1
|
Wang S, Kozai M, Hiraishi M, Rubel MZU, Ichii O, Inaba M, Matsuo K, Takada K. Roles of tumor necrosis factor-like ligand 1A in γδT-cell activation and psoriasis pathogenesis. Front Immunol 2024; 15:1340467. [PMID: 38348035 PMCID: PMC10859483 DOI: 10.3389/fimmu.2024.1340467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/15/2024] [Indexed: 02/15/2024] Open
Abstract
Background Interleukin (IL)-17-producing γδT (γδT17) cells mediate inflammatory responses in barrier tissues. Dysregulated γδT17 cell activation can lead to the overproduction of IL-17 and IL-22 and the development of inflammatory diseases, including psoriasis. IL-23 and IL-1β are known to synergistically activate γδT17 cells, but the regulatory mechanisms of γδT17 cells have not been fully elucidated. This study aimed to reveal the contribution of the inflammatory cytokine tumor necrosis factor-like ligand 1A (TL1A) to γδT17 cell activation and psoriasis development. Methods Anti-TL1A antibody was injected into an imiquimod (IMQ)-induced murine psoriasis model. TL1A receptor expression was analyzed in splenic and dermal γδT cells. γδT cells were tested for cytokine production in vitro and in vivo under stimulation with IL-23, IL-1β, and TL1A. TL1A was applied to a psoriasis model induced by intradermal IL-23 injection. Mice deficient in γδT cells were intradermally injected with IL-23 plus TL1A to verify the contribution of TL1A-dependent γδT-cell activation to psoriasis development. Results Neutralization of TL1A attenuated γδT17 cell activation in IMQ-treated skin. TL1A induced cytokine production by splenic γδT17 cells in synergy with IL-23. Dermal γδT17 cells constitutively expressed a TL1A receptor at high levels and vigorously produced IL-22 upon intradermal IL-23 and TL1A injection but not IL-23 alone. TL1A exacerbated the dermal symptoms induced by IL-23 injection in wild-type but not in γδT cell-deficient mice. Conclusion These findings suggest a novel regulatory mechanism of γδT cells through TL1A and its involvement in psoriasis pathogenesis as a possible therapeutic target.
Collapse
Affiliation(s)
- Shangyi Wang
- Laboratory of Molecular Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Mina Kozai
- Division of Vaccinology for Clinical Development, Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan
| | - Masaya Hiraishi
- Laboratory of Anatomy, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Md. Zahir Uddin Rubel
- Laboratory of Anatomy, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Osamu Ichii
- Laboratory of Anatomy, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Laboratory of Agrobiomedical Science, Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Mutsumi Inaba
- Laboratory of Molecular Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kazuhiro Matsuo
- Division of Vaccinology for Clinical Development, Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan
| | - Kensuke Takada
- Division of Vaccinology for Clinical Development, Institute for Vaccine Research and Development (IVReD), Hokkaido University, Sapporo, Japan
| |
Collapse
|
2
|
Higashiyama M, Hokari R. New and Emerging Treatments for Inflammatory Bowel Disease. Digestion 2022; 104:74-81. [PMID: 36366823 DOI: 10.1159/000527422] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/05/2022] [Indexed: 11/12/2022]
Abstract
BACKGROUND The specific etiopathogenesis of inflammatory bowel disease (IBD) is still unknown. Although the conventional anti-inflammatory or immunomodulatory drugs relatively nonspecific to pathogenesis have been quite useful in many cases, elucidating the pathogenesis has gradually facilitated developments of disease-specific therapies for refractory cases in the last 2 decades. SUMMARY With a greater understanding of the multiple overactive signaling pathways of the gut mucosal immune response and enhanced leukocyte trafficking, several biological agents or small molecule drugs following the first novel biologic, anti-tumor necrosis factor α (anti-TNFα), have been developed against several modes of action including adhesion molecules, sphingosine-1-phospate receptors, cytokines (IL-12/23, TL1A, and IL-36), Janus kinase (JAK), and phosphodiesterase. Although preceding biological agents have dramatically changed the IBD treatment strategy, many patients still require alternative therapies due to failure or side effects. Newer treatments are now expected to be provided for better efficacy with an improved adverse event profile. In addition, translational studies have highlighted the new therapeutic concepts' potential, including modulation of host-microbiome interactions, stem therapy for perianal fistula, regulation of fibrosis, regulation of the gut-brain axis, and control of previously less targeted immune cells (B cells and innate lymphoid cells). This paper comprehensively reviewed not only the latest already or shortly available therapies but also emerging promising treatments that will be hopefully established in the future for IBD. KEY MESSAGES Many kinds of new treatments are available, and promising treatments with new perspectives are expected to emerge for refractory IBD in the future.
Collapse
Affiliation(s)
- Masaaki Higashiyama
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| | - Ryota Hokari
- Department of Internal Medicine, National Defense Medical College, Saitama, Japan
| |
Collapse
|
3
|
Xu WD, Li R, Huang AF. Role of TL1A in Inflammatory Autoimmune Diseases: A Comprehensive Review. Front Immunol 2022; 13:891328. [PMID: 35911746 PMCID: PMC9329929 DOI: 10.3389/fimmu.2022.891328] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/02/2022] [Indexed: 01/10/2023] Open
Abstract
TL1A, also called TNFSF15, is a member of tumor necrosis factor family. It is expressed in different immune cell, such as monocyte, macrophage, dendritic cell, T cell and non-immune cell, for example, synovial fibroblast, endothelial cell. TL1A competitively binds to death receptor 3 or decoy receptor 3, providing stimulatory signal for downstream signaling pathways, and then regulates proliferation, activation, apoptosis of and cytokine, chemokine production in effector cells. Recent findings showed that TL1A was abnormally expressed in autoimmune diseases, including rheumatoid arthritis, inflammatory bowel disease, psoriasis, primary biliary cirrhosis, systemic lupus erythematosus and ankylosing spondylitis. In vivo and in vitro studies further demonstrated that TL1A was involved in development and pathogenesis of these diseases. In this study, we comprehensively discussed the complex immunological function of TL1A and focused on recent findings of the pleiotropic activity conducted by TL1A in inflammatory autoimmune disease. Finish of the study will provide new ideas for developing therapeutic strategies for these diseases by targeting TL1A.
Collapse
Affiliation(s)
- Wang-Dong Xu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, China
| | - Rong Li
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, Affiliated Hospital of Southwest Medical University, Luzhou, China
- *Correspondence: An-Fang Huang,
| |
Collapse
|
4
|
Good M, Chu T, Shaw P, Nolan LS, McClain L, Chamberlain A, Castro C, Gong Q, Cooksey K, Linneman L, DeWitt ON, Finegold DN, Peters DG. Neonatal necrotizing enterocolitis-associated DNA methylation signatures in the colon are evident in stool samples of affected individuals. Epigenomics 2021; 13:829-844. [PMID: 33905263 PMCID: PMC8293031 DOI: 10.2217/epi-2021-0078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/12/2021] [Indexed: 01/16/2023] Open
Abstract
Aim: Neonatal necrotizing enterocolitis (NEC) is a deadly and unpredictable gastrointestinal disease, for which no biomarker exists. We aimed to describe the methylation patterns in stool and colon from infants with NEC. Methods: We performed a high-resolution genome-wide epigenomic analysis using solution-phase hybridization and next-generation sequencing of bisulfite-converted DNA. Results: Our data reveal significant genomic hypermethylation in NEC tissues compared with non-NEC controls. These changes were more pronounced in regions outside CpG islands and gene regulatory elements, suggesting that NEC-specific hypermethylation is not a nonspecific global phenomenon. Conclusions: This study provides evidence of a methylomic signature associated with NEC that is detectable noninvasively and provides a new opportunity for the development of a novel diagnostic method for NEC.
Collapse
Affiliation(s)
- Misty Good
- Department of Pediatrics, Division of Newborn Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tianjiao Chu
- Departments of Obstetrics, Gynecology & Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Magee-Women’s Research Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Patricia Shaw
- Magee-Women’s Research Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Lila S Nolan
- Department of Pediatrics, Division of Newborn Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lora McClain
- Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Austin Chamberlain
- Magee-Women’s Research Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Carlos Castro
- Magee-Women’s Research Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Qingqing Gong
- Department of Pediatrics, Division of Newborn Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Krista Cooksey
- Department of Pediatrics, Division of Newborn Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Laura Linneman
- Department of Pediatrics, Division of Newborn Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Olivia N DeWitt
- Department of Pediatrics, Division of Newborn Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David N Finegold
- Human Genetics, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - David G Peters
- Departments of Obstetrics, Gynecology & Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Human Genetics, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Magee-Women’s Research Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
5
|
Yu Y, Jiang P, Sun P, Su N, Lin F. Analysis of therapeutic potential of preclinical models based on DR3/TL1A pathway modulation (Review). Exp Ther Med 2021; 22:693. [PMID: 33986858 PMCID: PMC8111866 DOI: 10.3892/etm.2021.10125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022] Open
Abstract
Death receptor 3 (DR3) and its corresponding ligand, tumor necrosis factor-like ligand 1A (TL1A), belong to the tumor necrosis factor superfamily. Signaling via this receptor-ligand pair results in pro-inflammatory and anti-inflammatory effects. Effector lymphocytes can be activated to exert pro-inflammatory activity by triggering the DR3/TL1A pathway. By contrast, DR3/TL1A signaling also induces expansion of the suppressive function of regulatory T cells, which serve an important role in exerting anti-inflammatory functions and maintaining immune homeostasis. Preclinical evidence indicates that neutralizing and agonistic antibodies, as well as ligand-based approaches targeting the DR3/TL1A pathway, may be used to treat diseases, including inflammatory and immune-mediated diseases. Accumulating evidence has suggested that modulating the DR3/TL1A pathway is a promising therapeutic approach for patients with these diseases. This review discusses preclinical models to gauge the progress of therapeutic strategies for diseases involving the DR3/TL1A pathway to aid in drug development.
Collapse
Affiliation(s)
- Yunhong Yu
- Institute of Blood Transfusion, Chinese Academy of Medical Science and Peking Union Medical College, Chengdu, Sichuan 610052, P.R. China
| | - Peng Jiang
- Institute of Blood Transfusion, Chinese Academy of Medical Science and Peking Union Medical College, Chengdu, Sichuan 610052, P.R. China
| | - Pan Sun
- Institute of Blood Transfusion, Chinese Academy of Medical Science and Peking Union Medical College, Chengdu, Sichuan 610052, P.R. China
| | - Na Su
- Institute of Blood Transfusion, Chinese Academy of Medical Science and Peking Union Medical College, Chengdu, Sichuan 610052, P.R. China
| | - Fangzhao Lin
- Institute of Blood Transfusion, Chinese Academy of Medical Science and Peking Union Medical College, Chengdu, Sichuan 610052, P.R. China
| |
Collapse
|
6
|
Al-Azab M, Walana W, Wei J, Li W, Tang Y, Wei X, Almoiliqy M, Shopit A, Abbas EE, Adlat S, Awsh M, Li X, Wang B. TL1A/TNFR2 Axis Enhances Immunoregulatory Effects of Bone Marrow Derived Mesenchymal Stem Cell by Indian Hedgehog Signaling Pathway. Int J Stem Cells 2021; 14:58-73. [PMID: 33122466 PMCID: PMC7904531 DOI: 10.15283/ijsc19121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 09/11/2020] [Accepted: 09/16/2020] [Indexed: 12/28/2022] Open
Abstract
Background and Objectives The immunomodulatory potential of mesenchymal stem cells (MSCs) can be regulated by a variety of molecules, especially cytokines. The inflammatory cytokine, TNF-like ligand 1A (TL1A), has been reported as an inflammation stimulator in-multiple autoimmune diseases. Here, we studied the effects of TL1A/TNF-receptor 2 (TNFR2) pathway on the therapeutic potency of bone marrow-derived MSCs (BMSCs). Methods and Results BMSCs, fibroblast-like synoviocytes (FLSs), and H9 and jurkat human T lymphocytes were used in this study. BMSCs paracrine activities, differentiation, proliferation, and migration were investigated after stimulation with TL1A, and intervened with anti-TNFR2. Additionally, the effects of TL1A on BMSCs therapeutic potency were evaluated by treating RA-FLSs, and H9 and jurkat T cells with TL1A-stimulated BMSCs conditioned medium (CM). Indian hedgehog (IHH) involvement was determined by gene silencing and treatment by recombinant IHH (rIHH). TL1A induced BMSCs stemness-related genes, COX-2, IL-6, IDO, TGF-β and HGF through TNFR2. Also, TL1A corrected biased differentiation and increased proliferation, and migration through TNFR2. Meanwhile, CM of TL1A-stimulated BMSCs decreased the inflammatory markers of RA-FLSs and T cells. Moreover, TL1A-stimulated BMSCs experienced IHH up-regulation coupled with NF-κB and STAT3 signaling up-regulation, while p53 and oxidative stress were down-regulated. Furthermore, treatment of BMSCs by rIHH increased their anti-inflammatory effects. More importantly, knockdown of IHH decreased the ability of TL1A-stimulated BMSCs to alleviating the inflammation in RA-FLSs and T cells. Conclusions This study reports the effects of TL1A/TNFR2 pathway on the biological behaviors and therapeutic potency of BMSCs through IHH. These findings could introduce novel procedures to increase the stemness of MSCs in cellular therapy.
Collapse
Affiliation(s)
- Mahmoud Al-Azab
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China.,Department of Immunology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Williams Walana
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China.,Department of Clinical Microbiology, School of Medicine and Health Sciences, University for Development Studies, Tamale, Ghana
| | - Jing Wei
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Weiping Li
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Yawei Tang
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Xiaoqing Wei
- Molecular Medicine Laboratory, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Marwan Almoiliqy
- Department of Pharmacology, College of Pharmacy, Dalian Medical University, Liaoning, China
| | - Abdullah Shopit
- Department of Pharmacology, College of Pharmacy, Dalian Medical University, Liaoning, China
| | - Elrayah Eltahir Abbas
- Microbiology Laboratory, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Salah Adlat
- Key Laboratory of Molecular Epigenetics of MOE, School of Life Science, Northeast Normal University, Changchun, China
| | - Mohammed Awsh
- Department of Pharmacology, College of Pharmacy, Dalian Medical University, Liaoning, China
| | - Xia Li
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Bing Wang
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| |
Collapse
|
7
|
Jacob EM, Borah A, Pillai SC, Kumar DS. Inflammatory Bowel Disease: The Emergence of New Trends in Lifestyle and Nanomedicine as the Modern Tool for Pharmacotherapy. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2460. [PMID: 33316984 PMCID: PMC7764399 DOI: 10.3390/nano10122460] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 02/08/2023]
Abstract
The human intestine, which harbors trillions of symbiotic microorganisms, may enter into dysbiosis when exposed to a genetic defect or environmental stress. The naissance of chronic inflammation due to the battle of the immune system with the trespassing gut bacteria leads to the rise of inflammatory bowel disease (IBD). Though the genes behind the scenes and their link to the disease are still unclear, the onset of IBD occurs in young adults and has expanded from the Western world into the newly industrialized countries. Conventional drug deliveries depend on a daily heavy dosage of immune suppressants or anti-inflammatory drugs targeted for the treatment of two types of IBD, ulcerative colitis (UC) and Crohn's disease (CD), which are often associated with systemic side effects and adverse toxicities. Advances in oral delivery through nanotechnology seek remedies to overcome the drawbacks of these conventional drug delivery systems through improved drug encapsulation and targeted delivery. In this review, we discuss the association of genetic factors, the immune system, the gut microbiome, and environmental factors like diet in the pathogenesis of IBD. We also review the various physiological concerns required for oral delivery to the gastrointestinal tract (GIT) and new strategies in nanotechnology-derived, colon-targeting drug delivery systems.
Collapse
Affiliation(s)
| | | | | | - D. Sakthi Kumar
- Bio-Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Saitama 350-8585, Japan; (E.M.J.); (A.B.); (S.C.P.)
| |
Collapse
|
8
|
Nagayama M, Yano T, Atarashi K, Tanoue T, Sekiya M, Kobayashi Y, Sakamoto H, Miura K, Sunada K, Kawaguchi T, Morita S, Sugita K, Narushima S, Barnich N, Isayama J, Kiridooshi Y, Shiota A, Suda W, Hattori M, Yamamoto H, Honda K. TH1 cell-inducing Escherichia coli strain identified from the small intestinal mucosa of patients with Crohn's disease. Gut Microbes 2020; 12:1788898. [PMID: 32691669 PMCID: PMC7524366 DOI: 10.1080/19490976.2020.1788898] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Dysbiotic microbiota contributes to the pathogenesis of Crohn's disease (CD) by regulating the immune system. Although pro-inflammatory microbes are probably enriched in the small intestinal (SI) mucosa, most studies have focused on fecal microbiota. This study aimed to examine jejunal and ileal mucosal specimens from patients with CD via double-balloon enteroscopy. Comparative microbiome analysis revealed that the microbiota composition of CD SI mucosa differs from that of non-CD controls, with an increased population of several families, including Enterobacteriaceae, Ruminococcaceae, and Bacteroidaceae. Upon anaerobic culturing of the CD SI mucosa, 80 bacterial strains were isolated, from which 9 strains representing 9 distinct species (Escherichia coli, Ruminococcus gnavus, Klebsiella pneumoniae, Erysipelatoclostridium ramosum, Bacteroides dorei, B. fragilis, B. uniformis, Parabacteroides distasonis, and Streptococcus pasteurianus) were selected on the basis of their significant association with CD. The colonization of germ-free (GF) mice with the 9 strains enhanced the accumulation of TH1 cells and, to a lesser extent, TH17 cells in the intestine, among which an E. coli strain displayed high potential to induce TH1 cells and intestinal inflammation in a strain-specific manner. The present results indicate that the CD SI mucosa harbors unique pro-inflammatory microbiota, including TH1 cell-inducing E. coli, which could be a potential therapeutic target.
Collapse
Affiliation(s)
- Manabu Nagayama
- Department of Medicine, Division of Gastroenterology, Jichi Medical University, Tochigi, Japan,Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan,Laboratory for Gut Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Tomonori Yano
- Department of Medicine, Division of Gastroenterology, Jichi Medical University, Tochigi, Japan
| | - Koji Atarashi
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan,Laboratory for Gut Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan,JSR-Keio University Medical and Chemical Innovation Center, Tokyo, Japan
| | - Takeshi Tanoue
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan,Laboratory for Gut Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Mariko Sekiya
- Department of Medicine, Division of Gastroenterology, Jichi Medical University, Tochigi, Japan
| | - Yasutoshi Kobayashi
- Department of Medicine, Division of Gastroenterology, Jichi Medical University, Tochigi, Japan
| | - Hirotsugu Sakamoto
- Department of Medicine, Division of Gastroenterology, Jichi Medical University, Tochigi, Japan
| | - Kouichi Miura
- Department of Medicine, Division of Gastroenterology, Jichi Medical University, Tochigi, Japan
| | - Keijiro Sunada
- Department of Medicine, Division of Gastroenterology, Jichi Medical University, Tochigi, Japan
| | - Takaaki Kawaguchi
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan,Laboratory for Gut Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Satoru Morita
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Kayoko Sugita
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Seiko Narushima
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan,Laboratory for Gut Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Nicolas Barnich
- UMR 1071 Inserm/Université Clermont Auvergne; USC-INRA 2018, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), CRNH Auvergne, Clermont-Ferrand, France
| | - Jun Isayama
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan,JSR-Keio University Medical and Chemical Innovation Center, Tokyo, Japan
| | - Yuko Kiridooshi
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan,JSR-Keio University Medical and Chemical Innovation Center, Tokyo, Japan
| | - Atsushi Shiota
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan,JSR-Keio University Medical and Chemical Innovation Center, Tokyo, Japan
| | - Wataru Suda
- Laboratory for Gut Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan,Cooperative Major in Advanced Health Science, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Masahira Hattori
- Laboratory for Gut Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan,Cooperative Major in Advanced Health Science, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Hironori Yamamoto
- Department of Medicine, Division of Gastroenterology, Jichi Medical University, Tochigi, Japan
| | - Kenya Honda
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan,Laboratory for Gut Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan,JSR-Keio University Medical and Chemical Innovation Center, Tokyo, Japan,CONTACT Kenya Honda Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
9
|
Zhou Y, Zhu Y, Jiang H, Chen Z, Lu B, Li J, Shen X. Polymorphism rs6478109 in the TNFSF15 gene contributes to the susceptibility to Crohn's disease but not ulcerative colitis: a meta-analysis. J Int Med Res 2020; 48:300060520961675. [PMID: 33026276 PMCID: PMC7545779 DOI: 10.1177/0300060520961675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Objective Polymorphisms in the tumor necrosis factor superfamily 15 (TNFSF15) gene contribute to susceptibility to inflammatory bowel disease (IBD). However, associations between TNFSF15 rs6478109, rs7869487, and rs7865494 polymorphisms and IBD remain unclear. Methods Eligible articles were retrieved from the PubMed, EMBASE, Web of Science, and CNKI databases through 20 March 2020. Pooled odds ratios (ORs) with 95% confidence intervals (CIs) were calculated to evaluate the relationships of TNFSF15 polymorphisms with IBD susceptibility. Results Under the recessive model, TNFSF15 rs6478109 was associated with IBD risk (OR = 0.56; 95% CI: 0.35, 0.92). Stratification analyses based on the type of disease—Crohn’s disease (CD) or ulcerative colitis (UC)—revealed a significant association under the allelic and recessive models between TNFSF15 rs6478109 and CD (allelic model: OR = 0.84, 95% CI: 0.71, 0.99; recessive model: OR = 0.44, 95% CI: 0.22, 0.87) but not UC. Stratification by ethnicity indicated a significantly decreased risk of IBD in Asian populations with TNFSF15 rs6478109 under the recessive model (OR = 0.56, 95% CI: 0.35, 0.92). Conclusions Our meta-analysis suggested that under the allelic and recessive models, the TNFSF15 rs6478109 polymorphism was likely protective for CD but not UC in the Asian population.
Collapse
Affiliation(s)
| | - Yi Zhu
- Yi Zhu, Department of Gastrointestinal Surgery, The Affiliated Hospital of Jiaxing University, No. 1882, Centre South Road, Jiaxing, Zhejiang 314001, China.
| | | | | | | | | | | |
Collapse
|
10
|
Herro R, Miki H, Sethi GS, Mills D, Mehta AK, Nguyen XX, Feghali-Bostwick C, Miller M, Broide DH, Soloff R, Croft M. TL1A Promotes Lung Tissue Fibrosis and Airway Remodeling. THE JOURNAL OF IMMUNOLOGY 2020; 205:2414-2422. [PMID: 32958689 DOI: 10.4049/jimmunol.2000665] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/30/2020] [Indexed: 12/23/2022]
Abstract
Lung fibrosis and tissue remodeling are features of chronic diseases such as severe asthma, idiopathic pulmonary fibrosis, and systemic sclerosis. However, fibrosis-targeted therapies are currently limited. We demonstrate in mouse models of allergen- and bleomycin-driven airway inflammation that neutralization of the TNF family cytokine TL1A through Ab blocking or genetic deletion of its receptor DR3 restricted increases in peribronchial smooth muscle mass and accumulation of lung collagen, primary features of remodeling. TL1A was found as a soluble molecule in the airways and expressed on the surface of alveolar macrophages, dendritic cells, innate lymphoid type 2 cells, and subpopulations of lung structural cells. DR3 was found on CD4 T cells, innate lymphoid type 2 cells, macrophages, fibroblasts, and some epithelial cells. Suggesting in part a direct activity on lung structural cells, administration of recombinant TL1A into the naive mouse airways drove remodeling in the absence of other inflammatory stimuli, innate lymphoid cells, and adaptive immunity. Correspondingly, human lung fibroblasts and bronchial epithelial cells were found to express DR3 and responded to TL1A by proliferating and/or producing fibrotic molecules such as collagen and periostin. Reagents that disrupt the interaction of TL1A with DR3 then have the potential to prevent deregulated tissue cell activity in lung diseases that involve fibrosis and remodeling.
Collapse
Affiliation(s)
- Rana Herro
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Haruka Miki
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Gurupreet S Sethi
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - David Mills
- Kyowa Kirin Pharmaceutical Research, Inc., La Jolla, CA 92037
| | - Amit Kumar Mehta
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Xinh-Xinh Nguyen
- Division of Rheumatology and Immunology, Medical University of South Carolina, Charleston, SC 29425; and
| | - Carol Feghali-Bostwick
- Division of Rheumatology and Immunology, Medical University of South Carolina, Charleston, SC 29425; and
| | - Marina Miller
- Department of Medicine, University of California San Diego, La Jolla, CA 92037
| | - David H Broide
- Department of Medicine, University of California San Diego, La Jolla, CA 92037
| | - Rachel Soloff
- Kyowa Kirin Pharmaceutical Research, Inc., La Jolla, CA 92037
| | - Michael Croft
- Center for Autoimmunity and Inflammation, La Jolla Institute for Immunology, La Jolla, CA 92037; .,Department of Medicine, University of California San Diego, La Jolla, CA 92037
| |
Collapse
|
11
|
Zhou W, Sonnenberg GF. Activation and Suppression of Group 3 Innate Lymphoid Cells in the Gut. Trends Immunol 2020; 41:721-733. [PMID: 32646594 PMCID: PMC7395873 DOI: 10.1016/j.it.2020.06.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022]
Abstract
Group 3 innate lymphoid cells (ILC3s) have emerged as master regulators of intestinal health and tissue homeostasis in mammals. Through a diverse array of cytokines and cellular interactions, ILC3s crucially orchestrate lymphoid organogenesis, promote tissue protection or regeneration, facilitate antimicrobial responses, and directly regulate adaptive immunity. Further, translational studies have found that ILC3 responses are altered in the intestine of defined patient populations with chronic infectious, inflammatory, or metabolic diseases. Therefore, it is essential to broadly understand the signals that activate, suppress, or fine-tune ILC3s in the gut. Here, we discuss recent exciting advances in this field, integrate them into our current understanding of ILC3 biology, and highlight fundamental gaps in knowledge that require additional investigation.
Collapse
Affiliation(s)
- Wenqing Zhou
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Gregory F Sonnenberg
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA; Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
12
|
Tougaard P, Martinsen LO, Lützhøft DO, Jensen HE, Flethøj M, Vandenabeele P, Pedersen AE, Skov S, Hansen AK, Hansen CHF. TL1A regulates adipose-resident innate lymphoid immune responses and enables diet-induced obesity in mice. Int J Obes (Lond) 2020; 44:1062-1074. [PMID: 32001795 DOI: 10.1038/s41366-020-0539-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 01/07/2020] [Accepted: 01/16/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND/OBJECTIVES TL1A is a pro-inflammatory cytokine that is homologous to TNFα and connected with the development of several chronic inflammatory disorders. The preliminary results of this study indicated reduced fat accumulation in 9-month-old TL1A-deficient mice at steady state. Thus, the objective was to investigate whether TL1A-deficient mice are resistant to the development of high-fat (HF) diet-induced obesity and to investigate the impact on lymphocyte infiltration in adipose tissue. METHODS TL1A-deficient and TL1A-sufficient male BALB/cJ littermate mice were fed a 60% HF diet or a 10% low-fat control diet for 22 weeks. Mouse body composition and weight were monitored, and tissues were processed and evaluated by flow cytometry, qPCR, and histology. RESULTS In this study, the TL1A-deficient HF-diet-fed mice had reduced whole-body weight gain, which was directly explained by a corresponding fat mass reduction (average 37.2%), compared with that of their TL1A-sufficient littermates. Despite previous data showing marked changes in the gut microbial community, TL1A-deficient GF mice also displayed reduced adiposity. Furthermore, the TL1A-deficient mice were resistant to hepatic steatosis and were shown to have improved glucose tolerance, as determined by oral glucose tolerance test (OGTT), and greater insulin sensitivity. In the epididymal white adipose tissue (eWAT), TL1A deficiency in HF-diet-fed mice resulted in a reduced abundance of IL-18Ra+ type-1 ILCs and γδT cells as well as markedly reduced expression of the mitochondria-regulating genes Ucp1, Ucp2, Ucp3, and Prdm16. Finally, to investigate the link of TL1A to obesity in humans, we identified a noncoding polymorphism (rs4979453) close to the TL1A locus that is associated with waist circumference in men (p = 0.00096, n = 60586). CONCLUSIONS These findings indicate that TL1A plays an important role in regulating adipose tissue mass and that this role is independent of the gut microbiota. Furthermore, we show that TL1A regulates adipose-resident innate lymphocytes and mitochondria-mediated oxidative stress in eWAT.
Collapse
Affiliation(s)
- Peter Tougaard
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, København, Denmark. .,Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, København, Denmark. .,Molecular Signaling and Cell Death Unit, VIB-Ugent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium. .,Department for Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| | - Louise Otterstrøm Martinsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, København, Denmark
| | - Ditte Olsen Lützhøft
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, København, Denmark
| | - Henrik Elvang Jensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, København, Denmark
| | - Mette Flethøj
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, København, Denmark
| | - Peter Vandenabeele
- Molecular Signaling and Cell Death Unit, VIB-Ugent Center for Inflammation Research, Flanders Institute for Biotechnology, Ghent, Belgium.,Department for Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Anders Elm Pedersen
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, København, Denmark.,Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, København, Denmark
| | - Søren Skov
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, København, Denmark
| | - Axel Kornerup Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, København, Denmark
| | - Camilla Hartmann Friis Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, København, Denmark
| |
Collapse
|
13
|
Li J, Shi W, Sun H, Ji Y, Chen Y, Guo X, Sheng H, Shu J, Zhou L, Cai T, Qiu J. Activation of DR3 signaling causes loss of ILC3s and exacerbates intestinal inflammation. Nat Commun 2019; 10:3371. [PMID: 31358760 PMCID: PMC6662828 DOI: 10.1038/s41467-019-11304-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 07/01/2019] [Indexed: 12/15/2022] Open
Abstract
TNF-like ligand 1 A (TL1A) and death receptor 3 (DR3) are a ligand-receptor pair involved in the pathogenesis of inflammatory bowel disease. Group 3 innate lymphoid cells (ILC3s) regulate intestinal immunity and highly express DR3. Here, we report that activation of DR3 signaling by an agonistic anti-DR3 antibody increases GM-CSF production from ILC3s through the p38 MAPK pathway. GM-CSF causes accumulation of eosinophils, neutrophils and CD11b+CD11c+ myeloid cells, resulting in loss of ILC3s from the intestine in an IL-23-dependent manner and exacerbating colitis. Blockade of GM-CSF or IL-23 reverses anti-DR3 antibody-driven ILC3 loss, whereas overexpression of IL-23 induces loss of ILC3s in the absence of GM-CSF. Neutralization of TL1A by soluble DR3 ameliorates both DSS and anti-CD40 antibody-induced colitis. Moreover, ILC3s are required for the deleterious effect of anti-DR3 antibodies on innate colitis. These findings clarify the process and consequences of DR3 signaling-induced intestinal inflammation through regulation of ILC3s.
Collapse
Affiliation(s)
- Jingyu Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wenli Shi
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hanxiao Sun
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Yan Ji
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuqin Chen
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Xiaohuan Guo
- Institute for Immunology, Tsinghua University, Beijing, 100084, China.,Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China.,Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, 100084, China
| | - Huiming Sheng
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Jie Shu
- Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Liang Zhou
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, The University of Florida, Gainesville, FL, 32608, USA
| | - Ting Cai
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ju Qiu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
14
|
Abstract
Despite continuous exposure to trillions of microbes, the intestinal immune system protects the mucosa by balancing barrier protection, tolerance, and immunity. As both sentinel and effector, the mucosal innate immune system plays a central role in coordinating these responses. By integrating signals from the intestinal microbiota, mononuclear phagocytes (MNPs) serve as a critical link in regulating effector functions of group 3 innate lymphoid cells (ILC3s). Our recent work identified the role for MNP production of the IBD-linked protein TNF-like ligand 1A (TL1A) in modulating microbial regulation of ILC3 barrier immunity. These findings highlight a broader role for ILC3s in local control of T cell immunity and their potential role in the pathogenesis and treatment of inflammatory disease.
Collapse
Affiliation(s)
- Jim G. Castellanos
- Jill Roberts Institute for Research in IBD, Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, USA
| | - Randy S. Longman
- Jill Roberts Institute for Research in IBD, Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, USA,CONTACT Randy S. Longman Jill Roberts Institute for Research in IBD, Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, USA
| |
Collapse
|
15
|
Myte R, Sundkvist A, Van Guelpen B, Harlid S. Circulating levels of inflammatory markers and DNA methylation, an analysis of repeated samples from a population based cohort. Epigenetics 2019; 14:649-659. [PMID: 31033411 PMCID: PMC6557598 DOI: 10.1080/15592294.2019.1603962] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
DNA methylation in blood may adapt to conditions affecting our health, such as inflammation, and multiple studies have identified differential DNA methylation related to smoking, obesity and various diseases. The purpose of this study was to evaluate previously reported, and explore possible new, associations between levels of inflammatory markers and DNA methylation in blood. We used a well-characterized study population consisting of 127 individuals, all of whom were participants in the population-based Västerbotten Intervention Programme cohort and had provided two blood samples, ten years apart. Levels of CRP and 160 other proteins were measured in plasma, and DNA methylation levels (assessed using the 850K Illumina Infinium MethylationEPIC BeadChip) were measured in white blood cell DNA. Associations between CpG methylation and protein levels were estimated using linear mixed models. In the study we were able to confirm the direction for 85 of 102 previously reported protein-methylation associations. Depicting associations in a network allowed us to identify CpG sites with associations to multiple proteins, and ten CpG sites were each associated with three or more inflammatory markers. Furthermore, two genetic regions included nine additional unreported CpG sites that may represent trans-acting methylation sites. Our study supports a complex interaction between DNA methylation and circulating proteins involved in the inflammatory response. The notion of trans-acting methylation sites affecting, or being affected by, the expression of genes on completely different chromosomes should be taken into account when interpreting results from epigenome-wide association studies.
Collapse
Affiliation(s)
- Robin Myte
- a Department of Radiation Sciences, Oncology , Umeå University , Umeå , Sweden
| | - Anneli Sundkvist
- a Department of Radiation Sciences, Oncology , Umeå University , Umeå , Sweden
| | - Bethany Van Guelpen
- a Department of Radiation Sciences, Oncology , Umeå University , Umeå , Sweden.,b Wallenberg Centre for Molecular Medicine , Umeå University , Umeå , Sweden
| | - Sophia Harlid
- a Department of Radiation Sciences, Oncology , Umeå University , Umeå , Sweden
| |
Collapse
|
16
|
Castellanos JG, Woo V, Viladomiu M, Putzel G, Lima S, Diehl GE, Marderstein AR, Gandara J, Perez AR, Withers DR, Targan SR, Shih DQ, Scherl EJ, Longman RS. Microbiota-Induced TNF-like Ligand 1A Drives Group 3 Innate Lymphoid Cell-Mediated Barrier Protection and Intestinal T Cell Activation during Colitis. Immunity 2018; 49:1077-1089.e5. [PMID: 30552020 PMCID: PMC6301104 DOI: 10.1016/j.immuni.2018.10.014] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 08/08/2018] [Accepted: 10/17/2018] [Indexed: 12/27/2022]
Abstract
Inflammatory bowel disease (IBD) results from a dysregulated interaction between the microbiota and a genetically susceptible host. Genetic studies have linked TNFSF15 polymorphisms and its protein TNF-like ligand 1A (TL1A) with IBD, but the functional role of TL1A is not known. Here, we found that adherent IBD-associated microbiota induced TL1A release from CX3CR1+ mononuclear phagocytes (MNPs). Using cell-specific genetic deletion models, we identified an essential role for CX3CR1+MNP-derived TL1A in driving group 3 innate lymphoid cell (ILC3) production of interleukin-22 and mucosal healing during acute colitis. In contrast to this protective role in acute colitis, TL1A-dependent expression of co-stimulatory molecule OX40L in MHCII+ ILC3s during colitis led to co-stimulation of antigen-specific T cells that was required for chronic T cell colitis. These results identify a role for ILC3s in activating intestinal T cells and reveal a central role for TL1A in promoting ILC3 barrier immunity during colitis.
Collapse
Affiliation(s)
- Jim G Castellanos
- Jill Roberts Institute for Research in IBD, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Viola Woo
- Jill Roberts Institute for Research in IBD, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Monica Viladomiu
- Jill Roberts Institute for Research in IBD, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Gregory Putzel
- Jill Roberts Institute for Research in IBD, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Svetlana Lima
- Jill Roberts Institute for Research in IBD, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Gretchen E Diehl
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Andrew R Marderstein
- Jill Roberts Institute for Research in IBD, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Jorge Gandara
- Jill Roberts Institute for Research in IBD, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Alexendar R Perez
- Jill Roberts Institute for Research in IBD, Weill Cornell Medicine, New York, NY, 10021, USA
| | - David R Withers
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Stephan R Targan
- F. Widjaja Foundation, Inflammatory Bowel and Immunology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, 90048, USA
| | - David Q Shih
- F. Widjaja Foundation, Inflammatory Bowel and Immunology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, 90048, USA
| | - Ellen J Scherl
- Jill Roberts Center for IBD, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Randy S Longman
- Jill Roberts Institute for Research in IBD, Weill Cornell Medicine, New York, NY, 10021, USA; Jill Roberts Center for IBD, Weill Cornell Medicine, New York, NY, 10021, USA.
| |
Collapse
|
17
|
Li Z, Buttó LF, Buela KA, Jia LG, Lam M, Ward JD, Pizarro TT, Cominelli F. Death Receptor 3 Signaling Controls the Balance between Regulatory and Effector Lymphocytes in SAMP1/YitFc Mice with Crohn's Disease-Like Ileitis. Front Immunol 2018; 9:362. [PMID: 29545797 PMCID: PMC5837992 DOI: 10.3389/fimmu.2018.00362] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/08/2018] [Indexed: 12/17/2022] Open
Abstract
Death receptor 3 (DR3), a member of the tumor necrosis factor receptor (TNFR) superfamily, has been implicated in regulating T-helper type-1 (TH1), type-2 (TH2), and type-17 (TH17) responses as well as regulatory T cell (Treg) and innate lymphoid cell (ILC) functions during immune-mediated diseases. However, the role of DR3 in controlling lymphocyte functions in inflammatory bowel disease (IBD) is not fully understood. Recent studies have shown that activation of DR3 signaling modulates Treg expansion suggesting that stimulation of DR3 represents a potential therapeutic target in human inflammatory diseases, including Crohn's disease (CD). In this study, we tested a specific DR3 agonistic antibody (4C12) in SAMP1/YitFc (SAMP) mice with CD-like ileitis. Interestingly, treatment with 4C12 prior to disease manifestation markedly worsened the severity of ileitis in SAMP mice despite an increase in FoxP3+ lymphocytes in mesenteric lymph node (MLN) and small-intestinal lamina propria (LP) cells. Disease exacerbation was dominated by overproduction of both TH1 and TH2 cytokines and associated with expansion of dysfunctional CD25-FoxP3+ and ILC group 1 (ILC1) cells. These effects were accompanied by a reduction in CD25+FoxP3+ and ILC group 3 (ILC3) cells. By comparison, genetic deletion of DR3 effectively reversed the inflammatory phenotype in SAMP mice by promoting the expansion of CD25+FoxP3+ over CD25-FoxP3+ cells and the production of IL-10 protein. Collectively, our data demonstrate that DR3 signaling modulates a multicellular network, encompassing Tregs, T effectors, and ILCs, governing disease development and progression in SAMP mice with CD-like ileitis. Manipulating DR3 signaling toward the restoration of the balance between protective and inflammatory lymphocytes may represent a novel and targeted therapeutic modality for patients with CD.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/metabolism
- Cells, Cultured
- Crohn Disease/immunology
- Cytokines/metabolism
- Disease Models, Animal
- Female
- Forkhead Transcription Factors/metabolism
- Humans
- Ileitis/genetics
- Ileitis/immunology
- Male
- Membrane Proteins/genetics
- Mice
- Mice, Inbred AKR
- Mice, Knockout
- Mice, Transgenic
- Nuclear Proteins/genetics
- Receptors, Tumor Necrosis Factor, Member 25/agonists
- Receptors, Tumor Necrosis Factor, Member 25/genetics
- Receptors, Tumor Necrosis Factor, Member 25/immunology
- Signal Transduction
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Regulatory/immunology
Collapse
Affiliation(s)
- Zhaodong Li
- BRB-5, Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, United States
| | - Ludovica F. Buttó
- BRB-5, Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, United States
| | - Kristine-Anne Buela
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Li-Guo Jia
- BRB-5, Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, United States
| | - Minh Lam
- BRB-5, Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, United States
| | - John D. Ward
- BRB-5, Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, United States
| | - Theresa T. Pizarro
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Fabio Cominelli
- BRB-5, Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
18
|
Jiang Y, Cheng L, Li X, Zhou W, Zhang L. Associations between TNFSF4, TNFSF8 and TNFSF15 and Behçet's disease but not VKH syndrome in Han Chinese. Oncotarget 2017; 8:105037-105046. [PMID: 29285231 PMCID: PMC5739618 DOI: 10.18632/oncotarget.22064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/23/2017] [Indexed: 12/14/2022] Open
Abstract
The present study was designed to explore the interrelationship between single nucleotide polymorphisms (SNP) of the tumor necrosis factor superfamily (TNFSF) and its respective receptor superfamily (TNFRSF) genes and Behcet's disease (BD) and Vogt-Koyanagi-Harada syndrome (VKH) in Han Chinese. The study sample included 796 patients with BD, 792 patients with VKH syndrome, and 1604 healthy controls. The genotyping of 35 SNPs was performed by MassARRAY platform (Sequenom), iPLEX Gold Assay, PCR-restriction fragment length polymorphism assay and TaqMan SNP assay. The mRNA expression levels of TNFSF4, TNFSF8 and TNFSF15 were analyzed by real-time PCR. The IL-6 and TNF-α expression levels were measured by ELISA. The A allele and AA genotype frequencies of TNFSF4/rs1234313 were significantly increased, and the GG genotype frequency of rs1234313 was decreased in subjects with BD. Significantly lower frequencies of the C allele and the CC genotype and higher frequencies of the TT and CT genotypes of TNFSF15/rs4246905 were observed in BD patients. A decreased frequency of the A allele of TNFSF8/rs7028891 was observed in BD patients. The expression of TNFSF15 in CT carriers was significantly higher than that in CC/TT individuals. Increased IL-6 expression and TNF-α production were found in the TNFSF15 CT carriers compared with the CC/TT genotype carriers. No significant differences were observed between the VKH patients and controls. This study indicates that TNFSF4, TNFSF15 and TNFSF8 may participate in the susceptibility to BD among Han Chinese.
Collapse
Affiliation(s)
- Yan Jiang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, China
| | - Ling Cheng
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, China.,Department of Ophthalmology, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Xin Li
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, China
| | - Wenke Zhou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, China
| | - Li Zhang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology and Chongqing Eye Institute, Chongqing, China
| |
Collapse
|