1
|
Kontogeorgos G, Markussis V, Thodou E, Kyrodimou E, Choreftaki T, Nomikos P, Lampropoulos KI, Tsagarakis S. Association of Pathology Markers with Somatostatin Analogue Responsiveness in Acromegaly. Int J Endocrinol 2022; 2022:8660470. [PMID: 36199813 PMCID: PMC9529452 DOI: 10.1155/2022/8660470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/25/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Somatotroph adenomas (SAs) exhibit a variable responsiveness to somatostatin analogue (SS-a) treatment, a process that is not well understood. We investigated established and novel histological markers as predictors of SS-a responsiveness. METHODS We retrospectively investigated pathology samples from 36 acromegalic patients that underwent transsphenoidal surgery. Clinical, hormonal, and imaging data were available in 24/36 patients, before and after SS-a treatment. Specimens were semiquantitatively analyzed with immunocytochemistry for Ki-67, KER, SSTR-2, SSTR-5, ZAC-1, E-cadherin, and AIP. RESULTS Collectively, 18 (50%) adenomas were each classified as densely/sparsely granulated somatotroph adenomas (DGSAs/SGSAs), respectively. Patients that received preoperative SS-a had lower expression of SSTR-2 compared to those that did not (2.0 (1.0, 3.0) vs. 3.0 (3.0, 3.0), p = 0.042). Compared with DGSAs, SGSAs had higher Ki-67 labeling index (LI) (1.0 (0.5, 1.0) vs. 2.0 (1.0, 3.5), p = 0.013), and a higher proportion of high MR T2 signal (1 (6%) vs. 6 (33%), p = 0.035), and tended to express less ZAC-1 (p = 0.061) and E-cadherin (p = 0.067). In linear regression corrected for baseline growth hormone (GH), ZAC-1 immunostaining was significantly associated with a decrease in GH levels after SS-a treatment (beta (95% confidence interval): -1.53 (-2.80, -0.26), p = 0.021). No markers were associated with changes in circulating insulin-like growth factor-I (IGF-I) after treatment with SS-a. CONCLUSION The novel marker ZAC-1 was associated with GH response to medical treatment with SS-a. The SGSA cases were characterized by higher Ki-67 values and MR T2 signals indicative of an inferior response to SS-a. These findings improve our understanding of the mechanisms underlying SA response to medical treatment.
Collapse
Affiliation(s)
- George Kontogeorgos
- First Propaedeutic Department of Internal Medicine, Division of Endocrinology, Laikon Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Department of Pathology and Pituitary Tumor Reference Center, “G. Gennimatas” General Hospital of Athens, Athens, Greece
| | | | - Eleni Thodou
- Department of Pathology, University of Thessaly, Larissa, Greece
| | - Efi Kyrodimou
- Department of Pathology and Pituitary Tumor Reference Center, “G. Gennimatas” General Hospital of Athens, Athens, Greece
| | - Theodossia Choreftaki
- Department of Pathology and Pituitary Tumor Reference Center, “G. Gennimatas” General Hospital of Athens, Athens, Greece
| | | | | | | |
Collapse
|
2
|
Treppiedi D, Jobin ML, Peverelli E, Giardino E, Sungkaworn T, Zabel U, Arosio M, Spada A, Mantovani G, Calebiro D. Single-Molecule Microscopy Reveals Dynamic FLNA Interactions Governing SSTR2 Clustering and Internalization. Endocrinology 2018; 159:2953-2965. [PMID: 29931263 DOI: 10.1210/en.2018-00368] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/14/2018] [Indexed: 11/19/2022]
Abstract
The cytoskeletal protein filamin A (FLNA) has been suggested to play an important role in the responsiveness of GH-secreting pituitary tumors to somatostatin receptor subtype 2 (SSTR2) agonists by regulating SSTR2 expression and signaling. However, the underlying mechanisms are unknown. In this study, we use fast multicolor single-molecule microscopy to image individual SSTR2 and FLNA molecules at the surface of living cells with unprecedented spatiotemporal resolution. We find that SSTR2 and FLNA undergo transient interactions, which occur preferentially along actin fibers and contribute to restraining SSTR2 diffusion. Agonist stimulation increases the localization of SSTR2 along actin fibers and, subsequently, SSTR2 clustering and recruitment to clathrin-coated pits (CCPs). Interfering with FLNA-SSTR2 binding with a dominant-negative FLNA fragment increases SSTR2 mobility, hampers the formation and alignment of SSTR2 clusters along actin fibers, and impairs both SSTR2 recruitment to CCPs and SSTR2 internalization. These findings indicate that dynamic SSTR2-FLNA interactions critically control the nanoscale localization of SSTR2 at the plasma membrane and are required for coupling SSTR2 clustering to internalization. These mechanisms explain the critical role of FLNA in the control of SSTR2 expression and signaling and suggest the possibility of targeting SSTR2-FLNA interactions for the therapy of pharmacologically resistant GH-secreting pituitary tumors.
Collapse
Affiliation(s)
- Donatella Treppiedi
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Marie-Lise Jobin
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Bio-Imaging Center/Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Erika Peverelli
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Elena Giardino
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Titiwat Sungkaworn
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Bio-Imaging Center/Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Ulrike Zabel
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Bio-Imaging Center/Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Maura Arosio
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Anna Spada
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giovanna Mantovani
- Endocrinology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Davide Calebiro
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Bio-Imaging Center/Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, United Kingdom
| |
Collapse
|
3
|
Giustina A, Arnaldi G, Bogazzi F, Cannavò S, Colao A, De Marinis L, De Menis E, Degli Uberti E, Giorgino F, Grottoli S, Lania AG, Maffei P, Pivonello R, Ghigo E. Pegvisomant in acromegaly: an update. J Endocrinol Invest 2017; 40:577-589. [PMID: 28176221 PMCID: PMC5443862 DOI: 10.1007/s40618-017-0614-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 01/10/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND In 2007, we published an opinion document to review the role of pegvisomant (PEG) in the treatment of acromegaly. Since then, new evidence emerged on the biochemical and clinical effects of PEG and on its long-term efficacy and safety. AIM We here reviewed the emerging aspects of the use of PEG in clinical practice in the light of the most recent literature. RESULTS The clinical use of PEG is still suboptimal, considering that it remains the most powerful tool to control IGF-I in acromegaly allowing to obtain, with a pharmacological treatment, the most important clinical effects in terms of signs and symptoms, quality of life and comorbidities. The number of patients with acromegaly exposed to PEG worldwide has become quite elevated and the prolonged follow-up allows now to deal quite satisfactorily with many clinical issues including major safety issues, such as the concerns about possible tumour (re)growth under PEG. The positive or neutral impact of PEG on glucose metabolism has been highlighted, and the clinical experience, although limited, with sleep apnoea and pregnancy has been reviewed. Finally, the current concept of somatostatin receptor ligands (SRL) resistance has been addressed, in order to better define the acromegaly patients to whom the PEG option may be offered. CONCLUSIONS PEG increasingly appears to be an effective and safe medical option for many patients not controlled by SRL but its use still needs to be optimized.
Collapse
Affiliation(s)
- A Giustina
- Chair of Endocrinology, Vita-Salute San Raffaele University, Milano, Italy.
| | - G Arnaldi
- Clinic of Endocrinology and Metabolism Disease, Ospedali Riuniti di Ancona, Ancona, Italy
| | - F Bogazzi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - S Cannavò
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - A Colao
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - L De Marinis
- Pituitary Unit, Catholic University School of Medicine, Rome, Italy
| | - E De Menis
- Department of Internal Medicine, General Hospital, Montebelluna (TV), Italy
| | - E Degli Uberti
- Section of Endocrinology and Internal Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - F Giorgino
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - S Grottoli
- Endocrinology, Diabetology and Metabolism, AOU Città della Salute e della Scienza of Turin, Turin, Italy
| | - A G Lania
- Endocrinology Unit, Department of Biomedical Sciences, Humanitas University and Humanitas Research Hospital, Rozzano, Italy
| | - P Maffei
- Department of Medicine (DIMED), 3rd Medical Clinic, Azienda Ospedaliera Padova, Padova, Italy
| | - R Pivonello
- Department of Clinical and Surgery Medicine, Endocrinology and Metabolism, University of Naples, Naples, Italy
| | - E Ghigo
- Department of Medical Sciences, School of Medicine, University of Turin, Turin, Italy
| |
Collapse
|
4
|
Abstract
PURPOSE Uncontrolled acromegaly results in approximately 2-fold excess mortality. Pituitary surgery is first-line therapy, and medical treatment is indicated for persistent disease. While cabergoline and pegvisomant are used in select patients, somatostatin receptor ligands (SRLs) remain the cornerstone of medical treatment. Management of patients poorly responsive to SRLs is therefore, challenging. The purpose of this review is to highlight the options for combination medical therapy in the treatment of acromegaly, with an emphasis on efficacy and safety. METHODS All original articles/abstracts detailing combination medical therapy in acromegaly were identified from a PubMed search. RESULTS Studies reviewed included retrospective and open-label prospective studies. While the combination of SRL and cabergoline was generally well tolerated, a lower baseline insulin-like growth factor-1 (IGF-1) level was the best predictor of efficacy; this combination may be most effective in patients with mildly elevated IGF-1. SRL-pegvisomant combination normalized IGF-1 in the majority of patients; continued efficacy despite individual drug dosing reduction was also reported. The risk of significant liver enzyme elevation was, however, higher than that reported with SRL monotherapy; close monitoring is recommended. Data on pegvisomant-cabergoline combination is limited, but this may be an option in the setting of SRL intolerance. Reports on temozolomide used in combination with other medical therapies in patients with aggressive GH-secreting tumors are also summarized. CONCLUSION While more prospective, randomized controlled trials on long-term efficacy and safety are needed, combination medical therapy remains a treatment strategy that should be considered for acromegaly patients poorly responsive to SRLs.
Collapse
Affiliation(s)
- Dawn Shao Ting Lim
- Departments of Medicine (Endocrinology) and Neurological Surgery, and Northwest Pituitary Center, Oregon Health & Science University, 3303 SW Bond Ave, Mail Code CH8N, Portland, OR, 97239, USA
| | - Maria Fleseriu
- Departments of Medicine (Endocrinology) and Neurological Surgery, and Northwest Pituitary Center, Oregon Health & Science University, 3303 SW Bond Ave, Mail Code CH8N, Portland, OR, 97239, USA.
| |
Collapse
|
5
|
Hong GK. Medical Management for Pituitary Adenoma Patients. TRANSSPHENOIDAL SURGERY 2017:359-382. [DOI: 10.1007/978-3-319-56691-7_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Abstract
Morbidity and mortality rates in patients with active acromegaly are higher than the general population. Adequate biochemical control restores mortality to normal rates. Now, medical therapy has an increasingly important role in the treatment of patients with acromegaly. Somatostatin receptor ligands (SRLs) are considered the standard medical therapy, either after surgery or as a first-line therapy when surgery is deemed ineffective or is contraindicated. Overall, octreotide and lanreotide are first-generation SRLs and are effective in ~20%-70% of patients. Pegvisomant, a growth hormone receptor antagonist, controls insulin-like growth factor 1 in 65%-90% of cases. Consequently, a subset of patients (nonresponders) requires other treatment options. Drug combination therapy offers the potential for more efficacious disease control. However, the development of new medical therapies remains essential. Here, emphasis is placed on new medical therapies to control acromegaly. There is a focus on pasireotide long-acting release (LAR) (Signifor LAR®), which was approved in 2014 by the US Food and Drug Administration and the European Medicine Agency for the treatment of acromegaly. Pasireotide LAR is a long-acting somatostatin multireceptor ligand. In a Phase III clinical trial in patients with acromegaly (naïve to medical therapy or uncontrolled on a maximum dose of first-generation SRLs), 40 and 60 mg of intramuscular pasireotide LAR achieved better biochemical disease control than octreotide LAR, and tumor shrinkage was noted in both pasireotide groups. Pasireotide LAR tolerability was similar to other SRLs, except for a greater frequency and degree of hyperglycemia and diabetes mellitus. Baseline glucose may predict hyperglycemia occurrence after treatment, and careful monitoring of glycemic status and appropriate treatment is required. A precise definition of patients with acromegaly who will derive the greatest therapeutic benefit from pasireotide LAR remains to be established. Lastly, novel therapies and new potential delivery modalities (oral octreotide) are summarized.
Collapse
Affiliation(s)
- Daniel Cuevas-Ramos
- Department of Endocrinology and Metabolism, Neuroendocrinology Clinic, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Maria Fleseriu
- Department of Medicine (Endocrinology), Portland, OR, USA
- Department of Neurological Surgery, Northwest Pituitary Center, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
7
|
Yedinak C, Hameed N, Gassner M, Brzana J, McCartney S, Fleseriu M. Recovery rate of adrenal function after surgery in patients with acromegaly is higher than in those with non-functioning pituitary tumors: a large single center study. Pituitary 2015; 18:701-9. [PMID: 25673267 DOI: 10.1007/s11102-015-0643-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE To compare hypothalamus-pituitary-adrenal (HPA) axis integrity at diagnosis and recovery after transsphenoidal surgery (TSS), in acromegaly patients, compared with tumor size matched non-functioning adenoma (NFA) patients. METHODS A retrospective 7-year evaluation of acromegaly patients, who underwent TSS with 52 weeks follow-up at a single institution, was undertaken. 50 acromegaly with complete follow-up data at all points and 50 NFA patients were matched for tumor size; HPA axis was similarly assessed pre-operatively and at 6, 12 and 52 weeks post-operatively. Recovery of HPA axis and gender specific prevalence of adrenal insufficiency (AI), were analyzed in both groups. We also studied AI in acromegaly patients requiring medical therapy post-operatively vs those in remission after surgery. RESULTS AI remained less prevalent in acromegaly vs NFA (acromegaly, p = 0.01; NFA, p = 0.15) at 52 weeks after surgery, although the prevalence of AI decreased in both groups from baseline by 52 weeks. Additionally, recovery from baseline AI was significantly greater by 52 weeks in acromegaly patients over NFA patients (p = 0.001). Recovery of HPA axis in acromegaly patients remained significant (p = 0.03) despite the need for medical therapy. AI at baseline was proportionately more prevalent in acromegalic males at baseline (p = 0.002) but no gender difference was apparent at 52 weeks (p = 0.35). Conversely, in NFA patients, no gender difference was apparent pre-operatively (p = 0.49), but AI was more prevalent in males at 52 weeks (p = 0.001). CONCLUSION In the longest comparative study to date using a standard assessment modality, HPA axis recovery was more frequent in acromegaly compared to NFA patients, independent of tumor size, cavernous sinus invasion (CSI), and body mass index (BMI). HPA axis integrity must be carefully and periodically monitored in acromegaly patients during short- and long-term follow-up to prevent overtreatment with glucocorticoids.
Collapse
Affiliation(s)
- Chris Yedinak
- Department of Neurological Surgery, and Northwest Pituitary Center, Oregon Health & Science University, CH8N, 3303 SW Bond Ave, Portland, OR, 97239, USA
| | | | | | | | | | | |
Collapse
|
8
|
Cuevas-Ramos D, Fleseriu M. Somatostatin receptor ligands and resistance to treatment in pituitary adenomas. J Mol Endocrinol 2014; 52:R223-40. [PMID: 24647046 DOI: 10.1530/jme-14-0011] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Somatostatin (SST), an inhibitory polypeptide with two biologically active forms SST14 and SST28, inhibits GH, prolactin (PRL), TSH, and ACTH secretion in the anterior pituitary gland. SST also has an antiproliferative effect inducing cell cycle arrest and apoptosis. Such actions are mediated through five G-protein-coupled somatostatin receptors (SSTR): SSTR1-SSTR5. In GH-secreting adenomas, SSTR2 expression predominates, and somatostatin receptor ligands (SRLs; octreotide and lanreotide) directed to SSTR2 are presently the mainstays of medical therapy. However, about half of patients show incomplete biochemical remission, but the definition of resistance per se remains controversial. We summarize here the determinants of SRL resistance in acromegaly patients, including clinical, imaging features as well as molecular (mutations, SSTR variants, and polymorphisms), and histopathological (granulation pattern, and proteins and receptor expression) predictors. The role of SSTR5 may explain the partial responsiveness to SRLs in patients with adequate SSTR2 density in the cell membrane. In patients with ACTH-secreting pituitary adenomas, i.e. Cushing's disease (CD), SSTR5 is the most abundant receptor expressed and tumors show low SSTR2 density due to hypercortisolism-induced SSTR2 down-regulation. Clinical studies with pasireotide, a multireceptor-targeted SRL with increased SSTR5 activity, lead to approval of pasireotide for treatment of patients with CD. Other SRL delivery modes (oral octreotide), multireceptor-targeted SRL (somatoprim) or chimeric compounds targeting dopamine D2 receptors and SSTR2 (dopastatin), are briefly discussed.
Collapse
Affiliation(s)
- Daniel Cuevas-Ramos
- Department of MedicinePituitary Center, Cedars-Sinai Medical Center, Los Angeles, California, USANorthwest Pituitary Center and Departments of Medicine and Neurological SurgeryOregon Health and Science University, 3181 SW Sam Jackson Park Road (BTE 472), Portland, Oregon 97239, USA
| | - Maria Fleseriu
- Department of MedicinePituitary Center, Cedars-Sinai Medical Center, Los Angeles, California, USANorthwest Pituitary Center and Departments of Medicine and Neurological SurgeryOregon Health and Science University, 3181 SW Sam Jackson Park Road (BTE 472), Portland, Oregon 97239, USA
| |
Collapse
|
9
|
Abstract
INTRODUCTION Acromegaly is a rare disease that severely impacts patients' health all the while, being a slowly progressing illness. In the past decades, advancements in treatment modalities, especially development of new drugs, as well as focused guidelines has improved management of acromegaly. Still, many patients are considered not sufficiently treated and there remains an ongoing need for further development. AREAS COVERED This article reviews new medical treatments currently under clinical investigation (such as pasireotide, oral octreotide and somatoprim) and under experimental development (such as octreotide implants, CAM2029 and ATL-1103). EXPERT OPINION As it seems unlikely that one single agent may achieve cure in 100% of cases, there is an urgent need for new agents that help patients where current medication fails. Imperatively, this means we have to improve our understanding of the underlying pathogenetic and molecular mechanisms.
Collapse
Affiliation(s)
- Sylvère Störmann
- Klinikum der Universität München, Medizinische Klinik und Poliklinik IV , Ziemssenstr. 1, 80336 München , Germany +49 0 89 5160 2111 ; +49 0 89 5160 2194 ;
| | | |
Collapse
|