1
|
Abd-Elhakim YM, Abdel-Motal SM, Malhat SM, Mostafa HI, Ibrahim WM, Beheiry RR, Moselhy AAA, Said EN. Curcumin attenuates gentamicin and sodium salicylate ototoxic effects by modulating the nuclear factor-kappaB and apoptotic pathways in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:89954-89968. [PMID: 35859240 PMCID: PMC9722864 DOI: 10.1007/s11356-022-21932-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 07/05/2022] [Indexed: 05/24/2023]
Abstract
This study aimed to investigate the effectiveness of curcumin (CCM) against gentamicin (GEN) and sodium salicylates (NaS)-induced ototoxic effects in rats. For 15 consecutive days, seven rat groups were given 1 mL/rat physiological saline orally, 1 mL/rat olive oil orally, 50 mg/kg bwt CCM orally, 120 mg/kg bwt GEN intraperitoneally, 300 mg/kg bwt NaS intraperitoneally, CCM+GEN, or CCM+NaS. The distortion product otoacoustic emission measurements were conducted. The rats' hearing function and balance have been behaviorally assessed using auditory startle response, Preyer reflex, and beam balance scale tests. The serum lipid peroxidation and oxidative stress biomarkers have been measured. Immunohistochemical investigations of the apoptotic marker caspase-3 and the inflammatory indicator nuclear factor kappa (NF-κB) in cochlear tissues were conducted. GEN and NaS exposure resulted in deficit hearing and impaired ability to retain balance. GEN and NaS exposure significantly decreased the reduced glutathione level and catalase activity but increased malondialdehyde content. GEN and NaS exposure evoked pathological alterations in cochlear and vestibular tissues and increased caspase-3 and NF-κB immunoexpression. CCM significantly counteracted the GEN and NaS injurious effects. These outcomes concluded that CCM could be a naturally efficient therapeutic agent against GEN and NaS-associated ototoxic side effects.
Collapse
Affiliation(s)
- Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
| | - Sabry M Abdel-Motal
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Seham M Malhat
- Department of Pharmacology, Animal health research institute, Zagazig, Egypt
| | - Hend I Mostafa
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Walied M Ibrahim
- Audiology unit, Otorhinolaryngology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Rasha R Beheiry
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Attia A A Moselhy
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Enas N Said
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
2
|
Kilic K, Sakat MS, Sahin A, Yildirim S, Dortbudak MB. The effectiveness of berberine on noise-induced hearing loss: a rat model. Rev Assoc Med Bras (1992) 2022; 68:1330-1336. [PMID: 36228267 PMCID: PMC9575033 DOI: 10.1590/1806-9282.20220758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/04/2022] [Indexed: 11/07/2022] Open
Abstract
OBJECTIVE: Noise-induced hearing loss is a preventable form of hearing loss that has serious social and economic impacts. This study aimed to investigate the protective effect of berberine, a potent antioxidant and anti-inflammatory agent, against Noise-induced hearing loss. METHODS: After applying distortion product otoacoustic emission, 28 female Sprague-Dawley rats were randomly divided into four groups. Group 1 was designated as acoustic trauma group, and rats in this group were exposed to white noise for 12 h at an intensity of 4 kHz 110 dB sound pressure level. Group 2 was the control group. Group 3 was designated as the berberine group, and 100 mg/kg of berberine was administered to rats in this group by intragastric lavage for five consecutive days. Group 4 was designated as the acoustic trauma+berberine group. distortion product otoacoustic emission was repeated on the 6th day of the study and cochlear tissues of rats were dissected for histopathological and immunohistochemical analyses after sacrificing rats. RESULTS: The distortion product otoacoustic emission results showed a significant decrease in signal-noise ratio values at higher frequencies in rats of the trauma group compared to those in other groups. Acoustic trauma caused severe histopathological impairment at cochlear structures together with severe 8-hydroxy-2-deoxyguanosine expression. Rats in the acoustic trauma+berberine group showed mild histopathological changes with mild 8-hydroxy-2-deoxyguanosine expression and better signal-noise ratio values. CONCLUSION: The histopathological and audiological findings of this experimental study showed that berberine provides protection in Noise-induced hearing loss and may have the potential for use in acoustic trauma-related hearing losses.
Collapse
Affiliation(s)
- Korhan Kilic
- Ataturk University, Faculty of Medicine, Department of Otorhinolaryngology – Erzurum, Turkey.,Corresponding author:
| | - Muhammed Sedat Sakat
- Ataturk University, Faculty of Medicine, Department of Otorhinolaryngology – Erzurum, Turkey
| | - Abdulkadir Sahin
- Ataturk University, Faculty of Medicine, Department of Otorhinolaryngology – Erzurum, Turkey
| | - Serkan Yildirim
- Ataturk University, Faculty of Veterinary, Department of Pathology – Erzurum, Turkey
| | | |
Collapse
|
3
|
Maratha S, Sharma V, Walia V. Antidepressant Like Effect of Ascorbic Acid in Mice: Possible Involvement of NO-sGC-cGMP Signaling. Neurochem Res 2021; 47:967-978. [PMID: 34825298 DOI: 10.1007/s11064-021-03496-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 10/19/2022]
Abstract
The present study was designed to determine the antidepressant like activity of ascorbic acid (AA) in mice. Further the influence of NO-sGC-cGMP signaling in the antidepressant like effect of AA in mice was determined. Male swiss albino mice were used in the present study. Mice in the control group received saline and fluoxetine (10 mg/kg, i.p.) was used as the standard antidepressant drug. AA (50, 100 and 150 mg/kg, i.p.) was administered to the mice and depression related behavior were determined using tail suspension test (TST) and forced swim test (FST). Further the whole brain nitrite and serotonin levels were also determined. It was observed that the administration of AA (100 mg/kg, i.p.) reversed the depression like behavior in mice in TST and FST. AA (100 mg/kg, i.p.) treatment decreased the level of nitrite and increased the level of serotonin in the brain of mice significantly as compared to control. Further the behavioral and neurochemical effect of AA (50 mg/kg, i.p) was studied in NO modulator [NO donor: L-Arginine (50 mg/kg, i.p); NO-sGC inhibitor: methylene blue (1 mg/kg, i.p.) and cGMP modulator: sildenafil (1 mg/kg, i.p.)] pretreated mice. It was observed that the pretreatment of NO donor and cGMP modulator counteracted the effect conferred by AA (50 mg/kg, i.p). While the pretreatment of NO-sGC inhibitor potentiated the effect conferred by AA (50 mg/kg, i.p). The present study suggested that the AA confer antidepressant like effect in mice and NO-sGC-cGMP signaling pathway influence the antidepressant like effect of AA in mice.
Collapse
Affiliation(s)
- Sushma Maratha
- SGT College of Pharmacy, SGT University, Gurugram, India
| | - Vijay Sharma
- SGT College of Pharmacy, SGT University, Gurugram, India
| | - Vaibhav Walia
- SGT College of Pharmacy, SGT University, Gurugram, India.
| |
Collapse
|
4
|
Varela-Nieto I, Murillo-Cuesta S, Calvino M, Cediel R, Lassaletta L. Drug development for noise-induced hearing loss. Expert Opin Drug Discov 2020; 15:1457-1471. [PMID: 32838572 DOI: 10.1080/17460441.2020.1806232] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Excessive exposure to noise is a common occurrence that contributes to approximately 50% of the non-genetic hearing loss cases. Researchers need to develop standardized preclinical models and identify molecular targets to effectively develop prevention and curative therapies. AREAS COVERED In this review, the authors discuss the many facets of human noise-induced pathology, and the primary experimental models for studying the basic mechanisms of noise-induced damage, making connections and inferences among basic science studies, preclinical proofs of concept and clinical trials. EXPERT OPINION Whilst experimental research in animal models has helped to unravel the mechanisms of noise-induced hearing loss, there are often methodological variations and conflicting results between animal and human studies which make it difficult to integrate data and translate basic outcomes to clinical practice. Standardization of exposure paradigms and application of -omic technologies will contribute to improving the effectiveness of transferring newly gained knowledge to clinical practice.
Collapse
Affiliation(s)
- Isabel Varela-Nieto
- Neurobiology of Hearing Research Group, Endocrine and Nervous System Pathophysiology Department, Institute for Biomedical Research "Alberto Sols" CSIC-UAM , Madrid, Spain.,Institute for Biomedical Research "Alberto Sols" CSIC-UAM , Madrid, Spain.,Oto-Neurosurgery Research Group, Cancer and Human Molecular Genetics Department, IdiPAZ Research Institute , Madrid, Spain
| | - Silvia Murillo-Cuesta
- Neurobiology of Hearing Research Group, Endocrine and Nervous System Pathophysiology Department, Institute for Biomedical Research "Alberto Sols" CSIC-UAM , Madrid, Spain.,Institute for Biomedical Research "Alberto Sols" CSIC-UAM , Madrid, Spain.,Oto-Neurosurgery Research Group, Cancer and Human Molecular Genetics Department, IdiPAZ Research Institute , Madrid, Spain
| | - Miryam Calvino
- Institute for Biomedical Research "Alberto Sols" CSIC-UAM , Madrid, Spain.,Oto-Neurosurgery Research Group, Cancer and Human Molecular Genetics Department, IdiPAZ Research Institute , Madrid, Spain.,Department of Otorhinolaryngology, La Paz University Hospital , Madrid, Spain
| | - Rafael Cediel
- Neurobiology of Hearing Research Group, Endocrine and Nervous System Pathophysiology Department, Institute for Biomedical Research "Alberto Sols" CSIC-UAM , Madrid, Spain.,Institute for Biomedical Research "Alberto Sols" CSIC-UAM , Madrid, Spain.,Oto-Neurosurgery Research Group, Cancer and Human Molecular Genetics Department, IdiPAZ Research Institute , Madrid, Spain.,Department of Animal Medicine and Surgery, Complutense University of Madrid , Madrid, Spain
| | - Luis Lassaletta
- Institute for Biomedical Research "Alberto Sols" CSIC-UAM , Madrid, Spain.,Oto-Neurosurgery Research Group, Cancer and Human Molecular Genetics Department, IdiPAZ Research Institute , Madrid, Spain.,Department of Otorhinolaryngology, La Paz University Hospital , Madrid, Spain
| |
Collapse
|
5
|
Visser EJ, Drummond PD, Lee-Visser JLA. Reduction in Migraine and Headache Frequency and Intensity With Combined Antioxidant Prophylaxis (N-acetylcysteine, Vitamin E, and Vitamin C): A Randomized Sham-Controlled Pilot Study. Pain Pract 2020; 20:737-747. [PMID: 32306462 DOI: 10.1111/papr.12902] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/02/2020] [Accepted: 04/14/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To investigate the preventive effects of a combined antioxidant drug (N-acetylcysteine, vitamin E, and vitamin C [NEC]) on migraine outcomes. Migraine is characterized by increased oxidative stress and neurogenic inflammation in the brain; therefore, antioxidants may have a migraine preventive effect. DESIGN Randomized, double-blind, sham-controlled pilot study. SETTING Australian community. SUBJECTS Adults reporting 2 to 8 migraines per month for at least a year. METHODS After a 1-month baseline period, 35 subjects completed 3 months of treatment with NEC (n = 19) or sham (n = 16) capsules. The primary outcome was the difference in mean number of headaches per month between baseline and final month of the trial for NEC and sham groups; secondary outcomes are listed below. RESULTS For NEC there was a significant decrease in mean number of headaches by 3.0 per month (P = 0.004) compared with 1.4 for sham (P = 0.073); there was no significant difference in these changes between the 2 groups (P = 0.052). Average monthly headache (P = 0.041) and migraine frequency (P = 0.018) were significantly less for NEC vs. sham. In NEC subjects, there was a significant decrease in average monthly migraine days (-3.1), moderate/severe headache days (-3.2), migraine duration, headache pain scores, and acute headache medication use. CONCLUSIONS This is the first randomized controlled trial to find that combined antioxidant therapy with NEC reduces headaches and migraines in adult migraineurs. Given the limitations of this pilot study, an adequately powered randomized controlled trial is planned to further investigate antioxidant prophylaxis in migraine.
Collapse
Affiliation(s)
- Eric John Visser
- School of Medicine, University of Notre Dame Australia, Fremantle, Western Australia, Australia
| | | | - Julia L A Lee-Visser
- School of Medicine, University of Notre Dame Australia, Fremantle, Western Australia, Australia
| |
Collapse
|
6
|
Prasad KN, Bondy SC. Increased oxidative stress, inflammation, and glutamate: Potential preventive and therapeutic targets for hearing disorders. Mech Ageing Dev 2019; 185:111191. [PMID: 31765645 DOI: 10.1016/j.mad.2019.111191] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/30/2019] [Accepted: 11/20/2019] [Indexed: 12/17/2022]
Abstract
Hearing disorders constitute one of the major health concerns in the USA. Decades of basic and clinical studies have identified numerous ototoxic agents and investigated their modes of action on the inner ear, utilizing tissue culture as well as animal and human models. Current preventive and therapeutic approaches are considered unsatisfactory. Therefore, additional modalities should be developed. Many studies suggest that increased levels of oxidative stress, chronic inflammation, and glutamate play an important role in the initiation and progression of damage to the inner ear leading to hearing impairments. To prevent these cellular deficits, antioxidants, anti-inflammatory agents, and antagonists of glutamate receptor have been used individually or in combination with limited success. It is essential, therefore, to simultaneously enhance the levels of antioxidant enzymes by activating the Nrf2 (a nuclear transcriptional factor) pathway, dietary and endogenous antioxidant compounds, and B12-vitamins in order to reduce the levels of oxidative stress, chronic inflammation, and glutamate at the same time. This review presents evidence to show that increased levels of these cellular metabolites, biochemical or factors are involved in the pathogenesis of cochlea leading to hearing impairments. It presents scientific rationale for the use of a mixture of micronutrients that may decrease the levels of oxidative damage, chronic inflammation, and glutamate at the same time. The benefits for using oral administration of proposed micronutrient mixture in humans are presented. Animal and limited human studies indirectly suggest that orally administered micronutrients can accumulate in the inner ear. Therefore, this route of administration may be useful in prevention, and in combination with standard care, in improved management of hearing problems following exposure to well-recognized and studied ototoxic agents, such as noise, cisplatin, aminoglycoside antibiotics, and advanced age.
Collapse
Affiliation(s)
- Kadar N Prasad
- Engage Global, 245 El Faisan Drive, San Rafael, CA, 94903, United States.
| | - Stephen C Bondy
- Center for Occupational and Environmental Health, Department of Medicine, University of California, Irvine, CA, 92697-1830, United States
| |
Collapse
|
7
|
Le Prell CG, Hammill TL, Murphy WJ. Noise-induced hearing loss and its prevention: Integration of data from animal models and human clinical trials. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 146:4051. [PMID: 31795668 PMCID: PMC7195863 DOI: 10.1121/1.5132951] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 10/19/2019] [Indexed: 05/07/2023]
Abstract
Animal models have been used to gain insight into the risk of noise-induced hearing loss (NIHL) and its potential prevention using investigational new drug agents. A number of compounds have yielded benefit in pre-clinical (animal) models. However, the acute traumatic injury models commonly used in pre-clinical testing are fundamentally different from the chronic and repeated exposures experienced by many human populations. Diverse populations that are potentially at risk and could be considered for enrollment in clinical studies include service members, workers exposed to occupational noise, musicians and other performing artists, and children and young adults exposed to non-occupational (including recreational) noise. Both animal models and clinical populations were discussed in this special issue, followed by discussion of individual variation in vulnerability to NIHL. In this final contribution, study design considerations for NIHL otoprotection in pre-clinical and clinical testing are integrated and broadly discussed with evidence-based guidance offered where possible, drawing on the contributions to this special issue as well as other existing literature. The overarching goals of this final paper are to (1) review and summarize key information across contributions and (2) synthesize information to facilitate successful translation of otoprotective drugs from animal models into human application.
Collapse
Affiliation(s)
- Colleen G Le Prell
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas 75080, USA
| | - Tanisha L Hammill
- Department of Defense, Defense Health Agency, Falls Church, Virginia 22042, USA
| | - William J Murphy
- Division of Field Studies and Engineering, National Institute for Occupational Safety and Health, Cincinanati, Ohio 45226-1998, USA
| |
Collapse
|
8
|
Heinrich UR, Schmidtmann I, Meuser R, Ernst BP, Wünsch D, Siemer S, Gribko A, Stauber RH, Strieth S. Early Alterations of Endothelial Nitric Oxide Synthase Expression Patterns in the Guinea Pig Cochlea After Noise Exposure. J Histochem Cytochem 2019; 67:845-855. [PMID: 31510846 DOI: 10.1369/0022155419876644] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Constitutively expressed endothelial nitric oxide synthase (eNOS) is supposed to play a role in noise-induced nitric oxide (NO)-production. It is commonly known that intense noise exposure results in inducible NOS (iNOS) expression and increased NO-production, but knowledge about a contribution of the eNOS isoform is still lacking. Effects of noise exposure on eNOS immunolabeling were determined in male guinea pigs (n=24). For light microscopic analysis, 11 animals were exposed to 90 dB for 1 hr and 6 animals were used as controls. After exposure, eNOS immunostaining was performed on paraffin sections, and the staining intensities were quantified for 4 cochlear regions. For electron microscopic analysis, 2 animals were exposed for 2 hr to 90 dB and 5 animals were used as controls. The intensity of eNOS immunolabeling was found to be already comprehensively increased 1 hr after noise exposure to 90 dB. At the ultrastructural level, a clear increase in eNOS immunolabeling was found in microtubules-rich areas of cochlear cuticular structures. Hence, our findings indicate that the reticular lamina forming the endolymph-perilymph barrier at the apical side of the organ of Corti is involved in a fast intrinsic otoprotective mechanism of the cochlea.
Collapse
Affiliation(s)
- Ulf R Heinrich
- Department of Otorhinolaryngology, University Medical Center Mainz, Mainz, Germany
| | - Irene Schmidtmann
- Institute for Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center Mainz, Mainz, Germany
| | - Regina Meuser
- Institute for Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center Mainz, Mainz, Germany
| | - Benjamin P Ernst
- Department of Otorhinolaryngology, University Medical Center Mainz, Mainz, Germany
| | - Desiree Wünsch
- Department of Otorhinolaryngology, University Medical Center Mainz, Mainz, Germany
| | - Svenja Siemer
- Department of Otorhinolaryngology, University Medical Center Mainz, Mainz, Germany
| | - Alena Gribko
- Department of Otorhinolaryngology, University Medical Center Mainz, Mainz, Germany
| | - Roland H Stauber
- Department of Otorhinolaryngology, University Medical Center Mainz, Mainz, Germany
| | - Sebastian Strieth
- Department of Otorhinolaryngology, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
9
|
Fujimoto C, Yamasoba T. Mitochondria-Targeted Antioxidants for Treatment of Hearing Loss: A Systematic Review. Antioxidants (Basel) 2019; 8:E109. [PMID: 31022870 PMCID: PMC6523236 DOI: 10.3390/antiox8040109] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 01/22/2023] Open
Abstract
Mitochondrial dysfunction is associated with the etiologies of sensorineural hearing loss, such as age-related hearing loss, noise- and ototoxic drug-induced hearing loss, as well as hearing loss due to mitochondrial gene mutation. Mitochondria are the main sources of reactive oxygen species (ROS) and ROS-induced oxidative stress is involved in cochlear damage. Moreover, the release of ROS causes further damage to mitochondrial components. Antioxidants are thought to counteract the deleterious effects of ROS and thus, may be effective for the treatment of oxidative stress-related diseases. The administration of mitochondria-targeted antioxidants is one of the drug delivery systems targeted to mitochondria. Mitochondria-targeted antioxidants are expected to help in the prevention and/or treatment of diseases associated with mitochondrial dysfunction. Of the various mitochondria-targeted antioxidants, the protective effects of MitoQ and SkQR1 against ototoxicity have been previously evaluated in animal models and/or mouse auditory cell lines. MitoQ protects against both gentamicin- and cisplatin-induced ototoxicity. SkQR1 also provides auditory protective effects against gentamicin-induced ototoxicity. On the other hand, decreasing effect of MitoQ on gentamicin-induced cell apoptosis in auditory cell lines has been controversial. No clinical studies have been reported for otoprotection using mitochondrial-targeted antioxidants. High-quality clinical trials are required to reveal the therapeutic effect of mitochondria-targeted antioxidants in terms of otoprotection in patients.
Collapse
Affiliation(s)
- Chisato Fujimoto
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
- Department of Otolaryngology, Tokyo Teishin Hospital, 2-14-23, Fujimi, Chiyoda-ku, Tokyo 102-8798, Japan.
| | - Tatsuya Yamasoba
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| |
Collapse
|
10
|
Walia V, Garg C, Garg M. Nitrergic signaling modulation by ascorbic acid treatment is responsible for anxiolysis in mouse model of anxiety. Behav Brain Res 2019; 364:85-98. [PMID: 30738102 DOI: 10.1016/j.bbr.2019.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/16/2019] [Accepted: 02/04/2019] [Indexed: 10/27/2022]
Abstract
The present study was designed to investigate the effect of ascorbic acid (AA) treatment on the anxiety related behavioral and neurochemical alterations. AA (50, 100 and 200 mg/kg, i.p.) was administered to the mice and anxiety related behavior and levels of glutamate and nitrite in the brain of mice were determined. The results obtained revealed that the administration of AA (100 mg/kg, i.p.) significantly reduced the anxiety related behavior and the levels of nitrite in the brain of mice. Nitrergic interactions were further determined by the pretreatment of mice with nitric oxide (NO) modulator and AA treatment followed by behavioral and neurochemical measurements. The results obtained suggested that NO inhibition potentiated the anxiolytic like activity of AA in mice. It was also observed that the glutamate and nitrite level in the brain of mice were significantly reduced by the NO inhibitor pretreatment. Thus, the present study demonstrated the possible nitrergic pathways modulation in the anxiolytic like activity of AA in mice.
Collapse
Affiliation(s)
- Vaibhav Walia
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak-124001, Haryana, India.
| | - Chanchal Garg
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak-124001, Haryana, India.
| | - Munish Garg
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak-124001, Haryana, India.
| |
Collapse
|
11
|
Şahin MM, Uğur MB, Karamert R, Aytekin S, Kabiş B, Düzlü M, Seymen C, Elmas Ç, Gökdoğan Ç, Ünlü S. Evaluation of Effect of Garlic Aged Extracts and Vitamin B12 on Noise-Induced Hearing Loss. Noise Health 2018; 20:232-239. [PMID: 31823910 PMCID: PMC6924192 DOI: 10.4103/nah.nah_33_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVE This study investigated effects of S-allylmercaptocysteine (SAMC), diallyl disulfide (DADS), and vitamin B12 on inner ear functions and morphology after long-period high-level broadband noise exposure. MATERIALS AND METHODS Twenty-four healthy rats were randomly divided into four groups. First group was chosen as the control group. Vitamin B12, SAMC, and DADS were applied to other groups for 4 weeks. On the 14th day, each group was exposed to broadband noise. Auditory brainstem response test was performed before and immediately after noise exposure and repeated on the 2nd and 14th day. RESULTS Permanent threshold shifts were significantly lower in groups treated with vitamin B12, SAMC, and DADS. Histologically, cochleae of SAMC and DADS groups were found to be better preserved than the cochleae of vitamin B12 and control groups. CONCLUSION Physiologically and histologically, SAMC and DADS reduced the long-term effects of noise. However, physiological recovery was not consistent with the morphological findings in vitamin B12 group.
Collapse
Affiliation(s)
- Muammer M. Şahin
- Department of Otorhinolaryngology, Head and Neck Surgery, Ankara Numune Hospital, Ankara, Turkey
| | - Mehmet B. Uğur
- Department of Otorhinolaryngology, Head and Neck Surgery, Ankara Gazi University Hospital, Ankara, Turkey
| | - Recep Karamert
- Department of Otorhinolaryngology, Head and Neck Surgery, Ankara Gazi University Hospital, Ankara, Turkey
| | - Sinem Aytekin
- Department of Pathology, Ankara Gazi University Hospital, Ankara, Turkey
| | - Burak Kabiş
- Department of Audiology, Ankara Gazi University Hospital, Ankara, Turkey
| | - Mehmet Düzlü
- Department of Otorhinolaryngology, Head and Neck Surgery, Ankara Gazi University Hospital, Ankara, Turkey
| | - Cemile Seymen
- Department of Histology and Embryology, Ankara Gazi University Hospital, Ankara, Turkey
| | - Çiğdem Elmas
- Department of Histology and Embryology, Ankara Gazi University Hospital, Ankara, Turkey
| | - Çağıl Gökdoğan
- Department of Audiology, Ankara Gazi University Hospital, Ankara, Turkey
| | - Serkan Ünlü
- Pharmacology Department, Ankara Gazi University Institute of Health Sciences, Ankara, Turkey
| |
Collapse
|
12
|
Kim WY, Jo EJ, Eom JS, Mok J, Kim MH, Kim KU, Park HK, Lee MK, Lee K. Combined vitamin C, hydrocortisone, and thiamine therapy for patients with severe pneumonia who were admitted to the intensive care unit: Propensity score-based analysis of a before-after cohort study. J Crit Care 2018; 47:211-218. [PMID: 30029205 DOI: 10.1016/j.jcrc.2018.07.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/28/2018] [Accepted: 07/03/2018] [Indexed: 11/19/2022]
Abstract
PURPOSE To evaluate the efficacy of combined vitamin C, hydrocortisone, and thiamine in patients with severe pneumonia. MATERIALS AND METHODS All consecutive patients with severe pneumonia who were treated with the vitamin C protocol (6 g of vitamin C per day) in June 2017-January 2018 (n = 53) were compared to all consecutive patients with severe pneumonia who were treated in June 2016-January 2017 (n = 46). Propensity score analysis was used to adjust for potential baseline differences between the groups. RESULTS In the propensity-matched cohort (n = 36/group), the treated patients had significantly less hospital mortality than the control group (17% vs. 39%; P = 0.04). The vitamin C protocol associated independently with decreased mortality in propensity score-adjusted analysis (adjusted odds ratio = 0.15, 95% confidence interval = 0.04-0.56, P = 0.005). Relative to the control group, the treatment group had a significantly higher median improvement in the radiologic score at day 7 compared with baseline (4 vs. 2; P = 0.045). The vitamin C protocol did not increase the rates of acute kidney injury or superinfection. CONCLUSIONS Combined vitamin C, hydrocortisone, and thiamine therapy may benefit patients with severe pneumonia.
Collapse
Affiliation(s)
- Won-Young Kim
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Pusan National University School of Medicine, 179 Gudeok-ro, Seo-gu, Busan 49241, Republic of Korea; Biomedical Research Institute, Pusan National University Hospital, 179 Gudeok-ro, Seo-gu, Busan 49241, Republic of Korea.
| | - Eun-Jung Jo
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Pusan National University School of Medicine, 179 Gudeok-ro, Seo-gu, Busan 49241, Republic of Korea.
| | - Jung Seop Eom
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Pusan National University School of Medicine, 179 Gudeok-ro, Seo-gu, Busan 49241, Republic of Korea.
| | - Jeongha Mok
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Pusan National University School of Medicine, 179 Gudeok-ro, Seo-gu, Busan 49241, Republic of Korea.
| | - Mi-Hyun Kim
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Pusan National University School of Medicine, 179 Gudeok-ro, Seo-gu, Busan 49241, Republic of Korea.
| | - Ki Uk Kim
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Pusan National University School of Medicine, 179 Gudeok-ro, Seo-gu, Busan 49241, Republic of Korea.
| | - Hye-Kyung Park
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Pusan National University School of Medicine, 179 Gudeok-ro, Seo-gu, Busan 49241, Republic of Korea.
| | - Min Ki Lee
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Pusan National University School of Medicine, 179 Gudeok-ro, Seo-gu, Busan 49241, Republic of Korea.
| | - Kwangha Lee
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Internal Medicine, Pusan National University School of Medicine, 179 Gudeok-ro, Seo-gu, Busan 49241, Republic of Korea; Biomedical Research Institute, Pusan National University Hospital, 179 Gudeok-ro, Seo-gu, Busan 49241, Republic of Korea.
| |
Collapse
|
13
|
Golbidi S, Li H, Laher I. Oxidative Stress: A Unifying Mechanism for Cell Damage Induced by Noise, (Water-Pipe) Smoking, and Emotional Stress-Therapeutic Strategies Targeting Redox Imbalance. Antioxid Redox Signal 2018; 28:741-759. [PMID: 29212347 DOI: 10.1089/ars.2017.7257] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE Modern technologies have eased our lives but these conveniences can impact our lifestyles in destructive ways. Noise pollution, mental stresses, and smoking (as a stress-relieving solution) are some environmental hazards that affect our well-being and healthcare budgets. Scrutinizing their pathophysiology could lead to solutions to reduce their harmful effects. Recent Advances: Oxidative stress plays an important role in initiating local and systemic inflammation after noise pollution, mental stress, and smoking. Lipid peroxidation and release of lysolipid by-products, disturbance in activation and function of nuclear factor erythroid 2-related factor 2 (Nrf2), induction of stress hormones and their secondary effects on intracellular kinases, and dysregulation of intracellular Ca2+ can all potentially trigger other vicious cycles. Recent clinical data suggest that boosting the antioxidant system through nonpharmacological measures, for example, lifestyle changes that include exercise have benefits that cannot easily be achieved with pharmacological interventions alone. CRITICAL ISSUES Indiscriminate manipulation of the cellular redox network could lead to a new series of ailments. An ideal approach requires meticulous scrutiny of redox balance mechanisms for individual pathologies so as to create new treatment strategies that target key pathways while minimizing side effects. FUTURE DIRECTIONS Extrapolating our understanding of redox balance to other debilitating conditions such as diabetes and the metabolic syndrome could potentially lead to devising a unifying therapeutic strategy. Antioxid. Redox Signal. 28, 741-759.
Collapse
Affiliation(s)
- Saeid Golbidi
- 1 Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia , Vancouver, Canada
| | - Huige Li
- 2 Department of Pharmacology, Johannes Gutenberg University Medical Center , Mainz, Germany
| | - Ismail Laher
- 1 Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia , Vancouver, Canada
| |
Collapse
|
14
|
Dey S, Bishayi B. Killing of S. aureus in murine peritoneal macrophages by Ascorbic acid along with antibiotics Chloramphenicol or Ofloxacin: Correlation with inflammation. Microb Pathog 2018; 115:239-250. [DOI: 10.1016/j.micpath.2017.12.048] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/02/2017] [Accepted: 12/18/2017] [Indexed: 01/05/2023]
|
15
|
Bodmer D. An update on drug design strategies to prevent acquired sensorineural hearing loss. Expert Opin Drug Discov 2017; 12:1161-1167. [PMID: 28838250 DOI: 10.1080/17460441.2017.1372744] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Acute sensorineural hearing loss is a dramatic event for the patient. Different pathologies might result in acute sensorineural hearing loss, such as sudden hearing loss, exposure to medications/drugs or loud sound. Current therapeutic approaches include steroids and hyperbaric oxygen in addition to other methods. Research activities of the past have shed light on the molecular mechanisms involved in damage to hair cells, the synapses at the hair cell spiral ganglion junction and the stria vascularis. Molecular events and signaling pathways which underlie damage to these structures have been discovered. Areas covered: This paper summarizes current research efforts involved in investigating the molecular mechanisms involved in acute sensorineural hearing loss. Expert opinion: While progress has been made in unraveling basic mechanisms involved in acute sensorineural hearing loss, it is difficult to translate basic concepts to the clinic. There are often conflicting data in animal and human studies on the effect of a given intervention. There is also a lack of high quality clinical trials (double blind, placebo controlled and high powered). However, this author is confident that research efforts will pay out and that some of these efforts will translate into new therapeutic options for patients with acute hearing loss.
Collapse
Affiliation(s)
- Daniel Bodmer
- a Department of Biomedicine, Head and Neck Surgery , University of Basel Hospital , Basel , Switzerland.,b Department of Otolaryngology, Head and Neck Surgery , University of Basel Hospital , Basel , Switzerland
| |
Collapse
|
16
|
Soyalıç H, Gevrek F, Karaman S. Curcumin protects against acoustic trauma in the rat cochlea. Int J Pediatr Otorhinolaryngol 2017; 99:100-106. [PMID: 28688549 DOI: 10.1016/j.ijporl.2017.05.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/30/2017] [Accepted: 05/31/2017] [Indexed: 12/28/2022]
Abstract
OBJECTIVES In this study we evaluated the therapeutic utility of curcumin in a rodent model of acoustic trauma using histopathology, immunohistochemical, and distortion product otoacoustic emission (DPOAEs) measurements. METHODS 28 Wistar albino rats were included in the study and randomly assigned to 4 treatment groups. The first group (group 1) served as the control and was exposed to acoustic trauma alone. Group 2 was the curcumin group. Group 3 was the curcumin plus acoustic trauma group. Group 4 was the saline plus acoustic trauma group. Otoacoustic emission measurements were collected at the end of the experiment and all animals were sacrificed. Cochlea were collected and prepared for TUNEL (TdT-mediated deoxyuridinetriphosphate nick end-labelling) staining assay. RESULTS Group 3 maintained baseline DPOAEs values at 3000 Hz, 4000 Hz and 8000 Hz on the 3rd and 5th day of the experiment. DPOAEs results were correlated with the immunohistochemical and histopathological findings in all groups. In comparison to the histopathologic control group, Group 1 exhibited a statistically significant increase in apoptotic indices in the organ of Corti, inner hair cell, and outer hair cell areas (p < 0.05). Relative to the control group, rats in Group 3 showed little increase in inner hair cell and outer hair cell apoptotic indices. CONCLUSIONS Our results support the conclusion that curcumin may protect the cochlear tissues from acoustic trauma in rats. Curcumin injection prior to or after an acoustic trauma reduces cochlear hair cell damage and may protect against hearing loss.
Collapse
Affiliation(s)
- Harun Soyalıç
- Ahi Evran University, Training and Research Hospital Department of Otorhinolaryngology, Kırşehir, Turkey.
| | - Fikret Gevrek
- Gaziosmanpaşa University, Department of Histology and Embryology, Tokat, Turkey
| | - Serhat Karaman
- Gaziosmanpaşa University, Department of Emergency Medicine, Tokat, Turkey
| |
Collapse
|
17
|
Culhaoglu B, Erbek SS, Erbek S, Hizal E. Protective Effect of Nigella Sativa Oil on Acoustic Trauma Induced Hearing Loss in Rats. Audiol Res 2017; 7:181. [PMID: 28791082 PMCID: PMC5523001 DOI: 10.4081/audiores.2017.181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/20/2017] [Accepted: 06/24/2017] [Indexed: 01/04/2023] Open
Abstract
Acoustic trauma is a common reason for hearing loss. Different agents are used to prevent the harmful effect of acoustic trauma on hearing. The aim of this study was to evaluate the potential preventive effect of Nigella sativa (black cumin) oil in acoustic trauma. Our experimental study was conducted with 20 Sprague Downey female rats (mean age, 12 months; mean weight 250 g). All of the procedures were held under general anesthesia. Following otoscopic examinations, baseline-hearing thresholds were obtained using auditory brainstem responses (ABR). To create acoustic trauma, the rats were then exposed to white band noise of 4 kHz with an intensity level of 107 dB in a soundproof testing room. On Day 1 following acoustic trauma, hearing threshold measurements were repeated. The rats were divided into two groups as the study group (n: 10) and the controls (n: 10). 2 mL/kg/day of Nigella sativa oil was given to the rats in the study group orally. On Day 4 following acoustic trauma, ABR measurements were repeated again. There was no difference between the baseline hearing thresholds of the rats before acoustic trauma (P>0.005). After the acoustic trauma, hearing thresholds were increased and there was no significant statistically difference between the hearing thresholds of the study and control groups (P=0.979). At the 4th day following acoustic trauma, hearing thresholds of the rats in control group were found to be higher than those in the study group (P=0.03). Our results suggest that Nigella sativa oil has a protective effect against acoustic trauma in early period. This finding should be supported with additional experimental and clinical studies, especially to determine the optimal dose, duration and frequency of potential Nigella sativa oil therapy.
Collapse
Affiliation(s)
- Belde Culhaoglu
- Department of Otorhinolaryngology, Baskent University, Ankara, Turkey
| | - Selim S Erbek
- Department of Otorhinolaryngology, Baskent University, Ankara, Turkey
| | - Seyra Erbek
- Department of Otorhinolaryngology, Baskent University, Ankara, Turkey
| | - Evren Hizal
- Department of Otorhinolaryngology, Baskent University, Ankara, Turkey
| |
Collapse
|
18
|
di Giacomo V, Berardocco M, Gallorini M, Oliva F, Colosimo A, Cataldi A, Maffulli N, Berardi AC. Combined supplementation of ascorbic acid and thyroid hormone T 3 affects tenocyte proliferation. The effect of ascorbic acid in the production of nitric oxide. Muscles Ligaments Tendons J 2017; 7:11-18. [PMID: 28717606 DOI: 10.11138/mltj/2017.7.1.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Tissue engineering is now increasingly focusing on cell-based treatments as promising tools to improve tendon repair. However, many crucial aspects of tendon biology remain to be understood before adopting the best experimental approach for cell-tissue engineering. METHODS The role played by Ascorbic Acid (AA) alone and in combination with thyroid hormone T3 in the viability and proliferation of primary human tendon-derived cells was investigated. Human tenocyte viability was detected by Trypan blue exclusion test and cellular proliferation rate was evaluated by CFSE CellTrace™. In addition, the potential role of the AA in the production of Nitric Oxide (NO) was also examined. RESULTS In this in vitro model, an increase in tenocyte proliferation rate was observed as a consequence of progressively increased concentrations of AA (from 10 to 50 µg/ml). The addition of the T3 hormone to the culture further increased tenocyte proliferation rate. In detail, the most evident effect on cellular growth was achieved using the combined supplementation of 50 µg/ml AA and 10-7 M T3. CONCLUSION We showed that the highest concentration of AA (100 and 500 µg/ml) caused cytotoxicity to human tenocytes. Moreover, it was shown that AA reduces NO synthesis. These results show that AA is a cell proliferation inducer that triggers tenocyte growth, while it reduces NO synthesis.
Collapse
Affiliation(s)
| | - Martina Berardocco
- UOC of Immunohaematology and Transfusion Medicine, Laboratory of Stem Cells, Spirito Santo Hospital, Pescara, Italy
| | | | - Francesco Oliva
- Department of Orthopedics and Traumatology, University of Rome "Tor Vergata" School of Medicine, Rome, Italy
| | | | - Amelia Cataldi
- Department of Pharmacy, University G. d'Annunzio, Chieti, Italy
| | - Nicola Maffulli
- Head of Department of Orthopaedics and Traumatology, Azienda Ospedaliera San Giovanni di Dio e Ruggi d'Aragona, University of Salerno, Italy; Queen Mary University of London, Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Mile End Hospital, London, UK
| | - Anna C Berardi
- UOC of Immunohaematology and Transfusion Medicine, Laboratory of Stem Cells, Spirito Santo Hospital, Pescara, Italy
| |
Collapse
|
19
|
Kucinska-Lipka J, Gubanska I, Strankowski M, Cieśliński H, Filipowicz N, Janik H. Synthesis and characterization of cycloaliphatic hydrophilic polyurethanes, modified with l-ascorbic acid, as materials for soft tissue regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 75:671-681. [PMID: 28415514 DOI: 10.1016/j.msec.2017.02.052] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 11/26/2016] [Accepted: 02/14/2017] [Indexed: 12/11/2022]
Abstract
In this paper we described synthesis and characteristic of obtained hydrophilic polyurethanes (PURs) modified with ascorbic acid (commonly known as vitamin C). Such materials may find an application in the biomedical field, for example in the regenerative medicine of soft tissues, according to ascorbic acid wide influence on tissue regeneration Flora (2009), Szymańska-Pasternak et al. (2011), Taikarimi and Ibrahim (2011), Myrvik and Volk (1954), Li et al. (2001), Cursino et al. (2005) . Hydrophilic PURs were obtained with the use of amorphous α,ω-dihydroxy(ethylene-butylene adipate) (dHEBA) polyol, 1,4-butanediol (BDO) chain extender and aliphatic 4,4'-methylenebis(cyclohexyl isocyanate) (HMDI). HMDI was chosen as a nontoxic diisocyanate, suitable for biomedical PUR synthesis. Modification with l-ascorbic acid (AA) was performed to improve obtained PUR materials biocompatibility. Chemical structure of obtained PURs was provided and confirmed by Fourier transform infrared spectroscopy (FTIR) and Proton nuclear magnetic resonance spectroscopy (1HNMR). Differential scanning calorimetry (DSC) was used to indicate the influence of ascorbic acid modification on such parameters as glass transition temperature, melting temperature and melting enthalpies of obtained materials. To determine how these materials may potentially behave, after implementation in tissue, degradation behavior of obtained PURs in various chemical environments, which were represented by canola oil, saline solution, distilled water and phosphate buffered saline (PBS) was estimated. The influence of AA on hydrophilic-hydrophobic character of obtained PURs was established by contact angle study. This experiment revealed that ascorbic acid significantly improves hydrophilicity of obtained PUR materials and the same cause that they are more suitable candidates for biomedical applications. Good hemocompatibility characteristic of studied PUR materials was confirmed by the hemocompatibility test with human blood. Microbiological tests were carried out to indicate the microbiological sensitivity of obtained PURs. Results of performed studies showed that obtained AA-modified PUR materials may find an application in soft tissue regeneration.
Collapse
Affiliation(s)
- J Kucinska-Lipka
- Gdank University of Technology, Faculty of Chemistry, Department of Polymer Technology, Narutowicza St. 11/12, 80-233 Gdansk, Poland.
| | - I Gubanska
- Gdank University of Technology, Faculty of Chemistry, Department of Polymer Technology, Narutowicza St. 11/12, 80-233 Gdansk, Poland
| | - M Strankowski
- Gdank University of Technology, Faculty of Chemistry, Department of Polymer Technology, Narutowicza St. 11/12, 80-233 Gdansk, Poland
| | - H Cieśliński
- Gdansk University of Technology, Faculty of Chemistry, Department of Microbiology, Narutowicza St. 11/12, 80-233 Gdansk, Poland
| | - N Filipowicz
- Gdansk University of Technology, Faculty of Chemistry, Department of Microbiology, Narutowicza St. 11/12, 80-233 Gdansk, Poland
| | - H Janik
- Gdank University of Technology, Faculty of Chemistry, Department of Polymer Technology, Narutowicza St. 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
20
|
Sha SH, Schacht J. Emerging therapeutic interventions against noise-induced hearing loss. Expert Opin Investig Drugs 2016; 26:85-96. [PMID: 27918210 DOI: 10.1080/13543784.2017.1269171] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Noise-induced hearing loss (NIHL) due to industrial, military, and recreational noise exposure is a major, but also potentially preventable cause of acquired hearing loss. For the United States it is estimated that 26 million people (15% of the population) between the ages of 20 and 69 have a high-frequency NIHL at a detriment to the quality of life of the affected individuals and great economic cost to society. Areas covered: This review outlines the pathology and pathophysiology of hearing loss as seen in humans and animal models. Results from molecular studies are presented that have provided the basis for therapeutic strategies successfully applied to animals. Several compounds emerging from these studies (mostly antioxidants) are now being tested in field trials. Expert opinion: Although no clinically applicable intervention has been approved yet, recent trials are encouraging. In order to maximize protective therapies, future work needs to apply stringent criteria for noise exposure and outcome parameters. Attention needs to be paid not only to permanent NIHL due to death of sensory cells but also to temporary effects that may show delayed consequences. Existing results combined with the search for efficacious new therapies should establish a viable treatment within a decade.
Collapse
Affiliation(s)
- Su-Hua Sha
- a Department of Pathology and Laboratory Medicine , Medical University of South Carolina , Charleston , SC , USA
| | - Jochen Schacht
- b Kresge Hearing Research Institute , University of Michigan , Ann Arbor , MI , USA
| |
Collapse
|
21
|
Genetic Effects on Sensorineural Hearing Loss and Evidence-based Treatment for Sensorineural Hearing Loss. ACTA ACUST UNITED AC 2016; 30:179-88. [PMID: 26564418 DOI: 10.1016/s1001-9294(15)30044-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this article, the mechanism of inheritance behind inherited hearing loss and genetic susceptibility in noise-induced hearing loss are reviewed. Conventional treatments for sensorineural hearing loss (SNHL), i.e. hearing aid and cochlear implant, are effective for some cases, but not without limitations. For example, they provide little benefit for patients of profound SNHL or neural hearing loss, especially when the hearing loss is in poor dynamic range and with low frequency resolution. We emphasize the most recent evidence-based treatment in this field, which includes gene therapy and allotransplantation of stem cells. Their promising results have shown that they might be options of treatment for profound SNHL and neural hearing loss. Although some treatments are still at the experimental stage, it is helpful to be aware of the novel therapies and endeavour to explore the feasibility of their clinical application.
Collapse
|
22
|
Heinrich UR, Strieth S, Schmidtmann I, Stauber R, Helling K. Dexamethasone prevents hearing loss by restoring glucocorticoid receptor expression in the guinea pig cochlea. Laryngoscope 2015; 126:E29-34. [DOI: 10.1002/lary.25345] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Ulf-Rüdiger Heinrich
- Department of Otorhinolaryngology, Head and Neck Surgery; University Medical Center of the Johannes Gutenberg-University; Mainz Germany
| | - Sebastian Strieth
- Department of Otorhinolaryngology, Head and Neck Surgery; University Medical Center of the Johannes Gutenberg-University; Mainz Germany
| | - Irene Schmidtmann
- Institute for Medical Statistics, Epidemiology and Informatics; University Medical Center of the Johannes Gutenberg-University; Mainz Germany
| | - Roland Stauber
- Department of Otorhinolaryngology, Head and Neck Surgery; University Medical Center of the Johannes Gutenberg-University; Mainz Germany
| | - Kai Helling
- Department of Otorhinolaryngology, Head and Neck Surgery; University Medical Center of the Johannes Gutenberg-University; Mainz Germany
| |
Collapse
|
23
|
Kaya H, Koç AK, Sayın İ, Güneş S, Altıntaş A, Yeğin Y, Kayhan FT. Vitamins A, C, and E and selenium in the treatment of idiopathic sudden sensorineural hearing loss. Eur Arch Otorhinolaryngol 2014; 272:1119-25. [PMID: 24519034 DOI: 10.1007/s00405-014-2922-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 01/28/2014] [Indexed: 12/20/2022]
Abstract
This study evaluated the effectiveness of vitamins A, C, and E, with selenium, in the treatment of idiopathic sudden sensorineural hearing loss (ISSNHL). This was a prospective, controlled study performed at a tertiary teaching and research hospital. Over a 32-month period, patients were treated with either our standard ISSNHL treatment regimen plus vitamins A, C, and E and selenium (ACE+ group) or with only our standard ISSNHL treatment regimen (ACE- group). The demographics, additional symptoms, mean initial and final hearing levels, mean hearing gain, and recovery data were compared between the two groups. The ACE+ group, consisting of 70 (55.5 %) patients, received vitamin A (natural beta-carotene, 26,000 IU), vitamin C (ascorbic acid, 200 mg), vitamin E (d-alpha-tocopherol, 200 IU), and selenium (50 μg) twice daily for 30 days in addition to our ISSNHL treatment regimen: methylprednisolone at an initial dose of 1 mg/kg body weight per day, tapered over 14 days; Rheomacrodex(®) [(10 g of dextran and 0.9 g of NaCl)/100 ml] 500 ml daily for 5 days; Vastarel(®) 20-mg tablet (20 mg of trimetazidine dihydrochloride) three times daily for 30 days; and ten 60-min hyperbaric oxygen (HBO) sessions (2.5 absolute atmospheres of 100 % O2), once daily, starting the day of hospitalization. The ACE- group comprised 56 (44.4 %) patients, who received only our ISSNHL treatment regimen. The mean hearing gains were 36.2 ± 20.3 dB in the ACE+ group and 27.1 ± 20.6 dB in the ACE- group. The mean hearing gain rates were significantly higher in the ACE+ group than in the ACE- group (p = 0.014). Treatment with vitamins A, C, and E and selenium was effective in ISSNHL patients undergoing treatment with methylprednisolone, dextran, trimetazidine dihydrochloride, and HBO, and might be more effective when the initial hearing level is below 46 dB.
Collapse
Affiliation(s)
- Hakan Kaya
- E.N.T Clinic, Bakırköy Dr.Sadi Konuk Teaching and Research Hospital, Tevfik Sağlam Cad. No: 11, Zuhuratbaba, 34417, Istanbul, Turkey,
| | | | | | | | | | | | | |
Collapse
|
24
|
Boffi JC, Wedemeyer C, Lipovsek M, Katz E, Calvo DJ, Elgoyhen AB. Positive modulation of the α9α10 nicotinic cholinergic receptor by ascorbic acid. Br J Pharmacol 2013; 168:954-65. [PMID: 22994414 DOI: 10.1111/j.1476-5381.2012.02221.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 09/01/2012] [Accepted: 09/07/2012] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND PURPOSE The activation of α9α10 nicotinic cholinergic receptors (nAChRs) present at the synapse between efferent olivocochlear fibres and cochlear hair cells can prevent acoustic trauma. Hence, pharmacological potentiators of these receptors could be useful therapeutically. In this work, we characterize ascorbic acid as a positive modulator of recombinant α9α10 nAChRs. EXPERIMENTAL APPROACH ACh-evoked responses were analysed under two-electrode voltage-clamp recordings in Xenopus laevis oocytes injected with α9 and α10 cRNAs. KEY RESULTS Ascorbic acid potentiated ACh responses in X. laevis oocytes expressing α9α10 (but not α4β2 or α7) nAChRs, in a concentration-dependent manner, with an effective concentration range of 1-30 mM. The compound did not affect the receptor's current-voltage profile nor its apparent affinity for ACh, but it significantly enhanced the maximal evoked currents (percentage of ACh maximal response, 240 ± 20%). This effect was specific for the L form of reduced ascorbic acid. Substitution of the extracellular cysteine residues present in loop C of the ACh binding site did not affect the potentiation. Ascorbic acid turned into a partial agonist of α9α10 nAChRs bearing a point mutation at the pore domain of the channel (TM2 V13'T mutant). A positive allosteric mechanism of action rather than an antioxidant effect of ascorbic acid is proposed. CONCLUSIONS AND IMPLICATIONS The present work describes one of the few agents that activates or potentiates α9α10 nAChRs and leads to new avenues for designing drugs with potential therapeutic use in inner ear disorders.
Collapse
Affiliation(s)
- J C Boffi
- Instituto de Investigaciones en Ingeniería, Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
25
|
Yu R, Schellhorn HE. Recent applications of engineered animal antioxidant deficiency models in human nutrition and chronic disease. J Nutr 2013; 143:1-11. [PMID: 23173175 DOI: 10.3945/jn.112.168690] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Dietary antioxidants are essential nutrients that inhibit the oxidation of biologically important molecules and suppress the toxicity of reactive oxygen or nitrogen species. When the total antioxidant capacity is insufficient to quench these reactive species, oxidative damage occurs and contributes to the onset and progression of chronic diseases, such as neurodegenerative diseases, cardiovascular diseases, and cancer. However, epidemiological studies that examine the relationship between antioxidants and disease outcome can only identify correlative associations. Additionally, many antioxidants also have prooxidant effects. Thus, clinically relevant animal models of antioxidant function are essential for improving our understanding of the role of antioxidants in the pathogenesis of complex diseases as well as evaluating the therapeutic potential and risks of their supplementation. Recent progress in gene knockout mice and virus-based gene expression has potentiated these areas of study. Here, we review the current genetically modified animal models of dietary antioxidant function and their clinical relevance in chronic diseases. This review focuses on the 3 major antioxidants in the human body: vitamin C, vitamin E, and uric acid. We examine genetic models of vitamin C synthesis (guinea pig, Osteogenic Disorder Shionogi rat, Gulo(-/-) and SMP30(-/-) mouse mutants) and transport (Slc23a1(-/-) and Slc23a2(-/-) mouse mutants), vitamin E transport (Ttpa(-/-) mouse mutant), and uric acid synthesis (Uox(-/-) mouse mutant). The application of these models to current research goals is also discussed.
Collapse
Affiliation(s)
- Rosemary Yu
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
26
|
Kim SJ, Lee JH, Kim BS, So HS, Park R, Myung NY, Um JY, Hong SH. (-)-Epigallocatechin-3-gallate protects against NO-induced ototoxicity through the regulation of caspase- 1, caspase-3, and NF-κB activation. PLoS One 2012; 7:e43967. [PMID: 23028481 PMCID: PMC3461011 DOI: 10.1371/journal.pone.0043967] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 07/30/2012] [Indexed: 12/16/2022] Open
Abstract
Excessive nitric oxide (NO) production is toxic to the cochlea and induces hearing loss. However, the mechanism through which NO induces ototoxicity has not been completely understood. The aim of this study was to gain further insight into the mechanism mediating NO-induced toxicity in auditory HEI-OC1 cells and in ex vivo analysis. We also elucidated whether and how epigallocatechin-3-gallate (EGCG), the main component of green tea polyphenols, regulates NO-induced auditory cell damage. To investigate NO-mediated ototoxicity, S-nitroso-N-acetylpenicillamine (SNAP) was used as an NO donor. SNAP was cytotoxic, generating reactive oxygen species, releasing cytochrome c, and activating caspase-3 in auditory cells. NO-induced ototoxicity also mediated the nuclear factor (NF)-κB/caspase-1 pathway. Furthermore, SNAP destroyed the orderly arrangement of the 3 outer rows of hair cells in the basal, middle, and apical turns of the organ of Corti from the cochlea of Sprague-Dawley rats at postnatal day 2. However, EGCG counteracted this ototoxicity by suppressing the activation of caspase-3/NF-κB and preventing the destruction of hair cell arrays in the organ of Corti. These findings may lead to the development of a model for pharmacological mechanism of EGCG and potential therapies against ototoxicity.
Collapse
Affiliation(s)
- Su-Jin Kim
- Department of Cosmeceutical Science, Daegu Hanny University, Kyungsan, Gyeoungbuk, Republic of Korea
| | - Jeong-Han Lee
- Center for Metabolic Function Regulation, Wonkwang University, Iksan, Republic of Korea
| | - Beom-Su Kim
- Wonkwang Bone Regeneration Research Institute, Wonkwang University, Iksan, Jeonbuk, Republic of Korea
| | - Hong-Seob So
- Center for Metabolic Function Regulation, Wonkwang University, Iksan, Republic of Korea
| | - Raekil Park
- Center for Metabolic Function Regulation, Wonkwang University, Iksan, Republic of Korea
| | - Noh-Yil Myung
- Center for Metabolic Function Regulation, Wonkwang University, Iksan, Republic of Korea
| | - Jae-Young Um
- College of Oriental Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Seung-Heon Hong
- Center for Metabolic Function Regulation, Wonkwang University, Iksan, Republic of Korea
| |
Collapse
|
27
|
Heinrich UR, Helling K. Nitric oxide--a versatile key player in cochlear function and hearing disorders. Nitric Oxide 2012; 27:106-16. [PMID: 22659013 DOI: 10.1016/j.niox.2012.05.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 05/10/2012] [Accepted: 05/24/2012] [Indexed: 12/13/2022]
Abstract
Nitric oxide (NO) is a signaling molecule which can generally be formed by three nitric oxide synthases (NOS). Two of them, the endothelial nitric oxide synthase (eNOS) and the neural nitric oxide synthase (nNOS), are calcium/calmodulin-dependent and constitutively expressed in many cell types. Both isoforms are found in the vertebrate cochlea. The inducible nitric oxide synthase (iNOS) is independent of calcium and normally not detectable in the un-stimulated cochlea. In the inner ear, as in other tissues, NO was identified as a multitask molecule involved in various processes such as neurotransmission and neuromodulation. In addition, increasing evidence demonstrates that the NO-dependent processes of cell protection or, alternatively, cell destruction seem to depend, among other things, on changes in the local cochlear NO-concentration. These alterations can occur at the cellular level or within a distinct cell population both leading to an NO-imbalance within the hearing organ. This dysfunction can result in hearing loss or even in deafness. In cases of cochlear malfunction, regulatory systems such as the gap junction system, the blood vessels or the synaptic region might be affected temporarily or permanently by an altered NO-level. This review discusses potential cellular mechanisms how NO might contribute to different forms of hearing disorders. Approaches of NO-reduction are evaluated and the transfer of results obtained from experimental animal models to human medication is discussed.
Collapse
Affiliation(s)
- Ulf-Rüdiger Heinrich
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center of The Johannes Gutenberg-University Mainz, Germany.
| | | |
Collapse
|
28
|
Abstract
According to current knowledge, it must be assumed that temporary idiopathic hearing loss and its spontaneous remission are based on mechanical and/or pathological alterations in the inner ear. The causal mechanisms might be based on inter-individual variations. Induced by dose-dependent activators, temporary as well as permanent damage might occur. Sudden hearing loss may be initiated by an increase in the local nitric oxide (NO) concentration. Spontaneous remission, i.e. functional restoration, can be explained by a local decrease in the NO concentration. In this context, regulatory systems such as the gap-junction system, blood vessels or synapses might be affected. In addition, alterations in the hormone level of estrogen and mineralocorticoids, as well as cellular glutathione and vitamin levels, might lead to temporary alterations in the inner ear. Recent experimental findings indicate a role for the shuttle protein Survivin in the spontaneous remission of sudden hearing loss.
Collapse
|
29
|
Ozdogan F, Ensari S, Cakir O, Ozcan KM, Koseoglu S, Ozdas T, Gurgen SG, Dere H. Investigation of the cochlear effects of intratympanic steroids administered following acoustic trauma. Laryngoscope 2012; 122:877-82. [PMID: 22374513 DOI: 10.1002/lary.23185] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 11/29/2011] [Accepted: 12/07/2011] [Indexed: 12/20/2022]
Abstract
OBJECTIVES/HYPOTHESIS To electrophysiologically and histomorphologically demonstrate the effects of intratympanic corticosteroids administered following an acoustic trauma on cochlear hair cells. METHODS The trial was performed on 16 Wistar albino rats. The rats underwent distortion product otoacoustic emissions (DPOAE) measurement before the acoustic trauma, and subsequently rats were exposed to noise. Following acoustic trauma, the otoacoustic emission measurement was repeated. The rats were divided into two groups, a study group and a control group. The study rats were injected with methylprednisolone via the intratympanic route throughout the study. In the control group, the rats were injected daily with saline. After performing repeated otoacoustic emission measurements, one rat in each of the groups was sacrificed and their cochleae isolated. RESULTS The histological investigation performed after the 1st week revealed a statistically significantly higher rate of apoptotic cells in the inner and particularly the outer hair cells of the rat cochleae in the control group compared to the study group. Early measurement of DPOAE within the 1st week demonstrated significantly better amplitudes in the study group compared to controls. The otoacoustic emission assessment performed on the 14th day demonstrated statistically similar DPOAE values between the two groups. CONCLUSIONS Intratympanic methylprednisolone injection administered following an acoustic trauma appears to reduce cochlear outer hair cell loss. The impact on hearing loss is less certain. Early measurement of DPOAE within the 1st week shows significantly better amplitudes in the study group compared to controls. However at 2 weeks, there is no statistically significant difference in DPOAE amplitudes between the study and control group.
Collapse
Affiliation(s)
- Fatih Ozdogan
- ENT Clinic, Silvan Dr Yusuf Azizoglu State Hospital, Diyarbakir, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Doxycycline reduces nitric oxide production in guinea pig inner ears. Auris Nasus Larynx 2011; 38:671-7. [DOI: 10.1016/j.anl.2011.02.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 02/01/2011] [Accepted: 02/02/2011] [Indexed: 11/22/2022]
|
31
|
Le Prell CG, Gagnon PM, Bennett DC, Ohlemiller KK. Nutrient-enhanced diet reduces noise-induced damage to the inner ear and hearing loss. Transl Res 2011; 158:38-53. [PMID: 21708355 PMCID: PMC3132794 DOI: 10.1016/j.trsl.2011.02.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 02/15/2011] [Accepted: 02/15/2011] [Indexed: 01/13/2023]
Abstract
Oxidative stress has been implicated broadly as a cause of cell death and neural degeneration in multiple disease conditions; however, the evidence for successful intervention with dietary antioxidant manipulations has been mixed. In this study, we investigated the potential for protection of cells in the inner ear using a dietary supplement with multiple antioxidant components, which were selected for their potential interactive effectiveness. Protection against permanent threshold shift (PTS) was observed in CBA/J mice maintained on a diet supplemented with a combination of β-carotene, vitamins C and E, and magnesium when compared with PTS in control mice maintained on a nutritionally complete control diet. Although hair cell survival was not enhanced, noise-induced loss of type II fibrocytes in the lateral wall was significantly reduced (P < 0.05), and there was a trend toward less noise-induced loss in strial cell density in animals maintained on the supplemented diet. Taken together, our data suggest that prenoise oral treatment with the high-nutrient diet can protect cells in the inner ear and reduce PTS in mice. The demonstration of functional and morphologic preservation of cells in the inner ear with oral administration of this antioxidant supplemented diet supports the possibility of translation to human patients and suggests an opportunity to evaluate antioxidant protection in mouse models of oxidative stress-related disease and pathology.
Collapse
Affiliation(s)
- Colleen G Le Prell
- Department of Speech, Language, and Hearing Sciences, University of Florida, Box 100174, Gainesville, FL 32610, USA.
| | | | | | | |
Collapse
|
32
|
Le Prell CG, Dolan DF, Bennett DC, Boxer PA. Nutrient plasma levels achieved during treatment that reduces noise-induced hearing loss. Transl Res 2011; 158:54-70. [PMID: 21708356 PMCID: PMC3125531 DOI: 10.1016/j.trsl.2011.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 02/04/2011] [Accepted: 02/07/2011] [Indexed: 10/18/2022]
Abstract
Hearing loss encompasses both temporary and permanent deficits. If temporary threshold shift (TTS) and permanent threshold shift (PTS) share common pathological mechanisms, then agents that reduce PTS also should reduce TTS. Several antioxidant agents have reduced PTS in rodent models; however, reductions in TTS have been inconsistent. This study first determined whether dietary antioxidants (beta-carotene and vitamins C and E) delivered in combination with magnesium (Mg) reliably increase plasma concentrations of the active agents. Then, additional manipulations tested the hypothesis that these nutrients reduce acute TTS insult in the first 24 h after loud sound as well as longer lasting changes in hearing measured up to 7 days postnoise. Saline or nutrients were administered to guinea pigs prior to and after noise exposure. Sound-evoked electrophysiological responses were measured before noise, with tests repeated 1-h postnoise, as well as 1-day, 3-days, 5-days, and 7-days postnoise. All subjects showed significant functional recovery; subjects treated with nutrients recovered more rapidly and had better hearing outcomes at early postnoise times as well as the final test time. Thus, this combination of nutrients, which produced significant increases in plasma concentrations of vitamins C and E and Mg, effectively reduced hearing loss at multiple postnoise times. These data suggest that free radical formation contributes to TTS as well as PTS insults and suggest a potential opportunity to prevent TTS in human populations.
Collapse
Affiliation(s)
- Colleen G Le Prell
- Department of Speech, Language, and Hearing Sciences, University of Florida, Gainesville, FL 32610, USA.
| | | | | | | |
Collapse
|
33
|
Abstract
INTRODUCTION Approximately 5% of the population worldwide suffers from industrial, military or recreational noise-induced hearing loss (NIHL) at a great economic cost and detriment to the quality of life of the affected individuals. This review discusses pharmacological strategies to attenuate NIHL that have been developed in animal models and that are now beginning to be tested in field trials. AREAS COVERED The review describes the epidemiology, pathology and pathophysiology of NIHL in experimental animals and humans. The underlying molecular mechanisms of damage are then discussed as a basis for therapeutic approaches to ameliorate the loss of auditory function. Finally, studies in military, industrial and recreational settings are evaluated. Literature was searched using the terms 'noise-induced hearing loss' and 'noise trauma'. EXPERT OPINION NIHL, in principle, can be prevented. With the current pace of development, oral drugs to protect against NIHL should be available within the next 5-10 years. Positive results from ongoing trials combined with additional laboratory tests might accelerate the time from the bench to clinical treatment.
Collapse
Affiliation(s)
- Naoki Oishi
- Kresge Hearing Research Institute, Medical Sciences Bldg I, 1150 West Medical Center Drive, Ann Arbor, MI 48109-5616, USA
| | | |
Collapse
|
34
|
Habtemichael N, Wünsch D, Bier C, Tillmann S, Unruhe B, Frauenknecht K, Heinrich UR, Mann WJ, Stauber RH, Knauer SK. Cloning and functional characterization of the guinea pig apoptosis inhibitor protein Survivin. Gene 2010; 469:9-17. [DOI: 10.1016/j.gene.2010.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 08/08/2010] [Accepted: 08/09/2010] [Indexed: 11/29/2022]
|
35
|
Expression analysis suggests a potential cytoprotective role of Birc5 in the inner ear. Mol Cell Neurosci 2010; 45:297-305. [DOI: 10.1016/j.mcn.2010.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 06/28/2010] [Accepted: 07/06/2010] [Indexed: 11/19/2022] Open
|
36
|
Knauer SK, Heinrich UR, Bier C, Habtemichael N, Docter D, Helling K, Mann WJ, Stauber RH. An otoprotective role for the apoptosis inhibitor protein survivin. Cell Death Dis 2010; 1:e51. [PMID: 21364656 PMCID: PMC3032560 DOI: 10.1038/cddis.2010.25] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hearing impairment caused by ototoxic insults, such as noise or gentamicin is a worldwide health problem. As the molecular circuitries involved are not yet resolved, current otoprotective therapies are rather empirical than rational. Here, immunohistochemistry and western blotting showed that the cytoprotective protein survivin is expressed in the human and guinea pig cochlea. In the guinea pig model, moderate noise exposure causing only a temporary hearing impairment transiently evoked survivin expression in the spiral ligament, nerve fibers and the organ of Corti. Mechanistically, survivin upregulation may involve nitric oxide (NO)-induced Akt signaling, as enhanced expression of the endothelial NO synthase and phosphorylated Akt were detectable in some surviving-positive cell types. In contrast, intratympanic gentamicin injection inducing cell damage and permanent hearing loss correlated with attenuated survivin levels in the cochlea. Subsequently, the protective activity of the human and the guinea pig survivin orthologs against the ototoxin gentamicin was demonstrated by ectopic overexpression and RNAi-mediated depletion studies in auditory cells in vitro. These data suggest that survivin represents an innate cytoprotective resistor against stress conditions in the auditory system. The pharmacogenetic modulation of survivin may thus provide the conceptual basis for the rational design of novel therapeutic otoprotective strategies.
Collapse
Affiliation(s)
- S K Knauer
- Department of Molecular and Cellular Oncology, University Hospital of Mainz, Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Reuter P, Masomi J, Kuntze H, Fischer I, Helling K, Sommer C, Alessandri B, Heimann A, Gerriets T, Marx J, Kempski O, Nedelmann M. Low-frequency therapeutic ultrasound with varied duty cycle: effects on the ischemic brain and the inner ear. ULTRASOUND IN MEDICINE & BIOLOGY 2010; 36:1188-1195. [PMID: 20620705 DOI: 10.1016/j.ultrasmedbio.2010.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 04/19/2010] [Accepted: 04/24/2010] [Indexed: 05/29/2023]
Abstract
Sonothrombolysis is a promising modality for acute stroke treatment. In vitro data suggest a duty cycle dependence of sonothrombolytic efficacy of low-frequency applications. The aim of our study was to examine its impact on safety issues in a rat model of middle cerebral artery occlusion. Rats were exposed to transcranial 60-kHz ultrasound with varied duty cycles. To determine effects on the inner ear, the acoustic threshold was determined in additional healthy animals (acoustic evoked potentials). A short duty cycle (20%) resulted in significant adverse effects (ischemic volume, hemorrhage, functional outcome), which was not observed in longer duty cycle (80%). Continuous-wave insonation produced high rates of mortality and subarachnoid hemorrhage. Hearing was impaired independent of duty cycle. In conclusion, cerebral side effects may be efficiently reduced by modulation of pulsed parameters, which is in line with data on an improved efficacy with longer duty cycle. However, side effects on the auditory system were found to be independent of parameter settings.
Collapse
Affiliation(s)
- Peter Reuter
- Department of Neurology, Justus Liebig University, Giessen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Jun SC, Jung EY, Kang DH, Kim JM, Chang UJ, Suh HJ. Vitamin C increases the fecal fat excretion by chitosan in guinea-pigs, thereby reducing body weight gain. Phytother Res 2010; 24:1234-41. [DOI: 10.1002/ptr.2970] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
39
|
Glucocorticoids reduce nitric oxide concentration in middle ear effusion from lipopolysaccharide induced otitis media. Int J Pediatr Otorhinolaryngol 2010; 74:384-6. [PMID: 20188425 DOI: 10.1016/j.ijporl.2010.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 01/08/2010] [Accepted: 01/12/2010] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Otitis media with effusion (OME) is a common childhood disease that is characterized by an accumulation of fluid in the middle ear. Chronic OME can also lead to sensorineural hearing loss (SNHL). Nitric oxide (NO), an inflammatory mediator (IM) of OME, is a free radical known to regulate cell proliferation, cell death, and angiogenesis. Previous studies have shown that nitric oxide may cause SNHL through outer hair cell (OHC) cytotoxicity. This experiment was designed to determine whether glucocorticoids, dexamethasone, fluticasone propionate, or rimexolone, can reduce the concentration of NO in middle ear effusion (MEE). METHODS Fifty-three chinchillas were divided into 7 groups, vehicle vs. each glucocorticoid at 0.1% and 1.0% concentrations. Due to anesthesia complications, N ranged from 6 to 9 per group. Two hundred microlitres of each test article was injected into the bullae of each animal. Two hours later, lipopolysaccharide (LPS) (0.3mg in solution) was added. Test articles were re-administered at 24 and 48h post-LPS induction. After 96h, animals were euthanized and the MEE was collected. RESULTS All three glucocorticoids numerically reduced NO concentration in the middle ear when administered at 0.1%, but only FP showed a significant reduction. At 1.0% concentrations, all 3 steroids significantly reduced NO concentration. CONCLUSION This study suggests that glucocorticoid treatment reduces NO concentration in the MEE and may protect the ear from the SNHL caused by NO.
Collapse
|
40
|
Abstract
BACKGROUND The protective effect of ascorbic acid against noise-induced hearing loss and increased nitric oxide (NO) formation after noise exposure have already been demonstrated in animal models. However, the influence of ascorbic acid on noise-induced NO production within the cochlea is still unclear. METHODS Guinea pigs (n=48) were fed for 7 days with low [25 mg/kg bodyweight (bw)/day] and high (525 mg/kg bw/day) doses of ascorbic acid. Then half of the animals were exposed to noise (90 dB for 1 h). The hearing levels were recorded beforehand, on the 3rd and 7th days after feeding, and directly after noise exposure. Finally, the organ of Corti and the lateral wall were removed from the inner ear and incubated separately for 6 h in culture medium, and the nitrite content was determined in the supernatant. RESULTS Compared with low-dose feeding, feeding of high doses of ascorbic acid resulted in a reduction of hearing impairment of about 8 dB after noise exposure. A correlation between hearing improvement and decreased NO production was detectable for both cochlea regions but was more pronounced in the lateral wall. CONCLUSION A high dose of ascorbic acid lowers NO production in the inner ear, reduces hearing loss, and protects the cochlea from nitroactive stress.
Collapse
|
41
|
NO-System und Antioxidanzien. HNO 2009; 57:336-8. [DOI: 10.1007/s00106-009-1894-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Gentamicin Increases Nitric Oxide Production and Induces Hearing Loss in Guinea Pigs. Laryngoscope 2008; 118:1438-42. [DOI: 10.1097/mlg.0b013e3181739bd9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|