1
|
Einbond LS, Huang K, Balick M, Ma H, Gharbaran R, Redenti S, Wu HA. Transcriptomic analysis of digitoxin: Synergy with doxorubicin in HER2-overexpressing MDA-MB-453 breast cancer cells. Biochimie 2025; 234:95-109. [PMID: 40188858 DOI: 10.1016/j.biochi.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 05/06/2025]
Abstract
The aim of this research is to further elucidate the mechanism of action of digitoxin and explore its potential synergistic effects with doxorubicin. MDA-MB-453 breast cancer cells, characterized by HER2 overexpression and low ER levels, were exposed to digitoxin at three doses (0.1 (0.13 μM), 0.2, and 1.0 μg/ml). RNA was extracted over 6 and 24-h periods to subject to transcriptomic analysis, using IPA software. To validate the findings, cell growth inhibitory, Western blot, and enzymatic assays were performed. In addition, molecular docking was carried out to assess the interaction of digitoxin and doxorubicin with the Na+/K+-ATPase. IPA analysis indicates that the effects of digitoxin are dose and time-dependent; at the highest dose, digitoxin activates the transcription of cholesterol biosynthetic genes at early times, and the stress response gene ATF3 at later times. Key genes at the central point of the pathways altered by digitoxin include: (activated) TP53, CREB1, and TGFB1 at the highest dose at 6 and 24 h and (repressed) MYCN at the middle dose at 24 h. ATF3 also plays a role in the action of doxorubicin, and digitoxin exhibits synergy with doxorubicin in MDA-MB-453 cells. Molecular docking studies demonstrated binding potential of both digitoxin and doxorubicin to Na+/K+-ATPase, with doxorubicin showing a stronger binding affinity. Our results highlight the role of bioelectric signaling through ion channel proteins, like Na+/K+-ATPase, in cancer development. Our findings suggest it is worthwhile to study the use of digitoxin, alone or combined with doxorubicin, for treating estrogen receptor-negative breast cancer, but caution of possible risks to patients who take both drugs in combination.
Collapse
Affiliation(s)
- Linda Saxe Einbond
- The New York Botanical Garden, Bronx, NY, 10458, USA; Lehman College and the Graduate Center, City University of New York, New York, NY, 10468, USA; Columbia University College of Physicians and Surgeons, New York, NY, 10032, USA.
| | - Kunhui Huang
- Lehman College and the Graduate Center, City University of New York, New York, NY, 10468, USA
| | - Michael Balick
- The New York Botanical Garden, Bronx, NY, 10458, USA; Lehman College and the Graduate Center, City University of New York, New York, NY, 10468, USA
| | - Hongbao Ma
- Columbia University College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Rajendra Gharbaran
- Lehman College and the Graduate Center, City University of New York, New York, NY, 10468, USA
| | - Stephen Redenti
- Lehman College and the Graduate Center, City University of New York, New York, NY, 10468, USA
| | - Hsan-Au Wu
- Columbia University College of Physicians and Surgeons, New York, NY, 10032, USA
| |
Collapse
|
2
|
Thammavongsa DA, Jackvony TN, Bookland MJ, Tang-Schomer MD. Targeting Ion Channels: Blockers Suppress Calcium Signals and Induce Cytotoxicity Across Medulloblastoma Cell Models. Bioengineering (Basel) 2025; 12:268. [PMID: 40150732 PMCID: PMC11939613 DOI: 10.3390/bioengineering12030268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/25/2025] [Accepted: 03/05/2025] [Indexed: 03/29/2025] Open
Abstract
Medulloblastoma (MB) groups 3 and 4 lack targeted therapies despite their dismal prognoses. Ion channels and pumps have been implicated in promoting MB metastasis and growth; however, their roles remain poorly understood. In this study, we repurposed FDA-approved channel blockers and modulators to investigate their potential anti-tumor effects in MB cell lines (DAOY and D283) and primary cell cultures derived from a patient with MB. For the first time, we report spontaneous calcium signaling in MB cells. Spontaneous calcium signals were significantly reduced by mibefradil (calcium channel blocker), paxilline (calcium-activated potassium channel blocker), and thioridazine (potassium channel blocker). These drugs induced dose-dependent cytotoxicity in both the DAOY and D283 cell lines, as well as in primary cell cultures of a patient with group 3 or 4 MB. In contrast, digoxin and ouabain, inhibitors of the Na/K pump, reduced the calcium signaling by over 90% in DAOY cells and induced approximately 90% cell death in DAOY cells and 80% cell death in D283 cells. However, these effects were significantly diminished in the cells derived from a patient with MB, highlighting the variability in drug sensitivity among MB models. These findings demonstrate that calcium signaling is critical for MB cell survival and that the targeted inhibition of calcium pathways suppresses tumor cell growth across multiple MB models.
Collapse
Affiliation(s)
- Darani Ashley Thammavongsa
- UConn Health, Department of Pediatrics, 263 Farmington Avenue, Farmington, CT 06030, USA; (D.A.T.); (T.N.J.)
| | - Taylor N. Jackvony
- UConn Health, Department of Pediatrics, 263 Farmington Avenue, Farmington, CT 06030, USA; (D.A.T.); (T.N.J.)
| | - Markus J. Bookland
- Connecticut Children’s Medical Center, 282 Washington St, Hartford, CT 06106, USA;
| | - Min D. Tang-Schomer
- UConn Health, Department of Pediatrics, 263 Farmington Avenue, Farmington, CT 06030, USA; (D.A.T.); (T.N.J.)
- Connecticut Children’s Medical Center, 282 Washington St, Hartford, CT 06106, USA;
- The Jackson Laboratory for Genomic Medicine, 10 Discovery Drive, Farmington, CT 06030, USA
| |
Collapse
|
3
|
Blaustein MP, Hamlyn JM. Sensational site: the sodium pump ouabain-binding site and its ligands. Am J Physiol Cell Physiol 2024; 326:C1120-C1177. [PMID: 38223926 PMCID: PMC11193536 DOI: 10.1152/ajpcell.00273.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/22/2023] [Accepted: 01/10/2024] [Indexed: 01/16/2024]
Abstract
Cardiotonic steroids (CTS), used by certain insects, toads, and rats for protection from predators, became, thanks to Withering's trailblazing 1785 monograph, the mainstay of heart failure (HF) therapy. In the 1950s and 1960s, we learned that the CTS receptor was part of the sodium pump (NKA) and that the Na+/Ca2+ exchanger was critical for the acute cardiotonic effect of digoxin- and ouabain-related CTS. This "settled" view was upended by seven revolutionary observations. First, subnanomolar ouabain sometimes stimulates NKA while higher concentrations are invariably inhibitory. Second, endogenous ouabain (EO) was discovered in the human circulation. Third, in the DIG clinical trial, digoxin only marginally improved outcomes in patients with HF. Fourth, cloning of NKA in 1985 revealed multiple NKA α and β subunit isoforms that, in the rodent, differ in their sensitivities to CTS. Fifth, the NKA is a cation pump and a hormone receptor/signal transducer. EO binding to NKA activates, in a ligand- and cell-specific manner, several protein kinase and Ca2+-dependent signaling cascades that have widespread physiological effects and can contribute to hypertension and HF pathogenesis. Sixth, all CTS are not equivalent, e.g., ouabain induces hypertension in rodents while digoxin is antihypertensinogenic ("biased signaling"). Seventh, most common rodent hypertension models require a highly ouabain-sensitive α2 NKA and the elevated blood pressure is alleviated by EO immunoneutralization. These numerous phenomena are enabled by NKA's intricate structure. We have just begun to understand the endocrine role of the endogenous ligands and the broad impact of the ouabain-binding site on physiology and pathophysiology.
Collapse
Affiliation(s)
- Mordecai P Blaustein
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - John M Hamlyn
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
4
|
Teixeira-Fonseca JL, Santos-Miranda A, Marques ILS, Marques LP, Alcantara F, de Lima Conceição MR, Souza DS, Santana Gondim AN, Roman-Campos D. Eugenol delays the onset of ouabain-induced ventricular cardiac arrhythmias in guinea pigs. Basic Clin Pharmacol Toxicol 2023; 133:565-575. [PMID: 37675641 DOI: 10.1111/bcpt.13941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/22/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023]
Abstract
Eugenol is an aromatic compound used in the manufacture of medicines, perfumes, cosmetics and as an anaesthetic due to the ability of the drug to block the neuronal isoform of voltage-gated Na+ channels (NaV ). Some arrhythmias are associated with gain of function in the sodium current (INa ) found in cardiomyocytes, and antiarrhythmic sodium channel blockers are commonly used in the clinical practice. This study sought to elucidate the potential mechanisms of eugenol's protection in the arrhythmic model of ouabain-induced arrhythmias in guinea pig heart. Ex vivo arrhythmias were induced using 50 μM of ouabain. The antiarrhythmic properties of eugenol were evaluated in the ex vivo heart preparation and isolated ventricular cardiomyocytes. The compound's effects on cardiac sodium current and action potential using the patch-clamp technique were evaluated. In all, eugenol decreased the ex vivo cardiac arrhythmias induced by ouabain. Furthermore, eugenol showed concentration dependent effect upon peak INa , left-shifted the stationary inactivation curve and delayed the recovery from inactivation of the INa . All these aspects are considered to be antiarrhythmic. Our findings demonstrate that eugenol has antiarrhythmic activity, which may be partially explained by the ability of eugenol to change de biophysical properties of INa of cardiomyocytes.
Collapse
Affiliation(s)
- Jorge Lucas Teixeira-Fonseca
- Laboratório de Cardiobiologia, Departamento de Biofísica, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Artur Santos-Miranda
- Departamento de Fisiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Leisiane Pereira Marques
- Laboratório de Cardiobiologia, Departamento de Biofísica, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Fabiana Alcantara
- Laboratório de Cardiobiologia, Departamento de Biofísica, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Michael Ramon de Lima Conceição
- Laboratório de Cardiobiologia, Departamento de Biofísica, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Diego Santos Souza
- Laboratório de Cardiobiologia, Departamento de Biofísica, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Antonio Nei Santana Gondim
- Laboratório de Biofísica e Farmacologia do Coração, Departamento de Educação (Campus-XII), Universidade do Estado da Bahia (UNEB), Guanambi, Brazil
| | - Danilo Roman-Campos
- Laboratório de Cardiobiologia, Departamento de Biofísica, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Staehr C, Aalkjaer C, Matchkov V. The vascular Na,K-ATPase: clinical implications in stroke, migraine, and hypertension. Clin Sci (Lond) 2023; 137:1595-1618. [PMID: 37877226 PMCID: PMC10600256 DOI: 10.1042/cs20220796] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023]
Abstract
In the vascular wall, the Na,K-ATPase plays an important role in the control of arterial tone. Through cSrc signaling, it contributes to the modulation of Ca2+ sensitivity in vascular smooth muscle cells. This review focuses on the potential implication of Na,K-ATPase-dependent intracellular signaling pathways in severe vascular disorders; ischemic stroke, familial migraine, and arterial hypertension. We propose similarity in the detrimental Na,K-ATPase-dependent signaling seen in these pathological conditions. The review includes a retrospective proteomics analysis investigating temporal changes after ischemic stroke. The analysis revealed that the expression of Na,K-ATPase α isoforms is down-regulated in the days and weeks following reperfusion, while downstream Na,K-ATPase-dependent cSrc kinase is up-regulated. These results are important since previous studies have linked the Na,K-ATPase-dependent cSrc signaling to futile recanalization and vasospasm after stroke. The review also explores a link between the Na,K-ATPase and migraine with aura, as reduced expression or pharmacological inhibition of the Na,K-ATPase leads to cSrc kinase signaling up-regulation and cerebral hypoperfusion. The review discusses the role of an endogenous cardiotonic steroid-like compound, ouabain, which binds to the Na,K-ATPase and initiates the intracellular cSrc signaling, in the pathophysiology of arterial hypertension. Currently, our understanding of the precise control mechanisms governing the Na,K-ATPase/cSrc kinase regulation in the vascular wall is limited. Understanding the role of vascular Na,K-ATPase signaling is essential for developing targeted treatments for cerebrovascular disorders and hypertension, as the Na,K-ATPase is implicated in the pathogenesis of these conditions and may contribute to their comorbidity.
Collapse
Affiliation(s)
- Christian Staehr
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, 8000 Aarhus, Denmark
- Department of Renal Medicine, Aarhus University Hospital, Palle Juul-Jensens Boulevard 35, Aarhus, Denmark
| | - Christian Aalkjaer
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, 8000 Aarhus, Denmark
- Danish Cardiovascular Academy, Høegh-Guldbergsgade 10, 8000 Aarhus, Denmark
| | - Vladimir V. Matchkov
- Department of Biomedicine, Aarhus University, Høegh-Guldbergsgade 10, 8000 Aarhus, Denmark
| |
Collapse
|
6
|
Metz S, Cooper JR. The Texas Heart Institute Anesthesia Experience in China, 1985. J Cardiothorac Vasc Anesth 2022; 36:4245-4251. [PMID: 36163158 DOI: 10.1053/j.jvca.2022.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/17/2022] [Accepted: 08/24/2022] [Indexed: 11/11/2022]
|
7
|
Włodarczyk M, Gleńsk M. An in-depth look into a well-known herbal drug: Fingerprinting, isolation, identification, and content estimation of saponins in different Strophanthus seeds. PLANTA MEDICA 2022; 88:576-586. [PMID: 34474491 DOI: 10.1055/a-1586-1915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Seeds of Strophanthus species are known as a source of rapid-acting cardenolides. These water-soluble glycosides are listed as the sole critical constituents of this raw herbal drug. A non-standard cardioprotective medication with ouabain-containing oral remedies has become popular in Europe as a result of the withdrawal of corresponding registered drugs from the market. However, the bioequivalence of pure ouabain solutions, tinctures, and home-made extracts from Strophanthus seeds is unknown. Thus, this study aimed to update the information on the composition of Strophanthus seeds used for this purpose. The distribution of two main saponins and about 90 previously unreported compounds, tentatively identified as saponins in eleven Strophanthus species, was systematically evaluated by ultra-high-performance liquid chromatography mass spectrometry (UHPLC-MS) and -MS/MS. Seeds of S. gratus were selected to isolate the dominant unreported triterpenoids, bidesmosides of echinocystic and oleanolic acid. Their structures were established by HRMS, MS/MS, as well as by NMR techniques. The total saponin content, estimated by UHPLC-MS, was up to 1%. The detected saponins could influence the peroral bioavailability of hardly absorbable Strophanthus cardenolides and exhibit their own activity. This finding may be relevant when Strophanthus preparations (containing both saponins and cardiac glycosides) are used, particularly when homemade preparations are administered.
Collapse
Affiliation(s)
- Maciej Włodarczyk
- Department of Pharmacognosy and Herbal Medicines, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Michał Gleńsk
- Department of Pharmacognosy and Herbal Medicines, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
8
|
Tverskoi AM, Poluektov YM, Klimanova EA, Mitkevich VA, Makarov AA, Orlov SN, Petrushanko IY, Lopina OD. Depth of the Steroid Core Location Determines the Mode of Na,K-ATPase Inhibition by Cardiotonic Steroids. Int J Mol Sci 2021; 22:ijms222413268. [PMID: 34948068 PMCID: PMC8708600 DOI: 10.3390/ijms222413268] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 12/15/2022] Open
Abstract
Cardiotonic steroids (CTSs) are specific inhibitors of Na,K-ATPase (NKA). They induce diverse physiological effects and were investigated as potential drugs in heart diseases, hypertension, neuroinflammation, antiviral and cancer therapy. Here, we compared the inhibition mode and binding of CTSs, such as ouabain, digoxin and marinobufagenin to NKA from pig and rat kidneys, containing CTSs-sensitive (α1S) and -resistant (α1R) α1-subunit, respectively. Marinobufagenin in contrast to ouabain and digoxin interacted with α1S-NKA reversibly, and its binding constant was reduced due to the decrease in the deepening in the CTSs-binding site and a lower number of contacts between the site and the inhibitor. The formation of a hydrogen bond between Arg111 and Asp122 in α1R-NKA induced the reduction in CTSs’ steroid core deepening that led to the reversible inhibition of α1R-NKA by ouabain and digoxin and the absence of marinobufagenin’s effect on α1R-NKA activity. Our results elucidate that the difference in signaling, and cytotoxic effects of CTSs may be due to the distinction in the deepening of CTSs into the binding side that, in turn, is a result of a bent-in inhibitor steroid core (marinobufagenin in α1S-NKA) or the change of the width of CTSs-binding cavity (all CTSs in α1R-NKA).
Collapse
Affiliation(s)
- Artem M. Tverskoi
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova Street, 119991 Moscow, Russia; (Y.M.P.); (V.A.M.); (A.A.M.); (I.Y.P.)
- Correspondence: (A.M.T.); (O.D.L.)
| | - Yuri M. Poluektov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova Street, 119991 Moscow, Russia; (Y.M.P.); (V.A.M.); (A.A.M.); (I.Y.P.)
| | - Elizaveta A. Klimanova
- Faculty of Biology, Lomonosov Moscow State University, 1/12 Leniskie Gory Street, 119234 Moscow, Russia;
| | - Vladimir A. Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova Street, 119991 Moscow, Russia; (Y.M.P.); (V.A.M.); (A.A.M.); (I.Y.P.)
| | - Alexander A. Makarov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova Street, 119991 Moscow, Russia; (Y.M.P.); (V.A.M.); (A.A.M.); (I.Y.P.)
| | - Sergei N. Orlov
- Faculty of Biology, Lomonosov Moscow State University, 1/12 Leniskie Gory Street, 119234 Moscow, Russia;
| | - Irina Yu. Petrushanko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilova Street, 119991 Moscow, Russia; (Y.M.P.); (V.A.M.); (A.A.M.); (I.Y.P.)
| | - Olga D. Lopina
- Faculty of Biology, Lomonosov Moscow State University, 1/12 Leniskie Gory Street, 119234 Moscow, Russia;
- Correspondence: (A.M.T.); (O.D.L.)
| |
Collapse
|
9
|
Eugenol interacts with cardiac sodium channel and reduces heart excitability and arrhythmias. Life Sci 2021; 282:119761. [PMID: 34217764 DOI: 10.1016/j.lfs.2021.119761] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/14/2021] [Accepted: 06/24/2021] [Indexed: 11/22/2022]
Abstract
AIMS Eugenol is a natural compound found in the essential oils of many aromatic plants. The compound is used as a local anesthetic because of its inhibitory effect on the voltage-gated Na+ channels (Nav), which are expressed in the nociceptive neurons. Eugenol has shown wide range of activities in the cardiovascular system; most of these activities are attributed to the modulation of voltage-sensitive Ca2+ channels. However, its action on Nav1.5, the main subtype of Nav expressed in the mammalian myocardium, is unknown. The interaction of eugenol with Nav1.5 could also contribute to its antiarrhythmic properties in vitro and ex vivo. We investigated the compound's effect on sodium current (INa) and its possible cardiac antiarrhythmic activity. METHODS The effect of eugenol on cardiac contractility was investigated using isolated atrium from guinea pig (for isometric force measurements). The compound's effect on INa was evaluated using human embryonic cell transiently expressing human Nav1.5 and patch-clamp technique. KEY FINDINGS Eugenol caused negative inotropic and chronotropic effects in the atria. In the ex vivo arrhythmia model, eugenol decreased atrial pacing disturbance induced by ouabain. Eugenol reduced the INa in a concentration-dependent manner. Furthermore, the compound left-shifted the stationary inactivation curve, delayed recovery from inactivation of the INa, and preferentially blocked the channel in the inactivated state. Importantly, eugenol was able to attenuate the late sodium current. All these aspects are considered to be antiarrhythmic. SIGNIFICANCE Overall, our findings demonstrate that eugenol has antiarrhythmic activity due, at least in part, to its interaction with Nav1.5.
Collapse
|
10
|
Jiang H, Qin X, Wang Q, Xu Q, Wang J, Wu Y, Chen W, Wang C, Zhang T, Xing D, Zhang R. Application of carbohydrates in approved small molecule drugs: A review. Eur J Med Chem 2021; 223:113633. [PMID: 34171659 DOI: 10.1016/j.ejmech.2021.113633] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 12/24/2022]
Abstract
Carbohydrates are an important energy source and play numerous key roles in all living organisms. Carbohydrates chemistry involved in diagnosis and treatment of diseases has been attracting increasing attention. Carbohydrates could be one of the major focuses of new drug discovery. Currently, however, carbohydrate-containing drugs account for only a small percentage of all drugs in clinical use, which does not match the important roles of carbohydrates in the organism. In other words, carbohydrates are a relatively untapped source of new drugs and therefore may offer exciting novel therapeutic opportunities. Here, we presented an overview of the application of carbohydrates in approved small molecule drugs and emphasized and evaluated the roles of carbohydrates in those drugs. The potential development direction of carbohydrate-containing drugs was presented after summarizing the advantages and challenges of carbohydrates in the development of new drugs.
Collapse
Affiliation(s)
- Hongfei Jiang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Cancer Institute, Qingdao University, Qingdao, 266071, China
| | - Xiaofei Qin
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, China
| | - Qi Wang
- Department of Critical Medicine, Hainan Maternal and Children's Medical Center, Haikou, 570312, China
| | - Qi Xu
- Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Qilu University of Technology Shandong Academy of Sciences, Jinan, China
| | - Jie Wang
- Cancer Institute, Qingdao University, Qingdao, 266071, China
| | - Yudong Wu
- Cancer Institute, Qingdao University, Qingdao, 266071, China
| | - Wujun Chen
- Cancer Institute, Qingdao University, Qingdao, 266071, China
| | - Chao Wang
- Cancer Institute, Qingdao University, Qingdao, 266071, China
| | - Tingting Zhang
- Cancer Institute, Qingdao University, Qingdao, 266071, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Cancer Institute, Qingdao University, Qingdao, 266071, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Renshuai Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China; Cancer Institute, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
11
|
Kinoshita PF, Orellana AMM, Nakao VW, de Souza Port's NM, Quintas LEM, Kawamoto EM, Scavone C. The Janus face of ouabain in Na + /K + -ATPase and calcium signalling in neurons. Br J Pharmacol 2021; 179:1512-1524. [PMID: 33644859 DOI: 10.1111/bph.15419] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/03/2021] [Accepted: 02/14/2021] [Indexed: 12/20/2022] Open
Abstract
Na+ /K+ -ATPase, a transmembrane protein essential for maintaining the electrochemical gradient across the plasma membrane, acts as a receptor for cardiotonic steroids such as ouabain. Cardiotonic steroids binding to Na+ /K+ -ATPase triggers signalling pathways or inhibits Na+ /K+ -ATPas activity in a concentration-dependent manner, resulting in a modulation of Ca2+ levels, which are essential for homeostasis in neurons. However, most of the pharmacological strategies for avoiding neuronal death do not target Na+ /K+ -ATPase activity due to its complexity and the poor understanding of the mechanisms involved in Na+ /K+ -ATPase modulation. The present review aims to discuss two points regarding the interplay between Na+ /K+ -ATPase and Ca2+ signalling in the brain. One, Na+ /K+ -ATPase impairment causing illness and neuronal death due to Ca2+ signalling and two, benefits to the brain by modulating Na+ /K+ -ATPase activity. These interactions play an essential role in neuronal cell fate determination and are relevant to find new targets for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Paula Fernanda Kinoshita
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ana Maria Marques Orellana
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Vinicius Watanabe Nakao
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Natacha Medeiros de Souza Port's
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Luis Eduardo Menezes Quintas
- Laboratory of Biochemical and Molecular Pharmacology, Institute of Biomedical Sciences, Health Sciences Centre Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Elisa Mitiko Kawamoto
- Laboratory of Molecular and Functional Neurobiology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Cristoforo Scavone
- Laboratory of Molecular Neuropharmacology, Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
12
|
Cytotoxicity of glucoevatromonoside alone and in combination with chemotherapy drugs and their effects on Na +,K +-ATPase and ion channels on lung cancer cells. Mol Cell Biochem 2021; 476:1825-1848. [PMID: 33459980 DOI: 10.1007/s11010-020-04040-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/22/2020] [Indexed: 12/16/2022]
Abstract
Cardiac glycosides (CGs) are useful drugs to treat cardiac illnesses and have potent cytotoxic and anticancer effects in cultured cells and animal models. Their receptor is the Na+,K+ ATPase, but other plasma membrane proteins might bind CGs as well. Herein, we evaluated the short- and long-lasting cytotoxic effects of the natural cardenolide glucoevatromonoside (GEV) on non-small-cell lung cancer H460 cells. We also tested GEV effects on Na+,K+ -ATPase activity and membrane currents, alone or in combination with selected chemotherapy drugs. GEV reduced viability, migration, and invasion of H460 cells spheroids. It also induced cell cycle arrest and death and reduced the clonogenic survival and cumulative population doubling. GEV inhibited Na+,K+-ATPase activity on A549 and H460 cells and purified pig kidney cells membrane. However, it showed no activity on the human red blood cell plasma membrane. Additionally, GEV triggered a Cl-mediated conductance on H460 cells without affecting the transient voltage-gated sodium current. The administration of GEV in combination with the chemotherapeutic drugs paclitaxel (PAC), cisplatin (CIS), irinotecan (IRI), and etoposide (ETO) showed synergistic antiproliferative effects, especially when combined with GEV + CIS and GEV + PAC. Taken together, our results demonstrate that GEV is a potential drug for cancer therapy because it reduces lung cancer H460 cell viability, migration, and invasion. Our results also reveal a link between the Na+,K+-ATPase and Cl- ion channels.
Collapse
|
13
|
Schmid V, Plössl K, Schmid C, Bernklau S, Weber BHF, Friedrich U. Retinoschisin and Cardiac Glycoside Crosstalk at the Retinal Na/K-ATPase. Invest Ophthalmol Vis Sci 2020; 61:1. [PMID: 32392309 PMCID: PMC7405613 DOI: 10.1167/iovs.61.5.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Purpose Mutations in the RS1 gene, which encodes retinoschisin, cause X-linked juvenile retinoschisis, a retinal dystrophy in males. Retinoschisin specifically interacts with the retinal sodium–potassium adenosine triphosphatase (Na/K-ATPase), a transmembrane ion pump. Na/K-ATPases also bind cardiac glycosides, which control the activity of the pump and have been linked to disturbances in retinal homeostasis. In this study, we investigated the crosstalk between retinoschisin and cardiac glycosides at the retinal Na/K-ATPase and the consequences of this interplay on retinal integrity. Methods The effect of cardiac glycosides (ouabain and digoxin) on the binding of retinoschisin to the retinal Na/K-ATPase was investigated via western blot and immunocytochemistry. Also, the influence of retinoschisin on the binding of cardiac glycosides was analyzed via enzymatic assays, which quantified cardiac glycoside-sensitive Na/K-ATPase pump activity. Moreover, retinoschisin-dependent binding of tritium-labeled ouabain to the Na/K-ATPase was determined. Finally, a reciprocal effect of retinoschisin and cardiac glycosides on Na/K-ATPase localization and photoreceptor degeneration was addressed using immunohistochemistry in retinoschisin-deficient murine retinal explants. Results Cardiac glycosides displaced retinoschisin from the retinal Na/K-ATPase; however, retinoschisin did not affect cardiac glycoside binding. Notably, cardiac glycosides reduced the capacity of retinoschisin to regulate Na/K-ATPase localization and to protect against photoreceptor degeneration. Conclusions Our findings reveal opposing effects of retinoschisin and cardiac glycosides on retinal Na/K-ATPase binding and on retinal integrity, suggesting that a fine-tuned interplay between both components is required to maintain retinal homeostasis. This observation provides new insight into the mechanisms underlying the pathological effects of cardiac glycoside treatment on retinal integrity.
Collapse
|
14
|
Elucidating Potential Profibrotic Mechanisms of Emerging Biomarkers for Early Prognosis of Hepatic Fibrosis. Int J Mol Sci 2020; 21:ijms21134737. [PMID: 32635162 PMCID: PMC7369895 DOI: 10.3390/ijms21134737] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 02/06/2023] Open
Abstract
Hepatic fibrosis has been associated with a series of pathophysiological processes causing excessive accumulation of extracellular matrix proteins. Several cellular processes and molecular mechanisms have been implicated in the diseased liver that augments fibrogenesis, fibrogenic cytokines and associated liver complications. Liver biopsy remains an essential diagnostic tool for histological evaluation of hepatic fibrosis to establish a prognosis. In addition to being invasive, this methodology presents with several limitations including poor cost-effectiveness, prolonged hospitalizations, and risks of peritoneal bleeding, while the clinical use of this method does not reveal underlying pathogenic mechanisms. Several alternate noninvasive diagnostic strategies have been developed, to determine the extent of hepatic fibrosis, including the use of direct and indirect biomarkers. Immediate diagnosis of hepatic fibrosis by noninvasive means would be more palatable than a biopsy and could assist clinicians in taking early interventions timely, avoiding fatal complications, and improving prognosis. Therefore, we sought to review some common biomarkers of liver fibrosis along with some emerging candidates, including the oxidative stress-mediated biomarkers, epigenetic and genetic markers, exosomes, and miRNAs that needs further evaluation and would have better sensitivity and specificity. We also aim to elucidate the potential role of cardiotonic steroids (CTS) and evaluate the pro-inflammatory and profibrotic effects of CTS in exacerbating hepatic fibrosis. By understanding the underlying pathogenic processes, the efficacy of these biomarkers could allow for early diagnosis and treatment of hepatic fibrosis in chronic liver diseases, once validated.
Collapse
|
15
|
Schinner C, Olivares-Florez S, Schlipp A, Trenz S, Feinendegen M, Flaswinkel H, Kempf E, Egu DT, Yeruva S, Waschke J. The inotropic agent digitoxin strengthens desmosomal adhesion in cardiac myocytes in an ERK1/2-dependent manner. Basic Res Cardiol 2020; 115:46. [PMID: 32556797 PMCID: PMC7299919 DOI: 10.1007/s00395-020-0805-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 06/05/2020] [Indexed: 01/28/2023]
Abstract
Desmosomal proteins are components of the intercalated disc and mediate cardiac myocyte adhesion. Enhancement of cardiac myocyte cohesion, referred to as "positive adhesiotropy", was demonstrated to be a function of sympathetic signaling and to be relevant for a sufficient inotropic response. We used the inotropic agent digitoxin to investigate the link between inotropy and adhesiotropy. In contrast to wild-type hearts, digitoxin failed to enhance pulse pressure in perfused mice hearts lacking the desmosomal protein plakoglobin which was paralleled with abrogation of plaque thickening indicating that positive inotropic response requires intact desmosomal adhesion. Atomic force microscopy revealed that digitoxin increased the binding force of the adhesion molecule desmoglein-2 at cell-cell contact areas. This was paralleled by enhanced cardiac myocyte cohesion in both HL-1 cardiac myocytes and murine cardiac slices as determined by dissociation assays as well as by accumulation of desmosomal proteins at cell-cell contact areas. However, total protein levels or cytoskeletal anchorage were not affected. siRNA-mediated depletion of desmosomal proteins abrogated increase of cell cohesion demonstrating that intact desmosomal adhesion is required for positive adhesiotropy. Mechanistically, digitoxin caused activation of ERK1/2. In line with this, inhibition of ERK1/2 signaling abrogated the effects of digitoxin on cell-cell adhesion and desmosomal reorganization. These results show that the positive inotropic agent digitoxin enhances cardiac myocyte cohesion with reorganization of desmosomal proteins in an ERK1/2-dependent manner. Desmosomal adhesion seems to be important for a sufficient positive inotropic response of digitoxin treatment, which can be of medical relevance for the treatment of heart failure.
Collapse
Affiliation(s)
- Camilla Schinner
- Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Silvana Olivares-Florez
- Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Angela Schlipp
- Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Sebastian Trenz
- Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Manouk Feinendegen
- Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Heinrich Flaswinkel
- Department of Biology II, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Ellen Kempf
- Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Desalegn Tadesse Egu
- Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Sunil Yeruva
- Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany
| | - Jens Waschke
- Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) Munich, Pettenkoferstraße 11, 80336, Munich, Germany.
| |
Collapse
|
16
|
Du X, Zuo X, Meng F, Wu F, Zhao X, Li C, Cheng G, Qin FXF. Combinatorial screening of a panel of FDA-approved drugs identifies several candidates with anti-Ebola activities. Biochem Biophys Res Commun 2019; 522:862-868. [PMID: 31806372 DOI: 10.1016/j.bbrc.2019.11.065] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 11/10/2019] [Indexed: 01/16/2023]
Abstract
Ebola virus (EBOV), pathogen of Ebola hemorrhagic fever (EHF), is an enveloped filamental RNA virus. Recently, the EHF crisis occurred in the Democratic Republic of the Congo again highlights the urgency for its clinical treatments. However, no Food and Drug Administration (FDA)-approved therapeutics are currently available. Drug repurposing screening is a time- and cost-effective approach for identifying anti-EBOV therapeutics. Here, by combinatorial screening using pseudovirion and minigenome replicon systems we have identified several FDA-approved drugs with significant anti-EBOV activities. These potential candidates include azithromycin, clomiphene, chloroquine, digitoxin, epigallocatechin-gallate, fluvastatin, tetrandrine and tamoxifen. Mechanistic studies revealed that fluvastatin inhibited EBOV pseudovirion entry by blocking the pathway of mevalonate biosynthesis, while the inhibitory effect of azithromycin on EBOV maybe due to its intrinsic cationic amphiphilic structure altering the homeostasis of later endosomal vesicle similar as tamoxifen. Moreover, based on structure and pathway analyses, the anti-EBOV activity has been extended to other family members of statins, such as simvastatin, and multiple other cardiac glycoside drugs, some of which exhibited even stronger activities. More importantly, in searching for drug interaction, we found various synergy between several anti-EBOV drug combinations, showing substantial and powerful synergistic against EBOV infection. In conclusion, our work illustrates a successful and productive approach to identify new mechanisms and targets for treating EBOV infection by combinatorial screening of FDA-approved drugs.
Collapse
Affiliation(s)
- Xiaohong Du
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China; Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, 215123, China
| | - Xiangyang Zuo
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China; Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, 215123, China
| | - Fang Meng
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China; Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, 215123, China
| | - Fei Wu
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China; Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, 215123, China
| | - Xin Zhao
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China; Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, 215123, China
| | - Chunfeng Li
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China; Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, 215123, China
| | - Genhong Cheng
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China; Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, 215123, China; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
| | - F Xiao-Feng Qin
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China; Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
17
|
van Meer BJ, Krotenberg A, Sala L, Davis RP, Eschenhagen T, Denning C, Tertoolen LGJ, Mummery CL. Simultaneous measurement of excitation-contraction coupling parameters identifies mechanisms underlying contractile responses of hiPSC-derived cardiomyocytes. Nat Commun 2019; 10:4325. [PMID: 31541103 PMCID: PMC6754438 DOI: 10.1038/s41467-019-12354-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 09/04/2019] [Indexed: 02/07/2023] Open
Abstract
Cardiomyocytes from human induced pluripotent stem cells (hiPSC-CMs) are increasingly recognized as valuable for determining the effects of drugs on ion channels but they do not always accurately predict contractile responses of the human heart. This is in part attributable to their immaturity but the sensitivity of measurement tools may also be limiting. Measuring action potential, calcium flux or contraction individually misses critical information that is captured when interrogating the complete excitation-contraction coupling cascade simultaneously. Here, we develop an hypothesis-based statistical algorithm that identifies mechanisms of action. We design and build a high-speed optical system to measure action potential, cytosolic calcium and contraction simultaneously using fluorescent sensors. These measurements are automatically processed, quantified and then assessed by the algorithm. Multiplexing these three critical physical features of hiPSC-CMs allows identification of all major drug classes affecting contractility with detection sensitivities higher than individual measurement of action potential, cytosolic calcium or contraction.
Collapse
Affiliation(s)
- Berend J van Meer
- Dept. of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZD, Leiden, The Netherlands
| | - Ana Krotenberg
- Dept. of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZD, Leiden, The Netherlands
| | - Luca Sala
- Dept. of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZD, Leiden, The Netherlands.,Istituto Auxologico Italiano, IRCCS, Center for Cardiac Arrhythmias of Genetic Origin, Laboratory of Cardiovascular Genetics, Via Zucchi 18, 20095, Cusano Milanino, MI, Italy
| | - Richard P Davis
- Dept. of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZD, Leiden, The Netherlands
| | - Thomas Eschenhagen
- Dept. of Experimental Pharmacology and Toxicology, University Medical Center Hamburg Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.,DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Chris Denning
- Dept. of Stem Cell Biology, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Leon G J Tertoolen
- Dept. of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZD, Leiden, The Netherlands
| | - Christine L Mummery
- Dept. of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZD, Leiden, The Netherlands. .,Dept. of Applied Stem Cell Technologies, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands.
| |
Collapse
|
18
|
Abstract
The history of digitalis is rich and interesting, with the first use usually attributed to William Withering and his study on the foxglove published in 1785. However, some knowledge of plants with digitalis-like effects used for congestive heart failure (CHF) was in evidence as early as Roman times. The active components of the foxglove (Digitalis purpurea and Digitalis lanata) are classified as cardiac glycosides or cardiotonic steroids and include the well-known digitalis leaf, digitoxin, and digoxin; ouabain is a rapid-acting glycoside usually obtained from Strophanthus gratus. These drugs are potent inhibitors of cellular membrane sodium-potassium adenosine triphosphatase (Na+/K+-ATPase). For most of the twentieth century, digitalis and its derivatives, especially digoxin, were the available standard of care for CHF. However, as the century closed, many doubts, especially regarding safety, were raised about their use as other treatments for CHF, such as decreasing the preload of the left ventricle, were developed. Careful attention is needed to maintain the serum digoxin level at ≤ 1.0 ng/ml because of the very narrow therapeutic window of the medication. Evidence for benefit exists for CHF with reduced ejection fraction (EF), also referred to as heart failure with reduced EF (HFrEF), especially when considering the combination of mortality, morbidity, and decreased hospitalizations. However, the major support for using digoxin is in atrial fibrillation (AF) with a rapid ventricular response when a rate control approach is planned. The strongest support of all for digoxin is for its use in rate control in AF in the presence of a marginal blood pressure, since all other rate control medications contribute to additional hypotension. In summary, these days, digoxin appears to be of most use in HFrEF and in AF with rapid ventricular response for rate control, especially when associated with hypotension. The valuable history of the foxglove continues; it has been modified but not relegated to the garden or the medical history book, as some would advocate.
Collapse
|
19
|
Tokazzabani Belasi F, Vaezi G, Bakhtiarian A, Hojati V, Mousavi Z, Nikoui V. On the benefit of melatonin in protection against ouabain-induced arrhythmia through modulation of oxidative stress factors in isolated rat atria. BIOL RHYTHM RES 2018. [DOI: 10.1080/09291016.2018.1424769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
| | - Gholamhassan Vaezi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Azam Bakhtiarian
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Vida Hojati
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Zahra Mousavi
- Department of Pharmacology-Toxicology, Faculty of Pharmacy, Pharmaceutical Sciences Branch, Islamic Azad University (IAUPS), Tehran, Iran
| | - Vahid Nikoui
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Sprenkeler DJ, Bossu A, Beekman JDM, Schoenmakers M, Vos MA. An Augmented Negative Force-Frequency Relationship and Slowed Mechanical Restitution Are Associated With Increased Susceptibility to Drug-Induced Torsade de Pointes Arrhythmias in the Chronic Atrioventricular Block Dog. Front Physiol 2018; 9:1086. [PMID: 30135660 PMCID: PMC6092493 DOI: 10.3389/fphys.2018.01086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/23/2018] [Indexed: 11/30/2022] Open
Abstract
Introduction: In the chronic AV-block (CAVB) dog model, structural, contractile, and electrical remodeling occur, which predispose the heart to dofetilide-induced Torsade de Pointes (TdP) arrhythmias. Previous studies found a relation between electrical remodeling and inducibility of TdP, while structural remodeling is not a prerequisite for arrhythmogenesis. In this study, we prospectively assessed the relation between in vivo markers of contractile remodeling and TdP inducibility. Methods: In 18 anesthetized dogs, the maximal first derivative of left ventricular pressure (LV dP/dtmax) was assessed at acute AV-block (AAVB) and after 2 weeks of chronic AV-block (CAVB2). Using pacing protocols, three markers of contractile remodeling, i.e., force-frequency relationship (FFR), mechanical restitution (MR), and post-extrasystolic potentiation (PESP) were determined. Infusion of dofetilide (0.025 mg/kg in 5 min) was used to test for TdP inducibility. Results: After infusion of dofetilide, 1/18 dogs and 12/18 were susceptible to TdP-arrhythmias at AAVB and CAVB2, respectively (p = 0.001). The inducible dogs at CAVB2 showed augmented contractility at a CL of 1200 ms (2354 ± 168 mmHg/s in inducible dogs versus 1091 ± 59 mmHg/s in non-inducible dogs, p < 0.001) with a negative FFR, while the non-inducible dogs retained their positive FFR. The time constant (TC) of the MR curve was significantly higher in the inducible dogs (158 ± 7 ms versus 97 ± 8 ms, p < 0.0001). Furthermore, a linear correlation was found between a weighted score of the number and severity of arrhythmias and contractile parameters, i.e., contractility at CL of 1200 ms (r = 0.73, p = 0.002), the slope of the FFR (r = -0.58, p = 0.01) and the TC of MR (r = 0.66, p = 0.003). Thus, more severe arrhythmias were seen in dogs with the most pronounced contractile remodeling. Conclusion: Contractile remodeling is concomitantly observed with susceptibility to dofetilide-induced TdP-arrhythmias. The inducible dogs show augmented contractile remodeling compared to non-inducible dogs, as seen by a negative FFR, higher maximal response of MR and PESP and slowed MR kinetics. These altered contractility parameters could reflect disrupted Ca2+ handling and Ca2+-overload, which predispose the heart to delayed- and early afterdepolarizations that could trigger TdP-arrhythmias.
Collapse
Affiliation(s)
- David J Sprenkeler
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| | - Alexandre Bossu
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jet D M Beekman
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| | - Marieke Schoenmakers
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| | - Marc A Vos
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
21
|
Ding B, Walton JP, Zhu X, Frisina RD. Age-related changes in Na, K-ATPase expression, subunit isoform selection and assembly in the stria vascularis lateral wall of mouse cochlea. Hear Res 2018; 367:59-73. [PMID: 30029086 DOI: 10.1016/j.heares.2018.07.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/02/2018] [Accepted: 07/06/2018] [Indexed: 11/26/2022]
Abstract
Due to the critical role of cochlear ion channels for hearing, the focus of the present study was to examine age-related changes of Na, K-ATPase (NKA) subunits in the lateral wall of mouse cochlea. We combined qRT-PCR, western blot and immunocytochemistry methodologies in order to determine gene and protein expression levels in the lateral wall of young and aged CBA/CaJ mice. Of the seven NKA subunits, only the mRNA expressions of α1, β1 and β2 subunit isoforms were detected in the lateral wall of CBA/CaJ mice. Aging was accompanied by dys-regulation of gene and protein expression of all three subunits detected. Hematoxylin and eosin (H&E) staining revealed atrophy of the cochlear stria vascularis (SV). The SV atrophy rate (20%) was much less than the ∼80% decline in expression of all three NKA isoforms, indicating lateral wall atrophy and NKA dys-regulation are independent factors and that there is a combination of changes involving the morphology of SV and NKA expression in the aging cochlea which may concomitantly affect cochlear function. Immunoprecipitation assays showed that the α1-β1 heterodimer is the selective preferential heterodimer over the α1-β2 heterodimer in cochlea lateral wall. Interestingly, in vitro pathway experiments utilizing cultured mouse cochlear marginal cells from the SV (SV-K1 cells) indicated that decreased mRNA and protein expressions of α1, β1 and β2 subunit isoforms are not associated with reduction of NKA activity following in vitro application of ouabain, but ouabain did disrupt the α1-β1 heterodimer interaction. Lastly, the association between the α1 and β1 subunit isoforms was present in the cochlear lateral wall of young adult mice, but this interaction could not be detected in old mice. Taken together, these data suggest that in the young adult mouse there is a specific, functional selection and assembly of NKA subunit isoforms in the SV lateral wall, which is disrupted and dys-regulated with age. Interventions for this age-linked ion channel disruption may have the potential to help diagnose, prevent, or treat age-related hearing loss.
Collapse
Affiliation(s)
- Bo Ding
- Dept. Communication Sciences & Disorders, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL, USA
| | - Joseph P Walton
- Dept. Communication Sciences & Disorders, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL, USA; Dept. Chemical & Biomedical Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL, USA.
| | - Xiaoxia Zhu
- Dept. Chemical & Biomedical Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL, USA
| | - Robert D Frisina
- Dept. Communication Sciences & Disorders, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL, USA; Dept. Chemical & Biomedical Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL, USA; Dept. Medical Engineering, Global Center for Hearing & Speech Research, University of South Florida, Tampa, FL, USA
| |
Collapse
|
22
|
Mladěnka P, Applová L, Patočka J, Costa VM, Remiao F, Pourová J, Mladěnka A, Karlíčková J, Jahodář L, Vopršalová M, Varner KJ, Štěrba M, TOX‐OER and CARDIOTOX Hradec Králové Researchers and Collaborators. Comprehensive review of cardiovascular toxicity of drugs and related agents. Med Res Rev 2018; 38:1332-1403. [PMID: 29315692 PMCID: PMC6033155 DOI: 10.1002/med.21476] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/20/2017] [Accepted: 11/16/2017] [Indexed: 12/12/2022]
Abstract
Cardiovascular diseases are a leading cause of morbidity and mortality in most developed countries of the world. Pharmaceuticals, illicit drugs, and toxins can significantly contribute to the overall cardiovascular burden and thus deserve attention. The present article is a systematic overview of drugs that may induce distinct cardiovascular toxicity. The compounds are classified into agents that have significant effects on the heart, blood vessels, or both. The mechanism(s) of toxic action are discussed and treatment modalities are briefly mentioned in relevant cases. Due to the large number of clinically relevant compounds discussed, this article could be of interest to a broad audience including pharmacologists and toxicologists, pharmacists, physicians, and medicinal chemists. Particular emphasis is given to clinically relevant topics including the cardiovascular toxicity of illicit sympathomimetic drugs (e.g., cocaine, amphetamines, cathinones), drugs that prolong the QT interval, antidysrhythmic drugs, digoxin and other cardioactive steroids, beta-blockers, calcium channel blockers, female hormones, nonsteroidal anti-inflammatory, and anticancer compounds encompassing anthracyclines and novel targeted therapy interfering with the HER2 or the vascular endothelial growth factor pathway.
Collapse
Affiliation(s)
- Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec KrálovéCharles UniversityHradec KrálovéCzech Republic
| | - Lenka Applová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec KrálovéCharles UniversityHradec KrálovéCzech Republic
| | - Jiří Patočka
- Department of Radiology and Toxicology, Faculty of Health and Social StudiesUniversity of South BohemiaČeské BudějoviceCzech Republic
- Biomedical Research CentreUniversity HospitalHradec KraloveCzech Republic
| | - Vera Marisa Costa
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of PharmacyUniversity of PortoPortoPortugal
| | - Fernando Remiao
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of PharmacyUniversity of PortoPortoPortugal
| | - Jana Pourová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec KrálovéCharles UniversityHradec KrálovéCzech Republic
| | - Aleš Mladěnka
- Oncogynaecologic Center, Department of Gynecology and ObstetricsUniversity HospitalOstravaCzech Republic
| | - Jana Karlíčková
- Department of Pharmaceutical Botany and Ecology, Faculty of Pharmacy in Hradec KrálovéCharles UniversityHradec KrálovéCzech Republic
| | - Luděk Jahodář
- Department of Pharmaceutical Botany and Ecology, Faculty of Pharmacy in Hradec KrálovéCharles UniversityHradec KrálovéCzech Republic
| | - Marie Vopršalová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec KrálovéCharles UniversityHradec KrálovéCzech Republic
| | - Kurt J. Varner
- Department of PharmacologyLouisiana State University Health Sciences CenterNew OrleansLAUSA
| | - Martin Štěrba
- Department of Pharmacology, Faculty of Medicine in Hradec KrálovéCharles UniversityHradec KrálovéCzech Republic
| | | |
Collapse
|
23
|
Kon N, Abe N, Miyazaki M, Mushiake H, Kazama I. Partial exposure of frog heart to high-potassium solution: an easily reproducible model mimicking ST segment changes. J Vet Med Sci 2018; 80:578-582. [PMID: 29503350 PMCID: PMC5938182 DOI: 10.1292/jvms.18-0010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
By simply inducing burn injuries on the bullfrog heart, we previously reported a simple
model of abnormal ST segment changes observed in human ischemic heart disease. In the
present study, instead of inducing burn injuries, we partially exposed the surface of the
frog heart to high-potassium (K+) solution to create a concentration gradient
of the extracellular K+ within the myocardium. Dual recordings of ECG and the
cardiac action potential demonstrated significant elevation of the ST segment and the
resting membrane potential, indicating its usefulness as a simple model of heart injury.
Additionally, from our results, Na+/K+-ATPase activity was thought
to be primarily responsible for generating the K+ concentration gradient and
inducing the ST segment changes in ECG.
Collapse
Affiliation(s)
- Nobuaki Kon
- Department of Physiology, Tohoku University Graduate School of Medicine, Seiryo-cho, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Nozomu Abe
- Department of Physiology, Tohoku University Graduate School of Medicine, Seiryo-cho, Aoba-ku, Sendai, Miyagi 980-8575, Japan.,Department of Anesthesiology, Tohoku University Hospital, Seiryo-cho, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Masahiro Miyazaki
- Department of Physiology, Tohoku University Graduate School of Medicine, Seiryo-cho, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Hajime Mushiake
- Department of Physiology, Tohoku University Graduate School of Medicine, Seiryo-cho, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| | - Itsuro Kazama
- School of Nursing, Miyagi University, Gakuen, Taiwa-cho, Kurokawa-gun, Miyagi 981-3298, Japan.,Department of Physiology, Tohoku University Graduate School of Medicine, Seiryo-cho, Aoba-ku, Sendai, Miyagi 980-8575, Japan
| |
Collapse
|
24
|
On the Many Actions of Ouabain: Pro-Cystogenic Effects in Autosomal Dominant Polycystic Kidney Disease. Molecules 2017; 22:molecules22050729. [PMID: 28467389 PMCID: PMC5688955 DOI: 10.3390/molecules22050729] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/19/2017] [Accepted: 04/30/2017] [Indexed: 02/07/2023] Open
Abstract
Ouabain and other cardenolides are steroidal compounds originally discovered in plants. Cardenolides were first used as poisons, but after finding their beneficial cardiotonic effects, they were rapidly included in the medical pharmacopeia. The use of cardenolides to treat congestive heart failure remained empirical for centuries and only relatively recently, their mechanisms of action became better understood. A breakthrough came with the discovery that ouabain and other cardenolides exist as endogenous compounds that circulate in the bloodstream of mammals. This elevated these compounds to the category of hormones and opened new lines of investigation directed to further study their biological role. Another important discovery was the finding that the effect of ouabain was mediated not only by inhibition of the activity of the Na,K-ATPase (NKA), but by the unexpected role of NKA as a receptor and a signal transducer, which activates a complex cascade of intracellular second messengers in the cell. This broadened the interest for ouabain and showed that it exerts actions that go beyond its cardiotonic effect. It is now clear that ouabain regulates multiple cell functions, including cell proliferation and hypertrophy, apoptosis, cell adhesion, cell migration, and cell metabolism in a cell and tissue type specific manner. This review article focuses on the cardenolide ouabain and discusses its various in vitro and in vivo effects, its role as an endogenous compound, its mechanisms of action, and its potential use as a therapeutic agent; placing especial emphasis on our findings of ouabain as a pro-cystogenic agent in autosomal dominant polycystic kidney disease (ADPKD).
Collapse
|
25
|
Ledwitch KV, Roberts AG. Cardiovascular Ion Channel Inhibitor Drug-Drug Interactions with P-glycoprotein. AAPS JOURNAL 2016; 19:409-420. [PMID: 28028729 DOI: 10.1208/s12248-016-0023-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/19/2016] [Indexed: 12/31/2022]
Abstract
P-glycoprotein (Pgp) is an ATP-binding cassette (ABC) transporter that plays a major role in cardiovascular drug disposition by effluxing a chemically and structurally diverse range of cardiovascular therapeutics. Unfortunately, drug-drug interactions (DDIs) with the transporter have become a major roadblock to effective cardiovascular drug administration because they can cause adverse drug reactions (ADRs) or reduce the efficacy of drugs. Cardiovascular ion channel inhibitors are particularly susceptible to DDIs and ADRs with Pgp because they often have low therapeutic indexes and are commonly coadministered with other drugs that are also Pgp substrates. DDIs from cardiovascular ion channel inhibitors with the transporter occur because of inhibition or induction of the transporter and the transporter's tissue and cellular localization. Inhibiting Pgp can increase absorption and reduce excretion of drugs, leading to elevated drug plasma concentrations and drug toxicity. In contrast, inducing Pgp can have the opposite effect by reducing the drug plasma concentration and its efficacy. A number of in vitro and in vivo studies have already demonstrated DDIs from several cardiovascular ion channel inhibitors with human Pgp and its animal analogs, including verapamil, digoxin, and amiodarone. In this review, Pgp-mediated DDIs and their effects on pharmacokinetics for different categories of cardiovascular ion channel inhibitors are discussed. This information is essential for improving pharmacokinetic predictions of cardiovascular therapeutics, for safer cardiovascular drug administration and for mitigating ADRs emanating from Pgp.
Collapse
Affiliation(s)
- Kaitlyn V Ledwitch
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 240 W. Green St., Athens, Georgia, 30602, USA
| | - Arthur G Roberts
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 240 W. Green St., Athens, Georgia, 30602, USA.
| |
Collapse
|
26
|
Antiviral Screening of Multiple Compounds against Ebola Virus. Viruses 2016; 8:v8110277. [PMID: 27801778 PMCID: PMC5127007 DOI: 10.3390/v8110277] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 10/19/2016] [Accepted: 10/19/2016] [Indexed: 01/04/2023] Open
Abstract
In light of the recent outbreak of Ebola virus (EBOV) disease in West Africa, there have been renewed efforts to search for effective antiviral countermeasures. A range of compounds currently available with broad antimicrobial activity have been tested for activity against EBOV. Using live EBOV, eighteen candidate compounds were screened for antiviral activity in vitro. The compounds were selected on a rational basis because their mechanisms of action suggested that they had the potential to disrupt EBOV entry, replication or exit from cells or because they had displayed some antiviral activity against EBOV in previous tests. Nine compounds caused no reduction in viral replication despite cells remaining healthy, so they were excluded from further analysis (zidovudine; didanosine; stavudine; abacavir sulphate; entecavir; JB1a; Aimspro; celgosivir; and castanospermine). A second screen of the remaining compounds and the feasibility of appropriateness for in vivo testing removed six further compounds (ouabain; omeprazole; esomeprazole; Gleevec; D-LANA-14; and Tasigna). The three most promising compounds (17-DMAG; BGB324; and NCK-8) were further screened for in vivo activity in the guinea pig model of EBOV disease. Two of the compounds, BGB324 and NCK-8, showed some effect against lethal infection in vivo at the concentrations tested, which warrants further investigation. Further, these data add to the body of knowledge on the antiviral activities of multiple compounds against EBOV and indicate that the scientific community should invest more effort into the development of novel and specific antiviral compounds to treat Ebola virus disease.
Collapse
|
27
|
Patel S. Plant-derived cardiac glycosides: Role in heart ailments and cancer management. Biomed Pharmacother 2016; 84:1036-1041. [PMID: 27780131 DOI: 10.1016/j.biopha.2016.10.030] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/08/2016] [Accepted: 10/10/2016] [Indexed: 12/20/2022] Open
Abstract
Cardiac glycosides, the cardiotonic steroids such as digitalis have been in use as heart ailment remedy since ages. They manipulate the renin-angiotensin axis to improve cardiac output. However; their safety and efficacy have come under scrutiny in recent times, as poisoning and accidental mortalities have been observed. In order to better understand and exploit them as cardiac ionotropes, studies are being pursued using different cardiac glycosides such as digitoxin, digoxin, ouabain, oleandrin etc. Several cardiac glycosides as peruvoside have shown promise in cancer control, especially ovary cancer and leukemia. Functional variability of these glycosides has revealed that not all cardiac glycosides are alike. Apart from their specific affinity to sodium-potassium ATPase, their therapeutic dosage and behavior in poly-morbidity conditions needs to be considered. This review presents a concise account of the key findings in recent years with adequate elaboration of the mechanisms. This compilation is expected to contribute towards management of cardiac, cancer, even viral ailments.
Collapse
Affiliation(s)
- Seema Patel
- Bioinformatics and Medical Informatics Research Center, San Diego State University, 5500 Campanile Dr San Diego, CA 92182, USA.
| |
Collapse
|
28
|
Digitoxin enhances the growth inhibitory effects of thapsigargin and simvastatin on ER negative human breast cancer cells. Fitoterapia 2016; 109:146-54. [DOI: 10.1016/j.fitote.2015.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/07/2015] [Accepted: 12/10/2015] [Indexed: 12/20/2022]
|
29
|
Makris EA, Huang BJ, Hu JC, Chen-Izu Y, Athanasiou KA. Digoxin and adenosine triphosphate enhance the functional properties of tissue-engineered cartilage. Tissue Eng Part A 2014; 21:884-94. [PMID: 25473799 DOI: 10.1089/ten.tea.2014.0360] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Toward developing engineered cartilage for the treatment of cartilage defects, achieving relevant functional properties before implantation remains a significant challenge. Various chemical and mechanical stimuli have been used to enhance the functional properties of engineered musculoskeletal tissues. Recently, Ca(2+)-modulating agents have been used to enhance matrix synthesis and biomechanical properties of engineered cartilage. The objective of this study was to determine whether other known Ca(2+) modulators, digoxin and adenosine triphosphate (ATP), can be employed as novel stimuli to increase collagen synthesis and functional properties of engineered cartilage. Neocartilage constructs were formed by scaffold-free self-assembling of primary bovine articular chondrocytes. Digoxin, ATP, or both agents were added to the culture medium for 1 h/day on days 10-14. After 4 weeks of culture, neocartilage properties were assessed for gross morphology, biochemical composition, and biomechanical properties. Digoxin and ATP were found to increase neocartilage collagen content by 52-110% over untreated controls, while maintaining proteoglycan content near native tissue values. Furthermore, digoxin and ATP increased the tensile modulus by 280% and 180%, respectively, while the application of both agents increased the modulus by 380%. The trends in tensile properties were found to correlate with the amount of collagen cross-linking. Live Ca(2+) imaging experiments revealed that both digoxin and ATP were able to increase Ca(2+) oscillations in monolayer-cultured chondrocytes. This study provides a novel approach toward directing neocartilage maturation and enhancing its functional properties using novel Ca(2+) modulators.
Collapse
Affiliation(s)
- Eleftherios A Makris
- 1 Department of Biomedical Engineering, University of California Davis , Davis, California
| | | | | | | | | |
Collapse
|
30
|
Nicolas J, Hendriksen PJM, de Haan LHJ, Koning R, Rietjens IMCM, Bovee TFH. In vitro detection of cardiotoxins or neurotoxins affecting ion channels or pumps using beating cardiomyocytes as alternative for animal testing. Toxicol In Vitro 2014; 29:281-8. [PMID: 25479353 DOI: 10.1016/j.tiv.2014.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 11/06/2014] [Accepted: 11/24/2014] [Indexed: 12/19/2022]
Abstract
The present study investigated if and to what extent murine stem cell-derived beating cardiomyocytes within embryoid bodies can be used as a broad screening in vitro assay for neurotoxicity testing, replacing for example in vivo tests for marine neurotoxins. Effect of nine model compounds, acting on either the Na(+), K(+), or Ca(2+) channels or the Na(+)/K(+) ATP-ase pump, on the beating was assessed. Diphenhydramine, veratridine, isradipine, verapamil and ouabain induced specific beating arrests that were reversible and none of the concentrations tested induced cytotoxicity. Three K(+) channel blockers, amiodarone, clofilium and sematilide, and the Na(+)/K(+) ATPase pump inhibitor digoxin had no specific effect on the beating. In addition, two marine neurotoxins i.e. saxitoxin and tetrodotoxin elicited specific beating arrests in cardiomyocytes. Comparison of the results obtained with cardiomyocytes to those obtained with the neuroblastoma neuro-2a assay revealed that the cardiomyocytes were generally somewhat more sensitive for the model compounds affecting Na(+) and Ca(2+) channels, but less sensitive for the compounds affecting K(+) channels. The stem cell-derived cardiomyocytes were not as sensitive as the neuroblastoma neuro-2a assay for saxitoxin and tetrodotoxin. It is concluded that the murine stem cell-derived beating cardiomyocytes provide a sensitive model for detection of specific neurotoxins and that the neuroblastoma neuro-2a assay may be a more promising cell-based assay for the screening of marine biotoxins.
Collapse
Affiliation(s)
- Jonathan Nicolas
- Division of Toxicology, Wageningen University, The Netherlands; RIKILT - Institute of Food Safety, Wageningen University and Research Centre, Akkermaalsbos 2, 6708 WB Wageningen, The Netherlands.
| | - Peter J M Hendriksen
- RIKILT - Institute of Food Safety, Wageningen University and Research Centre, Akkermaalsbos 2, 6708 WB Wageningen, The Netherlands
| | | | - Rosella Koning
- Division of Toxicology, Wageningen University, The Netherlands
| | | | - Toine F H Bovee
- RIKILT - Institute of Food Safety, Wageningen University and Research Centre, Akkermaalsbos 2, 6708 WB Wageningen, The Netherlands
| |
Collapse
|
31
|
Nicolas J, Hendriksen PJM, van Kleef RGDM, de Groot A, Bovee TFH, Rietjens IMCM, Westerink RHS. Detection of marine neurotoxins in food safety testing using a multielectrode array. Mol Nutr Food Res 2014; 58:2369-78. [DOI: 10.1002/mnfr.201400479] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/18/2014] [Accepted: 09/24/2014] [Indexed: 12/20/2022]
Affiliation(s)
- Jonathan Nicolas
- Division of Toxicology; Wageningen University; Wageningen The Netherlands
- RIKILT; Institute of Food Safety; Wageningen The Netherlands
| | | | - Regina G. D. M. van Kleef
- Neurotoxicology Research Group; Division of Toxicology; Institute for Risk Assessment Sciences (IRAS); Faculty of Veterinary Medicine; Utrecht University; Utrecht The Netherlands
| | - Aart de Groot
- Neurotoxicology Research Group; Division of Toxicology; Institute for Risk Assessment Sciences (IRAS); Faculty of Veterinary Medicine; Utrecht University; Utrecht The Netherlands
| | | | | | - Remco H. S. Westerink
- Neurotoxicology Research Group; Division of Toxicology; Institute for Risk Assessment Sciences (IRAS); Faculty of Veterinary Medicine; Utrecht University; Utrecht The Netherlands
| |
Collapse
|
32
|
Abstract
An increasing body of clinical observations and experimental evidence suggests that cardiac dysfunction results from autonomic dysregulation of the contractile output of the heart. Excessive activation of the sympathetic nervous system and a decrease in parasympathetic tone are associated with increased mortality. Elevated levels of circulating catecholamines closely correlate with the severity and poor prognosis in heart failure. Sympathetic over-stimulation causes increased levels of catecholamines, which induce excessive aerobic metabolism leading to excessive cardiac oxygen consumption. Resulting impaired mitochondrial function causes acidosis, which results in reduction in blood flow by impairment of contractility. To the extent that the excessive aerobic metabolism resulting from adrenergic stimulation comes to a halt the energy deficit has to be compensated for by anaerobic metabolism. Glucose and glycogen become the essential nutrients. Beta-adrenergic blockade is used successfully to decrease hyperadrenergic drive. Neurohumoral antagonists block adrenergic over-stimulation but do not provide the heart with fuel for compensatory anaerobic metabolism. The endogenous hormone ouabain reduces catecholamine levels in healthy volunteers, promotes the secretion of insulin, induces release of acetylcholine from synaptosomes and potentiates the stimulation of glucose metabolism by insulin and acetylcholine. Ouabain stimulates glycogen synthesis and increases lactate utilisation by the myocardium. Decades of clinical experience with ouabain confirm the cardioprotective effects of this endogenous hormone. The so far neglected sympatholytic and vagotonic effects of ouabain on myocardial metabolism clearly make a clinical re-evaluation of this endogenous hormone necessary. Clinical studies with ouabain that correspond to current standards are warranted.
Collapse
|