1
|
Silamiķele L, Silamiķelis I, Kotoviča PP, Kloviņš J. Bacterial targets of fecal host miRNAs in high-fat diet-fed mice. PLoS One 2025; 20:e0315871. [PMID: 39932930 PMCID: PMC11813116 DOI: 10.1371/journal.pone.0315871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 12/02/2024] [Indexed: 02/13/2025] Open
Abstract
The gut microbiome composition is intricately linked to the host's health status, yet the mechanisms underlying its interaction with the host are not fully understood. MicroRNAs (miRNAs), facilitating intercellular communication, are found in bodily fluids, including the intestinal content, where they may affect the microbiome. However, their role in type 2 diabetes (T2D)-associated microbiome and treatment implications are not explored. Our study investigated how host miRNAs may influence gut microbiome changes related to metformin treatment in a T2D mouse model. Analyzing fecal and gut mucosal samples via small RNA sequencing, we correlated results with microbiome sequencing data, identifying miRNA-microbiome correlations, bacterial targets, and proteins targeted in these bacteria. Significant differences in miRNA expression based on diet and intestinal location were noted, with minor effects from metformin treatment in the proximal small intestine of non-diabetic male mice. Key fecal miRNAs targeting bacteria included mmu-miR-5119, mmu-miR-5126, mmu-miR-6538, and mmu-miR-2137, primarily affecting Oscillospiraceae_NOV, Lachnospiraceae_NOV, and Bacteroides. Our analysis of targeted proteins revealed diverse biological and molecular effects. Further research into miRNA-bacteria interactions could lead to new strategies for manipulating the gut microbiome in T2D and beyond.
Collapse
Affiliation(s)
| | | | | | - Jānis Kloviņš
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| |
Collapse
|
2
|
Ali Beg MM, Guru SA, Abdullah SM, Ahmad I, Rizvi A, Akhter J, Goyal Y, Verma AK. Regulation of miR-126 and miR-122 Expression and Response of Imatinib Treatment on Its Expression in Chronic Myeloid Leukemia Patients. Oncol Res Treat 2021; 44:530-537. [PMID: 34515193 DOI: 10.1159/000518722] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 07/26/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) have been observed to exhibit altered expression patterns in chronic myeloid leukemia (CML). Therefore, this study was aimed to evaluate the clinical importance of miR-126 and miR-122 expression in concert to imatinib response in CML patients. METHODS The present study included 100 CML and 100 healthy subjects. The expression of the 2 miRNAs was performed using TaqMan probe chemistry, and snU6 was used as internal control. RESULTS The expression of miR-126 and miR-122 was downregulated in CML patients, with a mean fold change ± SD 0.20 ± 0.33 and 0.22 ± 0.37, respectively. While the expression of both miRNAs was analysed before and after imatinib treatment, it was observed that the expression levels of both were increased after imatinib treatment by 26.25-fold (5.33 against 0.20) and 13.95-fold (3.07 against 0.22) and the increase was statistically significant (p < 0.0001 and p < 0.0001, respectively). The expression of miR-126 was not conclusive when compared in different clinical stages of the CML disease as it showed a decreased expression in patients with accelerated phase compared to chronic phase (mean fold change = 0.03 and 0.27, respectively), but patients with chronic phase and blastic phase had comparable expression (mean fold change = 0.27 and 0.24, respectively). We also observed an increased expression of both miRNAs after imatinib therapy in each clinical phase. CONCLUSION The study concludes that expression of miR-126 and miR-122 increases after imatinib treatment in CML patients and that miR-126 defines the good responders of imatinib therapy.
Collapse
Affiliation(s)
- Mirza Masroor Ali Beg
- Department of Biochemistry, Faculty of Medicine, Alatoo International University, Bishkek, Kyrgyzstan.,Department of Medical Bitechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Sameer Ahmad Guru
- Department of Medical Laboratory, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | | | - Irfan Ahmad
- Department of Clinical Laboratory Science, King Khalid University, Abha, Saudi Arabia.,Research Center for Advanced Materials Science, King Khalid University, Abha, Saudi Arabia
| | - Aliya Rizvi
- Department of Pathology, King George Medical University, Lucknow, India
| | - Juheb Akhter
- Department of Toxicology, Jamia Hamdard, New Delhi, India
| | - Yamini Goyal
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Amit K Verma
- Department of Zoology and Environmental Sciences, GKV, Haridwar, India
| |
Collapse
|
4
|
Li Y, Qu H, Ji J, Wang Y, Liu T, He J, Wang J, Shu D, Luo C. Characterization of the exosomes in the allantoic fluid of the chicken embryo. CANADIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1139/cjas-2020-0130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The embryo stage is critical for chicken development. Numerous studies have been conducted to clarify the dynamic changes and functions of various proteins and the composition of amino acids during embryo development. However, the physiological characteristics of extraembryonic fluid (allantoic and amniotic), especially allantoic fluid (AF), remain largely unexplored; furthermore, how information is transmitted from embryonic fluid is unknown. In this study, AF-derived exosomes ranging from 60 to 160 nm in diameter from fertilized eggs at 13 d of incubation of fast-growth chickens (WG chicken), medium-growth chickens (Silky N4 chicken), and slow-growth chickens (Huiyang Beard chicken) were isolated and purified by different ultra-centrifugations and further verified by transmission electron microscopy and a flow nano-analyzer. Expression of the exosomal positive biomarkers of ALIX and HSP70 as well as lack of the epithelium marker GRP78 was observed by Western blotting. In addition, small RNA sequencing revealed that AF-derived exosomes at 13 d of incubation contained a large number of known miRNAs (32.62%–65.83%). The top 10 most abundant and co-expressed miRNAs were primarily related to development, growth, and immunity. In addition, AF-derived exosomes promoted DF-1 cell migration. These findings broadened our understanding of the characteristic of AF-derived exosomes.
Collapse
Affiliation(s)
- Ying Li
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangdong, Guangzhou 510640, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangdong, Guangzhou 510640, China
| | - Hao Qu
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangdong, Guangzhou 510640, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangdong, Guangzhou 510640, China
| | - Jian Ji
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangdong, Guangzhou 510640, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangdong, Guangzhou 510640, China
| | - Yan Wang
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangdong, Guangzhou 510640, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangdong, Guangzhou 510640, China
| | - Tianfei Liu
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangdong, Guangzhou 510640, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangdong, Guangzhou 510640, China
| | - Jingyi He
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangdong, Guangzhou 510640, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangdong, Guangzhou 510640, China
| | - Jie Wang
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangdong, Guangzhou 510640, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangdong, Guangzhou 510640, China
| | - Dingming Shu
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangdong, Guangzhou 510640, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangdong, Guangzhou 510640, China
| | - Chenglong Luo
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangdong, Guangzhou 510640, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, State Key Laboratory of Livestock and Poultry Breeding, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, 1 Dafeng 1st Street, Wushan, Tianhe District, Guangdong, Guangzhou 510640, China
| |
Collapse
|
5
|
Baptista B, Riscado M, Queiroz JA, Pichon C, Sousa F. Non-coding RNAs: Emerging from the discovery to therapeutic applications. Biochem Pharmacol 2021; 189:114469. [PMID: 33577888 DOI: 10.1016/j.bcp.2021.114469] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 02/06/2023]
Abstract
The knowledge about non-coding RNAs (ncRNAs) is rapidly increasing with new data continuously emerging, regarding their diverse types, applications, and roles. Particular attention has been given to ncRNA with regulatory functions, which may have a critical role both in biological and pathological conditions. As a result of the diversity of ncRNAs and their ubiquitous involvement in several biologic processes, ncRNA started to be considered in the biomedical field, with immense potential to be exploited either as biomarkers or as therapeutic agents in certain pathologies. Indeed, ncRNA-based therapeutics have been proposed in many disorders and some even reached clinical trials. However, to prepare an RNA product suitable for pharmacological applications, certain criteria must be fulfilled, and it has to be guaranteed RNA purity, stability, and bioactivity. So, in this review, the different types of ncRNAs are identified and characterized, by describing their biogenesis, functions, and applications. A perspective on the main challenges and innovative approaches for the future and broad therapeutic application of RNA is also presented.
Collapse
Affiliation(s)
- B Baptista
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - M Riscado
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - J A Queiroz
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - C Pichon
- Centre de Biophysique Moléculaire (CBM), UPR 4301 CNRS & University of Orléans Orléans, France
| | - F Sousa
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal.
| |
Collapse
|
6
|
Shihana F, Mohamed F, Joglekar MV, Hardikar AA, Seth D, Buckley NA. Urinary versus serum microRNAs in human oxalic acid poisoning: Contrasting signals and performance. Toxicol Lett 2020; 334:21-26. [PMID: 32910981 DOI: 10.1016/j.toxlet.2020.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/25/2020] [Accepted: 09/03/2020] [Indexed: 11/28/2022]
Abstract
MicroRNAs are key regulators of the normal kidney function and development, and altered in acute kidney injury (AKI). However, there is a lack of studies comparing serum and urine miRNA expression in toxic AKI in humans. We aimed to compare the global signature of urinary and serum microRNAs, with and without kidney injury, after human oxalic acid poisoning. We profiled urinary microRNAs in patients who ingested oxalic acid and developed no injury (No AKI n = 3), moderate injury (AKIN2 n = 3) or severe injury (AKIN3 n = 3) and healthy controls (n = 3). We validated a signature of 30 urinary microRNAs identified in the discovery profiling, in a second cohort of individuals exposed to oxalic acid (No AKI n = 15, AKIN2 n=11 & AKIN3 n= 18) and healthy controls (n=-27) and we compared the results with previously published serum data. Global profiling in toxic AKI patients showed a higher expression of urinary microRNAs and lower expression of serum microRNAs. Most urine microRNA in the validation cohort were significantly upregulated (25/30, fold change >2.8 and p < 0.05) in AKIN2/3 patients compared to No AKI. Four urinary microRNAs (miR-191, miR-19b, miR-20a and miR-30b) had good diagnostic performance (AUC greater than 0.8) to predict AKIN2/3 between 4-8 hours post ingestion. Poisoning irrespective of AKI led to significantly lower expression of many microRNAs in serum but relatively few changes in urinary miRNA expression. In conclusion, urinary microRNA signature provides a stronger measure of AKI in oxalic acid poisoning compared to serum microRNA. Kidney injury has the greatest impact on urinary microRNA, while poisoning itself was better reflected in serum miRNA. Plasma and urinary microRNAs signatures provide complementary information in toxic kidney injury.
Collapse
Affiliation(s)
- Fathima Shihana
- The University of Sydney, Clinical Pharmacology and Toxicology Research Group, Discipline of Pharmacology, Faculty of Medicine and Health, Sydney, NSW, Australia; University of Peradeniya, South Asian Clinical Toxicology of Research Collaboration, Faculty of Medicine, Peradeniya, Sri Lanka.
| | - Fahim Mohamed
- The University of Sydney, Clinical Pharmacology and Toxicology Research Group, Discipline of Pharmacology, Faculty of Medicine and Health, Sydney, NSW, Australia; University of Peradeniya, South Asian Clinical Toxicology of Research Collaboration, Faculty of Medicine, Peradeniya, Sri Lanka; University of Peradeniya, Faculty of Allied Health Sciences, Department of Pharmacy, Peradeniya, Sri Lanka
| | - Mugdha V Joglekar
- The University of Sydney, Diabetes and Islet Biology Group, NHMRC Clinical Trials Centre, Faculty of Medicine & Health, NSW, Australia
| | - Anandwardhan A Hardikar
- The University of Sydney, Diabetes and Islet Biology Group, NHMRC Clinical Trials Centre, Faculty of Medicine & Health, NSW, Australia.
| | - Devanshi Seth
- The University of Sydney, Discipline of Clinical Medicine & Addiction Medicine, Faculty of Medicine & Health, NSW, Australia; Drug Health Services, Royal Prince Alfred Hospital, Camperdown, NSW, Australia; The University of Sydney The Centenary Institute of Cancer Medicine & Cell Biology, NSW, Australia
| | - Nicholas A Buckley
- The University of Sydney, Clinical Pharmacology and Toxicology Research Group, Discipline of Pharmacology, Faculty of Medicine and Health, Sydney, NSW, Australia; University of Peradeniya, South Asian Clinical Toxicology of Research Collaboration, Faculty of Medicine, Peradeniya, Sri Lanka
| |
Collapse
|