accepted: 07/03/2019] [Indexed: 12/25/2022]
|
17
|
Leung ECM, Leung PHM, Lai RWM. Emergence of Carbapenem-Resistant Acinetobacter baumannii ST195 Harboring blaOXA-23 Isolated from Bacteremia in Hong Kong. Microb Drug Resist 2019; 25:1199-1203. [PMID: 31158046 DOI: 10.1089/mdr.2018.0433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Aims: The aim of the study was to analyze the epidemiology of Acinetobacter baumannii and investigate the genetic characteristics of carbapenem-resistant A. baumannii (CRAB) isolates isolated from blood cultures in a regional hospital in Hong Kong. Results: Twenty blood culture isolates were collected from a regional hospital in Hong Kong from 2014 to 2017. Twenty isolates were grouped into five existing sequence types (STs) and five new STs within the following prevalence: ST195 was predominant with a prevalence of 45% (n = 9), followed by ST373 and ST447 (10%; n = 2 each), and ST176 and ST345 (5%; n = 1 each). Resistance to carbapenem antibiotics was 55% (n = 11). Six carbapenem-resistant isolates harbored blaOXA-23 genes and ISAba1 mobile elements. Polymerase chain reaction confirmed that ISAba1 is located upstream to the blaOXA-23 genes, suggesting an association between ISAba1 and blaOXA-23 genes with carbapenem resistance. Conclusion: This study is the first to report the emergence of CRAB ST195 harboring blaOXA-23 in Hong Kong.
Collapse
Affiliation(s)
- Eddie Chi-Man Leung
- Department of Microbiology, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region, China
| | - Polly Hang-Mei Leung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong Special Administrative Region, China
| | - Raymond Wai-Man Lai
- Department of Microbiology, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region, China
| |
Collapse
|