1
|
Lyall M, Kamdar A, Sykes R, Aekbote BL, Gadegaard N, Berry C. Measuring contractile forces in vascular smooth muscle cells. Vascul Pharmacol 2025; 159:107488. [PMID: 40097082 DOI: 10.1016/j.vph.2025.107488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/06/2025] [Accepted: 03/14/2025] [Indexed: 03/19/2025]
Abstract
Vascular smooth muscle cell (VSMC) contractility mediates blood vessel tone. Abnormalities in VSMC function and in blood vessel tone can contribute to a variety of cardiovascular diseases. This review examines the role of VSMC contractile force in vascular disease, divided into two primary sections. The first section introducing VSMC mechanical contraction and detailing the molecular mechanisms of VSMC contractility in normal and pathological states. The second section exploring methods of measuring contraction in VSMCs, such as Ca2+ imaging, myography, and traction force microscopy, and highlighting where each method is of best use. Understanding the mechanical properties and contractile profiles of VSMCs offers valuable insights into disease mechanisms. By investigating these aspects, this review describes the potential of VSMC contractile forces as diagnostic markers and therapeutic targets in vascular disease.
Collapse
Affiliation(s)
- Maia Lyall
- School of Cardiovascular and Metabolic Health, University of Glasgow, G12 8TA, UK; Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| | - Anna Kamdar
- School of Cardiovascular and Metabolic Health, University of Glasgow, G12 8TA, UK; West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Glasgow G81 4DY, UK
| | - Robert Sykes
- School of Cardiovascular and Metabolic Health, University of Glasgow, G12 8TA, UK; West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Glasgow G81 4DY, UK
| | - Badri L Aekbote
- Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| | - Nikolaj Gadegaard
- Division of Biomedical Engineering, James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK.
| | - Colin Berry
- School of Cardiovascular and Metabolic Health, University of Glasgow, G12 8TA, UK; West of Scotland Heart and Lung Centre, Golden Jubilee National Hospital, Glasgow G81 4DY, UK; Department of Cardiology, Queen Elizabeth University Hospital, NHS Greater Glasgow and Clyde Health Board, Glasgow G51 4TF, UK.
| |
Collapse
|
2
|
Jia Z, Wu J, Liu F, Wang H, Zheng P, Shen B, Zhao R. Arachidonic acid is involved in high-salt diet-induced coronary remodeling through stimulation of the IRE1α/XBP1s/RUNX2/OPN signaling cascade. Lipids Health Dis 2025; 24:44. [PMID: 39934848 DOI: 10.1186/s12944-025-02465-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/04/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND The impact of a high-salt (HS) diet on metabolic disturbances in individuals with coronary heart disease remains unclear. The arachidonic acid (AA) metabolic pathway is closely linked to the development of cardiometabolic diseases and atherosclerotic cardiovascular diseases. Furthermore, endoplasmic reticulum stress (ERS) has emerged as a major contributor to cardiometabolic diseases. AA-related inflammation and ERS are hypothesized to play a role in HS diet-induced coronary remodeling. METHODS Rats were subjected to an HS diet for 4 weeks, and the serum concentration of AA was measured via enzyme-linked immunosorbent assay. Immunofluorescence staining and vascular tension measurements were conducted on coronary arteries. In addition, AA-stimulated coronary artery smooth muscle cells (CASMCs) were treated with ERS inhibitors to explore the underlying pathway involved. RESULTS Increased susceptibility to myocardial infarction in the HS diet-fed rats was accompanied by increased serum AA concentrations and increased expression of the key AA metabolic enzyme cyclooxygenase-2 (COX-2). AA incubation weakened the contraction of denuded coronary arteries, reduced the expression of contraction markers, and increased the fluorescence intensity of synthetic and ERS response markers in coronary arteries. Further investigation of CASMCs revealed that AA-induced phenotypic transformation was mediated via the ERS pathway. CONCLUSIONS ERS and AA were found to be stimulated in CASMCs following an HS diet. AA triggers an ERS response through COX-2 catalysis, and the downstream inositol requiring enzyme 1 - X-box binding protein-1 - osteopontin pathway may contribute to the AA-induced phenotypic transformation of CASMCs, resulting in dysfunctional coronary tension. This study may provide potential therapeutic targets for cardiovascular diseases associated with excessive AA-derived ERS.
Collapse
Affiliation(s)
- Zhuoran Jia
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Jian Wu
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Fang Liu
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Huimin Wang
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Peiyang Zheng
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China
| | - Bing Shen
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Ren Zhao
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui, China.
| |
Collapse
|
3
|
Martínez-Vieyra I, Hernández-Rojo I, Rosales-García VH, Chávez-Piña AE, Cerecedo D. Oxidative Stress and Cytoskeletal Reorganization in Hypertensive Erythrocytes. Antioxidants (Basel) 2024; 14:5. [PMID: 39857339 PMCID: PMC11759189 DOI: 10.3390/antiox14010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/27/2025] Open
Abstract
Oxidative stress is widely recognized as a key mechanism in the development of hypertension. Under pathological conditions, such as in hypertension, oxidative stress leads to irreversible posttranslational modifications of proteins, which result in loss of protein function and cellular damage. We have previously documented physiological and morphological changes across various blood and bone marrow cell lineages, all of which exhibit elevated oxidative stress. While cytoskeletal changes in erythrocytes have been well characterized in hereditary diseases, this is the first study, to our knowledge, to investigate cytoskeletal reorganization in erythrocytes from hypertensive patients. To this end, we compared the expression patterns and subcellular distribution of key cytoskeletal proteins in erythrocytes from hypertensive individuals with those from normotensive subjects using Western blot, flow cytometry, and confocal microscopy. Our results revealed the presence of three erythrocyte subpopulations with differential expression of glycophorin A. The persistent oxidative environment in hypertensive patients causes dysregulation in the expression of glycophorin A, Band 3 protein, protein 4.1, and ankyrin, as well as the reorganization of spectrin. These alterations in protein expression and distribution suggest that oxidative stress in hypertensive individuals may induce structural modifications, ultimately impairing erythrocyte membrane elasticity and function.
Collapse
Affiliation(s)
- Ivette Martínez-Vieyra
- Laboratorio de Hematobiología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07700, Mexico; (I.M.-V.); (I.H.-R.)
| | - Isaac Hernández-Rojo
- Laboratorio de Hematobiología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07700, Mexico; (I.M.-V.); (I.H.-R.)
| | - Víctor Hugo Rosales-García
- Laboratorios Centrales, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City 07360, Mexico;
| | - Aracely Evangelina Chávez-Piña
- Laboratorio de Farmacología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07700, Mexico;
| | - Doris Cerecedo
- Laboratorio de Hematobiología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07700, Mexico; (I.M.-V.); (I.H.-R.)
| |
Collapse
|
4
|
Lo Cicero L, Lentini P, Sessa C, Castellino N, D’Anca A, Torrisi I, Marcantoni C, Castellino P, Santoro D, Zanoli L. Inflammation and Arterial Stiffness as Drivers of Cardiovascular Risk in Kidney Disease. Cardiorenal Med 2024; 15:29-40. [PMID: 39631378 PMCID: PMC11844711 DOI: 10.1159/000542965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Patients with chronic kidney disease (CKD) have an increased cardiovascular (CV) risk. The lower the glomerular filtration rate, the higher the CV risk. SUMMARY Current data suggest that several uremic toxins lead to vascular inflammation and oxidative stress that, in turn, lead to endothelial dysfunction, changes in smooth muscle cells' phenotype, and increased degradation of elastin and collagen fibers. These processes lead to both functional and structural arterial stiffening and explain part of the increased risk of acute myocardial infarction and stroke reported in patients with CKD. Considering that, at least in patients with end-stage kidney disease, the reduction of arterial stiffness is associated with a parallel decrease of the CV risk; vascular function is a potential target for therapy to reduce the CV risk. KEY MESSAGES In this review, we explore mechanisms of vascular dysfunction in CKD, paying particular attention to inflammation, reporting current data in other models of mild and severe inflammation, and discussing the vascular effect of several drugs currently used in nephrology.
Collapse
Affiliation(s)
- Lorenzo Lo Cicero
- School of Nephrology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Paolo Lentini
- Nephrology and Dialysis, San Bassiano Hospital, Bassano del Grappa, Italy
| | - Concetto Sessa
- Nephrology and Dialysis, ASP Ragusa, Ragusa, Italy
- Departement of Nephrology, University of Catania, Catania, Italy
| | | | - Ambra D’Anca
- Nephrology and Dialysis, San Marco Hospital, Catania, Italy
| | - Irene Torrisi
- Nephrology and Dialysis, San Marco Hospital, Catania, Italy
| | | | | | - Domenico Santoro
- School of Nephrology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
- Nephrology and Dialysis, University of Messina, Messina, Italy
| | - Luca Zanoli
- School of Nephrology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
- Departement of Nephrology, University of Catania, Catania, Italy
- Nephrology and Dialysis, San Marco Hospital, Catania, Italy
| |
Collapse
|
5
|
Luo H, Li Y, Song H, Zhao K, Li W, Hong H, Wang YT, Qi L, Zhang Y. Role of EZH2-mediated epigenetic modification on vascular smooth muscle in cardiovascular diseases: A mini-review. Front Pharmacol 2024; 15:1416992. [PMID: 38994197 PMCID: PMC11236572 DOI: 10.3389/fphar.2024.1416992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/03/2024] [Indexed: 07/13/2024] Open
Abstract
Vascular smooth muscle cells (VSMCs) are integral to the pathophysiology of cardiovascular diseases (CVDs). Enhancer of zeste homolog 2 (EZH2), a histone methyltransferase, plays a crucial role in epigenetic regulation of VSMCs gene expression. Emerging researches suggest that EZH2 has a dual role in VSMCs, contingent on the pathological context of specific CVDs. This mini-review synthesizes the current knowledge on the mechanisms by which EZH2 regulates VSMC proliferation, migration and survival in the context of CVDs. The goal is to underscore the potential of EZH2 as a therapeutic target for CVDs treatment. Modulating EZH2 and its associated epigenetic pathways in VSMCs could potentially ameliorate vascular remodeling, a key factor in the progression of many CVDs. Despite the promising outlook, further investigation is warranted to elucidate the epigenetic mechanisms mediated by EZH2 in VSMCs, which may pave the way for novel epigenetic therapies for conditions such as atherosclerosis and hypertension.
Collapse
Affiliation(s)
- Haiyan Luo
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yao Li
- Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang, China
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Nanchang, China
| | - Honghu Song
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Kui Zhao
- College of Material Science and Chemical Engineering, Southwest Forestry University, Kunming, Yunnan, China
| | - Wenlin Li
- Center for Quality Evaluation and Research in Higher Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hailan Hong
- Center for Quality Evaluation and Research in Higher Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yun-Ting Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Luming Qi
- School of Health Preservation and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yang Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| |
Collapse
|
6
|
Wen X, Peng Y, Peng Y, Zhu Y, Yu F, Geng L, Zhou T, Wang X, Feng L, Meng Q. Aortic smooth muscle TRPV4 channels regulate vasoconstriction in high salt-induced hypertension. Hypertens Res 2023; 46:2356-2367. [PMID: 37532951 DOI: 10.1038/s41440-023-01363-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 08/04/2023]
Abstract
Recent studies have focused on the contribution of vascular endothelial transient receptor potential vanilloid 4 (TRPV4) channels to hypertension. However, in hypertension, TRPV4 channels in vascular smooth muscle remain unexplored. In the present study, we performed wire myograph experiments in isolated aortas from endothelial cell specific TRPV4 channel knockout (TRPV4EC-/-) mice to demonstrate that GSK1016790A (a specific TRPV4 channel agonist) triggered aortic smooth muscle-dependent contractions from mice on a normal-salt diet, and the contractions were enhanced in high-salt diet (HSD) mice. Intracellular Ca2+ concentration ([Ca2+]i) and Ca2+ imaging assays showed that TRPV4-induced [Ca2+]i was significantly higher in aortic smooth muscle cells (ASMCs) from HSD-induced hypertensive mice, and application of an inositol trisphosphate receptor (IP3R) inhibitor markedly attenuated TRPV4-induced [Ca2+]i. IP3R2 expression was enhanced in ASMCs from HSD-induced hypertensive mice and the contractile response induced by TRPV4 was inhibited by the IP3R inhibitor. Whole-transcriptome analysis by RNA-seq and western blot assays revealed the involvement of interferon regulatory factor 7 (IRF7) in TRPV4-IRF7-IP3R2 signaling in HSD-induced hypertension. These results suggested that TRPV4 channels regulate smooth muscle-dependent contractions in high salt-induced hypertension, and this contraction involves increased [Ca2+]i, IP3R2, and IRF7 activity. Our study revealed a considerable effect of TRPV4 channels in smooth muscle-dependent contraction in mice during high-salt induced hypertension.
Collapse
Affiliation(s)
- Xin Wen
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China
| | - Yidi Peng
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, 214000, China
| | - Yuefeng Peng
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China
| | - Yuzhong Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China
| | - Fan Yu
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China
| | - Li Geng
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China
| | - Tingting Zhou
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China
| | - Xianfeng Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China
| | - Lei Feng
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China
| | - Qingyou Meng
- Department of Vascular Surgery, General Surgery Clinical Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
7
|
Ghatage T, Singh S, Mandal K, Dhar A. MasR and pGCA receptor activation protects primary vascular smooth muscle cells and endothelial cells against oxidative stress via inhibition of intracellular calcium. J Cell Biochem 2023. [PMID: 37210727 DOI: 10.1002/jcb.30422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/05/2023] [Accepted: 04/25/2023] [Indexed: 05/23/2023]
Abstract
Cardiovascular diseases (CVDs) are associated with vascular smooth muscle cell (VSMC) and endothelial cell (EC) damage. Angiotensin1-7 (Ang1-7) and B-type natriuretic peptide (BNP) are responsible for vasodilation and regulation of blood flow. These protective effects of BNP are primarily mediated by the activation of sGCs/cGMP/cGKI pathway. Conversely, Ang1-7 inhibits Angiotensin II-induced contraction and oxidative stress via Mas receptor activation. Thus, the aim of the study was to determine the effect of co-activation of MasR and particulate guanylate cyclase receptor (pGCA) pathways by synthesized novel peptide (NP) in oxidative stress-induced VSMCs and ECs. MTT and Griess reagent assay kits were used for the standardization of the oxidative stress (H2 O2 ) induced model in VSMCs. The expression of targeted receptors in VSMC was done by RT-PCR and Western blot analysis. Protective effect of NP in VSMC and EC was determined by immunocytochemistry, FACS analysis, and Western blot analysis. Underlying mechanisms of EC-dependent VSMC relaxation were done by determining downstream mRNA gene expression and intracellular calcium imaging of cells. Synthesized NP significantly improved oxidative stress-induced injury in VSMCs. Remarkably, the actions of NP were superior to that of the Ang1-7 and BNP alone. Further, a mechanistic study in VSMC and EC suggested the involvement of upstream mediators of calcium inhibition for the therapeutic effect. NP is reported to possess vascular protective activities and is also involved in the improvement of endothelial damage. Moreover, it is highly effective than that of individual peptides BNP and Ang1-7 and therefore it may represent a promising strategy for CVDs.
Collapse
Affiliation(s)
- Trupti Ghatage
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana, India
| | - Sameer Singh
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad, India
| | - Kalyaneswar Mandal
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad, India
| | - Arti Dhar
- Department of Pharmacy, Birla Institute of Technology and Sciences (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana, India
| |
Collapse
|
8
|
Amponsah-Offeh M, Diaba-Nuhoho P, Speier S, Morawietz H. Oxidative Stress, Antioxidants and Hypertension. Antioxidants (Basel) 2023; 12:281. [PMID: 36829839 PMCID: PMC9952760 DOI: 10.3390/antiox12020281] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023] Open
Abstract
As a major cause of morbidity and mortality globally, hypertension remains a serious threat to global public health. Despite the availability of many antihypertensive medications, several hypertensive individuals are resistant to standard treatments, and are unable to control their blood pressure. Regulation of the renin-angiotensin-aldosterone system (RAAS) controlling blood pressure, activation of the immune system triggering inflammation and production of reactive oxygen species, leading to oxidative stress and redox-sensitive signaling, have been implicated in the pathogenesis of hypertension. Thus, besides standard antihypertensive medications, which lower arterial pressure, antioxidant medications were tested to improve antihypertensive treatment. We review and discuss the role of oxidative stress in the pathophysiology of hypertension and the potential use of antioxidants in the management of hypertension and its associated organ damage.
Collapse
Affiliation(s)
- Michael Amponsah-Offeh
- Institute of Physiology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
- Department of Cardiovascular Research, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Patrick Diaba-Nuhoho
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
- Department of Paediatric and Adolescent Medicine, Paediatric Haematology and Oncology, University Hospital Münster, 48149 Münster, Germany
| | - Stephan Speier
- Institute of Physiology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Zentrum München at University Clinic Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
- German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| | - Henning Morawietz
- Division of Vascular Endothelium and Microcirculation, Department of Medicine III, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
9
|
Ye C, Zheng F, Wu N, Zhu GQ, Li XZ. Extracellular vesicles in vascular remodeling. Acta Pharmacol Sin 2022; 43:2191-2201. [PMID: 35022541 PMCID: PMC9433397 DOI: 10.1038/s41401-021-00846-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022]
Abstract
Vascular remodeling contributes to the development of a variety of vascular diseases including hypertension and atherosclerosis. Phenotypic transformation of vascular cells, oxidative stress, inflammation and vascular calcification are closely associated with vascular remodeling. Extracellular vesicles (EVs) are naturally released from almost all types of cells and can be detected in nearly all body fluids including blood and urine. EVs affect vascular oxidative stress, inflammation, calcification, and lipid plaque formation; and thereby impact vascular remodeling in a variety of cardiovascular diseases. EVs may be used as biomarkers for diagnosis and prognosis, and therapeutic strategies for vascular remodeling and cardiovascular diseases. This review includes a comprehensive analysis of the roles of EVs in the vascular remodeling in vascular diseases, and the prospects of EVs in the diagnosis and treatment of vascular diseases.
Collapse
Affiliation(s)
- Chao Ye
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Physiology, Nanjing Medical University, Nanjing, 210029, China
| | - Fen Zheng
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Physiology, Nanjing Medical University, Nanjing, 210029, China
| | - Nan Wu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Physiology, Nanjing Medical University, Nanjing, 210029, China
| | - Guo-Qing Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Department of Physiology, Nanjing Medical University, Nanjing, 210029, China.
| | - Xiu-Zhen Li
- Department of Cardiology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
10
|
Hosohata K, Harnsirikarn T, Chokesuwattanaskul S. Ferroptosis: A Potential Therapeutic Target in Acute Kidney Injury. Int J Mol Sci 2022; 23:ijms23126583. [PMID: 35743026 PMCID: PMC9223765 DOI: 10.3390/ijms23126583] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/09/2022] [Indexed: 12/11/2022] Open
Abstract
Ferroptosis is a recently recognized form of nonapoptotic cell death that is triggered by reactive oxidative species (ROS) due to iron overload, lipid peroxidation accumulation, or the inhibition of phospholipid hydroperoxidase glutathione peroxidase 4 (GPX4). Recent studies have reported that ferroptosis plays a vital role in the pathophysiological process of multiple systems such as the nervous, renal, and pulmonary systems. In particular, the kidney has higher rates of O2 consumption in its mitochondria than other organs; therefore, it is susceptible to imbalances between ROS and antioxidants. In ischemia/reperfusion (I/R) injury, which is damage caused by the restoring blood flow to ischemic tissues, the release of ROS and reactive nitrogen species is accelerated and contributes to subsequent inflammation and cell death, such as ferroptosis, as well as apoptosis and necrosis being induced. At the same time, I/R injury is one of the major causes of acute kidney injury (AKI), causing significant morbidity and mortality. This review highlights the current knowledge on the involvement of ferroptosis in AKI via oxidative stress.
Collapse
Affiliation(s)
- Keiko Hosohata
- Education and Research Center for Clinical Pharmacy, Osaka Medical and Pharmaceutical University, Osaka 569-1094, Japan
- Correspondence: ; Tel.: +81-72-690-1271
| | - Tanisorn Harnsirikarn
- Division of Nephrology, Department of Internal Medicine, Bhumibol Adulyadej Hospital, Royal Thai Air Force, Bangkok 10220, Thailand;
| | | |
Collapse
|
11
|
Liang S, Yegambaram M, Wang T, Wang J, Black SM, Tang H. Mitochondrial Metabolism, Redox, and Calcium Homeostasis in Pulmonary Arterial Hypertension. Biomedicines 2022; 10:biomedicines10020341. [PMID: 35203550 PMCID: PMC8961787 DOI: 10.3390/biomedicines10020341] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 02/06/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive disease characterized by elevated pulmonary arterial pressure due to increased pulmonary vascular resistance, secondary to sustained pulmonary vasoconstriction and excessive obliterative pulmonary vascular remodeling. Work over the last decade has led to the identification of a critical role for metabolic reprogramming in the PAH pathogenesis. It is becoming clear that in addition to its role in ATP generation, the mitochondrion is an important organelle that regulates complex and integrative metabolic- and signal transduction pathways. This review focuses on mitochondrial metabolism alterations that occur in deranged pulmonary vessels and the right ventricle, including abnormalities in glycolysis and glucose oxidation, fatty acid oxidation, glutaminolysis, redox homeostasis, as well as iron and calcium metabolism. Further understanding of these mitochondrial metabolic mechanisms could provide viable therapeutic approaches for PAH patients.
Collapse
Affiliation(s)
- Shuxin Liang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; (S.L.); (J.W.)
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Manivannan Yegambaram
- Center for Translational Science, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA; (M.Y.); (T.W.)
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Port St. Lucie, FL 34987, USA
| | - Ting Wang
- Center for Translational Science, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA; (M.Y.); (T.W.)
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Port St. Lucie, FL 34987, USA
| | - Jian Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; (S.L.); (J.W.)
| | - Stephen M. Black
- Center for Translational Science, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA; (M.Y.); (T.W.)
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Port St. Lucie, FL 34987, USA
- Department of Cellular Biology & Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Port St. Lucie, FL 34987, USA
- Correspondence: (S.M.B.); (H.T.)
| | - Haiyang Tang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangdong Key Laboratory of Vascular Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; (S.L.); (J.W.)
- Correspondence: (S.M.B.); (H.T.)
| |
Collapse
|
12
|
Li XC, Wang CH, Leite APO, Zhuo JL. Intratubular, Intracellular, and Mitochondrial Angiotensin II/AT 1 (AT1a) Receptor/NHE3 Signaling Plays a Critical Role in Angiotensin II-Induced Hypertension and Kidney Injury. Front Physiol 2021; 12:702797. [PMID: 34408663 PMCID: PMC8364949 DOI: 10.3389/fphys.2021.702797] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022] Open
Abstract
Hypertension is well recognized to be the most important risk factor for cardiovascular diseases, stroke, and end-stage kidney failure. A quarter of the world’s adult populations and 46% of the US adults develop hypertension and currently require antihypertensive treatments. Only 50% of hypertensive patients are responsive to current antihypertensive drugs, whereas remaining patients may continue to develop cardiovascular, stroke, and kidney diseases. The mechanisms underlying the poorly controlled hypertension remain incompletely understood. Recently, we have focused our efforts to uncover additional renal mechanisms, pathways, and therapeutic targets of poorly controlled hypertension and target organ injury using novel animal models or innovative experimental approaches. Specifically, we studied and elucidated the important roles of intratubular, intracellular, and mitochondrial angiotensin II (Ang II) system in the development of Ang II-dependent hypertension. The objectives of this invited article are to review and discuss our recent findings that (a) circulating and intratubular Ang II is taken up by the proximal tubules via the (AT1) AT1a receptor-dependent mechanism, (b) intracellular administration of Ang II in proximal tubule cells or adenovirus-mediated overexpression of an intracellular Ang II fusion protein selectively in the mitochonria of the proximal tubules induces blood pressure responses, and (c) genetic deletion of AT1 (AT1a) receptors or the Na+/H+ exchanger 3 selectively in the proximal tubules decreases basal blood pressure and attenuates Ang II-induced hypertension. These studies provide a new perspective into the important roles of the intratubular, intracellular, and mitochondrial angiotensin II/AT1 (AT1a) receptor signaling in Ang II-dependent hypertensive kidney diseases.
Collapse
Affiliation(s)
- Xiao Chun Li
- Tulane Hypertension and Renal Center of Excellence, Department of Physiology, Tulane University School of Medicine,New Orleans, LA, United States
| | - Chih-Hong Wang
- Tulane Hypertension and Renal Center of Excellence, Department of Physiology, Tulane University School of Medicine,New Orleans, LA, United States
| | - Ana Paula Oliveira Leite
- Tulane Hypertension and Renal Center of Excellence, Department of Physiology, Tulane University School of Medicine,New Orleans, LA, United States
| | - Jia Long Zhuo
- Tulane Hypertension and Renal Center of Excellence, Department of Physiology, Tulane University School of Medicine,New Orleans, LA, United States
| |
Collapse
|
13
|
Luo M, Cao C, Niebauer J, Yan J, Ma X, Chang Q, Zhang T, Huang X, Liu G. Effects of different intensities of continuous training on vascular inflammation and oxidative stress in spontaneously hypertensive rats. J Cell Mol Med 2021; 25:8522-8536. [PMID: 34331512 PMCID: PMC8419160 DOI: 10.1111/jcmm.16813] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 12/17/2022] Open
Abstract
We aimed to study the effects and underlying mechanism of different intensities of continuous training (CT) on vascular inflammation and oxidative stress in spontaneously hypertensive rats (SHR). Rats were divided into five groups (n = 12): Wistar‐Kyoto rats sedentary group (WKY‐S), sedentary group (SHR‐S), low‐intensity CT group (SHR‐L), medium‐intensity CT group (SHR‐M) and high‐intensity CT group (SHR‐H). Changes in body mass, heart rate and blood pressure were recorded. The rats were euthanized after 14 weeks, and blood and vascular tissue samples were collected. Haematoxylin and Eosin staining was used to observe the aortic morphology, and Western blot was used to detect the expression of mesenteric artery proteins. After CT, the mean arterial pressures improved in SHR‐L and SHR‐M and increased in SHR‐H compared with those in SHR‐S. Vascular inflammation and oxidative stress levels significantly subsided in SHR‐L and SHR‐M (p < 0.05), whereas in SHR‐H, only vascular inflammation significantly subsided (p < 0.05), and oxidative stress remained unchanged (p > 0.05). AMPK and SIRT1/3 expressions in SHR‐L and SHR‐M were significantly up‐regulated than those in SHR‐S (p < 0.05). These results indicated that low‐ and medium‐intensity CT can effectively reduce the inflammatory response and oxidative stress of SHR vascular tissue, and high‐intensity CT can improve vascular tissue inflammation but not oxidative stress.
Collapse
Affiliation(s)
- Minghao Luo
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chunmei Cao
- Division of Sports Science and Physical Education, Tsinghua University, Beijing, China
| | - Josef Niebauer
- University Institute of Sports Medicine, Prevention and Rehabilitation, Paracelsus Medical University, Salzburg, Austria
| | - Jianghong Yan
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Xindong Ma
- Division of Sports Science and Physical Education, Tsinghua University, Beijing, China
| | - Qing Chang
- The College of Exercise Medicine, Chongqing Medical University, Chongqing, China
| | - Ting Zhang
- The Fifth Affiliated Hospital of Sun Yat-sen University, Guangdong, China
| | - Xiaoxiao Huang
- The College of Exercise Medicine, Chongqing Medical University, Chongqing, China
| | - Guochun Liu
- The College of Exercise Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
14
|
Vascular consequences of inflammation: a position statement from the ESH Working Group on Vascular Structure and Function and the ARTERY Society. J Hypertens 2021; 38:1682-1698. [PMID: 32649623 DOI: 10.1097/hjh.0000000000002508] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
: Inflammation is a physiological response to aggression of pathogenic agents aimed at eliminating the aggressor agent and promoting healing. Excessive inflammation, however, may contribute to tissue damage and an alteration of arterial structure and function. Increased arterial stiffness is a well recognized cardiovascular risk factor independent of blood pressure levels and an intermediate endpoint for cardiovascular events. In the present review, we discuss immune-mediated mechanisms by which inflammation can influence arterial physiology and lead to vascular dysfunction such as atherosclerosis and arterial stiffening. We also show that acute inflammation predisposes the vasculature to arterial dysfunction and stiffening, and alteration of endothelial function and that chronic inflammatory diseases such as rheumatoid arthritis, inflammatory bowel disease and psoriasis are accompanied by profound arterial dysfunction which is proportional to the severity of inflammation. Current findings suggest that treatment of inflammation by targeted drugs leads to regression of arterial dysfunction. There is hope that these treatments will improve outcomes for patients.
Collapse
|
15
|
Zhou H, Li J, Sun F, Wang F, Li M, Dong Y, Fan H, Hu D. A Review on Recent Advances in Aloperine Research: Pharmacological Activities and Underlying Biological Mechanisms. Front Pharmacol 2021; 11:538137. [PMID: 33536900 PMCID: PMC7849205 DOI: 10.3389/fphar.2020.538137] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022] Open
Abstract
Aloperine, a quinolizidine-type alkaloid, was first isolated from the seeds and leaves of herbal plant, Sophora alopecuroides L. Empirically, Sophora alopecuroides L. is appreciated for its anti-dysentry effect, a property that is commonly observed in other Sophora Genus phytomedicines. Following the rationale of reductionism, subsequent biochemical analyses attribute such anti-dysentry effect to the bactericidal activity of aloperine. From then on, the multiple roles of aloperine are gradually revealed. Accumulating evidence suggests that aloperine possesses multiple pharmacological activities and holds a promising potential in clinical conditions including skin hyper-sensitivity, tumor and inflammatory disorders etc.; however, the current knowledge on aloperine is interspersed and needs to be summarized. To facilitate further investigation, herein, we conclude the key pharmacological functions of aloperine, and most importantly, the underlying cellular and molecular mechanisms are clarified in detail to explain the functional mode of aloperine.
Collapse
Affiliation(s)
- Haifeng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junyi Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Sun
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Faxi Wang
- The Center for Biomedical Research, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingyue Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yalan Dong
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Diaconu R, Donoiu I, Mirea O, Bălşeanu TA. Testosterone, cardiomyopathies, and heart failure: a narrative review. Asian J Androl 2021; 23:348-356. [PMID: 33433530 PMCID: PMC8269837 DOI: 10.4103/aja.aja_80_20] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Testosterone exerts an important regulation of cardiovascular function through genomic and nongenomic pathways. It produces several changes in cardiomyocytes, the main actor of cardiomyopathies, which are characterized by pathological remodeling, eventually leading to heart failure. Testosterone is involved in contractility, in the energy metabolism of myocardial cells, apoptosis, and the remodeling process. In myocarditis, testosterone directly promotes the type of inflammation that leads to fibrosis, and influences viremia with virus localization. At the same time, testosterone exerts cardioprotective effects that have been observed in different studies. There is increasing evidence that low endogenous levels of testosterone have a negative impact in some cardiomyopathies and a protective impact in others. This review focuses on the interrelationships between testosterone and cardiomyopathies and heart failure.
Collapse
Affiliation(s)
- Rodica Diaconu
- Department of Cardiology, University of Medicine and Pharmacy, Craiova 200349, Romania
| | - Ionuţ Donoiu
- Department of Cardiology, University of Medicine and Pharmacy, Craiova 200349, Romania
| | - Oana Mirea
- Department of Cardiology, University of Medicine and Pharmacy, Craiova 200349, Romania
| | - Tudor Adrian Bălşeanu
- Department of Physiology, University of Medicine and Pharmacy, Craiova 200349, Romania
| |
Collapse
|
17
|
Barancik M, Kura B, LeBaron TW, Bolli R, Buday J, Slezak J. Molecular and Cellular Mechanisms Associated with Effects of Molecular Hydrogen in Cardiovascular and Central Nervous Systems. Antioxidants (Basel) 2020; 9:antiox9121281. [PMID: 33333951 PMCID: PMC7765453 DOI: 10.3390/antiox9121281] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/12/2020] [Accepted: 12/13/2020] [Indexed: 02/06/2023] Open
Abstract
The increased production of reactive oxygen species and oxidative stress are important factors contributing to the development of diseases of the cardiovascular and central nervous systems. Molecular hydrogen is recognized as an emerging therapeutic, and its positive effects in the treatment of pathologies have been documented in both experimental and clinical studies. The therapeutic potential of hydrogen is attributed to several major molecular mechanisms. This review focuses on the effects of hydrogen on the cardiovascular and central nervous systems, and summarizes current knowledge about its actions, including the regulation of redox and intracellular signaling, alterations in gene expressions, and modulation of cellular responses (e.g., autophagy, apoptosis, and tissue remodeling). We summarize the functions of hydrogen as a regulator of nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated redox signaling and the association of hydrogen with mitochondria as an important target of its therapeutic action. The antioxidant functions of hydrogen are closely associated with protein kinase signaling pathways, and we discuss possible roles of the phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) and Wnt/β-catenin pathways, which are mediated through glycogen synthase kinase 3β and its involvement in the regulation of cellular apoptosis. Additionally, current knowledge about the role of molecular hydrogen in the modulation of autophagy and matrix metalloproteinases-mediated tissue remodeling, which are other responses to cellular stress, is summarized in this review.
Collapse
Affiliation(s)
- Miroslav Barancik
- Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; (M.B.); (B.K.); (T.W.L.)
| | - Branislav Kura
- Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; (M.B.); (B.K.); (T.W.L.)
- Faculty of Medicine, Institute of Physiology, Comenius University in Bratislava, 84215 Bratislava, Slovakia
| | - Tyler W. LeBaron
- Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; (M.B.); (B.K.); (T.W.L.)
- Molecular Hydrogen Institute, Enoch, UT 84721, USA
- Department of Kinesiology and Outdoor Recreation, Southern Utah University, Cedar City, UT 84720, USA
| | - Roberto Bolli
- Department of Medicine, Institute of Molecular Cardiology, University of Louisville, Louisville, KY 40292, USA;
| | - Jozef Buday
- Department of Psychiatry, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, 12108 Prague, Czech Republic;
| | - Jan Slezak
- Centre of Experimental Medicine, Slovak Academy of Sciences, 84104 Bratislava, Slovakia; (M.B.); (B.K.); (T.W.L.)
- Correspondence: ; Tel.: +42-19-03-620-181
| |
Collapse
|
18
|
Anagnostopoulou A, Camargo LL, Rodrigues D, Montezano AC, Touyz RM. Importance of cholesterol-rich microdomains in the regulation of Nox isoforms and redox signaling in human vascular smooth muscle cells. Sci Rep 2020; 10:17818. [PMID: 33082354 PMCID: PMC7575553 DOI: 10.1038/s41598-020-73751-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 09/15/2020] [Indexed: 12/20/2022] Open
Abstract
Vascular smooth muscle cell (VSMC) function is regulated by Nox-derived reactive oxygen species (ROS) and redox-dependent signaling in discrete cellular compartments. Whether cholesterol-rich microdomains (lipid rafts/caveolae) are involved in these processes is unclear. Here we examined the sub-cellular compartmentalization of Nox isoforms in lipid rafts/caveolae and assessed the role of these microdomains in VSMC ROS production and pro-contractile and growth signaling. Intact small arteries and primary VSMCs from humans were studied. Vessels from Cav-1-/- mice were used to test proof of concept. Human VSMCs express Nox1, Nox4, Nox5 and Cav-1. Cell fractionation studies showed that Nox1 and Nox5 but not Nox4, localize in cholesterol-rich fractions in VSMCs. Angiotensin II (Ang II) stimulation induced trafficking into and out of lipid rafts/caveolae for Nox1 and Nox5 respectively. Co-immunoprecipitation studies showed interactions between Cav-1/Nox1 but not Cav-1/Nox5. Lipid raft/caveolae disruptors (methyl-β-cyclodextrin (MCD) and Nystatin) and Ang II stimulation variably increased O2- generation and phosphorylation of MLC20, Ezrin-Radixin-Moesin (ERM) and p53 but not ERK1/2, effects recapitulated in Cav-1 silenced (siRNA) VSMCs. Nox inhibition prevented Ang II-induced phosphorylation of signaling molecules, specifically, ERK1/2 phosphorylation was attenuated by mellitin (Nox5 inhibitor) and Nox5 siRNA, while p53 phosphorylation was inhibited by NoxA1ds (Nox1 inhibitor). Ang II increased oxidation of DJ1, dual anti-oxidant and signaling molecule, through lipid raft/caveolae-dependent processes. Vessels from Cav-1-/- mice exhibited increased O2- generation and phosphorylation of ERM. We identify an important role for lipid rafts/caveolae that act as signaling platforms for Nox1 and Nox5 but not Nox4, in human VSMCs. Disruption of these microdomains promotes oxidative stress and Nox isoform-specific redox signalling important in vascular dysfunction associated with cardiovascular diseases.
Collapse
Affiliation(s)
- Aikaterini Anagnostopoulou
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK
| | - Livia L Camargo
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK
| | - Daniel Rodrigues
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK
| | - Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow, G12 8TA, UK.
| |
Collapse
|
19
|
Marqués J, Cortés A, Pejenaute Á, Zalba G. Implications of NADPH oxidase 5 in vascular diseases. Int J Biochem Cell Biol 2020; 128:105851. [PMID: 32949687 DOI: 10.1016/j.biocel.2020.105851] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 12/30/2022]
Abstract
Oxidative stress is one of the main mechanisms involved in the pathophysiology of vascular diseases. Among others, oxidative stress promotes endothelial dysfunction, and accelerated ageing and remodelling of vasculature. Lately, NADPH oxidases have been demonstrated to be involved in cardiovascular diseases. NADPH oxidase 5 has emerged as a new player in oxidative stress-mediated endothelial alterations, involved in the pathophysiology of hypertension, diabetes, atherosclerosis, myocardial infarction and stroke. This oxidase seems to mediate its detrimental effects by promoting inflammation. NADPH oxidase 5 has been studied in a lesser extent compared with the other members of the NADPH oxidase family due to its loss in the rodent genome, the main experimental research model. In addition, its potential as a therapeutic target remains unexplored given the lack of specific inhibitors. In this review the latest findings on NADPH oxidase 5 regulation, implications in vascular pathophysiology and therapeutic approaches will be updated.
Collapse
Affiliation(s)
- Javier Marqués
- Department of Biochemistry and Genetics, University of Navarra, Pamplona Spain; Navarra Institute for Health Research (IdiSNA), Pamplona Spain
| | - Adriana Cortés
- Department of Biochemistry and Genetics, University of Navarra, Pamplona Spain; Navarra Institute for Health Research (IdiSNA), Pamplona Spain
| | - Álvaro Pejenaute
- Department of Biochemistry and Genetics, University of Navarra, Pamplona Spain; Navarra Institute for Health Research (IdiSNA), Pamplona Spain
| | - Guillermo Zalba
- Department of Biochemistry and Genetics, University of Navarra, Pamplona Spain; Navarra Institute for Health Research (IdiSNA), Pamplona Spain.
| |
Collapse
|
20
|
Lee HY, Kim HK, Hoang TH, Yang S, Kim HR, Chae HJ. The correlation of IRE1α oxidation with Nox4 activation in aging-associated vascular dysfunction. Redox Biol 2020; 37:101727. [PMID: 33010578 PMCID: PMC7530295 DOI: 10.1016/j.redox.2020.101727] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress attributable to the activation of a Nox4-containing NADPH oxidase is involved in aging-associated vascular dysfunction. However, the Nox4-induced signaling mechanism for the vascular alteration in aging remains unclear. In an aged aorta, the expression of Nox4 mRNA and protein by Nox family of genes was markedly increased compared with a young aorta. Nox4 localization mainly to ER was also established. In the aorta of Nox4 WT mice aged 23–24 months (aged), reactive oxygen species (ROS) and endoplasmic reticulum (ER)/oxidative stress were markedly increased compared with the counter KO mice. Furthermore, endothelial functions including eNOS coupling process and acetylcholine-induced vasodilation were significantly disturbed in the aged WT, slightly affected in the counter KO aorta. Consistently, in d-galactose-induced in vitro aging condition, ER-ROS and its associated ER Nox4 expression and activity were highly increased. Also, in chronic d-galactose-treated condition, IRE1α phosphorylation and XBP-1 splicing and were transiently increased, but IRE1α sulfonation was robustly increased in the aging Nox4 WT condition when compared to the counter KO condition. In vitro D-gal-induced aging study, the phenomenon were abrogated with Nox4 knock-down condition and was significantly decreased in GKT, Nox4 inhibitor and 4-PBA, ER chemical chaperone-treated human umbilical vein endothelial cells. The state of Nox4-based ER redox imbalance/ROS accumulation is suggested to determine the pathway “the UPR; IRE1α phosphorylation and XBP-1 splicing and the UPR failure; IRE1α cysteine-based oxidation, especially sulfonation, finally controlling aging-associated vascular dysfunction.
Collapse
Affiliation(s)
- Hwa-Young Lee
- Department of Pharmacology and Institute of New Drug Development, Jeonbuk National University Medical School, Jeonju, Jeonbuk, 54907, Republic of Korea; Non-Clinical Evaluation Center Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Jeonbuk, 54907, South Korea
| | - Hyun-Kyoung Kim
- School of Pharmacy, Jeonbuk National University, Jeonju, Jeonbuk, 54907, Republic of Korea
| | - The-Hiep Hoang
- Department of Pharmacology and Institute of New Drug Development, Jeonbuk National University Medical School, Jeonju, Jeonbuk, 54907, Republic of Korea; Non-Clinical Evaluation Center Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Jeonbuk, 54907, South Korea
| | - Siyoung Yang
- Department of Pharmacology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea
| | - Hyung-Ryong Kim
- College of Dentistry, Dankook University, Cheonan, 152, Republic of Korea
| | - Han-Jung Chae
- Non-Clinical Evaluation Center Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Jeonbuk, 54907, South Korea; School of Pharmacy, Jeonbuk National University, Jeonju, Jeonbuk, 54907, Republic of Korea.
| |
Collapse
|
21
|
Sweeny EA, Schlanger S, Stuehr DJ. Dynamic regulation of NADPH oxidase 5 by intracellular heme levels and cellular chaperones. Redox Biol 2020; 36:101656. [PMID: 32738790 PMCID: PMC7394750 DOI: 10.1016/j.redox.2020.101656] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/13/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022] Open
Abstract
NADPH oxidase 5 (NOX5) is a transmembrane signaling enzyme that produces superoxide in response to elevated cytosolic calcium. In addition to its association with numerous human diseases, NOX5 has recently been discovered to play crucial roles in the immune response and cardiovascular system. Details of NOX5 maturation, and specifically its response to changes in intracellular heme levels have remained unclear. Here we establish an experimental system in mammalian cells that allows us to probe the influence of heme availability on ROS production by NOX5. We identified a mode of dynamic regulatory control over NOX5 activity through modulation of its heme saturation and oligomeric state by intracellular heme levels and Hsp90 binding. This regulatory mechanism allows for fine-tuning and reversible modulation of NOX5 activity in response to stimuli.
Collapse
Affiliation(s)
- Elizabeth A Sweeny
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA.
| | - Simon Schlanger
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Dennis J Stuehr
- Department of Inflammation and Immunity, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH, 44195, USA.
| |
Collapse
|
22
|
Zhao GJ, Zhao CL, Ouyang S, Deng KQ, Zhu L, Montezano AC, Zhang C, Hu F, Zhu XY, Tian S, Liu X, Ji YX, Zhang P, Zhang XJ, She ZG, Touyz RM, Li H. Ca 2+-Dependent NOX5 (NADPH Oxidase 5) Exaggerates Cardiac Hypertrophy Through Reactive Oxygen Species Production. Hypertension 2020; 76:827-838. [PMID: 32683902 DOI: 10.1161/hypertensionaha.120.15558] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
NOX5 (NADPH oxidase 5) is a homolog of the gp91phox subunit of the phagocyte NOX, which generates reactive oxygen species. NOX5 is involved in sperm motility and vascular contraction and has been implicated in diabetic nephropathy, atherosclerosis, and stroke. The function of NOX5 in the cardiac hypertrophy is unknown. Because NOX5 is a Ca2+-sensitive, procontractile NOX isoform, we questioned whether it plays a role in cardiac hypertrophy. Studies were performed in (1) cardiac tissue from patients undergoing heart transplant for cardiomyopathy and heart failure, (2) NOX5-expressing rat cardiomyocytes, and (3) mice expressing human NOX5 in a cardiomyocyte-specific manner. Cardiac hypertrophy was induced in mice by transverse aorta coarctation and Ang II (angiotensin II) infusion. NOX5 expression was increased in human failing hearts. Rat cardiomyocytes infected with adenoviral vector encoding human NOX5 cDNA exhibited elevated reactive oxygen species levels with significant enlargement and associated increased expression of ANP (atrial natriuretic peptides) and β-MHC (β-myosin heavy chain) and prohypertrophic genes (Nppa, Nppb, and Myh7) under Ang II stimulation. These effects were reduced by N-acetylcysteine and diltiazem. Pressure overload and Ang II infusion induced left ventricular hypertrophy, interstitial fibrosis, and contractile dysfunction, responses that were exaggerated in cardiac-specific NOX5 trangenic mice. These phenomena were associated with increased reactive oxygen species levels and activation of redox-sensitive MAPK (mitogen-activated protein kinase). N-acetylcysteine treatment reduced cardiac oxidative stress and attenuated cardiac hypertrophy in NOX5 trangenic. Our study defines Ca2+-regulated NOX5 as an important NOX isoform involved in oxidative stress- and MAPK-mediated cardiac hypertrophy and contractile dysfunction.
Collapse
Affiliation(s)
- Guo-Jun Zhao
- From the Department of Cardiology, Renmin Hospital of Wuhan University, China (G.-J.Z., C.-L.Z., L.-H.Z., C.Z., X.-Y.Z., S.T., X.-J.Z., Z.-G.S., H.L.).,Institute of Model Animal of Wuhan University, China (G.-J.Z., C.-L.Z., S.O., K.-Q.D., L.-H.Z., C.Z., F.H., X.-.Z., S.T., X.L., Y.-X.J., P.Z., X.-J.Z., Z.-G.S., H.L.)
| | - Chang-Ling Zhao
- From the Department of Cardiology, Renmin Hospital of Wuhan University, China (G.-J.Z., C.-L.Z., L.-H.Z., C.Z., X.-Y.Z., S.T., X.-J.Z., Z.-G.S., H.L.).,Institute of Model Animal of Wuhan University, China (G.-J.Z., C.-L.Z., S.O., K.-Q.D., L.-H.Z., C.Z., F.H., X.-.Z., S.T., X.L., Y.-X.J., P.Z., X.-J.Z., Z.-G.S., H.L.)
| | - Shan Ouyang
- Institute of Model Animal of Wuhan University, China (G.-J.Z., C.-L.Z., S.O., K.-Q.D., L.-H.Z., C.Z., F.H., X.-.Z., S.T., X.L., Y.-X.J., P.Z., X.-J.Z., Z.-G.S., H.L.).,Basic Medical School, Wuhan University, China (S.O., H.L.)
| | - Ke-Qiong Deng
- Institute of Model Animal of Wuhan University, China (G.-J.Z., C.-L.Z., S.O., K.-Q.D., L.-H.Z., C.Z., F.H., X.-.Z., S.T., X.L., Y.-X.J., P.Z., X.-J.Z., Z.-G.S., H.L.).,Department of Cardiology (K.-Q.D.), Zhongnan Hospital of Wuhan University, China
| | - Lihua Zhu
- From the Department of Cardiology, Renmin Hospital of Wuhan University, China (G.-J.Z., C.-L.Z., L.-H.Z., C.Z., X.-Y.Z., S.T., X.-J.Z., Z.-G.S., H.L.).,Institute of Model Animal of Wuhan University, China (G.-J.Z., C.-L.Z., S.O., K.-Q.D., L.-H.Z., C.Z., F.H., X.-.Z., S.T., X.L., Y.-X.J., P.Z., X.-J.Z., Z.-G.S., H.L.)
| | - Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Centre, University of Glasgow, United Kingdom (A.C.M., R.M.T.)
| | - Changjiang Zhang
- From the Department of Cardiology, Renmin Hospital of Wuhan University, China (G.-J.Z., C.-L.Z., L.-H.Z., C.Z., X.-Y.Z., S.T., X.-J.Z., Z.-G.S., H.L.).,Institute of Model Animal of Wuhan University, China (G.-J.Z., C.-L.Z., S.O., K.-Q.D., L.-H.Z., C.Z., F.H., X.-.Z., S.T., X.L., Y.-X.J., P.Z., X.-J.Z., Z.-G.S., H.L.)
| | - Fengjiao Hu
- Institute of Model Animal of Wuhan University, China (G.-J.Z., C.-L.Z., S.O., K.-Q.D., L.-H.Z., C.Z., F.H., X.-.Z., S.T., X.L., Y.-X.J., P.Z., X.-J.Z., Z.-G.S., H.L.).,Medical Science Research Center (F.H., X.L., Y.-X.J., P.Z., H.L.), Zhongnan Hospital of Wuhan University, China
| | - Xue-Yong Zhu
- From the Department of Cardiology, Renmin Hospital of Wuhan University, China (G.-J.Z., C.-L.Z., L.-H.Z., C.Z., X.-Y.Z., S.T., X.-J.Z., Z.-G.S., H.L.)
| | - Song Tian
- Institute of Model Animal of Wuhan University, China (G.-J.Z., C.-L.Z., S.O., K.-Q.D., L.-H.Z., C.Z., F.H., X.-.Z., S.T., X.L., Y.-X.J., P.Z., X.-J.Z., Z.-G.S., H.L.)
| | - Xiaolan Liu
- Institute of Model Animal of Wuhan University, China (G.-J.Z., C.-L.Z., S.O., K.-Q.D., L.-H.Z., C.Z., F.H., X.-.Z., S.T., X.L., Y.-X.J., P.Z., X.-J.Z., Z.-G.S., H.L.).,Medical Science Research Center (F.H., X.L., Y.-X.J., P.Z., H.L.), Zhongnan Hospital of Wuhan University, China
| | - Yan-Xiao Ji
- Institute of Model Animal of Wuhan University, China (G.-J.Z., C.-L.Z., S.O., K.-Q.D., L.-H.Z., C.Z., F.H., X.-.Z., S.T., X.L., Y.-X.J., P.Z., X.-J.Z., Z.-G.S., H.L.).,Medical Science Research Center (F.H., X.L., Y.-X.J., P.Z., H.L.), Zhongnan Hospital of Wuhan University, China
| | - Peng Zhang
- Institute of Model Animal of Wuhan University, China (G.-J.Z., C.-L.Z., S.O., K.-Q.D., L.-H.Z., C.Z., F.H., X.-.Z., S.T., X.L., Y.-X.J., P.Z., X.-J.Z., Z.-G.S., H.L.).,Medical Science Research Center (F.H., X.L., Y.-X.J., P.Z., H.L.), Zhongnan Hospital of Wuhan University, China
| | - Xiao-Jing Zhang
- Institute of Model Animal of Wuhan University, China (G.-J.Z., C.-L.Z., S.O., K.-Q.D., L.-H.Z., C.Z., F.H., X.-.Z., S.T., X.L., Y.-X.J., P.Z., X.-J.Z., Z.-G.S., H.L.)
| | - Zhi-Gang She
- From the Department of Cardiology, Renmin Hospital of Wuhan University, China (G.-J.Z., C.-L.Z., L.-H.Z., C.Z., X.-Y.Z., S.T., X.-J.Z., Z.-G.S., H.L.).,Institute of Model Animal of Wuhan University, China (G.-J.Z., C.-L.Z., S.O., K.-Q.D., L.-H.Z., C.Z., F.H., X.-.Z., S.T., X.L., Y.-X.J., P.Z., X.-J.Z., Z.-G.S., H.L.)
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Centre, University of Glasgow, United Kingdom (A.C.M., R.M.T.)
| | - Hongliang Li
- From the Department of Cardiology, Renmin Hospital of Wuhan University, China (G.-J.Z., C.-L.Z., L.-H.Z., C.Z., X.-Y.Z., S.T., X.-J.Z., Z.-G.S., H.L.).,Institute of Model Animal of Wuhan University, China (G.-J.Z., C.-L.Z., S.O., K.-Q.D., L.-H.Z., C.Z., F.H., X.-.Z., S.T., X.L., Y.-X.J., P.Z., X.-J.Z., Z.-G.S., H.L.).,Basic Medical School, Wuhan University, China (S.O., H.L.).,Medical Science Research Center (F.H., X.L., Y.-X.J., P.Z., H.L.), Zhongnan Hospital of Wuhan University, China
| |
Collapse
|
23
|
Endogenous hydrogen sulfide improves vascular remodeling through PPARδ/SOCS3 signaling. J Adv Res 2020; 27:115-125. [PMID: 33318871 PMCID: PMC7728593 DOI: 10.1016/j.jare.2020.06.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/23/2020] [Accepted: 06/08/2020] [Indexed: 12/17/2022] Open
Abstract
Introduction Mounting evidences demonstrated the deficiency of hydrogen sulfide (H2S) facilitated the progression of cardiovascular diseases. However, the exact effects of H2S on vascular remodeling are not consistent. Objectives This study aimed to investigate the beneficial role of endogenous H2S on vascular remodeling. Methods CSE inhibitor, DL-propargylglycine (PPG) was used to treat mice and vascular smooth muscle cells (VSMCs). Sodium hydrosulfide (NaHS) was given to provide hydrogen sulfide. Vascular tension, H&E staining, masson trichrome staining, western blot and CCK8 were used to determine the vascular remodeling, expressions of inflammatory molecules and proliferation of VSMCs. Results The deficiency of endogenous H2S generated vascular remodeling with aggravated active and passive contraction, thicken aortic walls, collagen deposition, increased phosphorylation of STAT3, decreased production of PPARδ and SOCS3 in aortas, which were reversed by NaHS. PPG inhibited expression of PPARδ and SOCS3, stimulated the phosphorylation of STAT3, increased inflammatory molecules production and proliferation rate of VSMCs which could all be corrected by NaHS supply. PPARδ agonist GW501516 offered protections similar to NaHS in PPG treated VSMCs. Aggravated active and passive contraction in PPG mice aortas, upregulated p-STAT3 and inflammatory molecules, downregulated SOCS3 and phenotype transformation in PPG treated VSMCs could be corrected by PPARδ agonist GW501516 treatment. On the contrary, PPARδ antagonist GSK0660 exhibited opposite effects on vascular contraction in aortas, expressions of p-STAT3 and SOCS3 in VSMCs compared with GW501516. Conclusion In a word, endogenous H2S protected against vascular remodeling through preserving PPARδ/SOCS3 anti-inflammatory signaling pathway. Deficiency of endogenous H2S should be considered as a risk factor for VSMCs dysfunction.
Collapse
|
24
|
Harvey AP, Robinson E, Edgar KS, McMullan R, O’Neill KM, Alderdice M, Amirkhah R, Dunne PD, McDermott BJ, Grieve DJ. Downregulation of PPARα during Experimental Left Ventricular Hypertrophy Is Critically Dependent on Nox2 NADPH Oxidase Signalling. Int J Mol Sci 2020; 21:E4406. [PMID: 32575797 PMCID: PMC7352162 DOI: 10.3390/ijms21124406] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/31/2022] Open
Abstract
Pressure overload-induced left ventricular hypertrophy (LVH) is initially adaptive but ultimately promotes systolic dysfunction and chronic heart failure. Whilst underlying pathways are incompletely understood, increased reactive oxygen species generation from Nox2 NADPH oxidases, and metabolic remodelling, largely driven by PPARα downregulation, are separately implicated. Here, we investigated interaction between the two as a key regulator of LVH using in vitro, in vivo and transcriptomic approaches. Phenylephrine-induced H9c2 cardiomyoblast hypertrophy was associated with reduced PPARα expression and increased Nox2 expression and activity. Pressure overload-induced LVH and systolic dysfunction induced in wild-type mice by transverse aortic constriction (TAC) for 7 days, in association with Nox2 upregulation and PPARα downregulation, was enhanced in PPARα-/- mice and prevented in Nox2-/- mice. Detailed transcriptomic analysis revealed significantly altered expression of genes relating to PPARα, oxidative stress and hypertrophy pathways in wild-type hearts, which were unaltered in Nox2-/- hearts, whilst oxidative stress pathways remained dysregulated in PPARα-/- hearts following TAC. Network analysis indicated that Nox2 was essential for PPARα downregulation in this setting and identified preferential inflammatory pathway modulation and candidate cytokines as upstream Nox2-sensitive regulators of PPARα signalling. Together, these data suggest that Nox2 is a critical driver of PPARα downregulation leading to maladaptive LVH.
Collapse
Affiliation(s)
- Adam P. Harvey
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7AE, UK; (A.P.H.); (E.R.); (K.S.E.); (R.M.); (K.M.O.); (B.J.M.)
| | - Emma Robinson
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7AE, UK; (A.P.H.); (E.R.); (K.S.E.); (R.M.); (K.M.O.); (B.J.M.)
| | - Kevin S. Edgar
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7AE, UK; (A.P.H.); (E.R.); (K.S.E.); (R.M.); (K.M.O.); (B.J.M.)
| | - Ross McMullan
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7AE, UK; (A.P.H.); (E.R.); (K.S.E.); (R.M.); (K.M.O.); (B.J.M.)
| | - Karla M. O’Neill
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7AE, UK; (A.P.H.); (E.R.); (K.S.E.); (R.M.); (K.M.O.); (B.J.M.)
| | - Matthew Alderdice
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT7 1NN, UK; (M.A.); (R.A.); (P.D.D.)
| | - Raheleh Amirkhah
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT7 1NN, UK; (M.A.); (R.A.); (P.D.D.)
| | - Philip D. Dunne
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT7 1NN, UK; (M.A.); (R.A.); (P.D.D.)
| | - Barbara J. McDermott
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7AE, UK; (A.P.H.); (E.R.); (K.S.E.); (R.M.); (K.M.O.); (B.J.M.)
| | - David J. Grieve
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast BT9 7AE, UK; (A.P.H.); (E.R.); (K.S.E.); (R.M.); (K.M.O.); (B.J.M.)
| |
Collapse
|
25
|
Li XC, Zhou X, Zhuo JL. Evidence for a Physiological Mitochondrial Angiotensin II System in the Kidney Proximal Tubules: Novel Roles of Mitochondrial Ang II/AT 1a/O 2- and Ang II/AT 2/NO Signaling. Hypertension 2020; 76:121-132. [PMID: 32475319 DOI: 10.1161/hypertensionaha.119.13942] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The present study tested the hypotheses that overexpression of an intracellular Ang II (angiotensin II) fusion protein, mito-ECFP/Ang II, selectively in the mitochondria of mouse proximal tubule cells induces mitochondrial oxidative and glycolytic responses and elevates blood pressure via the Ang II/AT1a receptor/superoxide/NHE3 (the Na+/H+ exchanger 3)-dependent mechanisms. A PT-selective, mitochondria-targeting adenoviral construct encoding Ad-sglt2-mito-ECFP/Ang II was used to test the hypotheses. The expression of mito-ECFP/Ang II was colocalized primarily with Mito-Tracker Red FM in mouse PT cells or with TMRM in kidney PTs. Mito-ECFP/Ang II markedly increased oxygen consumption rate as an index of mitochondrial oxidative response (69.5%; P<0.01) and extracellular acidification rate as an index of mitochondrial glycolytic response (34%; P<0.01). The mito-ECFP/Ang II-induced oxygen consumption rate and extracellular acidification rate responses were blocked by AT1 blocker losartan (P<0.01) and a mitochondria-targeting superoxide scavenger mito-TEMPO (P<0.01). By contrast, the nonselective NO inhibitor L-NAME alone increased, whereas the mitochondria-targeting expression of AT2 receptors (mito-AT2/GFP) attenuated the effects of mito-ECFP/Ang II (P<0.01). In the kidney, overexpression of mito-ECFP/Ang II in the mitochondria of the PTs increased systolic blood pressure 12±3 mm Hg (P<0.01), and the response was attenuated in PT-specific PT-Agtr1a-/- and PT-Nhe3-/- mice (P<0.01). Conversely, overexpression of AT2 receptors selectively in the mitochondria of the PTs induced natriuretic responses in PT-Agtr1a-/- and PT-Nhe3-/- mice (P<0.01). Taken together, these results provide new evidence for a physiological role of PT mitochondrial Ang II/AT1a/superoxide/NHE3 and Ang II/AT2/NO/NHE3 signaling pathways in maintaining blood pressure homeostasis.
Collapse
Affiliation(s)
- Xiao Chun Li
- From the Tulane Hypertension and Renal Center of Excellence (X.C.L., J.L.Z.), Tulane University School of Medicine, New Orleans, LA.,Department of Physiology (X.C.L., J.L.Z.), Tulane University School of Medicine, New Orleans, LA.,Department of Pharmacology and Toxicology (X.C.L., J.L.Z.), University of Mississippi Medical Center, Jackson
| | - Xinchun Zhou
- Department of Pathology (X.Z.), University of Mississippi Medical Center, Jackson
| | - Jia Long Zhuo
- From the Tulane Hypertension and Renal Center of Excellence (X.C.L., J.L.Z.), Tulane University School of Medicine, New Orleans, LA.,Department of Physiology (X.C.L., J.L.Z.), Tulane University School of Medicine, New Orleans, LA.,Department of Pharmacology and Toxicology (X.C.L., J.L.Z.), University of Mississippi Medical Center, Jackson
| |
Collapse
|
26
|
Touyz RM, Rios FJ, Alves-Lopes R, Neves KB, Camargo LL, Montezano AC. Oxidative Stress: A Unifying Paradigm in Hypertension. Can J Cardiol 2020; 36:659-670. [PMID: 32389339 PMCID: PMC7225748 DOI: 10.1016/j.cjca.2020.02.081] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 02/07/2023] Open
Abstract
The etiology of hypertension involves complex interactions among genetic, environmental, and pathophysiologic factors that influence many regulatory systems. Hypertension is characteristically associated with vascular dysfunction, cardiovascular remodelling, renal dysfunction, and stimulation of the sympathetic nervous system. Emerging evidence indicates that the immune system is also important and that activated immune cells migrate and accumulate in tissues promoting inflammation, fibrosis, and target-organ damage. Common to these processes is oxidative stress, defined as an imbalance between oxidants and antioxidants in favour of the oxidants that leads to a disruption of oxidation-reduction (redox) signalling and control and molecular damage. Physiologically, reactive oxygen species (ROS) act as signalling molecules and influence cell function through highly regulated redox-sensitive signal transduction. In hypertension, oxidative stress promotes posttranslational modification (oxidation and phosphorylation) of proteins and aberrant signalling with consequent cell and tissue damage. Many enzymatic systems generate ROS, but NADPH oxidases (Nox) are the major sources in cells of the heart, vessels, kidneys, and immune system. Expression and activity of Nox are increased in hypertension and are the major systems responsible for oxidative stress in cardiovascular disease. Here we provide a unifying concept where oxidative stress is a common mediator underlying pathophysiologic processes in hypertension. We focus on some novel concepts whereby ROS influence vascular function, aldosterone/mineralocorticoid actions, and immunoinflammation, all important processes contributing to the development of hypertension.
Collapse
Affiliation(s)
- Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, Scotland, United Kingdom.
| | - Francisco J Rios
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Rhéure Alves-Lopes
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Karla B Neves
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Livia L Camargo
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, Scotland, United Kingdom
| |
Collapse
|
27
|
Knock GA. NADPH oxidase in the vasculature: Expression, regulation and signalling pathways; role in normal cardiovascular physiology and its dysregulation in hypertension. Free Radic Biol Med 2019; 145:385-427. [PMID: 31585207 DOI: 10.1016/j.freeradbiomed.2019.09.029] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/29/2019] [Accepted: 09/23/2019] [Indexed: 02/06/2023]
Abstract
The last 20-25 years have seen an explosion of interest in the role of NADPH oxidase (NOX) in cardiovascular function and disease. In vascular smooth muscle and endothelium, NOX generates reactive oxygen species (ROS) that act as second messengers, contributing to the control of normal vascular function. NOX activity is altered in response to a variety of stimuli, including G-protein coupled receptor agonists, growth-factors, perfusion pressure, flow and hypoxia. NOX-derived ROS are involved in smooth muscle constriction, endothelium-dependent relaxation and smooth muscle growth, proliferation and migration, thus contributing to the fine-tuning of blood flow, arterial wall thickness and vascular resistance. Through reversible oxidative modification of target proteins, ROS regulate the activity of protein tyrosine phosphatases, kinases, G proteins, ion channels, cytoskeletal proteins and transcription factors. There is now considerable, but somewhat contradictory evidence that NOX contributes to the pathogenesis of hypertension through oxidative stress. Specific NOX isoforms have been implicated in endothelial dysfunction, hyper-contractility and vascular remodelling in various animal models of hypertension, pulmonary hypertension and pulmonary arterial hypertension, but also have potential protective effects, particularly NOX4. This review explores the multiplicity of NOX function in the healthy vasculature and the evidence for and against targeting NOX for antihypertensive therapy.
Collapse
Affiliation(s)
- Greg A Knock
- Dpt. of Inflammation Biology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, UK.
| |
Collapse
|
28
|
Arauna D, Furrianca M, Espinosa-Parrilla Y, Fuentes E, Alarcón M, Palomo I. Natural Bioactive Compounds As Protectors Of Mitochondrial Dysfunction In Cardiovascular Diseases And Aging. Molecules 2019; 24:molecules24234259. [PMID: 31766727 PMCID: PMC6930637 DOI: 10.3390/molecules24234259] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/05/2019] [Accepted: 09/08/2019] [Indexed: 01/04/2023] Open
Abstract
Diet, particularly the Mediterranean diet, has been considered as a protective factor against the development of cardiovascular diseases, the main cause of death in the world. Aging is one of the major risk factors for cardiovascular diseases, which have an oxidative pathophysiological component, being the mitochondria one of the key organelles in the regulation of oxidative stress. Certain natural bioactive compounds have the ability to regulate oxidative phosphorylation, the production of reactive oxygen species and the expression of mitochondrial proteins; but their efficacy within the mitochondrial physiopathology of cardiovascular diseases has not been clarified yet. The following review has the purpose of evaluating several natural compounds with evidence of mitochondrial effect in cardiovascular disease models, ascertaining the main cellular mechanisms and their potential use as functional foods for prevention of cardiovascular disease and healthy aging.
Collapse
Affiliation(s)
- Diego Arauna
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Center on Aging, Universidad de Talca, Talca 3460000, Chile; (D.A.); (M.A.)
| | - María Furrianca
- Thematic Task Force on Aging, CUECH Research Network, Santiago 8320000, Chile; (M.F.); (Y.E.-P.)
- Departamento de enfermería, Universidad de Magallanes, Punta Arenas 6200000, Chile
| | - Yolanda Espinosa-Parrilla
- Thematic Task Force on Aging, CUECH Research Network, Santiago 8320000, Chile; (M.F.); (Y.E.-P.)
- Laboratory of Molecular Medicine —LMM, Center for Education, Healthcare and Investigation—CADI, Universidad de Magallanes, Punta Arenas 6200000, Chile
- School of Medicine, Universidad de Magallanes, Punta Arenas 6200000, Chile
| | - Eduardo Fuentes
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Center on Aging, Universidad de Talca, Talca 3460000, Chile; (D.A.); (M.A.)
- Thematic Task Force on Aging, CUECH Research Network, Santiago 8320000, Chile; (M.F.); (Y.E.-P.)
- Correspondence: (E.F.); (I.P.)
| | - Marcelo Alarcón
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Center on Aging, Universidad de Talca, Talca 3460000, Chile; (D.A.); (M.A.)
- Thematic Task Force on Aging, CUECH Research Network, Santiago 8320000, Chile; (M.F.); (Y.E.-P.)
| | - Iván Palomo
- Thrombosis Research Center, Medical Technology School, Department of Clinical Biochemistry and Immunohaematology, Faculty of Health Sciences, Interdisciplinary Center on Aging, Universidad de Talca, Talca 3460000, Chile; (D.A.); (M.A.)
- Thematic Task Force on Aging, CUECH Research Network, Santiago 8320000, Chile; (M.F.); (Y.E.-P.)
- Correspondence: (E.F.); (I.P.)
| |
Collapse
|
29
|
NADPH oxidases and oxidase crosstalk in cardiovascular diseases: novel therapeutic targets. Nat Rev Cardiol 2019; 17:170-194. [PMID: 31591535 DOI: 10.1038/s41569-019-0260-8] [Citation(s) in RCA: 358] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/19/2019] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS)-dependent production of ROS underlies sustained oxidative stress, which has been implicated in the pathogenesis of cardiovascular diseases such as hypertension, aortic aneurysm, hypercholesterolaemia, atherosclerosis, diabetic vascular complications, cardiac ischaemia-reperfusion injury, myocardial infarction, heart failure and cardiac arrhythmias. Interactions between different oxidases or oxidase systems have been intensively investigated for their roles in inducing sustained oxidative stress. In this Review, we discuss the latest data on the pathobiology of each oxidase component, the complex crosstalk between different oxidase components and the consequences of this crosstalk in mediating cardiovascular disease processes, focusing on the central role of particular NADPH oxidase (NOX) isoforms that are activated in specific cardiovascular diseases. An improved understanding of these mechanisms might facilitate the development of novel therapeutic agents targeting these oxidase systems and their interactions, which could be effective in the prevention and treatment of cardiovascular disorders.
Collapse
|
30
|
Toral M, Robles-Vera I, de la Visitación N, Romero M, Sánchez M, Gómez-Guzmán M, Rodriguez-Nogales A, Yang T, Jiménez R, Algieri F, Gálvez J, Raizada MK, Duarte J. Role of the immune system in vascular function and blood pressure control induced by faecal microbiota transplantation in rats. Acta Physiol (Oxf) 2019; 227:e13285. [PMID: 31004464 DOI: 10.1111/apha.13285] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 12/18/2022]
Abstract
AIM High blood pressure (BP) is associated with gut microbiota dysbiosis. The aim of this study was to investigate whether changes in gut microbiota induced by exchanging the gut microbiota between spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto (WKY) alter the gut-immune system interaction inducing changes in vascular function and BP. METHODS Twenty-week-old recipient WKY and SHR were orally gavaged with donor faecal contents from WKY or SHR. In additional experiments, we used a design to determine whether blockade of B7-dependent costimulation with CTLA4-Ig or blockade of IL-17 with IL-17-neutralizing antibody could prevent hypertension caused by faecal microbiota transplantation (FMT) from SHR to WKY. RESULTS Correlation analyses identified the bacterial abundance of Turicibacter and S24-7_g that, respectively, positively and negatively correlated with systolic BP. FMT from WKY rats to SHR rats reduced basal systolic BP, restored the imbalance between Th17/Treg in mesenteric lymph nodes (MLNs) and aorta, and improved endothelial dysfunction and vascular oxidative status found in SHR transplanted with SHR faeces. FMT from SHR to WKY increased CD80 and CD86 mRNA levels and T cells activation in MLNs, circulating T cells, aortic T cell infiltration, impaired endothelial function and increased basal SBP. These effects were abolished by blockade of B7-dependent costimulation with CTLA4-Ig. IL-17a neutralizing antibody reduced SBP and improved endothelial dysfunction induced by FMT from SHR to WKY. CONCLUSION Gut microbiota is an important factor involved in the control of BP, as a consequence of its effect in T-cell activation in gut immune system and vascular T-cells accumulation.
Collapse
Affiliation(s)
- Marta Toral
- Department of Pharmacology, School of Pharmacy, University of Granada, Centro de Investigaciones Biomédicas, Granada, Spain
| | - Iñaki Robles-Vera
- Department of Pharmacology, School of Pharmacy, University of Granada, Centro de Investigaciones Biomédicas, Granada, Spain
| | - Néstor de la Visitación
- Department of Pharmacology, School of Pharmacy, University of Granada, Centro de Investigaciones Biomédicas, Granada, Spain
| | - Miguel Romero
- Department of Pharmacology, School of Pharmacy, University of Granada, Centro de Investigaciones Biomédicas, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Manuel Sánchez
- Department of Pharmacology, School of Pharmacy, University of Granada, Centro de Investigaciones Biomédicas, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Manuel Gómez-Guzmán
- Department of Pharmacology, School of Pharmacy, University of Granada, Centro de Investigaciones Biomédicas, Granada, Spain
| | - Alba Rodriguez-Nogales
- Department of Pharmacology, School of Pharmacy, University of Granada, Centro de Investigaciones Biomédicas, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Tao Yang
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
| | - Rosario Jiménez
- Department of Pharmacology, School of Pharmacy, University of Granada, Centro de Investigaciones Biomédicas, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
- CIBERCV, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Francesca Algieri
- Department of Pharmacology, School of Pharmacy, University of Granada, Centro de Investigaciones Biomédicas, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
| | - Julio Gálvez
- Department of Pharmacology, School of Pharmacy, University of Granada, Centro de Investigaciones Biomédicas, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
- CIBER-EHD, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Mohan K Raizada
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
| | - Juan Duarte
- Department of Pharmacology, School of Pharmacy, University of Granada, Centro de Investigaciones Biomédicas, Granada, Spain
- Instituto de Investigación Biosanitaria de Granada, ibs.GRANADA, Granada, Spain
- CIBERCV, Center for Biomedical Research (CIBM), University of Granada, Granada, Spain
| |
Collapse
|
31
|
Cuevas S, Villar VAM, Jose PA. Genetic polymorphisms associated with reactive oxygen species and blood pressure regulation. THE PHARMACOGENOMICS JOURNAL 2019; 19:315-336. [PMID: 30723314 PMCID: PMC6650341 DOI: 10.1038/s41397-019-0082-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 10/19/2018] [Accepted: 12/21/2018] [Indexed: 02/08/2023]
Abstract
Hypertension is the most prevalent cause of cardiovascular disease and kidney failure, but only about 50% of patients achieve adequate blood pressure control, in part, due to inter-individual genetic variations in the response to antihypertensive medication. Significant strides have been made toward the understanding of the role of reactive oxygen species (ROS) in the regulation of the cardiovascular system. However, the role of ROS in human hypertension is still unclear. Polymorphisms of some genes involved in the regulation of ROS production are associated with hypertension, suggesting their potential influence on blood pressure control and response to antihypertensive medication. This review provides an update on the genes associated with the regulation of ROS production in hypertension and discusses the controversies on the use of antioxidants in the treatment of hypertension, including the antioxidant effects of antihypertensive drugs.
Collapse
Affiliation(s)
- Santiago Cuevas
- Center for Translational Science, Children's National Health System, 111 Michigan Avenue, NW, Washington, DC, 20010, USA.
| | - Van Anthony M Villar
- Department of Medicine, Division of Renal Diseases and Hypertension, The George Washington University School of Medicine and Health Sciences, Walter G. Ross Hall, Suite 738, 2300 I Street, NW, Washington, DC, 20052, USA
| | - Pedro A Jose
- Department of Medicine, Division of Renal Diseases and Hypertension, The George Washington University School of Medicine and Health Sciences, Walter G. Ross Hall, Suite 738, 2300 I Street, NW, Washington, DC, 20052, USA
| |
Collapse
|
32
|
Touyz RM, Alves-Lopes R, Rios FJ, Camargo LL, Anagnostopoulou A, Arner A, Montezano AC. Vascular smooth muscle contraction in hypertension. Cardiovasc Res 2019; 114:529-539. [PMID: 29394331 PMCID: PMC5852517 DOI: 10.1093/cvr/cvy023] [Citation(s) in RCA: 422] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 01/30/2018] [Indexed: 12/19/2022] Open
Abstract
Hypertension is a major risk factor for many common chronic diseases, such as heart failure, myocardial infarction, stroke, vascular dementia, and chronic kidney disease. Pathophysiological mechanisms contributing to the development of hypertension include increased vascular resistance, determined in large part by reduced vascular diameter due to increased vascular contraction and arterial remodelling. These processes are regulated by complex-interacting systems such as the renin-angiotensin-aldosterone system, sympathetic nervous system, immune activation, and oxidative stress, which influence vascular smooth muscle function. Vascular smooth muscle cells are highly plastic and in pathological conditions undergo phenotypic changes from a contractile to a proliferative state. Vascular smooth muscle contraction is triggered by an increase in intracellular free calcium concentration ([Ca2+]i), promoting actin–myosin cross-bridge formation. Growing evidence indicates that contraction is also regulated by calcium-independent mechanisms involving RhoA-Rho kinase, protein Kinase C and mitogen-activated protein kinase signalling, reactive oxygen species, and reorganization of the actin cytoskeleton. Activation of immune/inflammatory pathways and non-coding RNAs are also emerging as important regulators of vascular function. Vascular smooth muscle cell [Ca2+]i not only determines the contractile state but also influences activity of many calcium-dependent transcription factors and proteins thereby impacting the cellular phenotype and function. Perturbations in vascular smooth muscle cell signalling and altered function influence vascular reactivity and tone, important determinants of vascular resistance and blood pressure. Here, we discuss mechanisms regulating vascular reactivity and contraction in physiological and pathophysiological conditions and highlight some new advances in the field, focusing specifically on hypertension.
Collapse
Affiliation(s)
- Rhian M Touyz
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Rheure Alves-Lopes
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Francisco J Rios
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Livia L Camargo
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Aikaterini Anagnostopoulou
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Anders Arner
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Augusto C Montezano
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| |
Collapse
|
33
|
Sulistyowati E, Jan RL, Liou SF, Chen YF, Wu BN, Hsu JH, Yeh JL. Vasculoprotective effects of Centella asiatica, Justicia gendarussa and Imperata cylindrica decoction via the NOXs-ROS-NF-κB pathway in spontaneously hypertensive rats. J Tradit Complement Med 2019; 10:378-388. [PMID: 32695655 PMCID: PMC7365787 DOI: 10.1016/j.jtcme.2019.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 06/06/2019] [Accepted: 06/22/2019] [Indexed: 02/07/2023] Open
Abstract
Background and aim Centella asiatica, Justicia gendarussa and Imperata cylindrica decoction (CJID) is efficacious for hypertension. NADPH (nicotinamide adenine dinucleotide phosphate) oxidase (NOX)-induced reactive oxygen species (ROS) generation modulates nuclear factor kappa B (NF-κB) activation and thus mediates hypertension-induced vascular remodeling. This research aims to investigate the anti-remodeling effect of CJID through the mechanism of NOXs-ROS-NF-κB pathway in spontaneously hypertensive rats (SHRs). Experimental procedure CJID was orally administered once a day for five weeks in SHRs and normotensive-WKY (Wistar Kyoto) rats. All rats were sacrificed at the end of study and different assays were performed to determine whether CJID ameliorates vascular remodeling in SHRs, such as histological examination; lactate dehydrogenase (LDH), nitric oxide (NO), malondialdehyde (MDA) and superoxide dismutase (SOD) assays; superoxide and hydrogen peroxide (H2O2) generation assays, immunohistochemistry and immunofluorescence assays. . Changes in levels of inducible nitric oxide synthase (iNOS), NF-κB-p65, NF-κB inhibitor alpha/IκBα (inhibitory kappa B- alpha), phosphorylation of IκBα (p-IκBα) and NOX1, NOX2, NOX4 in the thoracic aorta were determined. Results Vascular remodeling indicators, media thickness, collagen and elastic accumulation in the thoracic aorta, of SHRs-treated CJID were attenuated. Redox homeostasis, aortic superoxide and hydrogen peroxide generation were decreased in SHRs-treated group. Aortic iNOS, p-IκBα, NF-κB-p65 and NOX1, NOX2, NOX4 expressions were suppressed. Conclusions CJI treatment diminishes oxidative stress response in the thoracic aorta of SHRs via regulation of NOXs-ROS-NF-κB signaling pathway. These findings indicate that CJI possess protective effect against hypertension-induced vascular remodeling in SHRs.
Collapse
Affiliation(s)
- Erna Sulistyowati
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Faculty of Medicine, University of Islam Malang, Malang city, East Java, Indonesia
| | - Ren-Long Jan
- Department of Pediatrics, Chi Mei Medical Center, Liouying, Tainan, Taiwan.,Graduate Institute of Medical Science, College of Health Science, Chang Jung Christian University, Tainan, Taiwan
| | - Shu-Fen Liou
- Department of Pharmacy, Chia-Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Ying-Fu Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Cardiovascular Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Sin-Lau Christian Hospital, Tainan, Taiwan
| | - Bin-Nan Wu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jong-Hau Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Pediatrics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Jwu-Lai Yeh
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Pharmacology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan
| |
Collapse
|
34
|
Touyz RM, Montezano AC, Rios F, Widlansky ME, Liang M. Redox Stress Defines the Small Artery Vasculopathy of Hypertension: How Do We Bridge the Bench-to-Bedside Gap? Circ Res 2019; 120:1721-1723. [PMID: 28546356 DOI: 10.1161/circresaha.117.310672] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Rhian M Touyz
- From the Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (R.M.T., A.C.M., F.R.); and Division of Cardiovascular Medicine, Department of Medicine (M.E.W.) and Center of Systems Molecular Medicine, Department of Physiology (M.L.), Medical College of Wisconsin, Milwaukee.
| | - Augusto C Montezano
- From the Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (R.M.T., A.C.M., F.R.); and Division of Cardiovascular Medicine, Department of Medicine (M.E.W.) and Center of Systems Molecular Medicine, Department of Physiology (M.L.), Medical College of Wisconsin, Milwaukee
| | - Francisco Rios
- From the Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (R.M.T., A.C.M., F.R.); and Division of Cardiovascular Medicine, Department of Medicine (M.E.W.) and Center of Systems Molecular Medicine, Department of Physiology (M.L.), Medical College of Wisconsin, Milwaukee
| | - Michael E Widlansky
- From the Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (R.M.T., A.C.M., F.R.); and Division of Cardiovascular Medicine, Department of Medicine (M.E.W.) and Center of Systems Molecular Medicine, Department of Physiology (M.L.), Medical College of Wisconsin, Milwaukee
| | - Mingyu Liang
- From the Institute of Cardiovascular and Medical Sciences, University of Glasgow, United Kingdom (R.M.T., A.C.M., F.R.); and Division of Cardiovascular Medicine, Department of Medicine (M.E.W.) and Center of Systems Molecular Medicine, Department of Physiology (M.L.), Medical College of Wisconsin, Milwaukee
| |
Collapse
|
35
|
Deres L, Eros K, Horvath O, Bencze N, Cseko C, Farkas S, Habon T, Toth K, Halmosi R. The Effects of Bradykinin B1 Receptor Antagonism on the Myocardial and Vascular Consequences of Hypertension in SHR Rats. Front Physiol 2019; 10:624. [PMID: 31178756 PMCID: PMC6537226 DOI: 10.3389/fphys.2019.00624] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 05/02/2019] [Indexed: 01/20/2023] Open
Abstract
It is known that non-steroidal anti-inflammatory drugs increase cardiovascular (CV) morbidity and mortality. In this study, we examined whether a novel anti-inflammatory drug, bradykinin B1 receptor antagonist (FGY-1153) treatment could influence the development of hypertensive organ damages in spontaneously hypertensive rats (SHR). SHRs were treated with low (FGY-120) or high dose FGY-1153 (FGY-400) and with placebo (Control) for 26 weeks. Wistar–Kyoto rats were used as aged-matched, normotensive controls (WKY). Body weight, food consumption and blood pressure were measured regularly. Echocardiography was performed at the beginning and at the end of the study. Light and electron microscopic analysis of heart and great vessels were performed, and the extent of fibrotic areas was measured. The phosphorylation state of prosurvival Akt-1/glycogen synthase kinase (GSK)-3β pathway and the activation of signaling factors playing part in the fibrotic processes – mitogen activated protein kinases (MAPKs), and TGF-β/Smad2 – were monitored using Western-blot. Body weight and food consumption as well as the elevated blood pressure in SHRs was not influenced by FGY-1153 treatment. However, both doses of FGY-1153 treatment decreased left ventricular (LV) hypertrophy and diastolic dysfunction in hypertensive animals. Moreover systolic LV function was also preserved in FGY-120 group. Increased intima-media thickness and interstitial fibrosis were not significantly diminished in great vessels. FGY-1153 treatment inhibited the expression of TGFβ and the phosphorylation of SMAD2 in the heart. Our results suggest that the tested novel anti-inflammatory compound has no deleterious effect on CV system, moreover it exerts moderate protective effect against the development of hypertensive cardiopathy.
Collapse
Affiliation(s)
- Laszlo Deres
- Medical School, University of Pécs, Pécs, Hungary.,Szentagothai Research Centre, University of Pécs, Pécs, Hungary
| | - Krisztian Eros
- Medical School, University of Pécs, Pécs, Hungary.,Szentagothai Research Centre, University of Pécs, Pécs, Hungary
| | - Orsolya Horvath
- Medical School, University of Pécs, Pécs, Hungary.,Szentagothai Research Centre, University of Pécs, Pécs, Hungary
| | - Noemi Bencze
- Medical School, University of Pécs, Pécs, Hungary.,Szentagothai Research Centre, University of Pécs, Pécs, Hungary
| | | | | | - Tamas Habon
- 1st Department of Medicine, Clinical Centre, University of Pécs, Pécs, Hungary
| | - Kalman Toth
- Szentagothai Research Centre, University of Pécs, Pécs, Hungary.,1st Department of Medicine, Clinical Centre, University of Pécs, Pécs, Hungary
| | - Robert Halmosi
- Szentagothai Research Centre, University of Pécs, Pécs, Hungary.,1st Department of Medicine, Clinical Centre, University of Pécs, Pécs, Hungary
| |
Collapse
|
36
|
Touyz RM, Anagnostopoulou A, Rios F, Montezano AC, Camargo LL. NOX5: Molecular biology and pathophysiology. Exp Physiol 2019; 104:605-616. [PMID: 30801870 PMCID: PMC6519284 DOI: 10.1113/ep086204] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 02/20/2019] [Indexed: 12/12/2022]
Abstract
NEW FINDINGS What is the topic of this review? This review provides a comprehensive overview of Nox5 from basic biology to human disease and highlights unique features of this Nox isoform What advances does it highlight? Major advances in Nox5 biology relate to crystallization of the molecule and new insights into the pathophysiological role of Nox5. Recent discoveries have unravelled the crystal structure of Nox5, the first Nox isoform to be crystalized. This provides new opportunities to develop drugs or small molecules targeted to Nox5 in an isoform-specific manner, possibly for therapeutic use. Moreover genome wide association studies (GWAS) identified Nox5 as a new blood pressure-associated gene and studies in mice expressing human Nox5 in a cell-specific manner have provided new information about the (patho) physiological role of Nox5 in the cardiovascular system and kidneys. Nox5 seems to be important in the regulation of vascular contraction and kidney function. In cardiovascular disease and diabetic nephropathy, Nox5 activity is increased and this is associated with increased production of reactive oxygen species and oxidative stress implicated in tissue damage. ABSTRACT Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (Nox), comprise seven family members (Nox1-Nox5 and dual oxidase 1 and 2) and are major producers of reactive oxygen species in mammalian cells. Reactive oxygen species are crucially involved in cell signalling and function. All Noxs share structural homology comprising six transmembrane domains with two haem-binding regions and an NADPH-binding region on the intracellular C-terminus, whereas their regulatory systems, mechanisms of activation and tissue distribution differ. This explains the diverse function of Noxs. Of the Noxs, NOX5 is unique in that rodents lack the gene, it is regulated by Ca2+ , it does not require NADPH oxidase subunits for its activation, and it is not glycosylated. NOX5 localizes in the perinuclear and endoplasmic reticulum regions of cells and traffics to the cell membrane upon activation. It is tightly regulated through numerous post-translational modifications and is activated by vasoactive agents, growth factors and pro-inflammatory cytokines. The exact pathophysiological significance of NOX5 remains unclear, but it seems to be important in the physiological regulation of sperm motility, vascular contraction and lymphocyte differentiation, and NOX5 hyperactivation has been implicated in cardiovascular disease, kidney injury and cancer. The field of NOX5 biology is still in its infancy, but with new insights into its biochemistry and cellular regulation, discovery of the NOX5 crystal structure and genome-wide association studies implicating NOX5 in disease, the time is now ripe to advance NOX5 research. This review provides a comprehensive overview of our current understanding of NOX5, from basic biology to human disease, and highlights the unique characteristics of this enigmatic Nox isoform.
Collapse
Affiliation(s)
- Rhian M. Touyz
- Institute of Cardiovascular and Medical SciencesBHF Glasgow Cardiovascular CentreUniversity of GlasgowGlasgowUK
| | - Aikaterini Anagnostopoulou
- Institute of Cardiovascular and Medical SciencesBHF Glasgow Cardiovascular CentreUniversity of GlasgowGlasgowUK
| | - Francisco Rios
- Institute of Cardiovascular and Medical SciencesBHF Glasgow Cardiovascular CentreUniversity of GlasgowGlasgowUK
| | - Augusto C. Montezano
- Institute of Cardiovascular and Medical SciencesBHF Glasgow Cardiovascular CentreUniversity of GlasgowGlasgowUK
| | - Livia L. Camargo
- Institute of Cardiovascular and Medical SciencesBHF Glasgow Cardiovascular CentreUniversity of GlasgowGlasgowUK
| |
Collapse
|
37
|
Usselman CW, Yarovinsky TO, Steele FE, Leone CA, Taylor HS, Bender JR, Stachenfeld NS. Androgens drive microvascular endothelial dysfunction in women with polycystic ovary syndrome: role of the endothelin B receptor. J Physiol 2019; 597:2853-2865. [PMID: 30847930 DOI: 10.1113/jp277756] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/04/2019] [Indexed: 01/02/2023] Open
Abstract
KEY POINTS Polycystic ovary syndrome (PCOS) is a complex syndrome with cardiovascular risk factors, including obesity and insulin resistance. PCOS is also associated with high androgens, increases the risk of cardiovascular dysfunction in women. Due to the complexity of PCOS, had it has been challenging to isolate specific causes of the cardiovascular dysfunction. Our measure of cardiovascular dysfunction (endothelial dysfunction) was most profound in lean women with PCOS. The endothelin-1-induced vasodilation in these PCOS subject, was dependent on the ETB R but was not NO-dependent. We also demonstrated oestrogen administration improved endothelial function in lean and obese women with PCOS likely because oestrogen increased NO availability. Our studies indicate a primary role for androgens in cardiovascular dysfunction in PCOS. ABSTRACT Endothelin-1 (ET-1) is an indicator of endothelial injury and dysfunction and is elevated in women with androgen excess polycystic ovary syndrome (AE-PCOS). The endothelin B receptor (ETB R) subtype mediates vasodilatation, but is blunted in women with PCOS. We hypothesized that androgen drives endothelial dysfunction in AE-PCOS women and oestradiol (EE) administration reverses these effects. We assessed microvascular endothelial function in women with (7 lean and 7 obese) and without AE-PCOS (controls, 6 lean, 7 obese). Only obese AE-PCOS women were insulin resistant (IR). We evaluated cutaneous vascular conductance (%CVCmax ) with laser Doppler flowmetry during low dose intradermal microdialysis ET-1 perfusions (1, 3, 4, 5 and 7 pmol) with either lactated Ringer solution alone, or with ETB R (BQ-788), or nitric oxide (NO) inhibition (l-NAME). Log[ET-1]-%maxCVC dose-response curves demonstrated reduced vasodilatory responses to ET-1 in lean AE-PCOS (logED50 , 0.59 ± 0.08) versus lean controls (logED50 , 0.49 ± 0.09, P < 0.05), but not compared to obese AE-PCOS (logED50 , 0.65 ± 0.09). ETB R inhibition decreased ET-1-induced vasodilatation in AE-PCOS women (logED50 , 0.64 ± 0. 22, P < 0.05). This was mechanistically observed at the cellular level, with ET-1-induced, DAF-FM-measurable endothelial cell NO production, which was abrogated by dihydrotestosterone in an androgen receptor-dependent manner. EE augmented the cutaneous vasodilating response to ET-1(logED50 0.29 ± 0.21, 0.47 ± 0.09, P < 0.05 for lean and obese, respectively). Androgens drive endothelial dysfunction in lean and obese AE-PCOS. We propose that the attenuated ET-1-induced vasodilatation in AE-PCOS is a consequence of androgen receptor-mediated, suppressed ETB R-stimulated NO production, and is reversed with EE.
Collapse
Affiliation(s)
- Charlotte W Usselman
- John B. Pierce Laboratory, Yale School of Medicine, New Haven, CT, USA.,Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA.,Department of Kinesiology and Physical Education, McGill University, Montreal, QC, Canada
| | - Timur O Yarovinsky
- Departments of Internal Medicine (Cardiovascular Medicine) and Immunobiology, Yale School of Medicine, New Haven, CT, USA.,Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, USA
| | - Frances E Steele
- Departments of Internal Medicine (Cardiovascular Medicine) and Immunobiology, Yale School of Medicine, New Haven, CT, USA.,Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, USA
| | - Cheryl A Leone
- John B. Pierce Laboratory, Yale School of Medicine, New Haven, CT, USA
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Jeffrey R Bender
- Departments of Internal Medicine (Cardiovascular Medicine) and Immunobiology, Yale School of Medicine, New Haven, CT, USA.,Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT, USA
| | - Nina S Stachenfeld
- John B. Pierce Laboratory, Yale School of Medicine, New Haven, CT, USA.,Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
38
|
Touyz RM, Anagnostopoulou A, Camargo LL, Rios FJ, Montezano AC. Vascular Biology of Superoxide-Generating NADPH Oxidase 5-Implications in Hypertension and Cardiovascular Disease. Antioxid Redox Signal 2019; 30:1027-1040. [PMID: 30334629 PMCID: PMC6354601 DOI: 10.1089/ars.2018.7583] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/16/2018] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE NADPH oxidases (Noxs), of which there are seven isoforms (Nox1-5, Duox1/Duox2), are professional oxidases functioning as reactive oxygen species (ROS)-generating enzymes. ROS are signaling molecules important in physiological processes. Increased ROS production and altered redox signaling in the vascular system have been implicated in the pathophysiology of cardiovascular diseases, including hypertension, and have been attributed, in part, to increased Nox activity. Recent Advances: Nox1, Nox2, Nox4, and Nox5 are expressed and functionally active in human vascular cells. While Nox1, Nox2, and Nox4 have been well characterized in models of cardiovascular disease, little is known about Nox5. This may relate to the lack of experimental models because rodents lack NOX5. However, recent studies have advanced the field by (i) elucidating mechanisms of Nox5 regulation, (ii) identifying Nox5 variants, (iii) characterizing Nox5 expression, and (iv) discovering the Nox5 crystal structure. Moreover, studies in human Nox5-expressing mice have highlighted a putative role for Nox5 in cardiovascular disease. CRITICAL ISSUES Although growing evidence indicates a role for Nox-derived ROS in cardiovascular (patho)physiology, the exact function of each isoform remains unclear. This is especially true for Nox5. FUTURE DIRECTIONS Future directions should focus on clinically relevant studies to discover the functional significance of Noxs, and Nox5 in particular, in human health and disease. Two important recent studies will impact future directions. First, Nox5 is the first Nox to be crystallized. Second, a genome-wide association study identified Nox5 as a novel blood pressure-associated gene. These discoveries, together with advancements in Nox5 biology and biochemistry, will facilitate discovery of drugs that selectively target Noxs to interfere in uncontrolled ROS generation.
Collapse
Affiliation(s)
- Rhian M. Touyz
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Aikaterini Anagnostopoulou
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Livia L. Camargo
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Francisco J. Rios
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Augusto C. Montezano
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
39
|
Tejero J, Shiva S, Gladwin MT. Sources of Vascular Nitric Oxide and Reactive Oxygen Species and Their Regulation. Physiol Rev 2019; 99:311-379. [PMID: 30379623 PMCID: PMC6442925 DOI: 10.1152/physrev.00036.2017] [Citation(s) in RCA: 318] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 03/30/2018] [Accepted: 05/06/2018] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is a small free radical with critical signaling roles in physiology and pathophysiology. The generation of sufficient NO levels to regulate the resistance of the blood vessels and hence the maintenance of adequate blood flow is critical to the healthy performance of the vasculature. A novel paradigm indicates that classical NO synthesis by dedicated NO synthases is supplemented by nitrite reduction pathways under hypoxia. At the same time, reactive oxygen species (ROS), which include superoxide and hydrogen peroxide, are produced in the vascular system for signaling purposes, as effectors of the immune response, or as byproducts of cellular metabolism. NO and ROS can be generated by distinct enzymes or by the same enzyme through alternate reduction and oxidation processes. The latter oxidoreductase systems include NO synthases, molybdopterin enzymes, and hemoglobins, which can form superoxide by reduction of molecular oxygen or NO by reduction of inorganic nitrite. Enzymatic uncoupling, changes in oxygen tension, and the concentration of coenzymes and reductants can modulate the NO/ROS production from these oxidoreductases and determine the redox balance in health and disease. The dysregulation of the mechanisms involved in the generation of NO and ROS is an important cause of cardiovascular disease and target for therapy. In this review we will present the biology of NO and ROS in the cardiovascular system, with special emphasis on their routes of formation and regulation, as well as the therapeutic challenges and opportunities for the management of NO and ROS in cardiovascular disease.
Collapse
Affiliation(s)
- Jesús Tejero
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Sruti Shiva
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Mark T Gladwin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
40
|
Noninvasive central systolic blood pressure, not peripheral systolic blood pressure, independently predicts the progression of carotid intima-media thickness in a Chinese community-based population. Hypertens Res 2018; 42:392-399. [DOI: 10.1038/s41440-018-0175-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 07/20/2018] [Accepted: 09/04/2018] [Indexed: 01/22/2023]
|
41
|
Li X, Wei Y, Wang Z. microRNA-21 and hypertension. Hypertens Res 2018; 41:649-661. [PMID: 29973661 DOI: 10.1038/s41440-018-0071-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 01/11/2018] [Accepted: 01/29/2018] [Indexed: 12/12/2022]
Abstract
Hypertension, a multifactorial disease, is a major risk factor for the development of stroke, coronary artery disease, heart failure, and chronic renal failure. However, its underlying cellular and molecular mechanisms remain largely elusive. Numerous studies have shown that microRNAs (miRNAs) are involved in a variety of cellular processes, including cellular proliferation, apoptosis, differentiation, and the development of diseases. microRNA-21 (miR-21), a conserved single-stranded non-coding RNA that is composed of approximately 22 nucleotides, is one of the most intensively studied miRNAs in recent years, and it can regulate gene expression at the post-transcriptional level. miR-21 is expressed in many kinds of tumors and in the cardiovascular system, and it plays an important role in the occurrence and development of cardiovascular diseases. In recent years, more and more evidence indicates that miR-21 plays an important role in hypertension. This article reviews the source, function, and altered levels of miR-21 in hypertension and the role of miR-21 in the pathogenesis of hypertension and target organ damage (TOD). The potential role of miR-21 as a new target for predicting and treating hypertension is also explored.
Collapse
Affiliation(s)
- Xiao Li
- Department of Hypertension, Beijing Anzhen Hospital, Capital Medical University, 100029, Beijing, China
| | - Yongxiang Wei
- Department of Otolaryngology Head and Neck Surgery, Beijing Anzhen Hospital, Capital Medical University, 100029, Beijing, China.
| | - Zuoguang Wang
- Department of Hypertension, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung, Blood Vessel Diseases, 100029, Beijing, China.
| |
Collapse
|
42
|
Toral M, Romero M, Rodríguez-Nogales A, Jiménez R, Robles-Vera I, Algieri F, Chueca-Porcuna N, Sánchez M, de la Visitación N, Olivares M, García F, Pérez-Vizcaíno F, Gálvez J, Duarte J. Lactobacillus fermentum Improves Tacrolimus-Induced Hypertension by Restoring Vascular Redox State and Improving eNOS Coupling. Mol Nutr Food Res 2018; 62:e1800033. [PMID: 29851248 DOI: 10.1002/mnfr.201800033] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 04/12/2018] [Indexed: 01/24/2023]
Abstract
SCOPE The aim is to analyze whether the probiotic Lactobacillus fermentum CECT5716 (LC40) can prevent endothelial dysfunction and hypertension induced by tacrolimus in mice. METHODS AND RESULTS Tacrolimus increases systolic blood pressure (SBP) and impairs endothelium-dependent relaxation to acetylcholine and these effects are partially prevented by LC40. Endothelial dysfunction induced by tacrolimus is related to both increased nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX2) and uncoupled endothelial nitric oxide synthase (eNOS)-driven superoxide production and Rho-kinase-mediated eNOS inhibition. LC40 treatment prevents all the aortic changes induced by tacrolimus. LC40 restores the imbalance between T-helper 17 (Th17)/regulatory T (Treg) cells induced by tacrolimus in mesenteric lymph nodes and the spleen. Tacrolimus-induced gut dysbiosis, that is, it decreases microbial diversity, increases the Firmicutes/Bacteroidetes (F/B) ratio and decreases acetate- and butyrate-producing bacteria, and these effects are prevented by LC40. Fecal microbiota transplantation (FMT) from LC40-treated mice to control mice prevents the increase in SBP and the impaired relaxation to acetylcholine induced by tacrolimus. CONCLUSION LC40 treatment prevents hypertension and endothelial dysfunction induced by tacrolimus by inhibiting gut dysbiosis. These effects are associated with a reduction in vascular oxidative stress, mainly through NOX2 downregulation and prevention of eNOS uncoupling, and inflammation possibly because of decreased Th17 and increased Treg cells polarization in mesenteric lymph nodes.
Collapse
Affiliation(s)
- Marta Toral
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071, Granada, Spain
| | - Miguel Romero
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), 18012, Granada, Spain
| | - Alba Rodríguez-Nogales
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071, Granada, Spain.,CIBER-ehd, Center for Biomedical Research (CIBM), 18100, Granada, Spain
| | - Rosario Jiménez
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), 18012, Granada, Spain.,CIBER-Enfermedades Cardiovasculares (CiberCV), 18071, Granada, Spain
| | - Iñaki Robles-Vera
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071, Granada, Spain
| | - Francesca Algieri
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071, Granada, Spain.,CIBER-ehd, Center for Biomedical Research (CIBM), 18100, Granada, Spain
| | - Natalia Chueca-Porcuna
- Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), 18012, Granada, Spain.,Department of Microbiology, Complejo Hospitalario Universitario de Granada, 18100, Granada, Spain
| | - Manuel Sánchez
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071, Granada, Spain
| | - Néstor de la Visitación
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071, Granada, Spain
| | - Mónica Olivares
- Laboratorio de Descubrimiento y Preclínica, Departamento de Investigación BIOSEARCH S.A., 18004, Granada, Spain
| | - Federico García
- Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), 18012, Granada, Spain.,Department of Microbiology, Complejo Hospitalario Universitario de Granada, 18100, Granada, Spain
| | - Francisco Pérez-Vizcaíno
- Department of Pharmacology, School of Medicine, Complutense University of Madrid, 28040, Spain.,Ciber Enfermedades Respiratorias (Ciberes) and Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), 28007, Madrid, Spain
| | - Julio Gálvez
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), 18012, Granada, Spain.,CIBER-ehd, Center for Biomedical Research (CIBM), 18100, Granada, Spain
| | - Juan Duarte
- Department of Pharmacology, School of Pharmacy, University of Granada, 18071, Granada, Spain.,Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), 18012, Granada, Spain.,CIBER-Enfermedades Cardiovasculares (CiberCV), 18071, Granada, Spain
| |
Collapse
|
43
|
Liu J, Kang H, Ma X, Sun A, Luan H, Deng X, Fan Y. Vascular Cell Glycocalyx-Mediated Vascular Remodeling Induced by Hemodynamic Environmental Alteration. Hypertension 2018; 71:1201-1209. [DOI: 10.1161/hypertensionaha.117.10678] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 12/16/2017] [Accepted: 03/23/2018] [Indexed: 11/16/2022]
Abstract
Vascular remodeling induced by hemodynamic stimuli contributes to the pathophysiology of cardiovascular diseases. The importance of vascular cells (endothelial cells and smooth muscle cells) glycocalyx in the mechanotransduction of flow-induced shear stress at the cellular and molecular levels has been demonstrated over the past decade. However, its potential mechanotransduction role in vascular remodeling has triggered little attention. In the present study, a home-made apparatus was used to expose the rat abdominal aorta to sterile, flow or no flow, normal-pressure or high-pressure conditions for 4 days. The histomophometric, cellular, and molecular analysis of vessels were performed. The results showed that after exposing the vessels in the flow and high-pressure condition, the apoptotic rate, the cell number, and the RNA level of contractile marker gene smooth muscle 22 of smooth muscle cells were significantly increased, whereas the expression of nitric oxide synthase, α-smooth muscle actin, smoothelin, and calponion showed no significant differences compared with the flow and normal-pressure groups. Moreover, the histomophometric analysis of vascular walls suggested a remodeling induced by flow and high-pressure loading consistent with the classic hypertensive aortic phenotype, which is characterized by a thicker and more rigid vascular wall as well as increased aortic diameter. However, those phenomena were totally abolished after compromising the integrity of glycocalyx by the treatment of vessels with hyaluronidase, which provided evidence of the important mechanotransduction role of the vascular cells glycocalyx in vascular remodeling induced by hemodynamic stimuli.
Collapse
Affiliation(s)
- Jiajia Liu
- From the Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China (J.L., H.K., X.M., A.S., X.D., Y.F.)
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, China (J.L., H.K., X.M., A.S., X.D., Y.F.)
| | - Hongyan Kang
- From the Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China (J.L., H.K., X.M., A.S., X.D., Y.F.)
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, China (J.L., H.K., X.M., A.S., X.D., Y.F.)
| | - Xuejiao Ma
- From the Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China (J.L., H.K., X.M., A.S., X.D., Y.F.)
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, China (J.L., H.K., X.M., A.S., X.D., Y.F.)
| | - Anqiang Sun
- From the Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China (J.L., H.K., X.M., A.S., X.D., Y.F.)
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, China (J.L., H.K., X.M., A.S., X.D., Y.F.)
| | - Huiqin Luan
- National Research Center for Rehabilitation Technical Aids, Beijing, China (H.L., Y.F.)
| | - Xiaoyan Deng
- From the Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China (J.L., H.K., X.M., A.S., X.D., Y.F.)
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, China (J.L., H.K., X.M., A.S., X.D., Y.F.)
| | - Yubo Fan
- From the Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China (J.L., H.K., X.M., A.S., X.D., Y.F.)
- National Research Center for Rehabilitation Technical Aids, Beijing, China (H.L., Y.F.)
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, China (J.L., H.K., X.M., A.S., X.D., Y.F.)
| |
Collapse
|
44
|
Camargo LL, Harvey AP, Rios FJ, Tsiropoulou S, Da Silva RDNO, Cao Z, Graham D, McMaster C, Burchmore RJ, Hartley RC, Bulleid N, Montezano AC, Touyz RM. Vascular Nox (NADPH Oxidase) Compartmentalization, Protein Hyperoxidation, and Endoplasmic Reticulum Stress Response in Hypertension. Hypertension 2018; 72:235-246. [PMID: 29844144 DOI: 10.1161/hypertensionaha.118.10824] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 01/21/2018] [Accepted: 04/27/2018] [Indexed: 12/31/2022]
Abstract
Vascular Nox (NADPH oxidase)-derived reactive oxygen species and endoplasmic reticulum (ER) stress have been implicated in hypertension. However, relationships between these processes are unclear. We hypothesized that Nox isoforms localize in a subcellular compartment-specific manner, contributing to oxidative and ER stress, which influence the oxidative proteome and vascular function in hypertension. Nox compartmentalization (cell fractionation), O2- (lucigenin), H2O2 (amplex red), reversible protein oxidation (sulfenylation), irreversible protein oxidation (protein tyrosine phosphatase, peroxiredoxin oxidation), and ER stress (PERK [protein kinase RNA-like endoplasmic reticulum kinase], IRE1α [inositol-requiring enzyme 1], and phosphorylation/oxidation) were studied in spontaneously hypertensive rat (SHR) vascular smooth muscle cells (VSMCs). VSMC proliferation was measured by fluorescence-activated cell sorting, and vascular reactivity assessed in stroke-prone SHR arteries by myography. Noxs were downregulated by short interfering RNA and pharmacologically. In SHR, Noxs were localized in specific subcellular regions: Nox1 in plasma membrane and Nox4 in ER. In SHR, oxidative stress was associated with increased protein sulfenylation and hyperoxidation of protein tyrosine phosphatases and peroxiredoxins. Inhibition of Nox1 (NoxA1ds), Nox1/4 (GKT137831), and ER stress (4-phenylbutyric acid/tauroursodeoxycholic acid) normalized SHR vascular reactive oxygen species generation. GKT137831 reduced IRE1α sulfenylation and XBP1 (X-box binding protein 1) splicing in SHR. Increased VSMC proliferation in SHR was normalized by GKT137831, 4-phenylbutyric acid, and STF083010 (IRE1-XBP1 disruptor). Hypercontractility in the stroke-prone SHR was attenuated by 4-phenylbutyric acid. We demonstrate that protein hyperoxidation in hypertension is associated with oxidative and ER stress through upregulation of plasmalemmal-Nox1 and ER-Nox4. The IRE1-XBP1 pathway of the ER stress response is regulated by Nox4/reactive oxygen species and plays a role in the hyperproliferative VSMC phenotype in SHR. Our study highlights the importance of Nox subcellular compartmentalization and interplay between cytoplasmic reactive oxygen species and ER stress response, which contribute to the VSMC oxidative proteome and vascular dysfunction in hypertension.
Collapse
Affiliation(s)
- Livia L Camargo
- From the Institute of Cardiovascular and Medical Sciences (L.L.C., A.P.H., F.J.R., S.T., D.G., A.C.M., R.M.T.)
| | - Adam P Harvey
- From the Institute of Cardiovascular and Medical Sciences (L.L.C., A.P.H., F.J.R., S.T., D.G., A.C.M., R.M.T.)
| | - Francisco J Rios
- From the Institute of Cardiovascular and Medical Sciences (L.L.C., A.P.H., F.J.R., S.T., D.G., A.C.M., R.M.T.)
| | - Sofia Tsiropoulou
- From the Institute of Cardiovascular and Medical Sciences (L.L.C., A.P.H., F.J.R., S.T., D.G., A.C.M., R.M.T.)
| | | | - Zhenbo Cao
- The Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences (Z.C., N.B.)
| | - Delyth Graham
- From the Institute of Cardiovascular and Medical Sciences (L.L.C., A.P.H., F.J.R., S.T., D.G., A.C.M., R.M.T.)
| | - Claire McMaster
- WestCHEM School of Chemistry (C.M., R.C.H.), University of Glasgow, Scotland, United Kingdom
| | - Richard J Burchmore
- Institute of Infection, Immunity and Inflammation, Polyomics Facility (R.J.B.)
| | - Richard C Hartley
- WestCHEM School of Chemistry (C.M., R.C.H.), University of Glasgow, Scotland, United Kingdom
| | - Neil Bulleid
- The Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences (Z.C., N.B.)
| | - Augusto C Montezano
- From the Institute of Cardiovascular and Medical Sciences (L.L.C., A.P.H., F.J.R., S.T., D.G., A.C.M., R.M.T.)
| | - Rhian M Touyz
- From the Institute of Cardiovascular and Medical Sciences (L.L.C., A.P.H., F.J.R., S.T., D.G., A.C.M., R.M.T.)
| |
Collapse
|
45
|
Geng J, Zhao Z, Yang L, Zhang M, Liu X. Protein Kinase D was involved in vascular remodeling in spontaneously hypertensive rats. Clin Exp Hypertens 2018; 41:299-306. [PMID: 29781735 DOI: 10.1080/10641963.2018.1469647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The present study was designed to determine the role of PKD in vascular remodeling (VR) in Spontaneously hypertensive rats (SHRs). Increased SBP, VR and PKD activation were prominent in SHRs. The SBP has a positive correlation with the activation of PKD in SHRs. The ratio of media to lumen (MT/LD), volume fraction of collagen (VFC), hydroxyproline, IL-6, TNF-α and nitrotyrosine content were significantly related to the activated PKD. It may be concluded that PKD plays a central role in VR, and the mechanism may be related to its regulation of hypertrophy, fibrosis, inflammation and oxidative stress.
Collapse
Affiliation(s)
- Jing Geng
- a Shandong provincial Hospital Affiliated to Shandong University , Jinan , Shandong , PR China
| | - Zhuo Zhao
- b Department of Cardiology Ji'nan Central Hospital , Jinan , Shandong , PR China
| | - Le Yang
- a Shandong provincial Hospital Affiliated to Shandong University , Jinan , Shandong , PR China
| | - Mingwei Zhang
- a Shandong provincial Hospital Affiliated to Shandong University , Jinan , Shandong , PR China
| | - Xiangjuan Liu
- c The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health , Shandong University Qilu Hospital , Jinan , Shandong , PR China
| |
Collapse
|
46
|
Belova LA, Mashin VV, Kolotik-Kameneva OY, Belova NV, Scuderi A, Antignani PL. [The influence of Cytoflavin therapy on the cerebral hemodynamics in patients with various stages of hypertensive disease]. Zh Nevrol Psikhiatr Im S S Korsakova 2018; 117:28-35. [PMID: 28805757 DOI: 10.17116/jnevro20171177128-35] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
AIM To study an influence of cytoflavin therapy on the cerebral hemodynamics in patients with various stages of hypertensive disease (HD). MATERIAL AND METHODS One hundred and forty patients with HD, I-III stages, were randomized into 2 groups: patients of group 1 received complex treatment (antihypertensive therapy and cytoflavin), patients of group 2 were treated with antihypertensive therapy. The control group consisted of 30 healthy people. The changes in cerebral hemodynamics using the algorithm of the complex ultrasound study of cerebral vascular system were assessed. RESULTS Disturbances of hemodynamics at all structural/functional levels of cerebral vascular system were found in all HD stages. There were a decrease in the blood flow through the common carotid, inner carotid, spinal and middle cerebral arteries, reactivity of veins of Rosenthal, blood flow through veins of Rosenthal and inner jugular veins and an increase of blood flow through spinal veins. The hemodynamic study showed that in group 1 there was the increase of blood flow through common carotid, inner carotid, middle cerebral arteries in stage I and through spinal arteries in stage I-II of HD; improvement of the reactivity of veins of Rosenthal, restoration of blood flow parameters through the veins of Rosenthal and inner jugular veins to control values, the decrease in blood flow velocity through the spinal veins in all HD stages. CONCLUSION HD is accompanied by the damage of all structural/functional levels of cerebral vascular system. The use of cytoflavin in the complex therapy of HD exerts a positive influence on the cerebral hemodynamics reducing the severity of arterial insufficiency in the initial stages of disease, improving microcirculation and venous hemodynamics in all HD stages.
Collapse
Affiliation(s)
- L A Belova
- The Ulyanovsk State University, Department оf Neurology, Neurosurgery, Physiotherapy and Physical Therapy, Ulyanovsk, Russia
| | - V V Mashin
- The Ulyanovsk State University, Department оf Neurology, Neurosurgery, Physiotherapy and Physical Therapy, Ulyanovsk, Russia
| | - O Yu Kolotik-Kameneva
- MGHC 'Central Clinical Medical Sanitary Part', Neurologic Office for Patients with a Stroke, Ulyanovsk, Russia
| | - N V Belova
- FSSI 'Scientific center of neurology', Moscow, Russia
| | - A Scuderi
- University Hospital Santa Lucinda, Sorocaba, Brasil
| | - P L Antignani
- Vascular Center of 'Nuova Villa Claudia', Rome, Italy
| |
Collapse
|
47
|
Docherty CK, Carswell A, Friel E, Mercer JR. Impaired mitochondrial respiration in human carotid plaque atherosclerosis: A potential role for Pink1 in vascular smooth muscle cell energetics. Atherosclerosis 2018; 268:1-11. [PMID: 29156421 PMCID: PMC6565844 DOI: 10.1016/j.atherosclerosis.2017.11.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/30/2017] [Accepted: 11/10/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS DNA damage and mitochondrial dysfunction are thought to play an essential role in ageing and the energetic decline of vascular smooth muscle cells (VSMCs) essential for maintaining plaque integrity. We aimed to better understand VSMCs and identify potentially useful compensatory pathways that could extend their lifespan. Moreover, we wanted to assess if defects in mitochondrial respiration exist in human atherosclerotic plaques and to identify the appropriate markers that may reflect a switch in VSMC energy metabolism. METHODS Human plaque tissue and cells were assessed for composition and evidence of DNA damage, repair capacity and mitochondrial dysfunction. Fresh plaque tissue was evaluated using high resolution oxygen respirometry to assess oxidative metabolism. Recruitment and processing of the mitochondrial regulator of autophagy Pink1 kinase was investigated in combination with transcriptional and protein markers associated with a potential switch to a more glycolytic metabolism. RESULTS Human VSMC have increased nuclear (nDNA) and mitochondrial (mtDNA) damage and reduced repair capacity. A subset of VSMCs within plaque cap had decreased oxidative phosphorylation and expression of Pink1 kinase. Plaque cells demonstrated increased glycolytic activity in response to loss of mitochondrial function. A potential compensatory glycolytic program may act as energetic switch via AMP kinase (AMPK) and hexokinase 2 (Hex2). CONCLUSIONS We have identified a subset of plaque VSMCs required for plaque stability that have increased mitochondrial dysfunction and decreased oxidative phosphorylation. Pink1 kinase may initiate a cellular response to promote a compensatory glycolytic program associated with upregulation of AMPK and Hex2.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/metabolism
- Carotid Arteries/enzymology
- Carotid Arteries/pathology
- Carotid Artery Diseases/enzymology
- Carotid Artery Diseases/genetics
- Carotid Artery Diseases/pathology
- Cells, Cultured
- DNA Damage
- DNA, Mitochondrial/genetics
- DNA, Mitochondrial/metabolism
- Energy Metabolism
- Glycolysis
- Hexokinase/metabolism
- Humans
- Mitochondria, Muscle/enzymology
- Mitochondria, Muscle/pathology
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Oxidative Phosphorylation
- Oxidative Stress
- Plaque, Atherosclerotic
- Protein Kinases/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Craig K Docherty
- Institute of Cardiovascular and Medical Sciences, College of Medical Veterinary and Life Sciences, University Avenue, University of Glasgow, Glasgow, G12 8TA, Scotland, United Kingdom
| | - Andy Carswell
- Institute of Cardiovascular and Medical Sciences, College of Medical Veterinary and Life Sciences, University Avenue, University of Glasgow, Glasgow, G12 8TA, Scotland, United Kingdom
| | - Elaine Friel
- Institute of Cardiovascular and Medical Sciences, College of Medical Veterinary and Life Sciences, University Avenue, University of Glasgow, Glasgow, G12 8TA, Scotland, United Kingdom
| | - John R Mercer
- Institute of Cardiovascular and Medical Sciences, College of Medical Veterinary and Life Sciences, University Avenue, University of Glasgow, Glasgow, G12 8TA, Scotland, United Kingdom.
| |
Collapse
|
48
|
Chrysant SG, Chrysant GS. Herbs Used for the Treatment of Hypertension and their Mechanism of Action. Curr Hypertens Rep 2017; 19:77. [DOI: 10.1007/s11906-017-0775-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
49
|
Abstract
The principle steroidal androgens are testosterone and its metabolite 5α-dihydrotestosterone (DHT), which is converted from testosterone by the enzyme 5α-reductase. Through the classic pathway with androgens crossing the plasma membrane and binding to the androgen receptor (AR) or via mechanisms independent of the ligand-dependent transactivation function of nuclear receptors, testosterone induces genomic and non-genomic effects respectively. AR is widely distributed in several tissues, including vascular endothelial and smooth muscle cells. Androgens are essential for many developmental and physiological processes, especially in male reproductive tissues. It is now clear that androgens have multiple actions besides sex differentiation and sexual maturation and that many physiological systems are influenced by androgens, including regulation of cardiovascular function [nitric oxide (NO) release, Ca2+ mobilization, vascular apoptosis, hypertrophy, calcification, senescence and reactive oxygen species (ROS) generation]. This review focuses on evidence indicating that interplay between genomic and non-genomic actions of testosterone may influence cardiovascular function.
Collapse
|
50
|
Wynne BM, Labazi H, Carneiro ZN, Tostes RC, Webb RC. Angeli's Salt, a nitroxyl anion donor, reverses endothelin-1 mediated vascular dysfunction in murine aorta. Eur J Pharmacol 2017; 814:294-301. [PMID: 28830679 DOI: 10.1016/j.ejphar.2017.08.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 08/15/2017] [Accepted: 08/18/2017] [Indexed: 10/19/2022]
Abstract
Nitroglycerin (Gtn) is a treatment for cardiovascular patients due to its vasodilatory actions, but induces tolerance when given chronically. A proposed mechanism is the superoxide (O2-)-oxidative stress hypothesis, which suggests that Gtn increases O2- production. Nitric oxide (NO) exists in three different redox states; the protonated, reduced state, nitroxyl anion (HNO) is an emerging candidate in vascular regulation. HNO is resistant to scavenging and of particular interest in conditions where high levels of reactive oxygen species (ROS) exist. We hypothesize that treatment with Gtn will exacerbate endothelin 1 (ET-1) induced vascular dysfunction via an increase in ROS, while treatment with Angeli's Salt (AS), an HNO donor, will not. Aorta from mice were isolated and divided into four groups: vehicle, ET-1 [0.1μM, 1μM], ET-1+Gtn [Gtn 1μM] and ET-1+AS [AS 1μM]. Concentration response curves (CRCs) to acetylcholine (ACh) and phenylephrine (Phe) were performed. Aorta incubated with ET-1 (for 20-22h) exhibited a decreased relaxation response to ACh and an increase in Phe-mediated contraction. Aorta incubated with AS exhibited a reversal in ET-1 induced vascular and endothelial dysfunction. ET-1 increased ROS in aortic vascular smooth muscle cells (VSMCs), visualized by dihydroethidium (DHE) staining. AS incubated reduced this ROS generation, yet maintained with Gtn treatment. These data suggest that aorta incubated with the HNO donor, AS, can reverse ET-1 mediated vascular dysfunction, which may be through a decrease or prevention of ROS generation. We propose that HNO may be vasoprotective and that HNO donors studied as a therapeutic option where other organic nitrates are contraindicative.
Collapse
Affiliation(s)
- Brandi M Wynne
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, United States; Department of Medicine, Renal Division, Emory University, 615 Michael St. Ste 605C, Atlanta, GA 30322, United States.
| | - Hicham Labazi
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, United States; Center for Cardiovascular Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43215, United States.
| | - Zidonia N Carneiro
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, United States.
| | - Rita C Tostes
- Pharmacology Department, Medical School of Ribeirão Preto, University of São Paulo, Av Bandeirantes 3900, Ribeirão Preto, SP 14049-900, Brazil.
| | - R Clinton Webb
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA 30912, United States.
| |
Collapse
|