1
|
Hossen MM, Ma Y, Yin Z, Xia Y, Du J, Huang JY, Huang JJ, Zou L, Ye Z, Huang Z. Current understanding of CTLA-4: from mechanism to autoimmune diseases. Front Immunol 2023; 14:1198365. [PMID: 37497212 PMCID: PMC10367421 DOI: 10.3389/fimmu.2023.1198365] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/19/2023] [Indexed: 07/28/2023] Open
Abstract
Autoimmune diseases (ADs) are characterized by the production of autoreactive lymphocytes, immune responses to self-antigens, and inflammation in related tissues and organs. Cytotoxic T-lymphocyte antigen 4 (CTLA-4) is majorly expressed in activated T cells and works as a critical regulator in the inflammatory response. In this review, we first describe the structure, expression, and how the signaling pathways of CTLA-4 participate in reducing effector T-cell activity and enhancing the immunomodulatory ability of regulatory T (Treg) cells to reduce immune response, maintain immune homeostasis, and maintain autoimmune silence. We then focused on the correlation between CTLA-4 and different ADs and how this molecule regulates the immune activity of the diseases and inhibits the onset, progression, and pathology of various ADs. Finally, we summarized the current progress of CTLA-4 as a therapeutic target for various ADs.
Collapse
Affiliation(s)
- Md Munnaf Hossen
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
- Department of Immunology, Biological Therapy Institute, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Health Science Center, Shenzhen University, Shenzhen, China
- Joint Research Laboratory for Rheumatology of Shenzhen University Health Science Center and Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Yanmei Ma
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
- Department of Immunology, Biological Therapy Institute, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Health Science Center, Shenzhen University, Shenzhen, China
- Joint Research Laboratory for Rheumatology of Shenzhen University Health Science Center and Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Zhihua Yin
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
- Joint Research Laboratory for Rheumatology of Shenzhen University Health Science Center and Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Yuhao Xia
- Department of Immunology, Biological Therapy Institute, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Health Science Center, Shenzhen University, Shenzhen, China
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jing Du
- Department of Laboratory Medicine, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jim Yi Huang
- Department of Psychology, University of Oklahoma, Norman, OK, United States
| | - Jennifer Jin Huang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
| | - Linghua Zou
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
- Department of Rehabilitation Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Zhizhong Ye
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
- Joint Research Laboratory for Rheumatology of Shenzhen University Health Science Center and Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Zhong Huang
- Department of Immunology, Biological Therapy Institute, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Health Science Center, Shenzhen University, Shenzhen, China
- Joint Research Laboratory for Rheumatology of Shenzhen University Health Science Center and Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| |
Collapse
|
2
|
Lichen Sclerosus: A Current Landscape of Autoimmune and Genetic Interplay. Diagnostics (Basel) 2022; 12:diagnostics12123070. [PMID: 36553077 PMCID: PMC9777366 DOI: 10.3390/diagnostics12123070] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/24/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Lichen sclerosus (LS) is an acquired chronic inflammatory dermatosis predominantly affecting the anogenital area with recalcitrant itching and soreness. Progressive or persistent LS may cause urinary and sexual disturbances and an increased risk of local skin malignancy with a prevalence of up to 11%. Investigations on lipoid proteinosis, an autosomal recessive genodermatosis caused by loss-of-function mutations in the extracellular matrix protein 1 (ECM1) gene, led to the discovery of a humoral autoimmune response to the identical molecule in LS, providing evidence for an autoimmune and genetic counterpart targeting ECM1. This paper provides an overview of the fundamental importance and current issue of better understanding the immunopathology attributed to ECM1 in LS. Furthermore, we highlight the pleiotropic action of ECM1 in homeostatic and structural maintenance of skin biology as well as in a variety of human disorders possibly associated with impaired or gained ECM1 function, including the inflammatory bowel disease ulcerative colitis, Th2 cell-dependent airway allergies, T-cell and B-cell activation, and the demyelinating central nervous system disease multiple sclerosis, to facilitate sharing the concept as a plausible therapeutic target of this attractive molecule.
Collapse
|
3
|
Clark AL, Yan Z, Chen SX, Shi V, Kulkarni DH, Diwan A, Remedi MS. High-fat diet prevents the development of autoimmune diabetes in NOD mice. Diabetes Obes Metab 2021; 23:2455-2465. [PMID: 34212475 PMCID: PMC8490276 DOI: 10.1111/dom.14486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/21/2021] [Accepted: 06/30/2021] [Indexed: 12/20/2022]
Abstract
AIMS Type 1 diabetes (T1D) has a strong genetic predisposition and requires an environmental trigger to initiate the beta-cell autoimmune destruction. The rate of childhood obesity has risen in parallel to the proportion of T1D, suggesting high-fat diet (HFD)/obesity as potential environmental triggers for autoimmune diabetes. To explore this, non-obese diabetic (NOD) mice were subjected to HFD and monitored for the development of diabetes, insulitis and beta-cell stress. MATERIALS AND METHODS Four-week-old female NOD mice were placed on HFD (HFD-NOD) or standard chow-diet. Blood glucose was monitored weekly up to 40 weeks of age, and glucose- and insulin-tolerance tests performed at 4, 10 and 15 weeks. Pancreata and islets were analysed for insulin secretion, beta-cell mass, inflammation, insulitis and endoplasmic reticulum stress markers. Immune cell levels were measured in islets and spleens. Stool microbiome was analysed at age 4, 8 and 25 weeks. RESULTS At early ages, HFD-NOD mice showed a significant increase in body weight, glucose intolerance and insulin resistance; but paradoxically, they were protected from developing diabetes. This was accompanied by increased insulin secretion and beta-cell mass, decreased insulitis, increased splenic T-regulatory cells and altered stool microbiome. CONCLUSIONS This study shows that HFD protects NOD mice from autoimmune diabetes and preserves beta-cell mass and function through alterations in gut microbiome, increased T-regulatory cells and decreased insulitis. Further studies into the exact mechanism of HFD-mediated prevention of diabetes in NOD mice could potentially lead to interventions to prevent or delay T1D development in humans.
Collapse
Affiliation(s)
- Amy L. Clark
- Department of PediatricsWashington University in St LouisSt LouisMissouriUSA
| | - Zihan Yan
- Department of Internal Medicine, Endocrinology, Metabolism and Lipid research DivisionWashington University in St LouisSt LouisMissouriUSA
| | - Sophia X. Chen
- Department of Internal Medicine, Endocrinology, Metabolism and Lipid research DivisionWashington University in St LouisSt LouisMissouriUSA
| | - Victoria Shi
- Department of Internal Medicine, Endocrinology, Metabolism and Lipid research DivisionWashington University in St LouisSt LouisMissouriUSA
| | - Devesha H. Kulkarni
- Department of Internal MedicineWashington University in St LouisSt LouisMissouriUSA
| | - Abhinav Diwan
- Department of Internal Medicine‐Cardiovascular DivisionWashington University in St LouisSt LouisMissouriUSA
- John Cochran VA Medical Center‐Cardiovascular DivisionSt LouisMissouriUSA
| | - Maria S. Remedi
- Department of Internal Medicine, Endocrinology, Metabolism and Lipid research DivisionWashington University in St LouisSt LouisMissouriUSA
- Department of Cell Biology and PhysiologyWashington University in St LouisSt LouisMissouriUSA
| |
Collapse
|
4
|
Low-dose interleukin-2-loaded nanoparticle effect on NK and T-reg cell expression in experimentally induced type 1 diabetes mellitus. GASTROENTEROLOGY REVIEW 2021; 16:67-82. [PMID: 33986891 PMCID: PMC8112267 DOI: 10.5114/pg.2021.104737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/19/2020] [Indexed: 02/07/2023]
Abstract
Introduction Type 1 diabetes mellitus is an autoimmune disorder characterized by inflammatory damage to pancreatic β cells resulting in loss of insulin secretion. In autoimmune type 1 diabetes mellitus (T1D) natural killer cells (NK) initiate pancreatic islets cell lyses in autoimmune T1D. Loss of T regulatory cells (Treg) at disease onset facilitates the activation and accumulation of NKs in the pancreatic microenvironment. A proper low-dose interleukin 2 (IL-2) could enhance Tregs and enforce control and regulation of pro-inflammatory NKs. Aim This relation needs to be studied to improve therapeutic strategies aimed at resetting the balance between Tregs and proinflammatory cells. Material and methods We used novel formulations of low-dose IL-2 loaded on chitosan nanoparticles. The study included 116 T1D BALB/c mice experimentally induced by streptozotocin, divided into groups. Their splenocytes were maintained in a short-term culture for assessment of expression of CD4+FOXP3+ Treg and NKp46+NK by both flow cytometry and enzyme-linked immunoassay (ELISA). Morphological, immunohistochemical, and morphometrical analyses were done.In vitro suppressor assay was used to assess the suppressor effect of Treg cells after exogenous IL-2 treatment. Results NK cell expression, NKp46 level, and NK cell functions were modulated more in mice injected with IL-2-loaded chitosan nanoparticles than in other groups. A statistical inverse correlation was found between Treg and NK cell expression in IL-2-loaded chitosan with 0.3 µIU (p = 0.047), and this correlation was related to FOXP3 expression on Treg cells. The modified expression of NK and NKp46 was noticed in mice injected with 0.3 µIU for longer duration (3 weeks) (p < 0.001), but the NK functions did not show any significant changes with prolonged treatment. Conclusions Prolonged administration of low-dose IL-2 results in the vigorous expression of NKp46, indicating a significant role of Tregs in NK stimulation and motivation. Low-dose IL-2 selectively modulates NKp46 NK and FOXP3+ Tregs and increases their expression.
Collapse
|
5
|
Effect of low dose IL-2 loaded chitosan nanoparticles on natural killer and regulatory T cell expression in experimentally induced autoimmune type 1 diabetes mellitus. Cent Eur J Immunol 2021; 45:382-392. [PMID: 33658887 PMCID: PMC7882410 DOI: 10.5114/ceji.2020.103412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 12/13/2019] [Indexed: 11/20/2022] Open
Abstract
Introduction Natural killer cells (NK) initiate pancreatic islets cell lyses in autoimmune type 1 diabetes mellitus (T1D). Loss of T regulatory cells (Treg) at disease onset facilitates activation and accumulation of NKs in the pancreatic microenvironment. A proper low dose interleukin 2 (IL-2) could enhance Tregs and enforce control and regulation of pro-inflammatory NKs. This relation needs to be studied to improve therapeutic strategies aimed at resetting the balance between Tregs and proinflammatory cells. Material and methods We used novel formulations of low dose IL-2 loaded on chitosan nanoparticles. The study included 116 T1D BALB/c mice experimentally induced by streptozotocin, divided into groups. Their splenocytes were maintained in a short-term culture for assessment of expression of CD4+Foxp3+ Treg and NKp46+NK by both flow cytometry and enzyme linked immunoassay (ELISA). In vitro suppressor-assay was used in order to assess the suppressor effect of Treg cells after exogenous IL-2 treatment. Results NK cell expression, NKp46 level and NK cell functions were modulated in mice injected with IL-2 loaded chitosan nanoparticles than other groups. A statistical inverse correlation was found between Treg and NK cell expression in IL-2 loaded chitosan with (0.3 µIU) (p = 0.047) and this correlation was related to Foxp3 expression on Treg cells. The modified expression of NK and NKp46 was noticed in mice injected with (0.3 µIU) for longer duration (three weeks) (p < 0.001) but the NK functions did not show any significant changes with prolonged treatment. Conclusions Low dose (0.3) µIU IL-2 nanoparticles effectively modulated NK and NKp46 expression. It selectively modulates the suppressive activity of Tregs indicating a significant role of Tregs in NK activation and function by controlling the availability of IL-2 in the microenvironment.
Collapse
|
6
|
Camilo DS, Pradella F, Paulino MF, Baracat ECE, Marini SH, Guerra G, Pavin EJ, Parisi C, Longhini ALF, Marques SB, Guariento EG, Lieber SR, Macedo CF, Gama E Silva L, Farias AS, Santos LMB, Volpini WMG. Partial remission in Brazilian children and adolescents with type 1 diabetes. Association with a haplotype of class II human leukocyte antigen and synthesis of autoantibodies. Pediatr Diabetes 2020; 21:606-614. [PMID: 32078220 DOI: 10.1111/pedi.12999] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 01/26/2020] [Accepted: 02/04/2020] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE Characterization of partial remission using the insulin dose-adjusted HbA1c (IDAA1c) ≤ 9 definition in a multiethnic Brazilian population of children and adolescents with type 1 diabetes (T1D), in addition with the determination of both Class II HLA genotype and autoantibodies. METHODS We analyzed the prevalence of partial remission in 51 new-onset T1D patients with a median time follow-up of 13 months from diagnosis. For this study, anti-GAD65, anti-IA2 and HLA class II genotyping were considered. RESULTS Partial remission occurred in 41.2% of T1D patients until 3 months after diagnosis, mainly in those aged 5-15 years. We have demonstrated a significant increase in the haplotypes of class II HLA DRB1*0301-DQB1*0201 in children and adolescents with a partial remission phase of the disease (42.9% vs 21.7% in non-remitters, P = .0291). This haplotype was also associated with the reduction of anti-IA2 antibodies production. Homozygote DRB1*03-DQB1*0201/DRB1*03-DQB1*0201 children had the lowest prevalence of IA-2A antibodies (P = .0402). However, this association does not correlate with the time of the remission phase. CONCLUSION Although the number of patients studied was reduced, our data suggested that the association between genetics and decrease in antibody production to certain islet auto-antigen may contribute, at least in part, to the remission phase of T1D.
Collapse
Affiliation(s)
- Daniela S Camilo
- Neuroimmunology Unit, Biology Institut, Campinas University UNICAMP, Campinas, Brazil
| | - Fernando Pradella
- Neuroimmunology Unit, Biology Institut, Campinas University UNICAMP, Campinas, Brazil
| | | | - Emilio C E Baracat
- Departament of Pediatrics, Campinas University UNICAMP, Campinas, Brazil
| | - Sofia H Marini
- Departament of Pediatrics, Campinas University UNICAMP, Campinas, Brazil
| | - Gil Guerra
- Departament of Pediatrics, Campinas University UNICAMP, Campinas, Brazil
| | - Elizabeth J Pavin
- Endocrinology Diabetes Service of the Clinical Hospital, Campinas University UNICAMP, Campinas, Brazil
| | - Candida Parisi
- Endocrinology Diabetes Service of the Clinical Hospital, Campinas University UNICAMP, Campinas, Brazil
| | - Ana Leda F Longhini
- Neuroimmunology Unit, Biology Institut, Campinas University UNICAMP, Campinas, Brazil
| | - Silvia B Marques
- HLA Laboratory, Blood Center, Campinas University UNICAMP, Campinas, Brazil
| | | | - Sofia R Lieber
- HLA Laboratory, Blood Center, Campinas University UNICAMP, Campinas, Brazil
| | | | - Letícia Gama E Silva
- Neuroimmunology Unit, Biology Institut, Campinas University UNICAMP, Campinas, Brazil
| | - Alessandro S Farias
- Neuroimmunology Unit, Biology Institut, Campinas University UNICAMP, Campinas, Brazil.,National Institute for Science and Technology-Neuroimmunomodulation (INCT-NIM), CNPq, Brasília, Brazil
| | - Leonilda M B Santos
- Neuroimmunology Unit, Biology Institut, Campinas University UNICAMP, Campinas, Brazil.,National Institute for Science and Technology-Neuroimmunomodulation (INCT-NIM), CNPq, Brasília, Brazil
| | - Walkyria M G Volpini
- Neuroimmunology Unit, Biology Institut, Campinas University UNICAMP, Campinas, Brazil
| |
Collapse
|
7
|
Dirice E, Kahraman S, De Jesus DF, El Ouaamari A, Basile G, Baker RL, Yigit B, Piehowski PD, Kim MJ, Dwyer AJ, Ng RWS, Schuster C, Vethe H, Martinov T, Ishikawa Y, Teo AKK, Smith RD, Hu J, Haskins K, Serwold T, Qian WJ, Fife BT, Kissler S, Kulkarni RN. Increased β-cell proliferation before immune cell invasion prevents progression of type 1 diabetes. Nat Metab 2019; 1:509-518. [PMID: 31423480 PMCID: PMC6696912 DOI: 10.1038/s42255-019-0061-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Type 1 diabetes (T1D) is characterized by pancreatic islet infiltration by autoreactive immune cells and a near-total loss of β-cells1. Restoration of insulin-producing β-cells coupled with immunomodulation to suppress the autoimmune attack has emerged as a potential approach to counter T1D2-4. Here we report that enhancing β-cell mass early in life, in two models of female NOD mice, results in immunomodulation of T-cells, reduced islet infiltration and lower β-cell apoptosis, that together protect them from developing T1D. The animals displayed altered β-cell antigens, and islet transplantation studies showed prolonged graft survival in the NOD-LIRKO model. Adoptive transfer of splenocytes from the NOD-LIRKOs prevented development of diabetes in pre-diabetic NOD mice. A significant increase in the splenic CD4+CD25+FoxP3+ regulatory T-cell (Treg) population was observed to underlie the protected phenotype since Treg depletion rendered NOD-LIRKO mice diabetic. The increase in Tregs coupled with activation of TGF-β/SMAD3 signaling pathway in pathogenic T-cells favored reduced ability to kill β-cells. These data support a previously unidentified observation that initiating β-cell proliferation, alone, prior to islet infiltration by immune cells alters the identity of β-cells, decreases pathologic self-reactivity of effector cells and increases Tregs to prevent progression of T1D.
Collapse
Affiliation(s)
- Ercument Dirice
- Islet Cell and Regenerative Biology, Joslin Diabetes
Center, Boston, MA, USA
- Department of Medicine, Brigham and Women’s
Hospital, Harvard Medical School, Boston, MA, USA
| | - Sevim Kahraman
- Islet Cell and Regenerative Biology, Joslin Diabetes
Center, Boston, MA, USA
- Department of Medicine, Brigham and Women’s
Hospital, Harvard Medical School, Boston, MA, USA
| | - Dario F. De Jesus
- Islet Cell and Regenerative Biology, Joslin Diabetes
Center, Boston, MA, USA
- Department of Medicine, Brigham and Women’s
Hospital, Harvard Medical School, Boston, MA, USA
- Graduate Program in Areas of Basic and Applied Biology
(GABBA), Abel Salazar Biomedical Sciences Institute, University of Porto, Porto,
Portugal
| | - Abdelfattah El Ouaamari
- Islet Cell and Regenerative Biology, Joslin Diabetes
Center, Boston, MA, USA
- Department of Medicine, Brigham and Women’s
Hospital, Harvard Medical School, Boston, MA, USA
| | - Giorgio Basile
- Islet Cell and Regenerative Biology, Joslin Diabetes
Center, Boston, MA, USA
- Department of Medicine, Brigham and Women’s
Hospital, Harvard Medical School, Boston, MA, USA
| | - Rocky L. Baker
- Department of Immunology, School of Medicine, University of
Colorado, Aurora, CO, USA
| | - Burcu Yigit
- Division of Immunology, Beth Israel Deaconess Medical
Center, Harvard Medical School, Boston, MA, USA
| | - Paul D. Piehowski
- Biological Sciences Division, Pacific Northwest National
Laboratory, Richland, WA, USA
| | - Mi-Jeong Kim
- Section for Immunobiology, Joslin Diabetes Center, Boston,
MA, USA
| | - Alexander J. Dwyer
- University of Minnesota, Center for Immunology, Department
of Medicine, Minneapolis, MN, USA
| | - Raymond W. S. Ng
- Islet Cell and Regenerative Biology, Joslin Diabetes
Center, Boston, MA, USA
- Department of Medicine, Brigham and Women’s
Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Heidrun Vethe
- Islet Cell and Regenerative Biology, Joslin Diabetes
Center, Boston, MA, USA
| | - Tijana Martinov
- University of Minnesota, Center for Immunology, Department
of Medicine, Minneapolis, MN, USA
| | - Yuki Ishikawa
- Section for Immunobiology, Joslin Diabetes Center, Boston,
MA, USA
| | - Adrian Kee Keong Teo
- Islet Cell and Regenerative Biology, Joslin Diabetes
Center, Boston, MA, USA
- Department of Medicine, Brigham and Women’s
Hospital, Harvard Medical School, Boston, MA, USA
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National
Laboratory, Richland, WA, USA
| | - Jiang Hu
- Islet Cell and Regenerative Biology, Joslin Diabetes
Center, Boston, MA, USA
- Department of Medicine, Brigham and Women’s
Hospital, Harvard Medical School, Boston, MA, USA
| | - Kathryn Haskins
- Department of Immunology, School of Medicine, University of
Colorado, Aurora, CO, USA
| | - Thomas Serwold
- Section for Immunobiology, Joslin Diabetes Center, Boston,
MA, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National
Laboratory, Richland, WA, USA
| | - Brian T. Fife
- University of Minnesota, Center for Immunology, Department
of Medicine, Minneapolis, MN, USA
| | - Stephan Kissler
- Section for Immunobiology, Joslin Diabetes Center, Boston,
MA, USA
| | - Rohit N. Kulkarni
- Islet Cell and Regenerative Biology, Joslin Diabetes
Center, Boston, MA, USA
- Department of Medicine, Brigham and Women’s
Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Boston, MA, USA
| |
Collapse
|
8
|
Grohová A, Dáňová K, Špíšek R, Palová-Jelínková L. Cell Based Therapy for Type 1 Diabetes: Should We Take Hyperglycemia Into Account? Front Immunol 2019; 10:79. [PMID: 30804929 PMCID: PMC6370671 DOI: 10.3389/fimmu.2019.00079] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/11/2019] [Indexed: 12/16/2022] Open
Abstract
Diabetes mellitus is characterized by long standing hyperglycemia leading to numerous life-threatening complications. For type 1 diabetes mellitus, resulting from selective destruction of insulin producing cells by exaggerated immune reaction, the only effective therapy remains exogenous insulin administration. Despite accurate compliance to treatment of certain patients, transient episodes of hyperglycemia cannot be completely eliminated by this symptomatic treatment. Novel immunotherapeutic approaches based on tolerogenic dendritic cells, T regulatory cells and mesenchymal stem cells (MSCs) have been tested in clinical trials, endeavoring to directly modulate the autoimmune destruction process in pancreas. However, hyperglycemia itself affects the immune system and the final efficacy of cell-based immunotherapies could be affected by the different glycemic control of enrolled patients. The present review explores the impact of hyperglycemia on immune cells while providing greater insight into the molecular mechanisms of high glucose action and subsequent metabolic reprogramming of different immune cells. Furthermore, over-production of mitochondrial reactive oxygen species, formation of advanced glycation end products as a consequence of hyperglycemia and their downstream signalization in immune cells are also discussed. Since hyperglycemia in patients with type 1 diabetes mellitus might have an impact on immune-interventional treatment, the maintenance of a tight glucose control seems to be beneficial in patients considered for cell-based therapy.
Collapse
Affiliation(s)
- Anna Grohová
- SOTIO a.s., Prague, Czechia.,Department of Immunology, Second Faculty of Medicine, University Hospital Motol, Charles University in Prague, Prague, Czechia.,Department of Pediatrics, Charles University in Prague, Second Faculty of Medicine, University Hospital Motol, Prague, Czechia
| | - Klára Dáňová
- SOTIO a.s., Prague, Czechia.,Department of Immunology, Second Faculty of Medicine, University Hospital Motol, Charles University in Prague, Prague, Czechia
| | - Radek Špíšek
- SOTIO a.s., Prague, Czechia.,Department of Immunology, Second Faculty of Medicine, University Hospital Motol, Charles University in Prague, Prague, Czechia
| | - Lenka Palová-Jelínková
- SOTIO a.s., Prague, Czechia.,Department of Immunology, Second Faculty of Medicine, University Hospital Motol, Charles University in Prague, Prague, Czechia
| |
Collapse
|
9
|
Pinto AI, Smith J, Kissack MR, Hogg KG, Green EA. Thymic B Cell-Mediated Attack of Thymic Stroma Precedes Type 1 Diabetes Development. Front Immunol 2018; 9:1281. [PMID: 29930554 PMCID: PMC5999731 DOI: 10.3389/fimmu.2018.01281] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/22/2018] [Indexed: 01/11/2023] Open
Abstract
Type 1 diabetes (T1D) results from a coordinated autoimmune attack of insulin producing beta cells in the pancreas by the innate and adaptive immune systems, beta cell death being predominantly T cell-mediated. In addition to T cells, peripheral B cells are important in T1D progression. The thymus of mice and man also contains B cells, and lately they have been linked to central tolerance of T cells. The role of thymic B cells in T1D is undefined. Here, we show there are abnormalities in the thymic B cell compartment before beta cell destruction and T1D manifestation. Using non-obese diabetic (NOD) mice, we document that preceding T1D development, there is significant accumulation of thymic B cells-partly through in situ development- and the putative formation of ectopic germinal centers. In addition, in NOD mice we quantify thymic plasma cells and observe in situ binding of immunoglobulins to undefined antigens on a proportion of medullary thymic epithelial cells (mTECs). By contrast, no ectopic germinal centers or pronounced intrathymic autoantibodies are detectable in animals not genetically predisposed to developing T1D. Binding of autoantibodies to thymic stroma correlates with apoptosis of mTECs, including insulin-expressing cells. By contrast, apoptosis of mTECs was decreased by 50% in B cell-deficient NOD mice suggesting intrathymic autoantibodies may selectively target certain mTECs for destruction. Furthermore, we observe that these thymic B cell-associated events correlated with an increased prevalence of premature thymic emigration of T cells. Together, our data suggest that the thymus may be a principal autoimmune target in T1D and contributes to disease progression.
Collapse
Affiliation(s)
- Ana Isabel Pinto
- Centre for Immunology and Infection, Department of Biology, Hull York Medical School, University of York, York, United Kingdom
| | - Jennifer Smith
- Cambridge Institute for Medical Research, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Miriam R Kissack
- Centre for Immunology and Infection, Department of Biology, Hull York Medical School, University of York, York, United Kingdom
| | - Karen G Hogg
- Centre for Immunology and Infection, Department of Biology, Hull York Medical School, University of York, York, United Kingdom
| | - E Allison Green
- Centre for Immunology and Infection, Department of Biology, Hull York Medical School, University of York, York, United Kingdom.,Cambridge Institute for Medical Research, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| |
Collapse
|
10
|
Abdel-Moneim A, Bakery HH, Allam G. The potential pathogenic role of IL-17/Th17 cells in both type 1 and type 2 diabetes mellitus. Biomed Pharmacother 2018; 101:287-292. [PMID: 29499402 DOI: 10.1016/j.biopha.2018.02.103] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/13/2018] [Accepted: 02/22/2018] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus (DM) is a serious medical problem affecting millions of peoples worldwide, and has a great socio-economic impacts. Cytokines possess a pivotal role in modulation of immune reactions and disease pathogenesis. T-helper type 17 (Th17) cells, an important proinflammatory CD4+ T cell subset secreting interleukin 17 (IL-17), has been embroiled in development of DM. There are recent evidences supporting a definitive role of Th17 cells in the etiology of type 1 diabetes (T1D). In addition, IL-17 has been shown to play a crucial role in inflammation, insulin resistance, and type 2 diabetes (T2D). Recently, small molecules which have been specified to block Th17 cells differentiation are considered as potential therapeutics for the disease. Anti-IL-17 neutralizing antibodies and/or antibodies targeting Th17 cells have been investigated to protect individuals at risk from disease development. In this review we aimed to shed light on the potential role of IL-17 and Th17 cells in both T1D and T2D pathogenesis and future therapeutic strategies.
Collapse
Affiliation(s)
- Adel Abdel-Moneim
- Physiology Division, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Heba H Bakery
- Physiology Division, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Gamal Allam
- Immunology Division, Department of Microbiology, College of Medicine, Taif University, Taif, Saudi Arabia; Immunology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Therapies that target beta-cell antigen-specific T cells subsets have not been as successful in patients with type 1 diabetes as in mice. This might be explained by complexities in the repertoire of beta-cell antigen-specific T cells and the variety of T cell subsets involved in type 1 diabetes development in human. RECENT FINDINGS T cells that infiltrate islets of people with type 1 diabetes (i) react towards known islet cell antigens but also unknown antigens, (ii) differ from one patient to another, and (iii) are also present in the circulation, but not in the islets, of healthy people. Moreover, several circulating memory T cell subsets not recognized as relevant in mouse are significantly associated with clinical outcome. A more detailed understanding of the specificity, phenotype, and function of T cells that are associated with defined clinical outcomes might identify new pathways for therapeutic intervention.
Collapse
Affiliation(s)
- Aditi Narsale
- San Diego Biomedical Research Institute, 10865 Road to the Cure, Suite 100, San Diego, CA, 92121, USA
| | - Joanna D Davies
- San Diego Biomedical Research Institute, 10865 Road to the Cure, Suite 100, San Diego, CA, 92121, USA.
| |
Collapse
|
12
|
Reeves PLS, Rudraraju R, Wong FS, Hamilton-Williams EE, Steptoe RJ. Antigen presenting cell-targeted proinsulin expression converts insulin-specific CD8 + T-cell priming to tolerance in autoimmune-prone NOD mice. Eur J Immunol 2017; 47:1550-1561. [PMID: 28665492 DOI: 10.1002/eji.201747089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/25/2017] [Accepted: 06/23/2017] [Indexed: 11/07/2022]
Abstract
Type 1 diabetes (T1D) results from autoimmune destruction of insulin-producing pancreatic β cells. Therapies need to incorporate strategies to overcome the genetic defects that impair induction or maintenance of peripheral T-cell tolerance and contribute to disease development. We tested whether the enforced expression of an islet autoantigen in antigen-presenting cells (APC) counteracted peripheral T-cell tolerance defects in autoimmune-prone NOD mice. We observed that insulin-specific CD8+ T cells transferred to mice in which proinsulin was transgenically expressed in APCs underwent several rounds of division and the majority were deleted. Residual insulin-specific CD8+ T cells were rendered unresponsive and this was associated with TCR downregulation, loss of tetramer binding and expression of a range of co-inhibitory molecules. Notably, accumulation and effector differentiation of insulin-specific CD8+ T cells in pancreatic lymph nodes was prominent in non-transgenic recipients but blocked by transgenic proinsulin expression. This shift from T-cell priming to T-cell tolerance exemplifies the tolerogenic capacity of autoantigen expression by APC and the capacity to overcome genetic tolerance defects.
Collapse
Affiliation(s)
- Peta L S Reeves
- The University of Queensland Diamantina Institute, University of Queensland, Brisbane, Australia
| | - Rajeev Rudraraju
- The University of Queensland Diamantina Institute, University of Queensland, Brisbane, Australia
| | - F Susan Wong
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales, UK
| | - Emma E Hamilton-Williams
- The University of Queensland Diamantina Institute, University of Queensland, Brisbane, Australia
| | - Raymond J Steptoe
- The University of Queensland Diamantina Institute, University of Queensland, Brisbane, Australia
| |
Collapse
|
13
|
Shao L, Feng B, Zhang Y, Zhou H, Ji W, Min W. The role of adipose-derived inflammatory cytokines in type 1 diabetes. Adipocyte 2016; 5:270-4. [PMID: 27617172 DOI: 10.1080/21623945.2016.1162358] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 02/25/2016] [Indexed: 12/22/2022] Open
Abstract
Adipose tissue dysfunction correlates with the development of diabetes. Mice with an adipocyte-specific deletion of the SUMO-specific protease SENP1 develop symptoms of type-1 diabetes mellitus (T1DM). Peri-pancreatic adipocytes (PATs) exert both systemic and paracrine effects on pancreases function. Our recent studies report that PATs of SENP1-deficient mice have increased proinflammatory cytokine production compared with other adipose depots. Proinflammatory cytokines produced from PATs not only have direct cytotoxic effects on pancreatic islets, but also increase CCL5 expression in adjacent pancreatic islets, which induces persistent inflammation in pancreases by acquisition of Th1 and Th17 effector T cell subsets. Small ubiquitin-like modifier (SUMO) can post-translationally conjugate to cellular proteins (SUMOylation) and modulate their biological functions. Several components in SUMOylation associate with T1DM susceptibility. We find that SUMOylation of NF-κB essential molecule NEMO augments NF-κB activity, NF-κB-dependent cytokine production and pancreatic inflammation. NF-κB inhibitor should provide therapeutic approach to block PAT inflammation and ameliorate the T1DM phenotype. We further propose that adipocytes in PATs may play a primary role in establishing pancreatic immune regulation at onset of diabetes, providing new insights into the molecular pathogenesis of type 1 diabetes.
Collapse
|
14
|
Okubo Y, Torrey H, Butterworth J, Zheng H, Faustman DL. Treg activation defect in type 1 diabetes: correction with TNFR2 agonism. Clin Transl Immunology 2016; 5:e56. [PMID: 26900470 PMCID: PMC4735064 DOI: 10.1038/cti.2015.43] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/10/2015] [Accepted: 12/09/2015] [Indexed: 12/27/2022] Open
Abstract
Activated T-regulatory cells (aTregs) prevent or halt various forms of autoimmunity. We show that type 1 diabetics (T1D) have a Treg activation defect through an increase in resting Tregs (rTregs, CD4+CD25+Foxp3+CD45RA) and decrease in aTregs (CD4+CD25+Foxp3+CD45RO) (n= 55 T1D, n=45 controls, P=0.01). The activation defect persists life long in T1D subjects (T1D=45, controls=45, P=0.01, P=0.04). Lower numbers of aTregs had clinical significance because they were associated with a trend for less residual C-peptide secretion from the pancreas (P=0.08), and poorer HbA1C control (P=0.03). In humans, the tumor necrosis factor receptor 2 (TNFR2) is obligatory for Treg induction, maintenance and expansion of aTregs. TNFR2 agonism is a method for stimulating Treg conversion from resting to activated. Using two separate in vitro expansion protocols, TNFR2 agonism corrected the T1D activation defect by triggering conversion of rTregs into aTregs (n=54 T1D, P<0.001). TNFR2 agonism was superior to standard protocols and TNF in proliferating Tregs. In T1D, TNFR2 agonist-expanded Tregs were homogeneous and functionally potent by virtue of suppressing autologous cytotoxic T cells in a dose-dependent manner comparable to controls. Targeting the TNFR2 receptor for Treg expansion in vitro demonstrates a means to correct the activation defect in T1D.
Collapse
Affiliation(s)
- Yoshiaki Okubo
- Immunobiology Department, Massachusetts General Hospital, Harvard Medical School , Boston, MA, USA
| | - Heather Torrey
- Immunobiology Department, Massachusetts General Hospital, Harvard Medical School , Boston, MA, USA
| | - John Butterworth
- Immunobiology Department, Massachusetts General Hospital, Harvard Medical School , Boston, MA, USA
| | - Hui Zheng
- Department of Biostatistics, Massachusetts General Hospital , Boston, MA, USA
| | - Denise L Faustman
- Immunobiology Department, Massachusetts General Hospital, Harvard Medical School , Boston, MA, USA
| |
Collapse
|
15
|
Abstract
Apart from its classical function in bone and calcium metabolism, vitamin D is also involved in immune regulation and has been linked to various cancers, immune disorders and allergic diseases. Within the innate and adaptive immune systems, the vitamin D receptor and enzymes in monocytes, dendritic cells, epithelial cells, T lymphocytes and B lymphocytes mediate the immune modulatory actions of vitamin D. Vitamin D insufficiency/deficiency early in life has been identified as one of the risk factors for food allergy. Several studies have observed an association between increasing latitude and food allergy prevalence, plausibly linked to lower ultraviolet radiation (UVR) exposure and vitamin D synthesis in the skin. Along with mounting epidemiological evidence of a link between vitamin D status and food allergy, mice and human studies have shed light on the modulatory properties of vitamin D on the innate and adaptive immune systems. This review will summarize the literature on the metabolism and immune modulatory properties of vitamin D, with particular reference to food allergy.
Collapse
|
16
|
Niemann N, Sawitzki B. Treg Therapy in Transplantation: How and When Will We Do It? CURRENT TRANSPLANTATION REPORTS 2015. [DOI: 10.1007/s40472-015-0066-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
17
|
Wang N, Rajasekaran N, Hou T, Macaubas C, Mellins ED. Immunological Basis for Rapid Progression of Diabetes in Older NOD Mouse Recipients Post BM-HSC Transplantation. PLoS One 2015; 10:e0128494. [PMID: 26020954 PMCID: PMC4447290 DOI: 10.1371/journal.pone.0128494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 04/27/2015] [Indexed: 01/07/2023] Open
Abstract
Type I diabetes (T1D), mediated by autoreactive T cell destruction of insulin-producing islet beta cells, has been treated with bone marrow-derived hematopoietic stem cell (BM-HSC) transplantation. Older non-obese diabetic (NOD) mice recipients (3m, at disease-onset stage) receiving syngeneic BM-HSC progressed more rapidly to end-stage diabetes post-transplantation than younger recipients (4-6w, at disease-initiation stage). FACS analyses showed a higher percentage and absolute number of regulatory T cells (Treg) and lower proportion of proliferating T conventional cells (Tcon) in pancreatic lymph nodes from the resistant mice among the younger recipients compared to the rapid progressors among the older recipients. Treg distribution in spleen, mesenteric lymph nodes (MLN), blood and thymus between the two groups was similar. However, the percentage of thymic Tcon and the proliferation of Tcon in MLN and blood were lower in the young resistants. These results suggest recipient age and associated disease stage as a variable to consider in BM-HSC transplantation for treating T1D.
Collapse
MESH Headings
- Aging/immunology
- Aging/pathology
- Animals
- Antigens, CD/genetics
- Antigens, CD/immunology
- Biomarkers/metabolism
- Blood Glucose/immunology
- Blood Glucose/metabolism
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/mortality
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 1/therapy
- Disease Models, Animal
- Female
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/immunology
- Gene Expression
- Hematopoietic Stem Cell Transplantation
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/immunology
- Immunophenotyping
- Lymphocyte Count
- Mice
- Mice, Inbred NOD
- Survival Analysis
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/pathology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
- Whole-Body Irradiation
Collapse
Affiliation(s)
- Nan Wang
- Program in Immunology, Division of Human Gene Therapy, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Narendiran Rajasekaran
- Program in Immunology, Division of Human Gene Therapy, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Tieying Hou
- Program in Immunology, Division of Human Gene Therapy, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Claudia Macaubas
- Program in Immunology, Division of Human Gene Therapy, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Elizabeth D. Mellins
- Program in Immunology, Division of Human Gene Therapy, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
18
|
Saksida T, Vujicic M, Nikolic I, Stojanovic I, Haegeman G, Stosic-Grujicic S. Compound A, a selective glucocorticoid receptor agonist, inhibits immunoinflammatory diabetes, induced by multiple low doses of streptozotocin in mice. Br J Pharmacol 2014; 171:5898-909. [PMID: 25158597 DOI: 10.1111/bph.12892] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 07/24/2014] [Accepted: 08/22/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Type 1 diabetes is a multifactorial inflammatory disease that develops as a result of deregulated immune responses, causing progressive autoimmune destruction of insulin-producing beta cells of pancreas. 2-((4-acetoxyphenyl)-2-chloro-N-methyl) ethylammonium chloride, compound A (CpdA), is a selective glucocorticoid receptor (GR) agonist that displays strong anti-inflammatory and immunomodulatory activities. We investigated the therapeutic effectiveness of CpdA in a pharmacological model of type 1 diabetes in mice. EXPERIMENTAL APPROACH The utility of CpdA in diabetes prevention was evaluated in vivo through its prophylactic administration to male C57BL/6 mice that received multiple low doses of streptozotocin for immunoinflammatory diabetes induction. The effect of CpdA on disease development was studied by measuring blood glucose and insulin level, histopathological examination, determination of the nature of infiltrating cells, pro- and anti-inflammatory cytokine production, and signalling pathways. KEY RESULTS Prophylactic in vivo therapy with CpdA conferred protection against development of immunoinflammatory diabetes in mice by dampening the M1/Th1/Th17 immune response and switching it towards an anti-inflammatory M2/Th2/Treg profile, thus preserving beta cell function. CONCLUSIONS AND IMPLICATIONS Anti-diabetic properties of CpdA are mediated through modulation of immune cell-mediated pathways, but without triggering adverse events. These findings provide basic information for the therapeutic use of selective GR agonists in the amelioration of islet-directed autoimmunity.
Collapse
Affiliation(s)
- T Saksida
- Department of Immunology, Institute for Biological Research 'Sinisa Stankovic', University of Belgrade, Belgrade, Serbia
| | | | | | | | | | | |
Collapse
|
19
|
Li M, Song LJ, Qin XY. Advances in the cellular immunological pathogenesis of type 1 diabetes. J Cell Mol Med 2014; 18:749-58. [PMID: 24629100 PMCID: PMC4119381 DOI: 10.1111/jcmm.12270] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 01/30/2014] [Indexed: 12/13/2022] Open
Abstract
Type 1 diabetes is an autoimmune disease caused by the immune-mediated destruction of insulin-producing pancreatic β cells. In recent years, the incidence of type 1 diabetes continues to increase. It is supposed that genetic, environmental and immune factors participate in the damage of pancreatic β cells. Both the immune regulation and the immune response are involved in the pathogenesis of type 1 diabetes, in which cellular immunity plays a significant role. For the infiltration of CD4(+) and CD8(+) T lymphocyte, B lymphocytes, natural killer cells, dendritic cells and other immune cells take part in the damage of pancreatic β cells, which ultimately lead to type 1 diabetes. This review outlines the cellular immunological mechanism of type 1 diabetes, with a particular emphasis to T lymphocyte and natural killer cells, and provides the effective immune therapy in T1D, which is approached at three stages. However, future studies will be directed at searching for an effective, safe and long-lasting strategy to enhance the regulation of a diabetogenic immune system with limited toxicity and without global immunosuppression.
Collapse
Affiliation(s)
- Min Li
- Department of General Surgery, Zhongshan Hospital, Fudan UniversityShanghai, China
| | - Lu-Jun Song
- Department of General Surgery, Zhongshan Hospital, Fudan UniversityShanghai, China
| | - Xin-Yu Qin
- Department of General Surgery, Zhongshan Hospital, Fudan UniversityShanghai, China
| |
Collapse
|
20
|
Hisanaga-Oishi Y, Nishiwaki-Ueda Y, Nojima K, Ueda H. Analysis of the expression of candidate genes for type 1 diabetes susceptibility in T cells. Endocr J 2014; 61:577-88. [PMID: 24705559 DOI: 10.1507/endocrj.ej14-0002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Type 1 diabetes is characterized by T-cell-mediated autoimmune destruction of pancreatic β-cells. Currently, approximately 50 type 1 diabetes susceptibility genes or chromosomal regions have been identified. However, the functions of type 1 diabetes susceptibility genes in T cells are elusive. In this study, we evaluated the correlation between type 1 diabetes susceptibility genes and T-cell signaling. The expression levels of 22 candidate type 1 diabetes susceptibility genes in T cells from nonobese diabetic (NOD), control C57BL/6 (B6), and NOD-control F1 hybrid mice were analyzed in response to 2 key immunoregulatory cytokines: interleukin-2 (IL-2) and transforming growth factor β (TGF-β). Exogenous gene expression studies were also performed in EL4 and Jurkat E6.1 T-cell lines. Significant differences in the expression of Clec16a, Dlk1, Il2, Ptpn22, Rnls, and Zac1 (also known as Plagl1) were observed in T cells derived from the 3 strains of mice, and TGF-β differentially influenced the expression of Ctla4, Foxp3, Il2, Ptpn22, Sh2b3, and Zac1. We found that TGF-β induced Zac1 expression in both primary T cells and EL4 cells and that exogenous expression of Zac1 and ZAC1 in T-cell lines altered the expression of Il2 and DLK1, respectively. The results of our study indicate the possibility that additional genetic pathways underlying type 1 diabetes susceptibility, including those involving Clec16a, Dlk1, Rnls, Sh2b3, and Zac1 under IL-2 and TGF-β signaling in T cells, may be shared between human and NOD mice.
Collapse
Affiliation(s)
- Yuko Hisanaga-Oishi
- Department of Molecular Endocrinology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | | | | | | |
Collapse
|
21
|
Harrison LC, Wentworth JM, Zhang Y, Bandala-Sanchez E, Böhmer RM, Neale AM, Stone NL, Naselli G, Bosco JJ, Auyeung P, Rashidi M, Augstein P, Morahan G. Antigen-based vaccination and prevention of type 1 diabetes. Curr Diab Rep 2013; 13:616-23. [PMID: 23888323 DOI: 10.1007/s11892-013-0415-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Insulin-dependent or type 1 diabetes (T1D) is a paradigm for prevention of autoimmune disease: Pancreatic β-cell autoantigens are defined, at-risk individuals can be identified before the onset of symptoms, and autoimmune diabetes is preventable in rodent models. Intervention in asymptomatic individuals before or after the onset of subclinical islet autoimmunity places a premium on safety, a requirement met only by lifestyle-dietary approaches or autoantigen-based vaccination to induce protective immune tolerance. Insulin is the key driver of autoimmune β-cell destruction in the nonobese diabetic (NOD) mouse model of T1D and is an early autoimmune target in children at risk for T1D. In the NOD mouse, mucosal administration of insulin induces regulatory T cells that protect against diabetes. The promise of autoantigen-specific vaccination in humans has yet to be realized, but recent trials of oral and nasal insulin vaccination in at-risk humans provide grounds for cautious optimism.
Collapse
Affiliation(s)
- Leonard C Harrison
- Walter & Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, 3052, Victoria, Australia,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Genome-wide DNA methylation analysis identifies hypomethylated genes regulated by FOXP3 in human regulatory T cells. Blood 2013; 122:2823-36. [PMID: 23974203 DOI: 10.1182/blood-2013-02-481788] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Regulatory T cells (Treg) prevent the emergence of autoimmune disease. Prototypic natural Treg (nTreg) can be reliably identified by demethylation at the Forkhead-box P3 (FOXP3) locus. To explore the methylation landscape of nTreg, we analyzed genome-wide methylation in human naive nTreg (rTreg) and conventional naive CD4(+) T cells (Naive). We detected 2315 differentially methylated cytosine-guanosine dinucleotides (CpGs) between these 2 cell types, many of which clustered into 127 regions of differential methylation (RDMs). Activation changed the methylation status of 466 CpGs and 18 RDMs in Naive but did not alter DNA methylation in rTreg. Gene-set testing of the 127 RDMs showed that promoter methylation and gene expression were reciprocally related. RDMs were enriched for putative FOXP3-binding motifs. Moreover, CpGs within known FOXP3-binding regions in the genome were hypomethylated. In support of the view that methylation limits access of FOXP3 to its DNA targets, we showed that increased expression of the immune suppressive receptor T-cell immunoglobulin and immunoreceptor tyrosine-based inhibitory motif domain (TIGIT), which delineated Treg from activated effector T cells, was associated with hypomethylation and FOXP3 binding at the TIGIT locus. Differential methylation analysis provides insight into previously undefined human Treg signature genes and their mode of regulation.
Collapse
|
23
|
Penno MAS, Couper JJ, Craig ME, Colman PG, Rawlinson WD, Cotterill AM, Jones TW, Harrison LC. Environmental determinants of islet autoimmunity (ENDIA): a pregnancy to early life cohort study in children at-risk of type 1 diabetes. BMC Pediatr 2013; 13:124. [PMID: 23941366 PMCID: PMC3751791 DOI: 10.1186/1471-2431-13-124] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 08/12/2013] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The incidence of type 1 diabetes has increased worldwide, particularly in younger children and those with lower genetic susceptibility. These observations suggest factors in the modern environment promote pancreatic islet autoimmunity and destruction of insulin-producing beta cells. The Environmental Determinants of Islet Autoimmunity (ENDIA) Study is investigating candidate environmental exposures and gene-environment interactions that may contribute to the development of islet autoimmunity and type 1 diabetes. METHODS/DESIGN ENDIA is the only prospective pregnancy/birth cohort study in the Southern Hemisphere investigating the determinants of type 1 diabetes in at-risk children. The study will recruit 1,400 unborn infants or infants less than six months of age with a first-degree relative (i.e. mother, father or sibling) with type 1 diabetes, across five Australian states. Pregnant mothers/infants will be followed prospectively from early pregnancy through childhood to investigate relationships between genotype, the development of islet autoimmunity (and subsequently type 1 diabetes), and prenatal and postnatal environmental factors. ENDIA will evaluate the microbiome, nutrition, bodyweight/composition, metabolome-lipidome, insulin resistance, innate and adaptive immune function and viral infections. A systems biology approach will be used to integrate these data. Investigation will be by 3-monthly assessments of the mother during pregnancy, then 3-monthly assessments of the child until 24 months of age and 6-monthly thereafter. The primary outcome measure is persistent islet autoimmunity, defined as the presence of autoantibodies to one or more islet autoantigens on consecutive tests. DISCUSSION Defining gene-environment interactions that initiate and/or promote destruction of the insulin-producing beta cells in early life will inform approaches to primary prevention of type 1 diabetes. The strength of ENDIA is the prospective, comprehensive and frequent systems-wide profiling from early pregnancy through to early childhood, to capture dynamic environmental exposures that may shape the development of islet autoimmunity. TRIAL REGISTRATION Australia New Zealand Clinical Trials Registry ACTRN12613000794707.
Collapse
|
24
|
Pedicino D, Liuzzo G, Trotta F, Giglio AF, Giubilato S, Martini F, Zaccardi F, Scavone G, Previtero M, Massaro G, Cialdella P, Cardillo MT, Pitocco D, Ghirlanda G, Crea F. Adaptive immunity, inflammation, and cardiovascular complications in type 1 and type 2 diabetes mellitus. J Diabetes Res 2013; 2013:184258. [PMID: 23762872 PMCID: PMC3676957 DOI: 10.1155/2013/184258] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 04/05/2013] [Indexed: 12/28/2022] Open
Abstract
Diabetes mellitus (DM) is a pandemics that affects more than 170 million people worldwide, associated with increased mortality and morbidity due to coronary artery disease (CAD). In type 1 (T1) DM, the main pathogenic mechanism seems to be the destruction of pancreatic β -cells mediated by autoreactive T-cells resulting in chronic insulitis, while in type 2 (T2) DM primary insulin resistance, rather than defective insulin production due to β -cell destruction, seems to be the triggering alteration. In our study, we investigated the role of systemic inflammation and T-cell subsets in T1- and T2DM and the possible mechanisms underlying the increased cardiovascular risk associated with these diseases.
Collapse
Affiliation(s)
- Daniela Pedicino
- Institute of Cardiology, Catholic University, Largo A. Gemelli, 8-00168 Rome, Italy
| | - Giovanna Liuzzo
- Institute of Cardiology, Catholic University, Largo A. Gemelli, 8-00168 Rome, Italy
- *Giovanna Liuzzo:
| | - Francesco Trotta
- Institute of Cardiology, Catholic University, Largo A. Gemelli, 8-00168 Rome, Italy
| | - Ada Francesca Giglio
- Institute of Cardiology, Catholic University, Largo A. Gemelli, 8-00168 Rome, Italy
| | - Simona Giubilato
- Institute of Cardiology, Catholic University, Largo A. Gemelli, 8-00168 Rome, Italy
| | - Francesca Martini
- Diabetes Care Unit, Internal Medicine, Catholic University, Largo A. Gemelli, 8-00168 Rome, Italy
| | - Francesco Zaccardi
- Diabetes Care Unit, Internal Medicine, Catholic University, Largo A. Gemelli, 8-00168 Rome, Italy
| | - Giuseppe Scavone
- Diabetes Care Unit, Internal Medicine, Catholic University, Largo A. Gemelli, 8-00168 Rome, Italy
| | - Marco Previtero
- Institute of Cardiology, Catholic University, Largo A. Gemelli, 8-00168 Rome, Italy
| | - Gianluca Massaro
- Institute of Cardiology, Catholic University, Largo A. Gemelli, 8-00168 Rome, Italy
| | - Pio Cialdella
- Institute of Cardiology, Catholic University, Largo A. Gemelli, 8-00168 Rome, Italy
| | | | - Dario Pitocco
- Diabetes Care Unit, Internal Medicine, Catholic University, Largo A. Gemelli, 8-00168 Rome, Italy
| | - Giovanni Ghirlanda
- Diabetes Care Unit, Internal Medicine, Catholic University, Largo A. Gemelli, 8-00168 Rome, Italy
| | - Filippo Crea
- Institute of Cardiology, Catholic University, Largo A. Gemelli, 8-00168 Rome, Italy
| |
Collapse
|