1
|
Fatriani R, Pratiwi FAK, Annisa A, Septaningsih DA, Aziz SA, Miladiyah I, Kusumastuti SA, Nasution MAF, Ramadhan D, Kusuma WA. Unveiling the anti-obesity potential of Kemuning (Murraya paniculata): A network pharmacology approach. PLoS One 2024; 19:e0305544. [PMID: 39208245 PMCID: PMC11361609 DOI: 10.1371/journal.pone.0305544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/30/2024] [Indexed: 09/04/2024] Open
Abstract
Obesity has become a global issue that affects the emergence of various chronic diseases such as diabetes mellitus, dysplasia, heart disorders, and cancer. In this study, an integration method was developed between the metabolite profile of the active compound of Murraya paniculata and the exploration of the targeting mechanism of adipose tissue using network pharmacology, molecular docking, molecular dynamics simulation, and in vitro tests. Network pharmacology results obtained with the skyline query technique using a block-nested loop (BNL) showed that histone acetyltransferase p300 (EP300), peroxisome proliferator-activated receptor gamma (PPARG), and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PPARGC1A) are potential targets for treating obesity. Enrichment analysis of these three proteins revealed their association with obesity, thermogenesis, energy metabolism, adipocytokines, fat cell differentiation, and glucose homeostasis. Metabolite profiling of M. paniculata leaves revealed sixteen active compounds, ten of which were selected for molecular docking based on drug-likeness and ADME results. Molecular docking results between PPARG and EP300 with the ten active compounds showed a binding affinity value of ≤ -5.0 kcal/mol in all dockings, indicating strong binding. The stability of the protein-ligand complex resulting from docking was examined using molecular dynamics simulations, and we observed the best average root mean square deviation (RMSD) of 0.99 Å for PPARG with trans-3-indoleacrylic acid, which was lower than with the native ligand BRL (2.02 Å). Furthermore, the RMSD was 2.70 Å for EP300 and the native ligand 99E, and the lowest RMSD with the ligand (1R,9S)-5-[(E)-2-(4-Chlorophenyl)vinyl]-11-(5-pyrimidinylcarbonyl)-7,11-diazatricyclo[7.3.1.02,7]trideca-2,4-dien-6-one was 3.33 Å. The in vitro tests to validate the potential of M. paniculata in treating obesity showed that there was a significant decrease in PPARG and EP300 gene expressions in 3T3-L1 mature adipocytes treated with M. paniculata ethanolic extract starting at concentrations 62.5 μg/ml and 15.625 μg/ml, respectively. These results indicate that M. paniculata can potentially treat obesity by disrupting adipocyte maturation and influencing intracellular lipid metabolism.
Collapse
Affiliation(s)
- Rizka Fatriani
- Tropical Biopharmaca Research Center, IPB University, Bogor, Indonesia
| | | | - Annisa Annisa
- Department of Computer Science, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, Indonesia
| | - Dewi Anggraini Septaningsih
- Department of Chemistry, Faculty of Military Mathematics and Natural Sciences, Republic of Indonesia Defense University, Bogor, Indonesia
| | - Sandra Arifin Aziz
- Department of Agronomy and Horticulture, Faculty of Agriculture, IPB University, Bogor, Indonesia
| | | | - Siska Andrina Kusumastuti
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | | | - Donny Ramadhan
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Wisnu Ananta Kusuma
- Tropical Biopharmaca Research Center, IPB University, Bogor, Indonesia
- Department of Computer Science, Faculty of Mathematics and Natural Sciences, IPB University, Bogor, Indonesia
| |
Collapse
|
2
|
Kim Y, Ji H, Ryu D, Cho E, Park D, Jung E. Albizia julibrissin Exerts Anti-Obesity Effects by Inducing the Browning of 3T3L1 White Adipocytes. Int J Mol Sci 2023; 24:11496. [PMID: 37511251 PMCID: PMC10380714 DOI: 10.3390/ijms241411496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
This study investigated the effects of the Albizia julibrissin Leaf extracts (AJLE) on adipocytes using 3T3-L1 cells. AJLE inhibited adipogenesis by reducing the expression of peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer binding proteins (C/EBPs) that regulate enzymes involved in fat synthesis and storage, and subsequently reduced intracellular lipid droplets, glycerol-3-phosphate dehydrogenase (GPDH), and triglyceride (TG). AJLE also increased the expression of brown adipocyte markers, such as uncoupling protein-1 (UCP-1), PR/SET domain 16 (PRDM16), and bone morphogenetic protein 7 (BMP7) by inducing the differentiation of brown adipocytes, as shown by a decrease in the lipid droplet sizes and increasing mitochondrial mass. AJLE increased the expression of transcription factor A, mitochondrial (TFAM), mitochondrial DNA (mtDNA) copy number, and UCP-1 protein expression, all of which are key factors in regulating mitochondrial biogenesis. AJLE-induced browning was shown to be regulated by the coordination of AMPK, p38, and SIRT1 signaling pathways. The ability of AJLE to inhibit adipogenesis and induce brown adipocyte differentiation may help treat obesity and related diseases.
Collapse
Affiliation(s)
- Yuna Kim
- Biospectrum Life Science Institute, Yongin 16827, Republic of Korea
| | - Hyanggi Ji
- Biospectrum Life Science Institute, Yongin 16827, Republic of Korea
| | - Dehun Ryu
- Biospectrum Life Science Institute, Yongin 16827, Republic of Korea
| | - Eunae Cho
- Biospectrum Life Science Institute, Yongin 16827, Republic of Korea
| | - Deokhoon Park
- Biospectrum Life Science Institute, Yongin 16827, Republic of Korea
| | - Eunsun Jung
- Biospectrum Life Science Institute, Yongin 16827, Republic of Korea
| |
Collapse
|
3
|
Zhu T, Chen X, Jiang S. Progress and obstacles in transplantation of brown adipose tissue or engineered cells with thermogenic potential for metabolic benefits. Front Endocrinol (Lausanne) 2023; 14:1191278. [PMID: 37265692 PMCID: PMC10230949 DOI: 10.3389/fendo.2023.1191278] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/27/2023] [Indexed: 06/03/2023] Open
Abstract
Transplantation of brown adipose tissue (BAT), engineered thermogenic progenitor cells, and adipocytes have received much attention for the improvement of obesity and metabolic disorders. However, even though the thermogenic and metabolic potential exists early after transplantation, the whitening of the brown fat graft occurs with metabolic function significantly impaired. In this review, specific experiment designs, graft outcomes, and metabolic benefits for the transplantation of BAT or engineered cells will be discussed. The current advancements will offer guidance to further investigation, and the obstacles appearing in previous studies will require innovation of BAT transplantation methods.
Collapse
|
4
|
Paz HA, Pilkington A, Loy HD, Zhong Y, Shankar K, Wankhade UD. Beta-adrenergic agonist induces unique transcriptomic signature in inguinal white adipose tissue. Physiol Rep 2023; 11:e15646. [PMID: 36967237 PMCID: PMC10040403 DOI: 10.14814/phy2.15646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/28/2023] Open
Abstract
Activation of thermogenic adipose tissue depots has been linked to improved metabolism and weight loss. To study the molecular regulation of adipocyte thermogenesis, we performed RNA-Seq on brown adipose tissue (BAT), gonadal white adipose tissue (gWAT), and inguinal white adipose tissue (iWAT) from mice treated with β3-adrenoreceptor agonist CL316,243 (CL). Our analysis revealed diverse transcriptional profile and identified pathways in response to CL treatment. Differentially expressed genes (DEGs) in iWATCL were associated with the upregulation of pathways involved in cellular immune responses and with the upregulation of the browning program. We identified 39 DEGs in beige adipose which included certain heat shock proteins (Hspa1a and Hspa1b), and others suggesting potential associations with browning. Our results highlight transcriptional heterogeneity across adipose tissues and reveal genes specifically regulated in beige adipose, potentially aiding in identifying novel browning pathways.
Collapse
Affiliation(s)
- Henry A. Paz
- Department of PediatricsCollege of Medicine, University of Arkansas for Medical SciencesLittle RockArkansasUSA
- Arkansas Children's Nutrition CenterLittle RockArkansasUSA
| | - Anna‐Claire Pilkington
- Department of PediatricsCollege of Medicine, University of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Hannah D. Loy
- Department of PediatricsCollege of Medicine, University of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Ying Zhong
- Department of PediatricsCollege of Medicine, University of Arkansas for Medical SciencesLittle RockArkansasUSA
- Arkansas Children's Nutrition CenterLittle RockArkansasUSA
| | - Kartik Shankar
- Department of Pediatrics, Section of NutritionUniversity of Colorado School of Medicine, Anschutz Medical CampusAuroraColoradoUSA
| | - Umesh D. Wankhade
- Department of PediatricsCollege of Medicine, University of Arkansas for Medical SciencesLittle RockArkansasUSA
- Arkansas Children's Nutrition CenterLittle RockArkansasUSA
| |
Collapse
|
5
|
Tayanloo-Beik A, Nikkhah A, Alaei S, Goodarzi P, Rezaei-Tavirani M, Mafi AR, Larijani B, Shouroki FF, Arjmand B. Brown adipose tissue and alzheimer's disease. Metab Brain Dis 2023; 38:91-107. [PMID: 36322277 DOI: 10.1007/s11011-022-01097-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/01/2022] [Indexed: 01/12/2023]
Abstract
Alzheimer's disease (AD), the most common type of senile dementia, is a chronic neurodegenerative disease characterized by cognitive dysfunction and behavioral disability. The two histopathological hallmarks in this disease are the extraneuronal accumulation of amyloid-β (Aβ) and the intraneuronal deposition of neurofibrillary tangles (NFTs). Despite this, central and peripheral metabolic dysfunction, such as abnormal brain signaling, insulin resistance, inflammation, and impaired glucose utilization, have been indicated to be correlated with AD. There is solid evidence that the age-associated thermoregulatory deficit induces diverse metabolic changes associated with AD development. Brown adipose tissue (BAT) has been known as a thermoregulatory organ particularly vital during infancy. However, in recent years, BAT has been accepted as an endocrine organ, being involved in various functions that prevent AD, such as regulating energy metabolism, secreting hormones, improving insulin sensitivity, and increasing glucose utilization in adult humans. This review focuses on the mechanisms of BAT activation and the effect of aging on BAT production and signaling. Specifically, the evidence demonstrating the effect of BAT on pathological mechanisms influencing the development of AD, including insulin pathway, thermoregulation, and other hormonal pathways, are reviewed in this article.
Collapse
Affiliation(s)
- Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirabbas Nikkhah
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Setareh Alaei
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Goodarzi
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ahmad Rezazadeh Mafi
- Department of Radiation Oncology, Imam Hossein Hospital, Shaheed Beheshti Medical University, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical sciences, Tehran, Iran.
| | - Fatemeh Fazeli Shouroki
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Ranallo N, Iamurri AP, Foca F, Liverani C, De Vita A, Mercatali L, Calabrese C, Spadazzi C, Fabbri C, Cavaliere D, Galassi R, Severi S, Sansovini M, Tartaglia A, Pieri F, Crudi L, Bianchini D, Barone D, Martinelli G, Frassineti GL, Ibrahim T, Calabrò L, Berardi R, Bongiovanni A. Prognostic and Predictive Role of Body Composition in Metastatic Neuroendocrine Tumor Patients Treated with Everolimus: A Real-World Data Analysis. Cancers (Basel) 2022; 14:3231. [PMID: 35805003 PMCID: PMC9264955 DOI: 10.3390/cancers14133231] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 02/05/2023] Open
Abstract
Neuroendocrine tumors (NETs) are rare neoplasms frequently characterized by an upregulation of the mammalian rapamycin targeting (mTOR) pathway resulting in uncontrolled cell proliferation. The mTOR pathway is also involved in skeletal muscle protein synthesis and in adipose tissue metabolism. Everolimus inhibits the mTOR pathway, resulting in blockade of cell growth and tumor progression. The aim of this study is to investigate the role of body composition indexes in patients with metastatic NETs treated with everolimus. The study population included 30 patients with well-differentiated (G1-G2), metastatic NETs treated with everolimus at the IRCCS Romagnolo Institute for the Study of Tumors (IRST) "Dino Amadori", Meldola (FC), Italy. The body composition indexes (skeletal muscle index [SMI] and adipose tissue indexes) were assessed by measuring on a computed tomography (CT) scan the cross-sectional area at L3 at baseline and at the first radiological assessment after the start of treatment. The body mass index (BMI) was assessed at baseline. The median progression-free survival (PFS) was 8.9 months (95% confidence interval [CI]: 3.4-13.7 months). The PFS stratified by tertiles was 3.2 months (95% CI: 0.9-10.1 months) in patients with low SMI (tertile 1), 14.2 months (95% CI: 2.3 months-not estimable [NE]) in patients with intermediate SMI (tertile 2), and 9.1 months (95% CI: 2.7 months-NE) in patients with high SMI (tertile 3) (p = 0.039). Similarly, the other body composition indexes also showed a statistically significant difference in the three groups on the basis of tertiles. The median PFS was 3.2 months (95% CI: 0.9-6.7 months) in underweight patients (BMI ≤ 18.49 kg/m2) and 10.1 months (95% CI: 3.7-28.4 months) in normal-weight patients (p = 0.011). There were no significant differences in terms of overall survival. The study showed a correlation between PFS and the body composition indexes in patients with NETs treated with everolimus, underlining the role of adipose and muscle tissue in these patients.
Collapse
Affiliation(s)
- Nicoletta Ranallo
- Osteoncology and Rare Tumors Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (N.R.); (L.C.)
| | - Andrea Prochoswski Iamurri
- Radiology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (A.P.I.); (D.B.)
| | - Flavia Foca
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy;
| | - Chiara Liverani
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (C.L.); (A.D.V.); (L.M.); (C.C.); (C.S.)
| | - Alessandro De Vita
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (C.L.); (A.D.V.); (L.M.); (C.C.); (C.S.)
| | - Laura Mercatali
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (C.L.); (A.D.V.); (L.M.); (C.C.); (C.S.)
| | - Chiara Calabrese
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (C.L.); (A.D.V.); (L.M.); (C.C.); (C.S.)
| | - Chiara Spadazzi
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (C.L.); (A.D.V.); (L.M.); (C.C.); (C.S.)
| | - Carlo Fabbri
- Unit of Gastroenterology and Digestive Endoscopy, Forli-Cesena Hospital, AUSL Romagna, Cesena, 47121 Forli, Italy;
| | - Davide Cavaliere
- General and Oncologic Surgery Unit, Morgagni-Pierantoni Hospital, AUSL Romagna, 47121 Forlì, Italy;
| | - Riccardo Galassi
- Nuclear Medicine and Radiometabolic Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (R.G.); (S.S.); (M.S.)
| | - Stefano Severi
- Nuclear Medicine and Radiometabolic Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (R.G.); (S.S.); (M.S.)
| | - Maddalena Sansovini
- Nuclear Medicine and Radiometabolic Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (R.G.); (S.S.); (M.S.)
| | - Andreas Tartaglia
- Endocrinology Unit, Forli-Cesena Hospital, AUSL Romagna, Cesena, 47121 Forli, Italy;
| | - Federica Pieri
- Pathology Unit, Morgagni-Pierantoni Hospital, AUSL Romagna, Cesena, 47121 Forli, Italy;
| | - Laura Crudi
- Oncology Pharmacy Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori “Dino Amadori”, 47014 Meldola, Italy;
| | - David Bianchini
- Medical Physics Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy;
| | - Domenico Barone
- Radiology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (A.P.I.); (D.B.)
| | - Giovanni Martinelli
- IRCCS Istituto Romagnolo per lo Studio dei Tumori “Dino Amadori”, 47014 Meldola, Italy;
| | - Giovanni Luca Frassineti
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy;
| | - Toni Ibrahim
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Luana Calabrò
- Osteoncology and Rare Tumors Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (N.R.); (L.C.)
| | - Rossana Berardi
- Department of Medical Oncology, Università Politecnica delle Marche, AOU Ospedali Riuniti di Ancona, 60126 Ancona, Italy;
| | - Alberto Bongiovanni
- Osteoncology and Rare Tumors Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (N.R.); (L.C.)
| |
Collapse
|
7
|
Zhang Q, Ye R, Zhang YY, Fan CC, Wang J, Wang S, Chen S, Liu X. Brown Adipose Tissue and Novel Management Strategies for Polycystic Ovary Syndrome Therapy. Front Endocrinol (Lausanne) 2022; 13:847249. [PMID: 35663310 PMCID: PMC9160465 DOI: 10.3389/fendo.2022.847249] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 03/22/2022] [Indexed: 12/24/2022] Open
Abstract
Brown adipose tissue (BAT), a unique tissue, plays a key role in metabolism and energy expenditure through adaptive nonshivering thermogenesis. It has recently become a therapeutic target in the treatment of obesity and metabolic diseases. The thermogenic effect of BAT occurs through uncoupling protein-1 by uncoupling adenosine triphosphate (ATP) synthesis from energy substrate oxidation. The review discusses the recent developments and progress associated with the biology, function, and activation of BAT, with a focus on its therapeutic potential for the treatment of polycystic ovary syndrome (PCOS). The endocrine activity of brown adipocytes affects the energy balance and homeostasis of glucose and lipids, thereby affecting the association of BAT activity and the metabolic profile. PCOS is a complex reproductive and metabolic disorder of reproductive-age women. Functional abnormalities of adipose tissue (AT) have been reported in patients with PCOS. Numerous studies have shown that BAT could regulate the features of PCOS and that increases in BAT mass or activity were effective in the treatment of PCOS through approaches including cold stimulation, BAT transplantation and compound activation in various animal models. Therefore, BAT may be used as a novel management strategy for the patients with PCOS to improve women's health clinically. It is highly important to identify key brown adipokines for the discovery and development of novel candidates to establish an efficacious therapeutic strategy for patients with PCOS in the future.
Collapse
Affiliation(s)
- Qiaoli Zhang
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, China
| | - Rongcai Ye
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yuan-Yuan Zhang
- Department of Reproductive Regulation (Family Planning), Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, China
| | - Chen-Chen Fan
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, China
| | - Jun Wang
- Department of Reproductive Regulation (Family Planning), Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, China
| | - Shuyu Wang
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, China
- *Correspondence: Suwen Chen, ; Xiaowei Liu, ; Shuyu Wang,
| | - Suwen Chen
- Department of Reproductive Regulation (Family Planning), Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, China
- *Correspondence: Suwen Chen, ; Xiaowei Liu, ; Shuyu Wang,
| | - Xiaowei Liu
- Department of Obstetrics, Beijing Obstetrics and Gynecology Hospital, Beijing Maternal and Child Health Care Hospital, Capital Medical University, Beijing, China
- *Correspondence: Suwen Chen, ; Xiaowei Liu, ; Shuyu Wang,
| |
Collapse
|
8
|
Li J, Chen Q, Zhai X, Wang D, Hou Y, Tang M. Green tea aqueous extract (GTAE) prevents high-fat diet-induced obesity by activating fat browning. Food Sci Nutr 2021; 9:6548-6558. [PMID: 34925784 PMCID: PMC8645728 DOI: 10.1002/fsn3.2580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/19/2021] [Accepted: 08/22/2021] [Indexed: 11/08/2022] Open
Abstract
Adipose browning leads to increased energy expenditure and reduced adiposity and has, therefore, become an attractive therapeutic strategy for obesity. In this study, we elucidated the effect of green tea aqueous extract (GTAE) on the browning of inguinal white adipose tissue (Ing-WAT) and brown adipose tissue (BAT) in high-fat diet (HFD)-fed mice. The main phytochemical components identified in GTAE through high-performance liquid chromatography (HPLC) included (-)-gallocatechin, (-)-epigallocatechin, (-)-catechin, (-)-epigallocatechin-3-gallate, caffeine, (-)-epicatechin, (-)-gallocatechin gallate, and (-)-epicatechin-3-gallate. Daily supplementation with 1% GTAE for 12 weeks markedly reduced bodyweight gain, systemic inflammation, oxidative stress, and improved insulin resistance. Additionally, histological analysis revealed that dietary supplementation with 1% GTAE reversed HFD-induced adipocyte size and hepatic steatosis. These effects were associated with activation of browning in the Ing-WAT and BAT, which mediate systemic metabolic dysfunction in HFD-fed mice. Taken together, our data support the use of GTAE, a natural product, for the attenuation of obesity through the activation of fat browning.
Collapse
Affiliation(s)
- Jie Li
- Research Institute of TeaChongqing Academy of Agricultural SciencesChongqingChina
| | - Qiyang Chen
- College of Horticulture and Landscape ArchitectureSouthwest UniversityChongqingChina
| | - Xiuming Zhai
- Research Institute of TeaChongqing Academy of Agricultural SciencesChongqingChina
| | - Dan Wang
- College of Horticulture and Landscape ArchitectureSouthwest UniversityChongqingChina
| | - Yujia Hou
- Research Institute of TeaChongqing Academy of Agricultural SciencesChongqingChina
| | - Min Tang
- Research Institute of TeaChongqing Academy of Agricultural SciencesChongqingChina
| |
Collapse
|
9
|
Ulupinar S, Ozbay S, Gencoglu C, Altinkaynak K, Sebin E, Oymak B. Exercise in the cold causes greater irisin release but may not be enough for adropin. CHINESE J PHYSIOL 2021; 64:129-134. [PMID: 34169918 DOI: 10.4103/cjp.cjp_2_21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
When irisin and adropin were discovered, it was popularly hoped that they would become therapies for metabolic disorders that threaten global health. However, contradictory results have been reported in the subsequent period. Irisin, induced by exercise or cold exposure, is believed to be a myokine that causes the browning of adipose tissue thus increasing energy expenditure. Adropin is thought to be beneficial for health by regulating blood flow, capillary density, and playing an active role in glucose and insulin homeostasis. However, there were no experimental studies investigating the simultaneous effect of exercise and cold exposure in humans. The purpose of this study was to investigate irisin and adropin responses in young healthy individuals performing aerobic exercise in different environmental temperatures. Twenty-seven young, healthy individuals participated in this study. Participants performed 40 min of aerobic running exercise in environmental temperatures of 0°C, 12°C, and 24°C. Venous blood samples were taken pre- and post-exercise. Irisin and adropin levels were analyzed using an enzyme-linked immunosorbent assay. The principal findings showed that while serum irisin concentrations significantly increased after aerobic exercise was performed at an environmental temperature of 0°C, there was no significant difference between pre- and post-exercise recordings for physical activity performed at 12°C and 24°C. Adropin concentrations, however, remained unchanged between pre- and post-exercise at 0°C, 12°C, and 24°C. Interestingly, the exercise at 0°C caused an increase in adropin (12.5%), but this amount was not enough to be a statistically significant result. The findings of this study suggest that aerobic exercise in a cold environment causes greater irisin release. However, the combined effect of exercise and cold exposure may not be enough to statistically increase adropin level.
Collapse
Affiliation(s)
- Suleyman Ulupinar
- Faculty of Sport Sciences, Erzurum Technical University, Erzurum, Turkey
| | - Serhat Ozbay
- Faculty of Sport Sciences, Erzurum Technical University, Erzurum, Turkey
| | - Cebrail Gencoglu
- Faculty of Sport Sciences, Erzurum Technical University, Erzurum, Turkey
| | - Konca Altinkaynak
- Department of Medical Biochemistry, Faculty of Medicine, University of Health Sciences, Erzurum, Turkey
| | - Engin Sebin
- Department of Biochemistry, Erzurum Regional Research and Training Hospital, Erzurum, Turkey
| | - Burak Oymak
- Department of Biochemistry, Erzurum Regional Research and Training Hospital, Erzurum, Turkey
| |
Collapse
|
10
|
Son MJ, Oh KJ, Park A, Kwon MG, Suh JM, Kim IC, Kim S, Lee SC, Kim WK, Bae KH. GATA3 induces the upregulation of UCP-1 by directly binding to PGC-1α during adipose tissue browning. Metabolism 2020; 109:154280. [PMID: 32473155 DOI: 10.1016/j.metabol.2020.154280] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/19/2020] [Accepted: 05/27/2020] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Obesity is recognized as the cause of multiple metabolic diseases and is rapidly increasing worldwide. As obesity is due to an imbalance in energy homeostasis, the promotion of energy consumption through browning of white adipose tissue (WAT) has emerged as a promising therapeutic strategy to counter the obesity epidemic. However, the molecular mechanisms of the browning process are not well understood. In this study, we investigated the effects of the GATA family of transcription factors on the browning process. METHODS We used qPCR to analyze the expression of GATA family members during WAT browning. In order to investigate the function of GATA3 in the browning process, we used the lentivirus system for the ectopic expression and knockdown of GATA3. Western blot and real-time qPCR analyses revealed the regulation of thermogenic genes upon ectopic expression and knockdown of GATA3. Luciferase reporter assays, co-immunoprecipitation, and chromatin immunoprecipitation were performed to demonstrate that GATA3 interacts with proliferator-activated receptor-γ co-activator-1α (PGC-1α) to regulate the promoter activity of uncoupling protein-1 (UCP-1). Enhanced energy expenditure by GATA3 was confirmed using oxygen consumption assays, and the mitochondrial content was assessed using MitoTracker. Furthermore, we examined the in vivo effects of lentiviral GATA3 overexpression and knockdown in inguinal adipose tissue of mice. RESULTS Gata3 expression levels were significantly elevated in the inguinal adipose tissue of mice exposed to cold conditions. Ectopic expression of GATA3 enhanced the expression of UCP-1 and thermogenic genes upon treatment with norepinephrine whereas GATA3 knockdown had the opposite effect. Luciferase reporter assays using the UCP-1 promoter region showed that UCP-1 expression was increased in a dose-dependent manner by GATA3 regardless of norepinephrine treatment. GATA3 was found to directly bind to the promoter region of UCP-1. Furthermore, our results indicated that GATA3 interacts with the transcriptional coactivator PGC-1α to increase the expression of UCP-1. Taken together, we demonstrate that GATA3 has an important role in enhancing energy expenditure by increasing the expression of thermogenic genes both in vitro and in vivo. CONCLUSION GATA3 may represent a promising target for the prevention and treatment of obesity by regulating thermogenic capacity.
Collapse
Affiliation(s)
- Min Jeong Son
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Kyoung-Jin Oh
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34141, Republic of Korea
| | - Anna Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Min-Gi Kwon
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34141, Republic of Korea
| | - Jae Myoung Suh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Il-Chul Kim
- Department of Biology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Seyun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sang Chul Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34141, Republic of Korea.
| | - Won Kon Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34141, Republic of Korea.
| | - Kwang-Hee Bae
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
11
|
Hu J, Wang Z, Tan BK, Christian M. Dietary polyphenols turn fat “brown”: A narrative review of the possible mechanisms. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Fan G, Dang X, Li Y, Chen J, Zhao R, Yang X. Zinc-α2-glycoprotein promotes browning of white adipose tissue in cold-exposed male mice. Mol Cell Endocrinol 2020; 501:110669. [PMID: 31790716 DOI: 10.1016/j.mce.2019.110669] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 12/22/2022]
Abstract
The promotion of white adipose tissue (WAT) browning has emerged as a promising therapeutic target to increase energy expenditure and decrease weight gain. Zinc-α2-glycoprotein (ZAG) is a newly identified adipokine that regulates lipid metabolism. It shows high expression in brown adipose tissue (BAT), but whether ZAG plays a key role in the browning of white adipose tissue is still largely unclear. In the present study, we explored the relationship between ZAG and the browning of WAT in cold-exposed ZAG knockout (KO) mice and 3T3-L1 adipocytes with overexpressed ZAG. The results showed that cold stress induced marked accumulation of ZAG in wild type (WT) mice. Additionally, ZAG deficiency inhibited the loss of body weight and adipose tissue weight in cold stressed mice. ZAG KO mice were resistant to cold-induced expression of browning markers and energy metabolism in WAT. Furthermore, replenishment ZAG plasmid improved the reduction in cold-induced browning of WAT in ZAG KO mice. In vitro, ZAG overexpression promoted browning and mitochondrial biogenesis and increased the expression of β3-AR and P-P38 in 3T3-L1 adipocytes. These findings demonstrate that ZAG can promote the browning of white adipose tissue and can serve as a potential therapeutic target for treating metabolic diseases such as obesity.
Collapse
Affiliation(s)
- Guoqiang Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Xiaobo Dang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yanfei Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Jinglong Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Ruqian Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Xiaojing Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
13
|
Ulupınar S, Ozbay S, Şebin E, Altınkaynak K. Acute and chronic effects of aerobic exercise on serum irisin, adropin, and cholesterol levels in the winter season: Indoor training versus outdoor training. CHINESE J PHYSIOL 2020; 63:21-26. [DOI: 10.4103/cjp.cjp_84_19] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
14
|
Bae J, Jang Y, Kim H, Mahato K, Schaecher C, Kim IM, Kim E, Ro SH. Arsenite exposure suppresses adipogenesis, mitochondrial biogenesis and thermogenesis via autophagy inhibition in brown adipose tissue. Sci Rep 2019; 9:14464. [PMID: 31594991 PMCID: PMC6783448 DOI: 10.1038/s41598-019-50965-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 09/20/2019] [Indexed: 01/23/2023] Open
Abstract
Arsenite, a trivalent form of arsenic, is an element that occurs naturally in the environment. Humans are exposed to high dose of arsenite through consuming arsenite-contaminated drinking water and food, and the arsenite can accumulate in the human tissues. Arsenite induces oxidative stress, which is linked to metabolic disorders such as obesity and diabetes. Brown adipocytes dissipating energy as heat have emerging roles for obesity treatment and prevention. Therefore, understanding the pathophysiological role of brown adipocytes can provide effective strategies delineating the link between arsenite exposure and metabolic disorders. Our study revealed that arsenite significantly reduced differentiation of murine brown adipocytes and mitochondrial biogenesis and respiration, leading to attenuated thermogenesis via decreasing UCP1 expression. Oral administration of arsenite in mice resulted in heavy accumulation in brown adipose tissue and suppression of lipogenesis, mitochondrial biogenesis and thermogenesis. Mechanistically, arsenite exposure significantly inhibited autophagy necessary for homeostasis of brown adipose tissue through suppression of Sestrin2 and ULK1. These results clearly confirm the emerging mechanisms underlying the implications of arsenite exposure in metabolic disorders.
Collapse
Affiliation(s)
- Jiyoung Bae
- Department of Biochemistry, University of Nebraska, Lincoln, NE, 68588, USA.,Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Yura Jang
- Department of Biochemistry, University of Nebraska, Lincoln, NE, 68588, USA.,Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Heejeong Kim
- Department of Biochemistry, University of Nebraska, Lincoln, NE, 68588, USA
| | - Kalika Mahato
- Department of Biochemistry, University of Nebraska, Lincoln, NE, 68588, USA
| | - Cameron Schaecher
- Department of Biochemistry, University of Nebraska, Lincoln, NE, 68588, USA.,College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Isaac M Kim
- Department of Biochemistry, University of Nebraska, Lincoln, NE, 68588, USA
| | - Eunju Kim
- Department of Mechanical and Materials Engineering, University of Nebraska, Lincoln, NE, 68588, USA
| | - Seung-Hyun Ro
- Department of Biochemistry, University of Nebraska, Lincoln, NE, 68588, USA.
| |
Collapse
|
15
|
Hassan II, Hassan AB, Rajab HA, Saadi FS, Abdulah DM, Abdul Majeed AA, Khaleel BB, Taher SM, Ahmed IH. Association of irisin and oxidative stress with biochemical parameters in patients with metabolic syndrome. Horm Mol Biol Clin Investig 2019; 39:hmbci-2019-0009. [PMID: 31377738 DOI: 10.1515/hmbci-2019-0009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/21/2019] [Indexed: 12/13/2022]
Abstract
Background Irisin, a hormone-like myokine, is suspected to have a role in metabolic syndrome (MetS) through regulating energy homeostasis and mediating physical activity. In this regard, the role of irisin and malondialdehyde (MDA) along with some other biochemical parameters in the prediction of MetS was examined in the present investigation. Materials and methods In the present case-control study, 36 subjects diagnosed with MetS according to International Diabetes Federation were considered as cases and were matched in age and gender with 31 healthy participants. The difference of biochemical indicators between cases and controls were determined whether by independent t-test or the Mann-Whitney U-test. The predictors of MetS and insulin resistance (IR) were examined through logistic and linear regressions analysis models, respectively. Results Irisin and MDA were not found to be predictors for MetS in logistic regression; p = 0.258 and p = 0.694, respectively. The IR was found to be the only direct predictor of MetS (p = 0.010). Similarly, in linear regression, irisin and MDA were not identified to be predictors for IR; p = 0.801 and p = 0.781, respectively. Conclusions The study did not show that irisin and MDA, directly and indirectly, were predictors of MetS disorder. The IR was only predictor of MetS.
Collapse
Affiliation(s)
- Israa Issa Hassan
- Basic Sciences Department, College of Nursing, University of Duhok, Duhok, Iraq
| | - Alan Bapeer Hassan
- Basic Sciences Department, College of Nursing, University of Duhok, Duhok, Iraq
| | - Heevi Ameen Rajab
- Medical Chemistry Department, College of Medicine, University of Duhok, Duhok, Iraq
| | | | - Deldar Morad Abdulah
- Adult Nursing Department, College of Nursing, University of Duhok, Duhok, Iraq, Phone: +9647507443319
| | | | | | | | | |
Collapse
|
16
|
Kalmykova O, Dzerzhynsky M. The effects of melatonin administration in different times of day on the brown adipose tissue in rats with high-calorie diet-induced obesity. ACTA ACUST UNITED AC 2019. [DOI: 10.17721/1728_2748.2019.77.55-61] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The aim of our study was to determine morpho-functional state (area of nucleus, brown adipocytes and also area and number of lipid droplets in each cells, general optical density of tissue) of brown adipose tissue in rats with high-calorie (high fat) dietinduced obesity after melatonin administration in different time of the day (morning and evening). Melatonin was administered daily by gavage for 7 weeks in dose 30 mg/kg either 1 h after lights-on (ZT01) or 1 h before lights-off (ZT11) rats with high-calorie diet (HCD). Besides morphometric parameters as well were measured related visceral fat weight and related brown adipose tissue mass. Rats with HCD had huge changes in brown adipocytes morphology, which summarized in become resembles of classical white adipocytes: grown lipid droplets and cells area, but goes down lipid droplets number and optical density of brown adipose tissue. In general brown adipose tissue with above mentioned characteristic from HCD rats lose their ability to conduct strongly thermoproduction function. After melatonin used in rats with HCD arise leveling of pathological changes, which associated with consumption of HCD. Namely, in groups HCD ZT01 and HCD ZT11 we obtain decreased cells and lipid droplets area, increased lipid droplets number and optical density of brown adipose tissue, in relation to group HCD. Therese received changes has evidence about functionally active brown adipose tissue state, which can also dissipate of exceed energy (lipids – triacylglycerols) amount into whole organism during heat production for avoid to its storage in white adipose tissue and in outside adipose tissue. In addition, evening administration of melatonin (group HCD ZT11) demonstrate more activated state of brown adipose tissueand also related visceral weight gain less, than morning(group HCD ZT01). In conclusions, melatonin influence on morpho-functional state brown adipose tissue in rats with HCD, moreover evening administration can use for obesity therapy via its strong action on activate brown adipocytes.
Collapse
|
17
|
Gene expression profiling during hibernation in the European hamster. Sci Rep 2018; 8:13167. [PMID: 30177816 PMCID: PMC6120936 DOI: 10.1038/s41598-018-31506-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 08/21/2018] [Indexed: 12/14/2022] Open
Abstract
Hibernation is an exceptional physiological response to a hostile environment, characterized by a seasonal period of torpor cycles involving dramatic reductions of body temperature and metabolism, and arousal back to normothermia. As the mechanisms regulating hibernation are still poorly understood, here we analysed the expression of genes involved in energy homeostasis, torpor regulation, and daily or seasonal timing using digital droplet PCR in various central and peripheral tissues sampled at different stages of torpor/arousal cycles in the European hamster. During torpor, the hypothalamus exhibited strongly down-regulated gene expression, suggesting that hypothalamic functions were reduced during this period of low metabolic activity. During both torpor and arousal, many structures (notably the brown adipose tissue) exhibited altered expression of deiodinases, potentially leading to reduced tissular triiodothyronine availability. During the arousal phase, all analysed tissues showed increased expression of the core clock genes Per1 and Per2. Overall, our data indicated that the hypothalamus and brown adipose tissue were the tissues most affected during the torpor/arousal cycle, and that clock genes may play critical roles in resetting the body’s clocks at the beginning of the active period.
Collapse
|
18
|
Zhu P, Zhang ZH, Huang XF, Shi YC, Khandekar N, Yang HQ, Liang SY, Song ZY, Lin S. Cold exposure promotes obesity and impairs glucose homeostasis in mice subjected to a high‑fat diet. Mol Med Rep 2018; 18:3923-3931. [PMID: 30106124 PMCID: PMC6131648 DOI: 10.3892/mmr.2018.9382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 08/08/2018] [Indexed: 11/06/2022] Open
Abstract
Cold exposure is considered to be a form of stress and has various adverse effects on the body. The present study aimed to investigate the effects of chronic daily cold exposure on food intake, body weight, serum glucose levels and the central energy balance regulatory pathway in mice fed with a high‑fat diet (HFD). C57BL/6 mice were divided into two groups, which were fed with a standard chow or with a HFD. Half of the mice in each group were exposed to ice‑cold water for 1 h/day for 7 weeks, while the controls were exposed to room temperature. Chronic daily cold exposure significantly increased energy intake, body weight and serum glucose levels in HFD‑fed mice compared with the control group. In addition, 1 h after the final cold exposure, c‑fos immunoreactivity was significantly increased in the central amygdala of HFD‑fed mice compared with HFD‑fed mice without cold exposure, indicating neuronal activation in this brain region. Notably, 61% of these c‑fos neurons co‑expressed the neuropeptide Y (NPY), and the orexigenic peptide levels were significantly increased in the central amygdala of cold‑exposed mice compared with control mice. Notably, cold exposure significantly decreased the anorexigenic brain‑derived neurotropic factor (BDNF) messenger RNA (mRNA) levels in the ventromedial hypothalamic nucleus and increased growth hormone releasing hormone (GHRH) mRNA in the paraventricular nucleus. NPY‑ergic neurons in the central amygdala were activated by chronic cold exposure in mice on HFD via neuronal pathways to decrease BDNF and increase GHRH mRNA expression, possibly contributing to the development of obesity and impairment of glucose homeostasis.
Collapse
Affiliation(s)
- Ping Zhu
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| | - Zhi-Hui Zhang
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| | - Xu-Feng Huang
- Illawarra Health and Medical Research Institute and School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Yan-Chuan Shi
- Neuroscience Division, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Neeta Khandekar
- Neuroscience Division, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - He-Qin Yang
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| | - Shi-Yu Liang
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| | - Zhi-Yuan Song
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| | - Shu Lin
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, P.R. China
| |
Collapse
|
19
|
Abstract
Obesity has been considered to be a chronic disease that requires medical prevention and treatment. Intriguingly, many factors, including adipose tissue dysfunction, mitochondrial dysfunction, alterations in the muscle fiber phenotype and in the gut microbiota composition, have been identified to be involved in the development of obesity and its associated metabolic disorders (in particular type 2 diabetes mellitus). In this narrative review, we will discuss our current understanding of the relationships of these factors and obesity development, and provide a summary of potential treatments to manage obesity. Level of Evidence Level V, narrative review.
Collapse
|
20
|
Panagia M, Chen HH, Croteau D, Iris Chen YC, Ran C, Luptak I, Josephson L, Colucci WS, Sosnovik DE. Multiplexed Optical Imaging of Energy Substrates Reveals That Left Ventricular Hypertrophy Is Associated With Brown Adipose Tissue Activation. Circ Cardiovasc Imaging 2018; 11:e007007. [PMID: 29555834 PMCID: PMC5908227 DOI: 10.1161/circimaging.117.007007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 01/18/2018] [Indexed: 01/06/2023]
Abstract
BACKGROUND Substrate utilization in tissues with high energetic requirements could play an important role in cardiometabolic disease. Current techniques to assess energetics are limited by high cost, low throughput, and the inability to resolve multiple readouts simultaneously. Consequently, we aimed to develop a multiplexed optical imaging platform to simultaneously assess energetics in multiple organs in a high throughput fashion. METHODS AND RESULTS The detection of 18F-Fluordeoxyglucose uptake via Cerenkov luminescence and free fatty acid uptake with a fluorescent C16 free fatty acid was tested. Simultaneous uptake of these agents was measured in the myocardium, brown/white adipose tissue, and skeletal muscle in mice with/without thoracic aortic banding. Within 5 weeks of thoracic aortic banding, mice developed left ventricular hypertrophy and brown adipose tissue activation with upregulation of β3AR (β3 adrenergic receptors) and increased natriuretic peptide receptor ratio. Imaging of brown adipose tissue 15 weeks post thoracic aortic banding revealed an increase in glucose (P<0.01) and free fatty acid (P<0.001) uptake versus controls and an increase in uncoupling protein-1 (P<0.01). Similar but less robust changes were seen in skeletal muscle, while substrate uptake in white adipose tissue remained unchanged. Myocardial glucose uptake was increased post-thoracic aortic banding but free fatty acid uptake trended to decrease. CONCLUSIONS A multiplexed optical imaging technique is presented that allows substrate uptake to be simultaneously quantified in multiple tissues in a high throughput manner. The activation of brown adipose tissue occurs early in the onset of left ventricular hypertrophy, which produces tissue-specific changes in substrate uptake that may play a role in the systemic response to cardiac pressure overload.
Collapse
Affiliation(s)
- Marcello Panagia
- From the Cardiovascular Medicine Section, Department of Medicine, Boston University Medical Center, MA (M.P., D.C., I.L., W.S.C.); Cardiovascular Research Center (M.P., H.H.C., D.E.S.) and Martinos Center for Biomedical Imaging, Department of Radiology (M.P., H.H.C., Y.-C.I.C., C.R., L.J., D.E.S.), Massachusetts General Hospital, Boston, MA
| | - Howard H Chen
- From the Cardiovascular Medicine Section, Department of Medicine, Boston University Medical Center, MA (M.P., D.C., I.L., W.S.C.); Cardiovascular Research Center (M.P., H.H.C., D.E.S.) and Martinos Center for Biomedical Imaging, Department of Radiology (M.P., H.H.C., Y.-C.I.C., C.R., L.J., D.E.S.), Massachusetts General Hospital, Boston, MA
| | - Dominique Croteau
- From the Cardiovascular Medicine Section, Department of Medicine, Boston University Medical Center, MA (M.P., D.C., I.L., W.S.C.); Cardiovascular Research Center (M.P., H.H.C., D.E.S.) and Martinos Center for Biomedical Imaging, Department of Radiology (M.P., H.H.C., Y.-C.I.C., C.R., L.J., D.E.S.), Massachusetts General Hospital, Boston, MA
| | - Yin-Ching Iris Chen
- From the Cardiovascular Medicine Section, Department of Medicine, Boston University Medical Center, MA (M.P., D.C., I.L., W.S.C.); Cardiovascular Research Center (M.P., H.H.C., D.E.S.) and Martinos Center for Biomedical Imaging, Department of Radiology (M.P., H.H.C., Y.-C.I.C., C.R., L.J., D.E.S.), Massachusetts General Hospital, Boston, MA
| | - Chongzhao Ran
- From the Cardiovascular Medicine Section, Department of Medicine, Boston University Medical Center, MA (M.P., D.C., I.L., W.S.C.); Cardiovascular Research Center (M.P., H.H.C., D.E.S.) and Martinos Center for Biomedical Imaging, Department of Radiology (M.P., H.H.C., Y.-C.I.C., C.R., L.J., D.E.S.), Massachusetts General Hospital, Boston, MA
| | - Ivan Luptak
- From the Cardiovascular Medicine Section, Department of Medicine, Boston University Medical Center, MA (M.P., D.C., I.L., W.S.C.); Cardiovascular Research Center (M.P., H.H.C., D.E.S.) and Martinos Center for Biomedical Imaging, Department of Radiology (M.P., H.H.C., Y.-C.I.C., C.R., L.J., D.E.S.), Massachusetts General Hospital, Boston, MA
| | - Lee Josephson
- From the Cardiovascular Medicine Section, Department of Medicine, Boston University Medical Center, MA (M.P., D.C., I.L., W.S.C.); Cardiovascular Research Center (M.P., H.H.C., D.E.S.) and Martinos Center for Biomedical Imaging, Department of Radiology (M.P., H.H.C., Y.-C.I.C., C.R., L.J., D.E.S.), Massachusetts General Hospital, Boston, MA
| | - Wilson S Colucci
- From the Cardiovascular Medicine Section, Department of Medicine, Boston University Medical Center, MA (M.P., D.C., I.L., W.S.C.); Cardiovascular Research Center (M.P., H.H.C., D.E.S.) and Martinos Center for Biomedical Imaging, Department of Radiology (M.P., H.H.C., Y.-C.I.C., C.R., L.J., D.E.S.), Massachusetts General Hospital, Boston, MA
| | - David E Sosnovik
- From the Cardiovascular Medicine Section, Department of Medicine, Boston University Medical Center, MA (M.P., D.C., I.L., W.S.C.); Cardiovascular Research Center (M.P., H.H.C., D.E.S.) and Martinos Center for Biomedical Imaging, Department of Radiology (M.P., H.H.C., Y.-C.I.C., C.R., L.J., D.E.S.), Massachusetts General Hospital, Boston, MA.
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Adipose tissue (AT) houses both innate and adaptive immune systems that are crucial for preserving AT function and metabolic homeostasis. In this review, we summarize recent information regarding progression of obesity-associated AT inflammation and insulin resistance. We additionally consider alterations in AT distribution and the immune system in males vs. females and among different racial populations. RECENT FINDINGS Innate and adaptive immune cell-derived inflammation drives insulin resistance both locally and systemically. However, new evidence also suggests that the immune system is equally vital for adipocyte differentiation and protection from ectopic lipid deposition. Furthermore, roles of anti-inflammatory immune cells such as regulatory T cells, "M2-like" macrophages, eosinophils, and mast cells are being explored, primarily due to promise of immunotherapeutic applications. Both immune responses and AT distribution are strongly influenced by factors like sex and race, which have been largely underappreciated in the field of metabolically-associated inflammation, or meta-flammation. More studies are required to recognize factors that switch inflammation from controlled to uncontrolled in obesity-associated pathogenesis and to integrate the combined effects of meta-flammation and immunometabolism. It is critical to recognize that the AT-associated immune system can be alternately beneficial and destructive; therefore, simply blocking immune responses early in obesity may not be the best clinical approach. The dearth of information on gender and race-associated disparities in metabolism, AT distribution, and the immune system suggest that a greater understanding of such differences will be critical to develop personalized treatments for obesity and the associated metabolic dysfunction.
Collapse
Affiliation(s)
- Madhur Agrawal
- Department of Microbiology, Boston University School of Medicine, 72 East Concord Street L-516, Boston, MA, 02118, USA
| | - Philip A Kern
- Department of Medicine, Division of Endocrinology, University of Kentucky, Lexington, KY, USA
| | - Barbara S Nikolajczyk
- Department of Microbiology, Boston University School of Medicine, 72 East Concord Street L-516, Boston, MA, 02118, USA.
- Department of Pathology, Boston University School of Medicine, Boston, MA, USA.
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, MA, USA.
| |
Collapse
|
22
|
Neyrinck AM, Bindels LB, Geurts L, Van Hul M, Cani PD, Delzenne NM. A polyphenolic extract from green tea leaves activates fat browning in high-fat-diet-induced obese mice. J Nutr Biochem 2017; 49:15-21. [PMID: 28863365 DOI: 10.1016/j.jnutbio.2017.07.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/21/2017] [Accepted: 07/19/2017] [Indexed: 10/19/2022]
Abstract
Fat browning has emerged as an attractive target for the treatment of obesity and related metabolic disorders. Its activation leads to increased energy expenditure and reduced adiposity, thus contributing to a better energy homeostasis. Green tea extracts (GTEs) were shown to attenuate obesity and low-grade inflammation and to induce the lipolytic pathway in the white adipose tissue (WAT) of mice fed a high-fat diet. The aim of the present study was to determine whether the antiobesity effect of an extract from green tea leaves was associated with the activation of browning in the WAT and/or the inhibition of whitening in the brown adipose tissue (BAT) in HF-diet induced obese mice. Mice were fed a control diet or an HF diet supplemented with or without 0.5% polyphenolic GTE for 8 weeks. GTE supplementation significantly reduced HF-induced adiposity (WAT and BAT) and HF-induced inflammation in WAT. Histological analysis revealed that GTE reduced the adipocyte size in the WAT and the lipid droplet size in the BAT. Markers of browning were induced in the WAT upon GTE treatment, whereas markers of HF-induced whitening were reduced in the BAT. These results suggest that browning activation in the WAT and whitening reduction in the BAT by the GTE could participate to the improvement of metabolic and inflammatory disorders mediated by GTE upon HF diet. Our study emphasizes the importance of using GTE as a nutritional tool to activate browning and to decrease fat storage in all adipose tissues, which attenuate obesity.
Collapse
Affiliation(s)
- Audrey M Neyrinck
- Louvain Drug Research Institute, Metabolism and Nutrition Research Group, Université catholique de Louvain, Brussels, Belgium
| | - Laure B Bindels
- Louvain Drug Research Institute, Metabolism and Nutrition Research Group, Université catholique de Louvain, Brussels, Belgium
| | - Lucie Geurts
- Louvain Drug Research Institute, Metabolism and Nutrition Research Group, Université catholique de Louvain, Brussels, Belgium; Walloon Excellence in Life sciences and BIOtechnology (WELBIO), Louvain Drug Research Institute, UCL, B-1200 Brussels, Belgium
| | - Matthias Van Hul
- Louvain Drug Research Institute, Metabolism and Nutrition Research Group, Université catholique de Louvain, Brussels, Belgium; Walloon Excellence in Life sciences and BIOtechnology (WELBIO), Louvain Drug Research Institute, UCL, B-1200 Brussels, Belgium
| | - Patrice D Cani
- Louvain Drug Research Institute, Metabolism and Nutrition Research Group, Université catholique de Louvain, Brussels, Belgium; Walloon Excellence in Life sciences and BIOtechnology (WELBIO), Louvain Drug Research Institute, UCL, B-1200 Brussels, Belgium
| | - Nathalie M Delzenne
- Louvain Drug Research Institute, Metabolism and Nutrition Research Group, Université catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
23
|
Hainer V. Beta3-adrenoreceptor agonist mirabegron – a potential antiobesity drug? Expert Opin Pharmacother 2016; 17:2125-2127. [DOI: 10.1080/14656566.2016.1233177] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
24
|
Gómez-Hernández A, Beneit N, Escribano Ó, Díaz-Castroverde S, García-Gómez G, Fernández S, Benito M. Severe Brown Fat Lipoatrophy Aggravates Atherosclerotic Process in Male Mice. Endocrinology 2016; 157:3517-28. [PMID: 27414981 DOI: 10.1210/en.2016-1148] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Obesity is one of the major risk factors for the development of cardiovascular diseases and is characterized by abnormal accumulation of adipose tissue, including perivascular adipose tissue (PVAT). However, brown adipose tissue (BAT) activation reduces visceral adiposity. To demonstrate that severe brown fat lipoatrophy might accelerate atherosclerotic process, we generated a new mouse model without insulin receptor (IR) in BAT and without apolipoprotein (Apo)E (BAT-specific IR knockout [BATIRKO];ApoE(-/-) mice) and assessed vascular and metabolic alterations associated to obesity. In addition, we analyzed the contribution of the adipose organ to vascular inflammation. Brown fat lipoatrophy induces visceral adiposity, mainly in gonadal depot (gonadal white adipose tissue [gWAT]), severe glucose intolerance, high postprandial glucose levels, and a severe defect in acute insulin secretion. BATIRKO;ApoE(-/-) mice showed greater hypertriglyceridemia than the obtained in ApoE(-/-) and hypercholesterolemia similar to ApoE(-/-) mice. BATIRKO;ApoE(-/-) mice, in addition to primary insulin resistance in BAT, also showed a significant decrease in insulin signaling in liver, gWAT, heart, aorta artery, and thoracic PVAT. More importantly, our results suggest that severe brown fat lipoatrophy aggravates the atherosclerotic process, characterized by a significant increase of lipid depots, atherosclerotic coverage, lesion size and complexity, increased macrophage infiltration, and proinflammatory markers expression. Finally, an increase of TNF-α and leptin as well as a decrease of adiponectin by BAT, gWAT, and thoracic PVAT might also be responsible of vascular damage. Our results suggest that severe brown lipoatrophy aggravates atherosclerotic process. Thus, BAT activation might protect against obesity and its associated metabolic alterations.
Collapse
Affiliation(s)
- Almudena Gómez-Hernández
- Biochemistry and Molecular Biology II Department, School of Pharmacy, Complutense University of Madrid; Health Research Institute of San Carlos Clinic Hospital; and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas 28020 Madrid, Spain
| | - Nuria Beneit
- Biochemistry and Molecular Biology II Department, School of Pharmacy, Complutense University of Madrid; Health Research Institute of San Carlos Clinic Hospital; and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas 28020 Madrid, Spain
| | - Óscar Escribano
- Biochemistry and Molecular Biology II Department, School of Pharmacy, Complutense University of Madrid; Health Research Institute of San Carlos Clinic Hospital; and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas 28020 Madrid, Spain
| | - Sabela Díaz-Castroverde
- Biochemistry and Molecular Biology II Department, School of Pharmacy, Complutense University of Madrid; Health Research Institute of San Carlos Clinic Hospital; and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas 28020 Madrid, Spain
| | - Gema García-Gómez
- Biochemistry and Molecular Biology II Department, School of Pharmacy, Complutense University of Madrid; Health Research Institute of San Carlos Clinic Hospital; and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas 28020 Madrid, Spain
| | - Silvia Fernández
- Biochemistry and Molecular Biology II Department, School of Pharmacy, Complutense University of Madrid; Health Research Institute of San Carlos Clinic Hospital; and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas 28020 Madrid, Spain
| | - Manuel Benito
- Biochemistry and Molecular Biology II Department, School of Pharmacy, Complutense University of Madrid; Health Research Institute of San Carlos Clinic Hospital; and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas 28020 Madrid, Spain
| |
Collapse
|
25
|
Yao K, Duan Y, Li F, Tan B, Hou Y, Wu G, Yin Y. Leucine in Obesity: Therapeutic Prospects. Trends Pharmacol Sci 2016; 37:714-727. [PMID: 27256112 DOI: 10.1016/j.tips.2016.05.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/08/2016] [Accepted: 05/10/2016] [Indexed: 02/07/2023]
|
26
|
Affiliation(s)
- Clark M Blatteis
- Department of Physiology, College of Medicine University of Tennessee Health Science Center 894 Union Ave. , Memphis, TN 38163, USA
| |
Collapse
|
27
|
Cai H, Dong LQ, Liu F. Recent Advances in Adipose mTOR Signaling and Function: Therapeutic Prospects. Trends Pharmacol Sci 2015; 37:303-317. [PMID: 26700098 DOI: 10.1016/j.tips.2015.11.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/19/2015] [Accepted: 11/20/2015] [Indexed: 12/11/2022]
Abstract
The increasing epidemic of obesity and its comorbidities has spurred research interest in adipose biology and its regulatory functions. Recent studies have revealed that the mechanistic target of rapamycin (mTOR) signaling pathway has a critical role in the regulation of adipose tissue function, including adipogenesis, lipid metabolism, thermogenesis, and adipokine synthesis and/or secretion. Given the importance of mTOR signaling in controlling energy homeostasis, it is not unexpected that deregulated mTOR signaling is associated with obesity and related metabolic disorders. In this review, we highlight current advances in understanding the roles of the mTOR signaling pathway in adipose tissue. We also provide a more nuanced view of how the mTOR signaling pathway regulates adipose tissue biology and function. Finally, we describe approaches to modulate the activity and tissue-specific function of mTOR that may pave the way towards counteracting obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Huan Cai
- Institute of Metabolism and Endocrinology, Metabolic Syndrome Research Center, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Department of Pharmacology, UTHSCSA, San Antonio, TX, USA
| | - Lily Q Dong
- Departments of Cellular Structural Biology, UTHSCSA, San Antonio, TX, USA
| | - Feng Liu
- Institute of Metabolism and Endocrinology, Metabolic Syndrome Research Center, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Department of Pharmacology, UTHSCSA, San Antonio, TX, USA.
| |
Collapse
|