1
|
Wang XR, Wu Z, He TT, Chen XH, Jin XF, Zuo CY, Yang SZ, Gao Y, Zhou XH, Gao WJ. Global research hotspots and trends in oxidative stress-related diabetic nephropathy: a bibliometric study. Front Endocrinol (Lausanne) 2025; 15:1451954. [PMID: 39866738 PMCID: PMC11757133 DOI: 10.3389/fendo.2024.1451954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 12/19/2024] [Indexed: 01/28/2025] Open
Abstract
Background Oxidative stress is widely acknowledged as a key pathogenic mechanism in diabetic nephropathy (DN). In recent years, the role of oxidative stress in DN has garnered increasing attention. However, no bibliometric analysis has yet been conducted on the relationship between oxidative stress and DN. This study aims to systematically analyze the relevant literature, identify trends in research, assess current hotspots, and predict future directions. Methods We retrieved literature related to oxidative stress and DN from the Web of Science Core Collection database. We analyzed data on publication volume, countries/regions, institutions, journals, keywords, and other relevant metrics using VOSviewer, the Bibliometrix R package, and CiteSpace. Results From 2014 to 2024, a total of 4076 publications related to oxidative stress and DN were published across 755 journals, showing a consistent upward trend each year. China and the United States are the leading contributors in this field and demonstrate close collaborative efforts. The top contributors by country, institution, journal, and author include: China (1919 publications), Jilin University and Central South University (69 publications each), BIOMEDICINE & PHARMACOTHERAPY (117 publications), and Prof. Sun Lin (33 publications). The most frequent keyword is "oxidative stress" (3683 occurrences). In the co-citation analysis, Alicic RZ's 2017 study was the most cited (144 citations). These findings highlight the critical importance of investigating the pathogenesis of DN from the oxidative stress perspective. Conclusion This study demonstrates a steady increase in research on oxidative stress in DN since 2014, highlighting its central role in the pathogenesis of DN. Future research should focus on the molecular mechanisms of oxidative stress in DN and explore its therapeutic potential, to provide new strategies for the prevention and treatment of DN.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Xiao-hong Zhou
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Wei-juan Gao
- Hebei Key Laboratory of Chinese Medicine Research on Cardio-Cerebrovascular Disease, Hebei University of Chinese Medicine, Shijiazhuang, China
| |
Collapse
|
2
|
Peride I, Anastasiu M, Serban SA, Tiglis M, Ene R, Nechita AM, Neagu TP, Checherita IA, Niculae A. The Key Role of Nutritional Intervention in Delaying Disease Progression and the Therapeutic Management of Diabetic Kidney Disease-A Challenge for Physicians and Patients. J Pers Med 2024; 14:778. [PMID: 39201970 PMCID: PMC11355100 DOI: 10.3390/jpm14080778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/13/2024] [Accepted: 07/20/2024] [Indexed: 09/03/2024] Open
Abstract
Chronic kidney disease (CKD) represents an increasingly common pathology that affects patients' quality of life, and it is frequently associated with a high mortality rate, especially in the final stages of the disease. At the same time, diabetes mellitus is a chronic disease that contributes to the increased number of patients with CKD through diabetic kidney disease (DKD). The alternation of hypoglycemia with hyperglycemia is a condition in the occurrence of microvascular complications of diabetes, including DKD, which involves structural and functional changes in the kidneys. The therapeutic management of diabetic nephropathy is a much-discussed topic, both from nutritional medical recommendations and a pharmacotherapy perspective. The diet starting point for patients with DKD is represented by a personalized and correct adjustment of macro- and micronutrients. The importance of nutritional status in DKD patients is given by the fact that it represents a modifiable factor, which contributes to the evolution and prognosis of the disease. Since, in most cases, it is necessary to restrict many types of food, malnutrition must be considered and avoided as much as possible.
Collapse
Affiliation(s)
- Ileana Peride
- Clinical Department No. 3, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Miruna Anastasiu
- “Marie Skłodowska Curie” Children Emergency Clinical Hospital, 077120 Bucharest, Romania
| | | | - Mirela Tiglis
- Department of Anesthesia and Intensive Care, Emergency Clinical Hospital of Bucharest, 014461 Bucharest, Romania
| | - Razvan Ene
- Clinical Department No. 14, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Ana-Maria Nechita
- Department of Nephrology and Dialysis, “St. John” Emergency Clinical Hospital, 042122 Bucharest, Romania
| | - Tiberiu Paul Neagu
- Clinical Department No. 11, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | | | - Andrei Niculae
- Clinical Department No. 3, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| |
Collapse
|
3
|
Lu J, Chen G, Shen G, Ouyang W. Ang-(1-7) attenuates podocyte injury induced by high glucose in vitro. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2023; 67:e000643. [PMID: 37364145 PMCID: PMC10661001 DOI: 10.20945/2359-3997000000643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 02/10/2023] [Indexed: 06/28/2023]
Abstract
Objective The incidence of diabetic nephropathy (DN) is gradually increasing worldwide. Podocyte injury, such as podocyte apoptosis and loss of the slit diaphragm (SD)-specific markers are early pathogenic features of DN. Materials and methods The cultured mouse podocytes were separated into a high glucose-treated (HG, 30mM) group to mimic DN in vitro, a low glucose-treated (LG, 5mM) group as a control and HG+ angiotensin-(1-7)(Ang-(1-7)) and HG+Ang-(1-7) + D-Ala7-Ang-(1-7) (A779, Ang-(1-7)/Mas receptor antagonist) experimental groups. The Cell Counting Kit-8 (CCK-8) method and flow cytometry was used to detect podocyte activity and podocyte apoptosis respectively. The expression of angiotensin type 1 receptor (AT1R), Mas receptor (MasR) and podocyte-specific markers were examined by q-PCR and Western blot, respectively. Results The results showed that the decrease in podocyte activity; the increase in podocyte apoptosis; the decreased mRNA and protein expression of nephrin, podocin, WT-1 and MasR; and the upregulated expression of AT1R induced by HG could be reversed by Ang-(1-7). However, these effects were blocked by A779. The possible mechanisms of the Ang-(1-7)-mediated effect depended on MasR. In addition, the protective effect of Ang-(1-7) on podocyte activity was dose-dependent and most obvious at 10 µM. A779 had the greatest antagonistic action against Ang-(1-7) at a concentration of 10 μM. Conclusion This study reveals that binding of Ang-(1-7) to its specific receptor MasR may counteract the effects of Ang II mediated by AT1R to significantly attenuate podocyte injury induced by high glucose. Ang-(1-7)/MasR targeting in podocytes may be a therapeutic approach to attenuate renal injury in DN.
Collapse
Affiliation(s)
- Jianxin Lu
- Division of Nephrology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Guixiang Chen
- Division of Nephrology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China,
| | - Guanghui Shen
- Paediatrics Research Institute, Children's Hospital of Fudan University, Shanghai, P.R. China
| | - Wenhao Ouyang
- Department of Clinical Laboratory, Shanghai Xuhui Central Hospital, Shanghai, P.R. China
| |
Collapse
|
4
|
Gurbuz P, Duzova H, Taslidere AC, Gul CC. Effects of noopept on ocular, pancreatic and renal histopathology in streptozotocin induced prepubertal diabetic rats. Biotech Histochem 2023:1-12. [PMID: 36946173 DOI: 10.1080/10520295.2023.2187460] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Diabetes mellitus (DM) is a chronic disease at all ages including childhood and puberty. Failure to treat DM can cause retinopathy, nephropathy and neuropathy. Endocrine and metabolic changes during the pubertal period complicate management of DM. Noopept is a cognitive enhancer that exhibits antidiabetic properties. We investigated the effect of noopept on the histopathology of the cornea, retina, kidney and pancreas in pubertal diabetic rats. We allocated 60 prepubertal male rats randomly into six groups of 10: untreated control (C), DM control (DC), noopept control (NC), DM + noopept (D + N), DM + insulin (D + I) and DM + insulin + noopept (D + I + N). DM was induced by streptozotocin in the DC, D + N, D + I and D + I + N groups. Noopept was administered to the NC, D + N and D + I + N groups; insulin was administered to the D + I and D + I + N groups for 14 days. On day 18 of the experiment, animals were sacrificed and eyes, kidneys and pancreata were excised for histological investigation. Renal tubule diameter and corneal and retinal thickness were increased significantly in DC groups compared to the control group. The D + I, D + N and D + I + N groups exhibited fewer DM induced pathological changes than the DC group. The D + I + N group exhibited no significant differences in renal tubule diameter and corneal and retinal thickness compared to the DC group. Our findings suggest that noopept is protective against DM end organ complications in streptozotocin induced diabetic pubertal rats.
Collapse
Affiliation(s)
- Perihan Gurbuz
- Vocational School of Health Services, Inonu University, Malatya, Turkey
| | - Halil Duzova
- Physiology Department, Inonu University Faculty of Medicine, Malatya, Turkey
| | - Asli Cetin Taslidere
- Histology and Embryology Department, Inonu University Faculty of Medicine, Malatya, Turkey
| | - Cemile Ceren Gul
- Histology and Embryology Department, Inonu University Faculty of Medicine, Malatya, Turkey
| |
Collapse
|
5
|
Kam S, Angaramo S, Antoun J, Bhatta MR, Bonds PD, Cadar AG, Chukwuma VU, Donegan PJ, Feldman Z, Grusky AZ, Gupta VK, Hatcher JB, Lee J, Morales NG, Vrana EN, Wessinger BC, Zhang MZ, Fowler MJ, Hendrickson CD. Improving annual albuminuria testing for individuals with diabetes. BMJ Open Qual 2022; 11:bmjoq-2021-001591. [PMID: 35101868 PMCID: PMC8804706 DOI: 10.1136/bmjoq-2021-001591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 01/20/2022] [Indexed: 11/17/2022] Open
Abstract
Background Annual albuminuria screening detects the early stages of nephropathy in individuals with diabetes. Because early detection of albuminuria allows for interventions that lower the risk of developing chronic kidney disease, guidelines recommend annual testing for all individuals with type 2 diabetes mellitus and for those with type 1 diabetes for at least 5 years. However, at the Eskind Diabetes Clinic at the Vanderbilt University Medical Center, testing occurred less frequently than desired. Methods A quality improvement team first analysed the clinic’s processes, identifying the lack of a systematic approach to testing as the likely cause for the low rate. The team then implemented two successive interventions in a pilot of patients seen by nurse practitioners in the clinic. In the first intervention, staff used a dashboard within the electronic health record while triaging each patient, pending an albuminuria order if testing had not been done within the past year. In the second intervention, clinic leadership sent daily reminders to the triage staff. A statistical process control chart tracked monthly testing rates. Results After 6 months, annual albuminuria testing increased from a baseline of 69% to 82%, with multiple special-cause signals in the control chart. Conclusions This project demonstrates that a series of simple interventions can significantly impact annual albuminuria testing. This project’s success likely hinged on using an existing workflow to systematically determine if a patient was due for testing and prompting the provider to sign a pended order for an albuminuria test. Other diabetes/endocrinology and primary care clinics can likely implement a similar process and so improve testing rates in other settings. When coupled with appropriate interventions to reduce the development of chronic kidney disease, such interventions would improve patient outcomes, in addition to better adhering to an established quality metric.
Collapse
Affiliation(s)
- Sharon Kam
- Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | | | - Manasa R Bhatta
- Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | - Adrian G Cadar
- Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | | | - Zachary Feldman
- Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Alan Z Grusky
- Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Veerain K Gupta
- Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Jeremy B Hatcher
- Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Jaclyn Lee
- Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | - Erin N Vrana
- Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | - Michael Z Zhang
- Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Michael J Fowler
- Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Chase D Hendrickson
- Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Medicine, Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
6
|
Renoprotective effects of sodium-glucose cotransporter-2 inhibitors and underlying mechanisms. Curr Opin Nephrol Hypertens 2021; 29:112-118. [PMID: 31725011 DOI: 10.1097/mnh.0000000000000561] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PURPOSE OF REVIEW Emerging data have demonstrated that sodium-glucose cotransporter-2 (SGLT2) inhibitors prevent cardiovascular events, especially heart failure-associated endpoints. Cardiovascular outcome trials have also suggested their renoprotective effects. One large clinical trial investigated renal primary endpoints and demonstrated that SGLT2 inhibitors slowed the progression of diabetic kidney disease (DKD). This review summarizes clinical trial data on renal outcomes and discusses potential underlying mechanisms. RECENT FINDINGS The EMPA-REG, CANVAS, and DECLARE-TIMI 58 studies revealed that SGLT2 inhibitors reduce the risk of cardiovascular events and concomitantly suggested that these drugs slow the progression of kidney disease in type 2 diabetes. The CREDENCE trial on patients with high-risk type 2 diabetes and chronic kidney disease demonstrated that canagliflozin treatment reduced the relative risk of a composite outcome, including end-stage kidney disease, serum creatinine doubling, and renal/cardiovascular death, by 30% in these patients. Animal experiments revealed that oxidative stress, inflammation, fibrosis, and tubuloglomerular feedback are underlying renoprotective mechanisms behind SGLT2 inhibitors. SUMMARY Recent clinical trials have established the renoprotective effects of SGLT2 inhibitors. Further investigations on mechanisms of these renoprotective effects will provide deeper insights and understanding of pathogenetic properties of DKD.
Collapse
|
7
|
Therapies for the Treatment of Cardiovascular Disease Associated with Type 2 Diabetes and Dyslipidemia. Int J Mol Sci 2021; 22:ijms22020660. [PMID: 33440821 PMCID: PMC7826980 DOI: 10.3390/ijms22020660] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide and is the clinical manifestation of the atherosclerosis. Elevated LDL-cholesterol levels are the first line of therapy but the increasing prevalence in type 2 diabetes mellitus (T2DM) has positioned the cardiometabolic risk as the most relevant parameter for treatment. Therefore, the control of this risk, characterized by dyslipidemia, hypertension, obesity, and insulin resistance, has become a major goal in many experimental and clinical studies in the context of CVD. In the present review, we summarized experimental studies and clinical trials of recent anti-diabetic and lipid-lowering therapies targeted to reduce CVD. Specifically, incretin-based therapies, sodium-glucose co-transporter 2 inhibitors, and proprotein convertase subtilisin kexin 9 inactivating therapies are described. Moreover, the novel molecular mechanisms explaining the CVD protection of the drugs reviewed here indicate major effects on vascular cells, inflammatory cells, and cardiomyocytes, beyond their expected anti-diabetic and lipid-lowering control. The revealed key mechanism is a prevention of acute cardiovascular events by restraining atherosclerosis at early stages, with decreased leukocyte adhesion, recruitment, and foam cell formation, and increased plaque stability and diminished necrotic core in advanced plaques. These emergent cardiometabolic therapies have a promising future to reduce CVD burden.
Collapse
|
8
|
Cherney DZI, Heerspink HJL, Frederich R, Maldonado M, Liu J, Pong A, Xu ZJ, Patel S, Hickman A, Mancuso JP, Gantz I, Terra SG. Effects of ertugliflozin on renal function over 104 weeks of treatment: a post hoc analysis of two randomised controlled trials. Diabetologia 2020; 63:1128-1140. [PMID: 32236732 PMCID: PMC7228910 DOI: 10.1007/s00125-020-05133-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/25/2020] [Indexed: 01/14/2023]
Abstract
AIMS/HYPOTHESIS This study aimed to evaluate the effect of ertugliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor, on eGFR and albuminuria (urine albumin/creatinine ratio [UACR]) vs glimepiride or placebo/glimepiride (non-ertugliflozin) over 104 weeks of treatment in participants with type 2 diabetes mellitus, using pooled data from two randomised controlled, active comparator studies from the eValuation of ERTugliflozin effIcacy and Safety (VERTIS) programme (Clinicaltrials.gov NCT01999218 [VERTIS SU] and NCT02033889 [VERTIS MET]). In the VERTIS SU study, ertugliflozin was evaluated vs glimepiride over 104 weeks. In the VERTIS MET study, ertugliflozin was evaluated vs placebo over 26 weeks; eligible participants were switched from placebo to blinded glimepiride from week 26 to week 104. The glycaemic efficacy of ertugliflozin vs non-ertugliflozin was also assessed in the pooled population. METHODS Post hoc, exploratory analysis was used to investigate mean changes from baseline in eGFR and UACR over 104 weeks. RESULTS Overall, mean (SD) baseline eGFR was 88.2 (18.8) ml min-1 (1.73 m)-2 and geometric mean (95% CI) of baseline UACR was 1.31 mg/mmol (1.23, 1.38). At week 6, the changes in eGFR from baseline were -2.3, -2.7 and -0.7 ml min-1 (1.73 m)-2 for the ertugliflozin 5 mg, ertugliflozin 15 mg and non-ertugliflozin groups, respectively. Mean eGFR in the ertugliflozin groups increased over time thereafter, while it decreased in the non-ertugliflozin group. Week 104 changes in eGFR from baseline were -0.2, 0.1 and -2.0 ml min-1 (1.73 m)-2 for the ertugliflozin 5 mg, ertugliflozin 15 mg and non-ertugliflozin groups, respectively. Among 415 patients (21.4% of the cohort) with albuminuria at baseline, the ertugliflozin groups had greater reductions in UACR at all measured time points up to week 104. At week 104, the non-ertugliflozin-corrected difference in UACR (95% CI) was -29.5% (-44.8, -9.8; p < 0.01) for ertugliflozin 5 mg and -37.6% (-51.8, -19.2; p < 0.001) for ertugliflozin 15 mg. Least squares mean changes from baseline in HbA1c (mmol/mol [95% CI]) at week 104 were similar between treatment groups: -6.84 (-7.64, -6.03), -7.74 (-8.54, -6.94) and -6.84 (-7.65, -6.03) in the ertugliflozin 5 mg, ertugliflozin 15 mg and non-ertugliflozin groups, respectively. Least squares mean changes from baseline in HbA1c (% [95% CI]) at week 104 were: -0.63 (-0.70, -0.55), -0.71 (-0.78, -0.64) and -0.63 (-0.70, -0.55) in the ertugliflozin 5 mg, ertugliflozin 15 mg and non-ertugliflozin groups, respectively. CONCLUSIONS/INTERPRETATION Ertugliflozin reduced eGFR at week 6, consistent with the known pharmacodynamic effects of SGLT2 inhibitors on renal function. Over 104 weeks, eGFR values returned to baseline and were higher with ertugliflozin compared with non-ertugliflozin treatment, even though changes in HbA1c did not differ between the groups. Ertugliflozin reduced UACR in patients with baseline albuminuria. TRIAL REGISTRATION clinicaltrials.gov NCT01999218 and NCT02033889.
Collapse
Affiliation(s)
- David Z I Cherney
- Division of Nephrology, University of Toronto, Toronto General Hospital, 585 University Ave, 8N-845, Toronto, ON, M5G 2N2, Canada.
| | | | | | | | - Jie Liu
- Merck & Co., Inc., Kenilworth, NJ, USA
| | | | - Zhi J Xu
- Merck & Co., Inc., Kenilworth, NJ, USA
| | | | | | | | - Ira Gantz
- Merck & Co., Inc., Kenilworth, NJ, USA
| | | |
Collapse
|
9
|
Cernaro V, Loddo S, Macaione V, Ferlazzo VT, Cigala RM, Crea F, De Stefano C, Genovese ARR, Gembillo G, Bolignano D, Santoro D, Vita R, Buemi M, Benvenga S. RAS inhibition modulates kynurenine levels in a CKD population with and without type 2 diabetes mellitus. Int Urol Nephrol 2020; 52:1125-1133. [PMID: 32314169 DOI: 10.1007/s11255-020-02469-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/13/2020] [Indexed: 10/24/2022]
Abstract
Kynurenine pathway of tryptophan metabolism is involved in the pathophysiology of chronic kidney disease (CKD) and diabetes mellitus, mainly through the inflammation-induced activity of indoleamine 2,3-dioxygenase (IDO), and few studies have investigated its potential link with proteinuria. Renin-angiotensin system inhibitors (RASis) are recommended in these patients to decrease proteinuria, slow CKD progression and reduce cardiovascular risk, but whether these drugs influence kynurenine levels in humans is unknown. We evaluated serum tryptophan and kynurenine in patients suffering from CKD with or without type 2 diabetes mellitus, their correlations with markers of reduced kidney function, and their relationship with RAS-inhibiting therapy. Of 72 adult patients enrolled, 55 were receiving RASis, whereas 17 were not. Tryptophan was assessed by HPLC (high-performance liquid chromatography); kynurenine was measured using an enzyme-linked immunosorbent assay kit; IDO activity (%) was calculated with the formula (kynurenine/tryptophan) × 100. Kynurenine levels were significantly lower in the group under RASis compared to the untreated group (1.56 ± 0.79 vs 2.16 ± 1.51 µmol/l; P = 0.0378). In patients not receiving RASis, kynurenine was inversely related to estimated glomerular filtration rate (eGFR) (r = - 0.4862; P = 0.0478) and directly related to both proteinuria (ρ = 0.493; P = 0.0444) and albuminuria (ρ = 0.542; P = 0.0247). IDO activity was higher in patients with history of cardiovascular disease compared to patients with no such history, and it negatively correlated with eGFR (ρ = - 0.554; P = 0.0210) in the same group. These findings may contribute to explain the well-known beneficial effects of RAS inhibition in CKD population, especially considering that kynurenine is emerging as a potential new biomarker of CKD.
Collapse
Affiliation(s)
- Valeria Cernaro
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria n. 1, 98124, Messina, Italy.
| | - Saverio Loddo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Vincenzo Macaione
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | | | - Rosalia Maria Cigala
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Francesco Crea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Concetta De Stefano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Antonina Rita Rosalia Genovese
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria n. 1, 98124, Messina, Italy
| | - Guido Gembillo
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria n. 1, 98124, Messina, Italy
| | - Davide Bolignano
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Domenico Santoro
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria n. 1, 98124, Messina, Italy
| | - Roberto Vita
- Endocrinology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Michele Buemi
- Unit of Nephrology and Dialysis, Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria n. 1, 98124, Messina, Italy
| | - Salvatore Benvenga
- Endocrinology, Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
- Master Program on Childhood, Adolescent and Women's Endocrine Health, University of Messina, Messina, Italy
- Interdepartmental Program of Molecular and Clinical Endocrinology, and Women's Endocrine Health, University Hospital, Policlinico Universitario G. Martino, Messina, Italy
| |
Collapse
|
10
|
Sridhar VS, Rahman HU, Cherney DZI. What have we learned about renal protection from the cardiovascular outcome trials and observational analyses with SGLT2 inhibitors? Diabetes Obes Metab 2020; 22 Suppl 1:55-68. [PMID: 32267075 DOI: 10.1111/dom.13965] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/21/2022]
Abstract
Over the past 5 years, sodium-glucose cotransport 2 (SGLT2) inhibitors have been increasingly regarded as glycaemic agents with cardiovascular (CV) and renal protective effects. The CV benefits of SGLT2 inhibitors have been well established in patients with type 2 diabetes (T2D) and a range of CV comorbidities at baseline. Subsequently, the renal benefits of SGLT2 inhibitors were established in the CREDENCE trial, a dedicated renal outcome trial where canagliflozin reduced the primary composite renal outcome by 30%. In light of these trials, clinical practice guidelines have rapidly evolved, recommending the use of SGLT2 inhibitors as renal and cardioprotective agents in appropriate patient populations. Accordingly, it is important to have an in-depth understanding of the evidence underlying the use of SGLT2 inhibitors in patients with T2D based on published clinical trials and real-world evidence (RWE) studies, as well as information related to potential safety concerns. To accomplish this, we reviewed the evidence for renal protection and safety with SGLT2 inhibitors in the EMPA-REG OUTCOME, CANVAS Program and DECLARE-TIMI 58 CV safety trials, and in the growing body of evidence emerging from real-world studies. This body of work has shown that SGLT2 inhibitors reduce the risk of surrogate renal endpoints such as albuminuria and mitigate the risk of hard renal endpoints including doubling of serum creatinine and end-stage kidney disease in patients with T2D.
Collapse
Affiliation(s)
- Vikas S Sridhar
- Department of Medicine, Division of Nephrology, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Habib U Rahman
- Department of Medicine, Division of Nephrology, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| | - David Z I Cherney
- Department of Medicine, Division of Nephrology, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Physiology and Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Cherney DZ, Odutayo A, Aronson R, Ezekowitz J, Parker JD. Sodium Glucose Cotransporter-2 Inhibition and Cardiorenal Protection. J Am Coll Cardiol 2019; 74:2511-2524. [DOI: 10.1016/j.jacc.2019.09.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 12/18/2022]
|
12
|
Srinivasan Sridhar V, Ambinathan JPN, Kretzler M, Pyle LL, Bjornstad P, Eddy S, Cherney DZ, Reich HN. Renal SGLT mRNA expression in human health and disease: a study in two cohorts. Am J Physiol Renal Physiol 2019; 317:F1224-F1230. [PMID: 31545924 DOI: 10.1152/ajprenal.00370.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Pharmacological Na+-glucose linked cotransporter (SGLT)2 inhibition is being examined as a renal protection strategy in nondiabetic chronic kidney disease. We quantified renal SGLT mRNA expression in healthy controls (HC), glomerulonephritis (GN), and diabetic kidney disease (DKD) to identify differences in expression across a spectrum of renal diseases. mRNA expression of SGLT1 and SGLT2 in renal tubules and glomeruli, obtained using microdissection and microarray techniques, was evaluated in two large cohorts. The European Renal cDNA bank included HC, GN, and DKD (98 glomeruli and 93 tubulointerstitium). The Nephrotic Syndrome Study Network cohort included 124 adults with membranous nephropathy, minimal change disease, focal segmental glomerulosclerosis, and IgA nephropathy. Within the European Renal cDNA bank, SGLT2 tubular and glomerular log2 mRNA expression significantly differed across HC, GN, and DKD (P = 0.0009 and P = 0.0004), with the highest expression in HC. Within the Nephrotic Syndrome Study Network, there were no differences in SGLT log2 mRNA expression across GN subtypes. Tubular SGLT2 log2 mRNA expression positively correlated with estimated glomerular filtration rate (by the Modification of Diet in Renal Disease Study equation) and glycated hemoglobin (r = 0.33 and 0.34, P < 0.05) and inversely correlated with interstitial fibrosis (r = -0.21, P < 0.05). In conclusion, SGLT2 mRNA expression was lower in DKD compared with HC or GN and inversely related to interstitial fibrosis. The relationships between SGLT mRNA, protein expression, and transporter activity require further elucidation.
Collapse
Affiliation(s)
- Vikas Srinivasan Sridhar
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Division of Nephrology, Department of Medicine, University Health Network, Toronto, Ontario, Canada
| | - Jaya Prakash N Ambinathan
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Division of Nephrology, Department of Medicine, University Health Network, Toronto, Ontario, Canada
| | - Matthias Kretzler
- Division of Nephrology, Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan.,Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan
| | - Laura L Pyle
- Division of Endocrinology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado
| | - Petter Bjornstad
- Division of Endocrinology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado.,Division of Nephrology, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Sean Eddy
- Division of Nephrology, Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - David Z Cherney
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Division of Nephrology, Department of Medicine, University Health Network, Toronto, Ontario, Canada.,Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Banting and Best Diabetes Centre, Toronto, Ontario, Canada
| | - Heather N Reich
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Division of Nephrology, Department of Medicine, University Health Network, Toronto, Ontario, Canada
| | | | | |
Collapse
|
13
|
Kopel J, Pena-Hernandez C, Nugent K. Evolving spectrum of diabetic nephropathy. World J Diabetes 2019; 10:269-279. [PMID: 31139314 PMCID: PMC6522757 DOI: 10.4239/wjd.v10.i5.269] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/13/2019] [Accepted: 05/13/2019] [Indexed: 02/05/2023] Open
Abstract
Diabetes remains an important health issue as more patients with chronic and uncontrolled diabetes develop diabetic nephropathy (DN), which classically presents with proteinuria followed by a progressive decrease in renal function. However, an increasing proportion of DN patients have a decline in kidney function and vascular complications without proteinuria, known as non-proteinuric DN (NP-DN). Despite the increased incidence of NP-DN, few clinical or experimental studies have thoroughly investigated the pathophysiological mechanisms and targeted treatment for this form of DN. In this review, we will examine the differences between conventional DN and NP-DN and consider potential pathophysiological mechanisms, diagnostic markers, and treatment for both DN and NP-DN. The investigation of the pathophysiology of NP-DN should provide additional insight into the cardiovascular factors influencing renal function and disease and provide novel treatments for the vascular complications seen in diabetic patients.
Collapse
Affiliation(s)
- Jonathan Kopel
- Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79416, United States
| | - Camilo Pena-Hernandez
- Department of Internal Medicine, Division of Nephrology, Lubbock, TX 79430, United States
| | - Kenneth Nugent
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, United States
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Type 2 diabetes (T2D) is associated with an increased risk of diabetic kidney disease (DKD), cardiovascular disease, and heart failure, in part through activation of the renin-angiotensin-aldosterone system (RAAS). Although recent cardiovascular outcome trials have identified newer therapeutic agents such as sodium-glucose cotransporter-2 (SGLT-2) inhibitors and glucagon-like peptide-1 (GLP-1)-receptor agonists that reduce the risk of these complications, patients still exhibit residual cardiorenal morbidity and mortality. Accordingly, the identification of pharmacological agents that attenuate micro- and macrovascular complications related to T2D is a major priority. Our aim was to review evidence for the role of novel mineralocorticoid receptor antagonists (MRAs) that are being developed as adjunctive therapies to reduce the risk of DKD and cardiovascular disease in the setting of T2D. RECENT FINDINGS Dual RAAS blockade with angiotensin-converting enzyme (ACE) inhibitor plus angiotensin receptor blockade (ARB) or ARB plus renin inhibition increases serious adverse events such as acute kidney injury and stroke. Due to the potential for these serious side effects, more recent interest has focused on newer, more selective non-steroidal MRAs such as finerenone as cardiorenal protective therapies. Finerenone reduces albuminuria in the setting of DKD in patients with T2D and has a lower risk of hyperkalemia compared to currently available MRAs. Novel MRAs such as finerenone have the potential to reduce the risk of DKD progression in patients with T2D. The impact of finerenone on hard, long-term cardiorenal endpoints is being examined in the FIGARO and FIDELIO trials in patients with DKD.
Collapse
Affiliation(s)
- Yuliya Lytvyn
- Toronto General Hospital Research Institute, UHN, 585 University Ave, 8N-845, Toronto, Ontario, M5G 2N2, Canada.
| | - Lucas C Godoy
- Peter Munk Cardiac Centre, University of Toronto, Toronto, Canada
- Instituto do Coracao (InCor), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Rosalie A Scholtes
- Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Center, location VU University Medical Center, Amsterdam, The Netherlands
| | - Daniël H van Raalte
- Diabetes Center, Department of Internal Medicine, Amsterdam University Medical Center, location VU University Medical Center, Amsterdam, The Netherlands
| | - David Z Cherney
- Department of Medicine, Division of Nephrology, University Health Network, University of Toronto, Toronto, Canada
- Banting and Best Diabetes Centre, Toronto, Canada
- Department of Physiology, University of Toronto, Toronto, Canada
| |
Collapse
|
15
|
Sulaiman MK. Diabetic nephropathy: recent advances in pathophysiology and challenges in dietary management. Diabetol Metab Syndr 2019; 11:7. [PMID: 30679960 PMCID: PMC6343294 DOI: 10.1186/s13098-019-0403-4] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/17/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) or diabetic kidney disease refers to the deterioration of kidney function seen in chronic type 1 and type 2 diabetes mellitus patients. The progression of the disease is known to occur in a series of stages and is linked to glycemic and blood pressure control. However, despite aggressive blood sugar control the prevalence of chronic kidney disease (CKD) in diabetic patients has not witnessed any decrease in the last two decades; which has lead to identification of additional factors in its progression. The nutritional status of patients is an important and modifiable factor that may influence CKD processes and outcome. It directly stems from the traditional dietary choices that patients make due to poor nutritional awareness. Dietary management of DN patients is challenging, as the twin factors of diet overload on kidney function needs to be balanced with malnutrition. Patient education seems to be the key in avoiding overindulgence of carbohydrate and protein-rich foods while favoring inclusion of essential fats in their diet. CONCLUSION This review will summarize current advances in staging and molecular pathogenesis of DN. It will highlight recent studies focusing on patient-customized dietary interventions that offer new hope as an effective tool in improving quality of life and delaying disease progression in DN patients.
Collapse
|
16
|
León Jiménez D, Cherney DZI, Bjornstad P, Castilla-Guerra L, Miramontes González JP. Antihyperglycemic agents as novel natriuretic therapies in diabetic kidney disease. Am J Physiol Renal Physiol 2018; 315:F1406-F1415. [PMID: 30066584 PMCID: PMC6293300 DOI: 10.1152/ajprenal.00384.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 07/11/2018] [Accepted: 07/26/2018] [Indexed: 02/07/2023] Open
Abstract
While sodium-glucose cotransporter-2 (SGLT2) inhibitors have been used for the routine management of type 2 diabetes for several years, it is perhaps their natriuretic effects that are most important clinically. This natriuresis activates tubuloglomerular feedback, resulting in reduced glomerular hypertension and proteinuria, leading to renal protective effects in the EMPA-REG OUTCOME and CANVAS Program trials. In the cardiovascular system, it is likely that plasma volume contraction due to natriuresis in response to SGLT2 inhibition is at least in part responsible for the reduction in the risk of heart failure observed in these trials. We compare this mechanism of action with other antidiabetics. Importantly, other diuretic classes, including thiazide and loop diuretics, have not resulted in such robust clinical benefits in patients with type 2 diabetes, possibly because these older agents do not influence intraglomerular pressure directly. In contrast, SGLT2 inhibitors do have important physiological similarities with carbonic anhydrase inhibitors, which also act proximally, and have been shown to activate tubuloglomerular feedback.
Collapse
Affiliation(s)
- David León Jiménez
- Vascular Risk Unit, Internal Medicine Clinical Management Unit, Hospital Universitario Virgen Macarena , Seville , Spain
| | - David Z I Cherney
- Department of Medicine, Division of Nephrology. Toronto General Hospital, University of Toronto , Toronto , Ontario, Canada
| | - Petter Bjornstad
- Department of Pediatrics, Division of Endocrinology and Department of Medicine, Division of Renal Diseases and Hypertension, University of Colorado , Aurora, Colorado
| | - Luis Castilla-Guerra
- Vascular Risk Unit, Internal Medicine Clinical Management Unit, Hospital Universitario Virgen Macarena , Seville , Spain
| | - José Pablo Miramontes González
- Service of Internal Medicine, Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca , Salamanca , Spain
| |
Collapse
|
17
|
Septin 7 mediates high glucose-induced podocyte apoptosis. Biochem Biophys Res Commun 2018; 506:522-528. [PMID: 30361092 DOI: 10.1016/j.bbrc.2018.10.081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 10/13/2018] [Indexed: 12/21/2022]
Abstract
Podocyte depletion is a central pathological mechanism of diabetic nephropathy (DN). Hyperglycemia induced podocyte apoptosis, resulting in podocyte depletion. However, the crucial mechanism of hyperglycemia-induced podocyte apoptosis remains poorly understood. In this study, we evaluated the expression of septin 7, a GTP-binding protein, in glomerular podocytes of patients and mice with DN, and investigated the pro-apoptotic effect of septin 7 on high glucose (HG) induced podocyte apoptosis in vitro. We found septin 7 expression was markedly increased not only in glomerular podocytes of patients and db/db mice with DN but also in cultured podocytes with HG stimulation. Knocking down septin 7 with siRNA could attenuate HG induced podocytes apoptosis and excessive intracellular Ca2+ concentration. This study revealed septin7 may potentially play a proapoptotic role in podocyte under diabetic conditions and may provide a potential target for preventing podocyte apoptosis in DN.
Collapse
|
18
|
Chen F, Zhu X, Sun Z, Ma Y. Astilbin Inhibits High Glucose-Induced Inflammation and Extracellular Matrix Accumulation by Suppressing the TLR4/MyD88/NF-κB Pathway in Rat Glomerular Mesangial Cells. Front Pharmacol 2018; 9:1187. [PMID: 30459606 PMCID: PMC6232904 DOI: 10.3389/fphar.2018.01187] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/28/2018] [Indexed: 12/20/2022] Open
Abstract
Diabetic nephropathy (DN) is characterized by inflammatory responses and extracellular matrix (ECM) accumulation. Astilbin is an active natural compound and possesses anti-inflammatory activity. The aim of this study was to evaluate the anti-inflammatory effect of astilbin on high glucose (HG)-induced glomerular mesangial cells and the potential mechanisms. The results showed that HG induced cell proliferation of HBZY-1 cells in a time-dependent manner, and astilbin inhibited HG-induced cell proliferation. The expression and secretion of inflammatory cytokines, including interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α), and ECM components, including collagen IV (Col IV) and fibronectin (FN), were induced by HG. Moreover, TGF-β1 and CTGF were also induced by HG. The induction by HG on inflammatory response and ECM accumulation was inhibited after astilbin treatment. Astilbin treatment also attenuated HG-induced decrease in expression of matrix metalloproteinase (MMP)-2 and MMP-9. The TLR4/MyD88/NF-κB pathway was activated by HG, and the inhibitor of TLR4 exhibited the same effect to astilbin on reversing the induction of HG. TLR4 overexpression attenuated the effect of astilbin on HG-induced inflammatory cytokine production and ECM accumulation. The results suggested that astilbin attenuated inflammation and ECM accumulation in HG-induced rat glomerular mesangial cells via inhibiting the TLR4/MyD88/NF-κB pathway. This work provided evidence that astilbin can be considered as a potential candidate for DN therapy.
Collapse
Affiliation(s)
- Fang Chen
- Department of Nephrology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Xiaoguang Zhu
- Department of Nephrology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Zhiqiang Sun
- Department of Nephrology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Yali Ma
- Department of Nephrology, Huaihe Hospital of Henan University, Kaifeng, China
| |
Collapse
|
19
|
Aroor AR, Das NA, Carpenter AJ, Habibi J, Jia G, Ramirez-Perez FI, Martinez-Lemus L, Manrique-Acevedo CM, Hayden MR, Duta C, Nistala R, Mayoux E, Padilla J, Chandrasekar B, DeMarco VG. Glycemic control by the SGLT2 inhibitor empagliflozin decreases aortic stiffness, renal resistivity index and kidney injury. Cardiovasc Diabetol 2018; 17:108. [PMID: 30060748 PMCID: PMC6065158 DOI: 10.1186/s12933-018-0750-8] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/23/2018] [Indexed: 02/06/2023] Open
Abstract
Background Arterial stiffness is emerging as an independent risk factor for the development of chronic kidney disease. The sodium glucose co-transporter 2 (SGLT2) inhibitors, which lower serum glucose by inhibiting SGLT2-mediated glucose reabsorption in renal proximal tubules, have shown promise in reducing arterial stiffness and the risk of cardiovascular and kidney disease in individuals with type 2 diabetes mellitus. Since hyperglycemia contributes to arterial stiffness, we hypothesized that the SGLT2 inhibitor empagliflozin (EMPA) would improve endothelial function, reduce aortic stiffness, and attenuate kidney disease by lowering hyperglycemia in type 2 diabetic female mice (db/db). Materials/methods Ten-week-old female wild-type control (C57BLKS/J) and db/db (BKS.Cg-Dock7m+/+Leprdb/J) mice were divided into three groups: lean untreated controls (CkC, n = 17), untreated db/db (DbC, n = 19) and EMPA-treated db/db mice (DbE, n = 19). EMPA was mixed with normal mouse chow at a concentration to deliver 10 mg kg−1 day−1, and fed for 5 weeks, initiated at 11 weeks of age. Results Compared to CkC, DbC showed increased glucose levels, blood pressure, aortic and endothelial cell stiffness, and impaired endothelium-dependent vasorelaxation. Furthermore, DbC exhibited impaired activation of endothelial nitric oxide synthase, increased renal resistivity and pulsatility indexes, enhanced renal expression of advanced glycation end products, and periarterial and tubulointerstitial fibrosis. EMPA promoted glycosuria and blunted these vascular and renal impairments, without affecting increases in blood pressure. In addition, expression of “reversion inducing cysteine rich protein with Kazal motifs” (RECK), an anti-fibrotic mediator, was significantly suppressed in DbC kidneys and partially restored by EMPA. Confirming the in vivo data, EMPA reversed high glucose-induced RECK suppression in human proximal tubule cells. Conclusions Empagliflozin ameliorates kidney injury in type 2 diabetic female mice by promoting glycosuria, and possibly by reducing systemic and renal artery stiffness, and reversing RECK suppression.
Collapse
Affiliation(s)
- Annayya R Aroor
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, MO, USA.,Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, MO, USA.,Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - Nitin A Das
- Cardiothoracic Surgery, University of Texas Health Science Center, San Antonio, San Antonio, TX, USA
| | - Andrea J Carpenter
- Cardiothoracic Surgery, University of Texas Health Science Center, San Antonio, San Antonio, TX, USA
| | - Javad Habibi
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, MO, USA.,Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, MO, USA.,Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - Guanghong Jia
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, MO, USA.,Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, MO, USA.,Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | | | - Luis Martinez-Lemus
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Camila M Manrique-Acevedo
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, MO, USA.,Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, MO, USA.,Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - Melvin R Hayden
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, MO, USA.,Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, MO, USA
| | - Cornel Duta
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA.,Division of Nephrology, Department of Medicine, University of Missouri, Columbia, MO, USA
| | - Ravi Nistala
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA.,Division of Nephrology, Department of Medicine, University of Missouri, Columbia, MO, USA
| | - Eric Mayoux
- Boehringer Ingelheim, Biberach an der Riss, Germany
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, USA.,Department of Child Health, University of Missouri, Columbia, MO, USA.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| | - Bysani Chandrasekar
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA.,Division of Cardiology, Department of Medicine, University of Missouri, Columbia, MO, USA.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Vincent G DeMarco
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, MO, USA. .,Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri, Columbia, MO, USA. .,Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA. .,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA. .,Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri-Columbia School of Medicine, D110, DC043.0, One Hospital Dr, Columbia, MO, 65212, USA.
| |
Collapse
|
20
|
Downregulation of lncRNA MALAT1 contributes to renal functional improvement after duodenal-jejunal bypass in a diabetic rat model. J Physiol Biochem 2018; 74:431-439. [DOI: 10.1007/s13105-018-0636-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 05/01/2018] [Indexed: 02/07/2023]
|
21
|
Abstract
Over the past 30 years there have been many complementary therapies developed to achieve glycemic control and have an impact on cardiovascular outcomes, as well as reduce the risk of microvascular disease. The 2 most notable new entries have been the sodium-glucose cotransporter 2 (SGLT2) inhibitors and the glucagon-like peptide-1 (GLP-1) agonists. Both these classes of agents have demonstrated reductions in cardiovascular event rates as well as reductions in blood pressure and weight. Moreover, while both have demonstrated a benefit in slowing nephropathy progression, the SGLT2 inhibitors appear to have a significantly greater effect compared with the GLP-1 agents. There is an ongoing trial specifically powered for renal disease progression, CREDENCE (Evaluation of the Effects of Canagliflozin on Renal and Cardiovascular Outcomes in Participants With Diabetic Nephropathy). Additionally, there are 2 other classes of agents being tested to slow nephropathy progression, a selective endothelin-1 receptor antagonist, atrasantan, in the SONAR (Study of Diabetic Nephropathy With Atrasentan) trial and a nonsteroidal mineralocorticoid receptor antagonist, finerenone, in the FIDELIO (Efficacy and Safety of Finerenone in Subjects With Type 2 Diabetes Mellitus) trial. These and other studies are discussed.
Collapse
Affiliation(s)
- David Z I Cherney
- Department of Medicine, Division of Nephrology, Toronto General Hospital, University of Toronto, Toronto, Ontario, Canada
| | - George L Bakris
- Department of Medicine, American Society of Hypertension Comprehensive Hypertension Center, University of Chicago Medicine, Chicago, Illinois, USA
| |
Collapse
|
22
|
Bjornstad P, Nehus E, El Ghormli L, Bacha F, Libman IM, McKay S, Willi SM, Laffel L, Arslanian S, Nadeau KJ. Insulin Sensitivity and Diabetic Kidney Disease in Children and Adolescents With Type 2 Diabetes: An Observational Analysis of Data From the TODAY Clinical Trial. Am J Kidney Dis 2017; 71:65-74. [PMID: 29157731 DOI: 10.1053/j.ajkd.2017.07.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 07/25/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND Diabetic kidney disease is a major cause of premature mortality in type 2 diabetes mellitus (T2DM). Worsening insulin sensitivity independent of glycemic control may contribute to the development of diabetic kidney disease. We investigated the longitudinal association of insulin sensitivity with hyperfiltration and increased albumin excretion in adolescents with T2DM. STUDY DESIGN Observational prospective cohort study. SETTING & PARTICIPANTS 532 TODAY (Treatment Options for Type 2 Diabetes in Adolescents and Youth) participants aged 12 to 17 years with T2DM duration less than 2 years at baseline. The TODAY Study was a multicenter randomized clinical trial that examined the efficacy of 3 treatment regimens (metformin monotherapy, metformin plus rosiglitazone, or metformin plus an intensive lifestyle intervention program) to achieve durable glycemic control. PREDICTORS Natural log-transformed estimated insulin sensitivity (reciprocal of fasting insulin), hemoglobin A1c concentration, age, race-ethnicity, treatment group, body mass index, loss of glycemic control, and hypertension. OUTCOMES Hyperfiltration was defined as 99th percentile or higher of estimated glomerular filtration rate (≥140mL/min/1.73m2) when referenced to healthy adolescents (NHANES 1999-2002) and albumin-creatinine ratio ≥ 30μg/mg at 3 consecutive annual visits. RESULTS Hyperfiltration was observed in 7.0% of participants at baseline and in 13.3% by 5 years, with a cumulative incidence of 5.0% over 5 years. The prevalence of increased albumin excretion was 6% at baseline and 18% by 5 years, with a cumulative incidence of 13.4%. There was an 8% increase in risk for hyperfiltration per 10% lower estimated insulin sensitivity in unadjusted and adjusted models (P=0.01). Increased albumin excretion was associated with hemoglobin A1c concentration, but not estimated insulin sensitivity. LIMITATIONS Longer follow-up is needed to capture the transition from hyperfiltration to rapid glomerular filtration rate decline in youth-onset T2DM. CONCLUSIONS Lower estimated insulin sensitivity was associated with risk for hyperfiltration over time, whereas increased albumin excretion was associated with hyperglycemia in youth-onset T2DM.
Collapse
Affiliation(s)
- Petter Bjornstad
- University of Colorado Anschutz Medical Campus and Children's Hospital Colorado, Aurora, CO
| | - Edward Nehus
- Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Laure El Ghormli
- George Washington University Biostatistics Center, Rockville, MD.
| | - Fida Bacha
- Texas Children's Hospital, Baylor College of Medicine, Houston, TX
| | - Ingrid M Libman
- Children's Hospital University of Pittsburgh Medical Center, Pittsburgh, PA
| | | | - Steven M Willi
- Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | | | - Silva Arslanian
- Children's Hospital University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Kristen J Nadeau
- University of Colorado Anschutz Medical Campus and Children's Hospital Colorado, Aurora, CO
| | | |
Collapse
|
23
|
Prevention of Diabetic Kidney Disease in the Light of Current Literature. BANTAO JOURNAL 2017. [DOI: 10.1515/bj-2017-0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Diabetes is a rapidly growing problem of the community health. The resulting morbidity and mortality are responsible for the complications of diabetes. Nephropathy caused by diabetes often causes serious morbidity and mortality. In this review, we discuss the current approaches to prevent diabetic nephropathy based on the available literature evidence.
Collapse
|
24
|
Lytvyn Y, Bjornstad P, Udell JA, Lovshin JA, Cherney DZI. Sodium Glucose Cotransporter-2 Inhibition in Heart Failure: Potential Mechanisms, Clinical Applications, and Summary of Clinical Trials. Circulation 2017; 136:1643-1658. [PMID: 29061576 PMCID: PMC5846470 DOI: 10.1161/circulationaha.117.030012] [Citation(s) in RCA: 330] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite current established therapy, heart failure (HF) remains a leading cause of hospitalization and mortality worldwide. Novel therapeutic targets are therefore needed to improve the prognosis of patients with HF. The EMPA-REG OUTCOME trial ([Empagliflozin] Cardiovascular Outcome Event Trial in Type 2 Diabetes Mellitus Patients) demonstrated significant reductions in mortality and HF hospitalization risk in patients with type 2 diabetes mellitus (T2D) and cardiovascular disease with the antihyperglycemic agent, empagliflozin, a sodium glucose cotransporter 2 (SGLT2) inhibitor. The CANVAS trial (Canagliflozin Cardiovascular Assessment Study) subsequently reported a reduction in 3-point major adverse cardiovascular events and HF hospitalization risk. Although SGLT2 inhibition may have potential application beyond T2D, including HF, the mechanisms responsible for the cardioprotective effects of SGLT2 inhibitors remain incompletely understood. SGLT2 inhibition promotes natriuresis and osmotic diuresis, leading to plasma volume contraction and reduced preload, and decreases in blood pressure, arterial stiffness, and afterload as well, thereby improving subendocardial blood flow in patients with HF. SGLT2 inhibition is also associated with preservation of renal function. Based on data from mechanistic studies and clinical trials, large clinical trials with SGLT2 inhibitors are now investigating the potential use of SGLT2 inhibition in patients who have HF with and without T2D. Accordingly, in this review, we summarize the key pharmacodynamic effects of SGLT2 inhibitors and the clinical evidence that support the rationale for the use of SGLT2 inhibitors in patients with HF who have T2D. Because these favorable effects presumably occur independent of blood glucose lowering, we also explore the potential use of SGLT2 inhibition in patients without T2D with HF or at risk of HF, such as in patients with coronary artery disease or hypertension. Finally, we provide a detailed overview and summary of ongoing cardiovascular outcome trials with SGLT2 inhibitors.
Collapse
Affiliation(s)
- Yuliya Lytvyn
- From Department of Medicine, Division of Nephrology, University Health Network, University of Toronto, Ontario, Canada (Y.L., J.A.L., D.Z.I.C.); Department of Pediatrics, Division of Endocrinology, University of Colorado School of Medicine, Aurora (P.B.); Women's College Research Institute and Department of Medicine, Division of Cardiology, Women's College Hospital, University of Toronto, Ontario, Canada (J.A.U.); Peter Munk Cardiac Centre, University Health Network, University of Toronto, Ontario, Canada (J.A.U.); and Department of Medicine, Division of Endocrinology and Metabolism, University Health Network and Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada (J.A.L.)
| | - Petter Bjornstad
- From Department of Medicine, Division of Nephrology, University Health Network, University of Toronto, Ontario, Canada (Y.L., J.A.L., D.Z.I.C.); Department of Pediatrics, Division of Endocrinology, University of Colorado School of Medicine, Aurora (P.B.); Women's College Research Institute and Department of Medicine, Division of Cardiology, Women's College Hospital, University of Toronto, Ontario, Canada (J.A.U.); Peter Munk Cardiac Centre, University Health Network, University of Toronto, Ontario, Canada (J.A.U.); and Department of Medicine, Division of Endocrinology and Metabolism, University Health Network and Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada (J.A.L.)
| | - Jacob A Udell
- From Department of Medicine, Division of Nephrology, University Health Network, University of Toronto, Ontario, Canada (Y.L., J.A.L., D.Z.I.C.); Department of Pediatrics, Division of Endocrinology, University of Colorado School of Medicine, Aurora (P.B.); Women's College Research Institute and Department of Medicine, Division of Cardiology, Women's College Hospital, University of Toronto, Ontario, Canada (J.A.U.); Peter Munk Cardiac Centre, University Health Network, University of Toronto, Ontario, Canada (J.A.U.); and Department of Medicine, Division of Endocrinology and Metabolism, University Health Network and Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada (J.A.L.)
| | - Julie A Lovshin
- From Department of Medicine, Division of Nephrology, University Health Network, University of Toronto, Ontario, Canada (Y.L., J.A.L., D.Z.I.C.); Department of Pediatrics, Division of Endocrinology, University of Colorado School of Medicine, Aurora (P.B.); Women's College Research Institute and Department of Medicine, Division of Cardiology, Women's College Hospital, University of Toronto, Ontario, Canada (J.A.U.); Peter Munk Cardiac Centre, University Health Network, University of Toronto, Ontario, Canada (J.A.U.); and Department of Medicine, Division of Endocrinology and Metabolism, University Health Network and Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada (J.A.L.)
| | - David Z I Cherney
- From Department of Medicine, Division of Nephrology, University Health Network, University of Toronto, Ontario, Canada (Y.L., J.A.L., D.Z.I.C.); Department of Pediatrics, Division of Endocrinology, University of Colorado School of Medicine, Aurora (P.B.); Women's College Research Institute and Department of Medicine, Division of Cardiology, Women's College Hospital, University of Toronto, Ontario, Canada (J.A.U.); Peter Munk Cardiac Centre, University Health Network, University of Toronto, Ontario, Canada (J.A.U.); and Department of Medicine, Division of Endocrinology and Metabolism, University Health Network and Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada (J.A.L.).
| |
Collapse
|
25
|
Sha J, Sui B, Su X, Meng Q, Zhang C. Alteration of oxidative stress and inflammatory cytokines induces apoptosis in diabetic nephropathy. Mol Med Rep 2017; 16:7715-7723. [PMID: 28944839 DOI: 10.3892/mmr.2017.7522] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 06/21/2017] [Indexed: 11/06/2022] Open
Abstract
Diabetic nephropathy (DN) is one of the most significant long‑term complications in terms of morbidity and mortality for diabetic patients; however, the exact cause remains unknown. To address this, the DN model was established, and oxidative stress indexes, including malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GSH‑Px), and inflammatory cytokines, includinginterleukin‑6 (IL‑6), tumor necrosis factor‑alpha (TNF‑α) and transforming growth factor‑beta (TGF‑β), were examined by ELISA. Renal pathological alterations and cell apoptosis was examined by hematoxylin and eosin and terminal deoxynucleotidyl transferase mediated dUTP nick‑end labeling staining, respectively. The expression levels of B‑cell lymphoma‑2 (Bcl‑2), Bcl‑2 associated X (Bax) and caspase‑3 wereexamined by immunohistochemistry and western blotting. The DN model was correctly established, with lower body weight and the higher blood glucose in the diabetes model group. The expression levels of SOD and GSH‑Px were significantly decreased in the diabetes model group; however, MDA, IL‑6, TNF‑α and TGF‑β were significantly increased. The kidney was severely damaged in the diabetes model group, with inflammatory cell invasion, increasing amount of interstitial matrix and hypertrophy with vacuolar degeneration of renal tubular cells. Cell apoptosis levels were significantly increased, and Bcl‑2 was significantly decreased in the diabetes model group in contrast with that of the sham group; however, Bax and caspase‑3 were significantly increased. It suggested that increased oxidative stress and inflammatory cytokines may enhance the apoptosis levels in DN, and may provide a significant diagnostic reference for DN in diabetes patients.
Collapse
Affiliation(s)
- Jibin Sha
- School of Sports Science and Health, Shandong Sports University, Jinan, Shandong 250102, P.R. China
| | - Bo Sui
- School of Sports Science and Health, Shandong Sports University, Jinan, Shandong 250102, P.R. China
| | - Xiaoqing Su
- Department of Endoscopy, Zhangqiu People's Hospital, Jinan, Shandong 250200, P.R. China
| | - Qingfang Meng
- School of Social Sports Science, Shandong Sports University, Jinan, Shandong 250102, P.R. China
| | - Chenggang Zhang
- Beijing Institute of Radiation Medicine, Beijing 100850, P.R. China
| |
Collapse
|
26
|
Shang J, Zhao Z. Emerging role of HuR in inflammatory response in kidney diseases. Acta Biochim Biophys Sin (Shanghai) 2017; 49:753-763. [PMID: 28910975 DOI: 10.1093/abbs/gmx071] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 06/21/2017] [Indexed: 12/14/2022] Open
Abstract
Human antigen R (HuR) is a member of the embryonic lethal abnormal vision (ELAV) family which can bind to the A/U rich elements in 3' un-translated region of mRNA and regulate mRNA splicing, transportation, and stability. Unlike other members of the ELAV family, HuR is ubiquitously expressed. Early studies mainly focused on HuR function in malignant diseases. As researches proceed, more and more proofs demonstrate its relationship with inflammation. Since most kidney diseases involve pathological changes of inflammation, HuR is now suggested to play a pivotal role in glomerular nephropathy, tubular ischemia-reperfusion damage, renal fibrosis and even renal tumors. By regulating the mRNAs of target genes, HuR is causally linked to the onset and progression of kidney diseases. Reports on this topic are steadily increasing, however, the detailed function and mechanism of action of HuR are still not well understood. The aim of this review article is to summarize the present understanding of the role of HuR in inflammation in kidney diseases, and we anticipate that future research will ultimately elucidate the therapeutic value of this novel target.
Collapse
Affiliation(s)
- Jin Shang
- Nephrology Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhanzheng Zhao
- Nephrology Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
27
|
MacIsaac RJ, Jerums G, Ekinci EI. Effects of glycaemic management on diabetic kidney disease. World J Diabetes 2017; 8:172-186. [PMID: 28572879 PMCID: PMC5437616 DOI: 10.4239/wjd.v8.i5.172] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 11/07/2016] [Accepted: 03/17/2017] [Indexed: 02/05/2023] Open
Abstract
Hyperglycaemia contributes to the onset and progression of diabetic kidney disease (DKD). Observational studies have not consistently demonstrated a glucose threshold, in terms of HbA1c levels, for the onset of DKD. Tight glucose control has clearly been shown to reduce the incidence of micro- or macroalbuminuria. However, evidence is now also emerging to suggest that intensive glucose control can slow glomerular filtration rate loss and possibly progression to end stage kidney disease. Achieving tight glucose control needs to be balanced against the increasing appreciation that glucose targets for the prevention of diabetes related complications need be individualised for each patient. Recently, empagliflozin which is an oral glucose lowering agent of the sodium glucose cotransporter-2 inhibitor class has been shown to have renal protective effects. However, the magnitude of empagliflozin’s reno-protective properties are over and above that expected from its glucose lowering effects and most likely largely result from mechanisms involving alterations in intra-renal haemodynamics. Liraglutide and semaglutide, both injectable glucose lowering agents which are analogues of human glucagon like peptide-1 have also been shown to reduce progression to macroalbuminuria through mechanisms that remain to be fully elucidated. Here we review the evidence from observational and interventional studies that link good glucose control with improved renal outcomes. We also briefly review the potential reno-protective effects of newer glucose lowering agents.
Collapse
|
28
|
Ajiboye O, Segal JB. National trends in the treatment of diabetic nephropathy in the United States. J Clin Pharm Ther 2017; 42:311-317. [PMID: 28295491 DOI: 10.1111/jcpt.12516] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 02/09/2017] [Indexed: 12/21/2022]
Affiliation(s)
- O. Ajiboye
- Johns Hopkins Bloomberg School of Public Health; Baltimore MD USA
| | - J. B. Segal
- Center for Drug Safety and Effectiveness; Johns Hopkins Bloomberg School of Public Health; Baltimore MD USA
- Division of General Internal Medicine; Johns Hopkins Hospital; Baltimore MD USA
- Department of Epidemiology; Johns Hopkins Bloomberg School of Public Health; Baltimore MD USA
| |
Collapse
|
29
|
Bermejo S, Pascual J, Soler MJ. The large spectrum of renal disease in diabetic patients. Clin Kidney J 2017; 10:255-256. [PMID: 28396743 PMCID: PMC5381242 DOI: 10.1093/ckj/sfw137] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 11/14/2016] [Indexed: 12/13/2022] Open
Abstract
The prevalence of diabetic nephropathy (DN) among diabetic patients seems to be overestimated. Recent studies with renal biopsies show that the incidence of non-diabetic nephropathy (NDN) among diabetic patients is higher than expected. Renal impairment of diabetic patients is frequently attributed to DN without meeting the KDOQI criteria or performing renal biopsy to exclude NDN. In this editorial, we update the spectrum of renal disease in diabetic patients and the impact on diagnosis, prognosis and therapy.
Collapse
Affiliation(s)
- Sheila Bermejo
- Department of Nephrology, Hospital del Mar, Barcelona, Spain; Department of Nephrology, Consorci Sanitari del Garraf, Vilanova I la Geltrú, Spain; Department of Nephrology, Fundació Althaia, Manresa, Spain
| | - Julio Pascual
- Department of Nephrology, Hospital del Mar, Barcelona, Spain; Institut Mar for Medical Research (IMIM), Barcelona, Spain
| | - Maria José Soler
- Department of Nephrology, Hospital del Mar, Barcelona, Spain; Institut Mar for Medical Research (IMIM), Barcelona, Spain
| |
Collapse
|