1
|
McMillan RK, Stock JM, Romberger NT, Wenner MM, Chai SC, Farquhar WB. The impact of dietary sodium and fructose on renal sodium handling and blood pressure in healthy adults. Physiol Rep 2025; 13:e70284. [PMID: 40129273 PMCID: PMC11933718 DOI: 10.14814/phy2.70284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/25/2025] [Accepted: 03/11/2025] [Indexed: 03/26/2025] Open
Abstract
Increased dietary sodium is linked to hypertension, but most young adults display "sodium-resistant" blood pressure (BP), meaning BP is not elevated with sodium loading. In sodium-resistant rodents, fructose induces salt-sensitive BP via increased renal sodium reabsorption. Therefore, we tested the impact of fructose and sodium on renal sodium handling and BP in healthy adults, hypothesizing that their combination would impair sodium excretion and increase BP. Thirty-six participants enrolled in a randomized, double-blind, crossover trial involving three diets varying in fructose and sodium. On day 7, participants wore ambulatory BP monitors and collected 24-h urine. Although high sodium increased urinary sodium excretion, excretion was 15% lower with high fructose plus high salt versus high salt alone (235.1 ± 85.0 vs. 277.9 ± 121.2 mmol/24 h, p = 0.05). Compared to the recommended diet, high salt alone did not significantly change 24 h. MAP; however, high fructose plus high salt modestly raised 24 h MAP (81 ± 6 vs. 84 ± 7 mmHg, p = 0.03). High fructose and high salt increased serum interleukin-6 concentrations compared to the recommended diet (0.31 ± 0.2 vs. 0.24 ± 0.19 pg/mL, p = 0.04). These findings suggest that increased sodium and fructose alter renal sodium handling and BP in young adults.
Collapse
Affiliation(s)
- Ronald K. McMillan
- Department of Medicine, Division of Clinical PharmacologyVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Kinesiology and Applied PhysiologyUniversity of DelawareNewarkDelawareUSA
| | - Joseph M. Stock
- Department of Kinesiology and Applied PhysiologyUniversity of DelawareNewarkDelawareUSA
- Department of KinesiologyEast Carolina UniversityGreenvilleNorth CarolinaUSA
| | - Nathan T. Romberger
- Department of Kinesiology and Applied PhysiologyUniversity of DelawareNewarkDelawareUSA
| | - Megan M. Wenner
- Department of Kinesiology and Applied PhysiologyUniversity of DelawareNewarkDelawareUSA
| | - Sheau C. Chai
- Department of Health Behavior and Nutrition SciencesUniversity of DelawareNewarkDelawareUSA
| | - William B. Farquhar
- Department of Kinesiology and Applied PhysiologyUniversity of DelawareNewarkDelawareUSA
| |
Collapse
|
2
|
Xiong S, Lin S, Hu Y, Xia W, Wang Q, Wang L, Cao T, Liao Y, Scholze A, Tepel M, Zhu Z, Liu D. Dietary Cinnamaldehyde Activation of TRPA1 Antagonizes High-Salt-Induced Hypertension Through Restoring Renal Tubular Mitochondrial Dysfunction. Am J Hypertens 2024; 37:708-716. [PMID: 38820173 DOI: 10.1093/ajh/hpae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/25/2024] [Accepted: 05/13/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND The renal proximal tubule (RPT) plays a pivotal role in regulating sodium reabsorption and thus blood pressure (BP). Transient receptor potential ankyrin 1 (TRPA1) has been reported to protect against renal injury by modulating mitochondrial function. We hypothesize that the activation of TRPA1 by its agonist cinnamaldehyde may mitigate high-salt intake-induced hypertension by inhibiting urinary sodium reabsorption through restoration of renal tubular epithelial mitochondrial function. METHODS Trpa1-deficient (Trpa1-/-) mice and wild-type (WT) mice were fed standard laboratory chow [normal diet (ND) group, 0.4% salt], standard laboratory chow with 8% salt [high-salt diet (HS) group], or standard laboratory chow with 8% salt plus 0.015% cinnamaldehyde [high-salt plus cinnamaldehyde diet (HSC) group] for 6 months. Urinary sodium excretion, reactive oxygen species (ROS) production, mitochondrial function, and the expression of sodium hydrogen exchanger isoform 3 (NHE3) and Na+/K+-ATPase of RPTs were determined. RESULTS Chronic dietary cinnamaldehyde supplementation reduced tail systolic BP and 24-hour ambulatory arterial pressure in HS-fed WT mice. Compared with the mice fed HS, cinnamaldehyde supplementation significantly increased urinary sodium excretion, inhibited excess ROS production, and alleviated mitochondrial dysfunction of RPTs in WT mice. However, these effects of cinnamaldehyde were absent in Trpa1-/- mice. Furthermore, chronic dietary cinnamaldehyde supplementation blunted HS-induced upregulation of NHE3 and Na+/K+-ATPase in WT mice but not Trpa1-/- mice. CONCLUSIONS The present study demonstrated that chronic activation of Trpa1 attenuates HS-induced hypertension by inhibiting urinary sodium reabsorption through restoring renal tubular epithelial mitochondrial function. Renal TRPA1 may be a potential target for the management of excessive dietary salt intake-associated hypertension.
Collapse
Affiliation(s)
- Shiqiang Xiong
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Shaoyang Lin
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Yingru Hu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Weijie Xia
- Department of Plastic & Cosmetic Surgery, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Qianran Wang
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Lijuan Wang
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Tingbing Cao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Yingying Liao
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Alexandra Scholze
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark, and Department of Cardiothoracic and Vascular Surgery, Odense University Hospital, Odense, Denmark
| | - Martin Tepel
- Department of Nephrology, Odense University Hospital, Odense, Denmark
- Institute of Molecular Medicine, Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
- Institute of Clinical Research, University of Southern
| | - Zhiming Zhu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, China
| | - Daoyan Liu
- Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Army Medical University, Chongqing Institute of Hypertension, Chongqing, China
| |
Collapse
|
3
|
Kanbay M, Copur S, Guldan M, Ozbek L, Hatipoglu A, Covic A, Mallamaci F, Zoccali C. Proximal tubule hypertrophy and hyperfunction: a novel pathophysiological feature in disease states. Clin Kidney J 2024; 17:sfae195. [PMID: 39050867 PMCID: PMC11267238 DOI: 10.1093/ckj/sfae195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Indexed: 07/27/2024] Open
Abstract
The role of proximal tubules (PTs), a major component of the renal tubular structure in the renal cortex, has been examined extensively. Along with its physiological role in the reabsorption of various molecules, including electrolytes, amino acids and monosaccharides, transcellular transport of different hormones and regulation of homeostasis, pathological events affecting PTs may underlie multiple disease states. PT hypertrophy or a hyperfunctioning state, despite being a compensatory mechanism at first in response to various stimuli or alterations at tubular transport proteins, have been shown to be critical pathophysiological events leading to multiple disorders, including diabetes mellitus, obesity, metabolic syndrome and congestive heart failure. Moreover, pharmacotherapeutic agents have primarily targeted PTs, including sodium-glucose cotransporter 2, urate transporters and carbonic anhydrase enzymes. In this narrative review, we focus on the physiological role of PTs in healthy states and the current understanding of the PT pathologies leading to disease states and potential therapeutic targets.
Collapse
Affiliation(s)
- Mehmet Kanbay
- Department of Internal Medicine, Division of Nephrology, Koç University School of Medicine, Istanbul, Turkey
| | - Sidar Copur
- Department of Medicine, Koç University School of Medicine, Istanbul, Turkey
| | - Mustafa Guldan
- Department of Internal Medicine, Division of Internal Medicine, Koç University School of Medicine, Istanbul, Turkey
| | - Lasin Ozbek
- Department of Internal Medicine, Division of Internal Medicine, Koç University School of Medicine, Istanbul, Turkey
| | - Alper Hatipoglu
- Department of Internal Medicine, Division of Internal Medicine, Koç University School of Medicine, Istanbul, Turkey
| | - Adrian Covic
- Nephrology, Dialysis and Transplantation, University Grigore T Popa, Iasi, Romania
| | - Francesca Mallamaci
- Nephrology, Dialysis and Transplantation Unit, Grande Ospedale Metropolitano, Reggio Calabria, Italy
- CNR-IFC, Research Unit of Clinical Epidemiology and Physiopathology of Renal Diseases and Hypertension, Institute of Clinical Physiology, Reggio Calabria, Italy
| | - Carmine Zoccali
- Renal Research Institute, New York, NY, USA
- Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
- Associazione Ipertensione Nefrologia Trapianto Renale, Grande Ospedale Metropolitano, c/o Nefrologia, Reggio Calabria, Italy
| |
Collapse
|
4
|
Lee D, Hong JH. Chloride/Multiple Anion Exchanger SLC26A Family: Systemic Roles of SLC26A4 in Various Organs. Int J Mol Sci 2024; 25:4190. [PMID: 38673775 PMCID: PMC11050216 DOI: 10.3390/ijms25084190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/31/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Solute carrier family 26 member 4 (SLC26A4) is a member of the SLC26A transporter family and is expressed in various tissues, including the airway epithelium, kidney, thyroid, and tumors. It transports various ions, including bicarbonate, chloride, iodine, and oxalate. As a multiple-ion transporter, SLC26A4 is involved in the maintenance of hearing function, renal function, blood pressure, and hormone and pH regulation. In this review, we have summarized the various functions of SLC26A4 in multiple tissues and organs. Moreover, the relationships between SLC26A4 and other channels, such as cystic fibrosis transmembrane conductance regulator, epithelial sodium channel, and sodium chloride cotransporter, are highlighted. Although the modulation of SLC26A4 is critical for recovery from malfunctions of various organs, development of specific inducers or agonists of SLC26A4 remains challenging. This review contributes to providing a better understanding of the role of SLC26A4 and development of therapeutic approaches for the SLC26A4-associated hearing loss and SLC26A4-related dysfunction of various organs.
Collapse
Affiliation(s)
| | - Jeong Hee Hong
- Department of Health Sciences and Technology, GAIHST (Gachon Advanced Institute for Health Sciences and Technology), Lee Gil Ya Cancer and Diabetes Institute, Gachon University, 155 Getbeolro, Yeonsu-gu, Incheon 21999, Republic of Korea;
| |
Collapse
|
5
|
Chen M, Gu X. Emerging roles of proximal tubular endocytosis in renal fibrosis. Front Cell Dev Biol 2023; 11:1235716. [PMID: 37799275 PMCID: PMC10547866 DOI: 10.3389/fcell.2023.1235716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/11/2023] [Indexed: 10/07/2023] Open
Abstract
Endocytosis is a crucial component of many pathological conditions. The proximal tubules are responsible for reabsorbing the majority of filtered water and glucose, as well as all the proteins filtered through the glomerular barrier via endocytosis, indicating an essential role in kidney diseases. Genetic mutations or acquired insults could affect the proximal tubule endocytosis processes, by disturbing or overstressing the endolysosomal system and subsequently activating different pathways, orchestrating renal fibrosis. This paper will review recent studies on proximal tubular endocytosis affected by other diseases and factors. Endocytosis plays a vital role in the development of renal fibrosis, and renal fibrosis could also, in turn, affect tubular endocytosis.
Collapse
Affiliation(s)
- Min Chen
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiangchen Gu
- Department of Nephrology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Nephrology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Medicine, Shanghai Hospital of Civil Aviation Administration of China, Shanghai, China
| |
Collapse
|
6
|
Wang Y, Jin M, Cheng CK, Li Q. Tubular injury in diabetic kidney disease: molecular mechanisms and potential therapeutic perspectives. Front Endocrinol (Lausanne) 2023; 14:1238927. [PMID: 37600689 PMCID: PMC10433744 DOI: 10.3389/fendo.2023.1238927] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Diabetic kidney disease (DKD) is a chronic complication of diabetes and the leading cause of end-stage renal disease (ESRD) worldwide. Currently, there are limited therapeutic drugs available for DKD. While previous research has primarily focused on glomerular injury, recent studies have increasingly emphasized the role of renal tubular injury in the pathogenesis of DKD. Various factors, including hyperglycemia, lipid accumulation, oxidative stress, hypoxia, RAAS, ER stress, inflammation, EMT and programmed cell death, have been shown to induce renal tubular injury and contribute to the progression of DKD. Additionally, traditional hypoglycemic drugs, anti-inflammation therapies, anti-senescence therapies, mineralocorticoid receptor antagonists, and stem cell therapies have demonstrated their potential to alleviate renal tubular injury in DKD. This review will provide insights into the latest research on the mechanisms and treatments of renal tubular injury in DKD.
Collapse
Affiliation(s)
- Yu Wang
- Department of Endocrinology and Metabolism, Shenzhen University General Hospital, Shenzhen, Guangdong, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Mingyue Jin
- Department of Endocrinology and Metabolism, Shenzhen University General Hospital, Shenzhen, Guangdong, China
| | - Chak Kwong Cheng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Qiang Li
- Department of Endocrinology and Metabolism, Shenzhen University General Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
7
|
Gonsalez SR, Gomes DS, de Souza AM, Ferrão FM, Vallotton Z, Gogulamudi VR, Lowe J, Casarini DE, Prieto MC, Lara LS. The Triad Na + Activated Na + Channel (Nax)-Salt Inducible KINASE (SIK) and (Na + + K +)-ATPase: Targeting the Villains to Treat Salt Resistant and Sensitive Hypertension. Int J Mol Sci 2023; 24:ijms24097887. [PMID: 37175599 PMCID: PMC10178781 DOI: 10.3390/ijms24097887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/04/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
The Na+-activated Na+ channel (Nax) and salt-inducible kinase (SIK) are stimulated by increases in local Na+ concentration, affecting (Na+ + K+)-ATPase activity. To test the hypothesis that the triad Nax/SIK/(Na+ + K+)-ATPase contributes to kidney injury and salt-sensitive hypertension (HTN), uninephrectomized male Wistar rats (200 g; n = 20) were randomly divided into 4 groups based on a salt diet (normal salt diet; NSD-0.5% NaCl-or high-salt diet; HSD-4% NaCl) and subcutaneous administration of saline (0.9% NaCl) or deoxycorticosterone acetate (DOCA, 8 mg/kg), as follows: Control (CTRL), CTRL-Salt, DOCA, and DOCA-Salt, respectively. After 28 days, the following were measured: kidney function, blood pressure, (Na+ + K+)-ATPase and SIK1 kidney activities, and Nax and SIK1 renal expression levels. SIK isoforms in kidneys of CTRL rats were present in the glomerulus and tubular epithelia; they were not altered by HSD and/or HTN. CTRL-Salt rats remained normotensive but presented slight kidney function decay. HSD rats displayed augmentation of the Nax/SIK/(Na+ + K+)-ATPase pathway. HTN, kidney injury, and kidney function decay were present in all DOCA rats; these were aggravated by HSD. DOCA rats presented unaltered (Na+ + K+)-ATPase activity, diminished total SIK activity, and augmented SIK1 and Nax content in the kidney cortex. DOCA-Salt rats expressed SIK1 activity and downregulation in (Na+ + K+)-ATPase activity in the kidney cortex despite augmented Nax content. The data of this study indicate that the (Na+ + K+)-ATPase activity response to SIK is attenuated in rats under HSD, independent of HTN, as a mechanism contributing to kidney injury and salt-sensitive HTN.
Collapse
Affiliation(s)
- Sabrina R Gonsalez
- Faculdade de Medicina, Universidade Federal do Rio de Janeiro, Campus Macaé, Rio de Janeiro 21941-901, Brazil
| | - Dayene S Gomes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-971, Brazil
| | - Alessandro M de Souza
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-971, Brazil
| | - Fernanda M Ferrão
- Núcleo Multidisciplinar de Pesquisa em Biologia (NUMPEX-BIO), Universidade Federal do Rio de Janeiro, Campus Caxias, Rio de Janeiro 21941-901, Brazil
| | - Zoe Vallotton
- Department of Physiology, School of Medicine and Tulane Renal and Hypertension Center of Excellence, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Venkateswara R Gogulamudi
- Department of Physiology, School of Medicine and Tulane Renal and Hypertension Center of Excellence, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jennifer Lowe
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Dulce E Casarini
- Departamento de Medicina, Disciplina de Nefrologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Minolfa C Prieto
- Department of Physiology, School of Medicine and Tulane Renal and Hypertension Center of Excellence, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Lucienne S Lara
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-971, Brazil
| |
Collapse
|
8
|
Ndiaye JF, Nekka F, Craig M. Understanding the Mechanisms and Treatment of Heart Failure: Quantitative Systems Pharmacology Models with a Focus on SGLT2 Inhibitors and Sex-Specific Differences. Pharmaceutics 2023; 15:1002. [PMID: 36986862 PMCID: PMC10052171 DOI: 10.3390/pharmaceutics15031002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Heart failure (HF), which is a major clinical and public health challenge, commonly develops when the myocardial muscle is unable to pump an adequate amount of blood at typical cardiac pressures to fulfill the body's metabolic needs, and compensatory mechanisms are compromised or fail to adjust. Treatments consist of targeting the maladaptive response of the neurohormonal system, thereby decreasing symptoms by relieving congestion. Sodium-glucose co-transporter 2 (SGLT2) inhibitors, which are a recent antihyperglycemic drug, have been found to significantly improve HF complications and mortality. They act through many pleiotropic effects, and show better improvements compared to others existing pharmacological therapies. Mathematical modeling is a tool used to describe the pathophysiological processes of the disease, quantify clinically relevant outcomes in response to therapies, and provide a predictive framework to improve therapeutic scheduling and strategies. In this review, we describe the pathophysiology of HF, its treatment, and how an integrated mathematical model of the cardiorenal system was built to capture body fluid and solute homeostasis. We also provide insights into sex-specific differences between males and females, thereby encouraging the development of more effective sex-based therapies in the case of heart failure.
Collapse
Affiliation(s)
- Jean François Ndiaye
- Department of Mathematics and Statistics, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Sainte-Justine University Hospital Research Centre, Montréal, QC H3T 1C5, Canada
| | - Fahima Nekka
- Faculty of Pharmacy, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Morgan Craig
- Department of Mathematics and Statistics, Université de Montréal, Montréal, QC H3C 3J7, Canada
- Sainte-Justine University Hospital Research Centre, Montréal, QC H3T 1C5, Canada
| |
Collapse
|
9
|
Armando I, Cuevas S, Fan C, Kumar M, Izzi Z, Jose PA, Konkalmatt PR. G Protein-Coupled Receptor 37L1 Modulates Epigenetic Changes in Human Renal Proximal Tubule Cells. Int J Mol Sci 2022; 23:ijms232214456. [PMID: 36430934 PMCID: PMC9698582 DOI: 10.3390/ijms232214456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/19/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022] Open
Abstract
Renal luminal sodium transport is essential for physiological blood pressure control, and abnormalities in this process are strongly implicated in the pathogenesis of essential hypertension. Renal G protein-coupled receptors (GPCRs) are critical for the regulation of the reabsorption of essential nutrients, ions, and water from the glomerular filtrate. Recently, we showed that GPCR 37L1 (GPR37L1) is expressed on the apical membrane of renal proximal tubules (RPT) and regulates luminal sodium transport and blood pressure by modulating the function of the sodium proton exchanger 3 (NHE3). However, little is known about GPR37L1 intracellular signaling. Here, we show that GPR37L1 is localized to the nuclear membrane, in addition to the plasma membrane in human RPT cells. Furthermore, GPR37L1 signals via the PI3K/AKT/mTOR pathway to decrease the expression of DNA (cytosine-5)-methyltransferase 1 (DNMT1) and enhance NHE3 transcription. Overall, we demonstrate the direct role of a nuclear membrane GPCR in the regulation of renal sodium through epigenetic gene regulation.
Collapse
|
10
|
The Post-Translational Modification Networking in WNK-Centric Hypertension Regulation and Electrolyte Homeostasis. Biomedicines 2022; 10:biomedicines10092169. [PMID: 36140271 PMCID: PMC9496095 DOI: 10.3390/biomedicines10092169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022] Open
Abstract
The with-no-lysine (WNK) kinase family, comprising four serine-threonine protein kinases (WNK1-4), were first linked to hypertension due to their mutations in association with pseudohypoaldosteronism type II (PHAII). WNK kinases regulate crucial blood pressure regulators, SPAK/OSR1, to mediate the post-translational modifications (PTMs) of their downstream ion channel substrates, such as sodium chloride co-transporter (NCC), epithelial sodium chloride (ENaC), renal outer medullary potassium channel (ROMK), and Na/K/2Cl co-transporters (NKCCs). In this review, we summarize the molecular pathways dysregulating the WNKs and their downstream target renal ion transporters. We summarize each of the genetic variants of WNK kinases and the small molecule inhibitors that have been discovered to regulate blood pressure via WNK-triggered PTM cascades.
Collapse
|
11
|
Pereira-Acácio A, Veloso-Santos JPM, Nossar LF, Costa-Sarmento G, Muzi-Filho H, Vieyra A. Angiotensin-(3–4) normalizes the elevated arterial blood pressure and abnormal Na+/energy handling associated with chronic undernutrition by counteracting the effects mediated by type 1 angiotensin II receptors. PLoS One 2022; 17:e0273385. [PMID: 35984814 PMCID: PMC9390919 DOI: 10.1371/journal.pone.0273385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/07/2022] [Indexed: 11/24/2022] Open
Abstract
We investigated the mechanisms by which chronic administration of a multideficient diet after weaning alters bodily Na+ handling, and culminates in high systolic blood pressure (SBP) at a juvenile age. From 28 to 92 days of age, weaned male Wistar rats were given a diet with low content and poor-quality protein, and low lipid, without vitamin supplementation, which mimics the diets consumed in impoverished regions worldwide. We measured food, energy and Na+ ingestion, together with urinary Na+ excretion, Na+ density (Na+ intake/energy intake), plasma Na+ concentration, SBP, and renal proximal tubule Na+-transporting ATPases. Undernourished rats aged 92 days had only one-third of the control body mass, lower plasma albumin, higher SBP, higher energy intake, and higher positive Na+ balance accompanied by decreased plasma Na+ concentration. Losartan or Ang-(3–4) normalized SBP, and the combination of the 2 substances induced an accentuated negative Na+ balance as a result of strong inhibition of Na+ ingestion. Na+ density in undernourished rats was higher than in control, irrespective of the treatment, and they had downregulated (Na++K+)ATPase and upregulated Na+-ATPase in proximal tubule cells, which returned to control levels after Losartan or Ang-(3–4). We conclude that Na+ density, not only Na+ ingestion, plays a central role in the pathophysiology of elevated SBP in chronically undernourished rats. The observations that Losartan and Ang-(3–4) normalized SBP together with negative Na+ balance give support to the proposal that Ang II⇒AT1R and Ang II⇒AT2R axes have opposite roles within the renin-angiotensin-aldosterone system of undernourished juvenile rats.
Collapse
Affiliation(s)
- Amaury Pereira-Acácio
- Graduate Program of Translational Biomedicine/BIOTRANS, University of Grande Rio, Duque de Caxias, Brazil
- Leopoldo de Meis Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - João P. M. Veloso-Santos
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz F. Nossar
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gloria Costa-Sarmento
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Humberto Muzi-Filho
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adalberto Vieyra
- Graduate Program of Translational Biomedicine/BIOTRANS, University of Grande Rio, Duque de Caxias, Brazil
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Center of Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine/REGENERA, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
12
|
Leite APDO, Li XC, Nwia SM, Hassan R, Zhuo JL. Angiotensin II and AT 1a Receptors in the Proximal Tubules of the Kidney: New Roles in Blood Pressure Control and Hypertension. Int J Mol Sci 2022; 23:2402. [PMID: 35269547 PMCID: PMC8910592 DOI: 10.3390/ijms23052402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/15/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
Contrary to public perception, hypertension remains one of the most important public health problems in the United States, affecting 46% of adults with increased risk for heart attack, stroke, and kidney diseases. The mechanisms underlying poorly controlled hypertension remain incompletely understood. Recent development in the Cre/LoxP approach to study gain or loss of function of a particular gene has significantly helped advance our new insights into the role of proximal tubule angiotensin II (Ang II) and its AT1 (AT1a) receptors in basal blood pressure control and the development of Ang II-induced hypertension. This novel approach has provided us and others with an important tool to generate novel mouse models with proximal tubule-specific loss (deletion) or gain of the function (overexpression). The objective of this invited review article is to review and discuss recent findings using novel genetically modifying proximal tubule-specific mouse models. These new studies have consistently demonstrated that deletion of AT1 (AT1a) receptors or its direct downstream target Na+/H+ exchanger 3 (NHE3) selectively in the proximal tubules of the kidney lowers basal blood pressure, increases the pressure-natriuresis response, and induces natriuretic responses, whereas overexpression of an intracellular Ang II fusion protein or AT1 (AT1a) receptors selectively in the proximal tubules increases proximal tubule Na+ reabsorption, impairs the pressure-natriuresis response, and elevates blood pressure. Furthermore, the development of Ang II-induced hypertension by systemic Ang II infusion or by proximal tubule-specific overexpression of an intracellular Ang II fusion protein was attenuated in mutant mice with proximal tubule-specific deletion of AT1 (AT1a) receptors or NHE3. Thus, these recent studies provide evidence for and new insights into the important roles of intratubular Ang II via AT1 (AT1a) receptors and NHE3 in the proximal tubules in maintaining basal blood pressure homeostasis and the development of Ang II-induced hypertension.
Collapse
Affiliation(s)
- Ana Paula de Oliveira Leite
- Tulane Hypertension and Renal Center of Excellence, 1430 Tulane Avenue, New Orleans, LA 70112, USA; (A.P.d.O.L.); (X.C.L.); (S.M.N.); (R.H.)
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Xiao C. Li
- Tulane Hypertension and Renal Center of Excellence, 1430 Tulane Avenue, New Orleans, LA 70112, USA; (A.P.d.O.L.); (X.C.L.); (S.M.N.); (R.H.)
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Sarah M. Nwia
- Tulane Hypertension and Renal Center of Excellence, 1430 Tulane Avenue, New Orleans, LA 70112, USA; (A.P.d.O.L.); (X.C.L.); (S.M.N.); (R.H.)
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Rumana Hassan
- Tulane Hypertension and Renal Center of Excellence, 1430 Tulane Avenue, New Orleans, LA 70112, USA; (A.P.d.O.L.); (X.C.L.); (S.M.N.); (R.H.)
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jia L. Zhuo
- Tulane Hypertension and Renal Center of Excellence, 1430 Tulane Avenue, New Orleans, LA 70112, USA; (A.P.d.O.L.); (X.C.L.); (S.M.N.); (R.H.)
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
13
|
Ryuzaki M, Miyashita K, Sato M, Inoue H, Fujii K, Hagiwara A, Uto A, Endo S, Oshida T, Kinouchi K, Itoh H. Activation of the intestinal tissue renin-angiotensin system by transient sodium loading in salt-sensitive rats. J Hypertens 2022; 40:33-45. [PMID: 34285148 PMCID: PMC8654260 DOI: 10.1097/hjh.0000000000002974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/14/2021] [Accepted: 07/04/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND The renal tissue renin-angiotensin system is known to be activated by salt loading in salt-sensitive rats; however, the response in other organs remains unclear. METHOD Spontaneously hypertensive rats were subjected to normal tap water or transient high-salt-concentration water from 6 to 14 weeks of age and were thereafter given normal tap water. From 18 to 20 weeks of age, rats given water with a high salt concentration were treated with an angiotensin II type 1 receptor blocker, valsartan. RESULTS Sustained blood pressure elevation by transient salt loading coincided with a persistent decrease in the fecal sodium content and sustained excess of the circulating volume in spontaneously hypertensive rats. Administration of valsartan sustainably reduced the blood pressure and normalized the fecal sodium levels. Notably, transient salt loading persistently induced the intestinal tissue renin-angiotensin system and enhanced sodium transporter expression exclusively in the small intestine of salt-sensitive rats, suggesting the potential connection of intestinal sodium absorption to salt sensitivity. CONCLUSION These results reveal the previously unappreciated contribution of the intestinal tissue renin-angiotensin system to sodium homeostasis and blood pressure regulation in the pathophysiology of salt-sensitive hypertension.
Collapse
Affiliation(s)
- Masaki Ryuzaki
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Li XC, Wang CH, Leite APO, Zhuo JL. Intratubular, Intracellular, and Mitochondrial Angiotensin II/AT 1 (AT1a) Receptor/NHE3 Signaling Plays a Critical Role in Angiotensin II-Induced Hypertension and Kidney Injury. Front Physiol 2021; 12:702797. [PMID: 34408663 PMCID: PMC8364949 DOI: 10.3389/fphys.2021.702797] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022] Open
Abstract
Hypertension is well recognized to be the most important risk factor for cardiovascular diseases, stroke, and end-stage kidney failure. A quarter of the world’s adult populations and 46% of the US adults develop hypertension and currently require antihypertensive treatments. Only 50% of hypertensive patients are responsive to current antihypertensive drugs, whereas remaining patients may continue to develop cardiovascular, stroke, and kidney diseases. The mechanisms underlying the poorly controlled hypertension remain incompletely understood. Recently, we have focused our efforts to uncover additional renal mechanisms, pathways, and therapeutic targets of poorly controlled hypertension and target organ injury using novel animal models or innovative experimental approaches. Specifically, we studied and elucidated the important roles of intratubular, intracellular, and mitochondrial angiotensin II (Ang II) system in the development of Ang II-dependent hypertension. The objectives of this invited article are to review and discuss our recent findings that (a) circulating and intratubular Ang II is taken up by the proximal tubules via the (AT1) AT1a receptor-dependent mechanism, (b) intracellular administration of Ang II in proximal tubule cells or adenovirus-mediated overexpression of an intracellular Ang II fusion protein selectively in the mitochonria of the proximal tubules induces blood pressure responses, and (c) genetic deletion of AT1 (AT1a) receptors or the Na+/H+ exchanger 3 selectively in the proximal tubules decreases basal blood pressure and attenuates Ang II-induced hypertension. These studies provide a new perspective into the important roles of the intratubular, intracellular, and mitochondrial angiotensin II/AT1 (AT1a) receptor signaling in Ang II-dependent hypertensive kidney diseases.
Collapse
Affiliation(s)
- Xiao Chun Li
- Tulane Hypertension and Renal Center of Excellence, Department of Physiology, Tulane University School of Medicine,New Orleans, LA, United States
| | - Chih-Hong Wang
- Tulane Hypertension and Renal Center of Excellence, Department of Physiology, Tulane University School of Medicine,New Orleans, LA, United States
| | - Ana Paula Oliveira Leite
- Tulane Hypertension and Renal Center of Excellence, Department of Physiology, Tulane University School of Medicine,New Orleans, LA, United States
| | - Jia Long Zhuo
- Tulane Hypertension and Renal Center of Excellence, Department of Physiology, Tulane University School of Medicine,New Orleans, LA, United States
| |
Collapse
|
15
|
Lee H, Jose PA. Coordinated Contribution of NADPH Oxidase- and Mitochondria-Derived Reactive Oxygen Species in Metabolic Syndrome and Its Implication in Renal Dysfunction. Front Pharmacol 2021; 12:670076. [PMID: 34017260 PMCID: PMC8129499 DOI: 10.3389/fphar.2021.670076] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/14/2021] [Indexed: 12/16/2022] Open
Abstract
Metabolic syndrome (MetS), a complex of interrelated risk factors for cardiovascular disease and diabetes, is comprised of central obesity (increased waist circumference), hyperglycemia, dyslipidemia (high triglyceride blood levels, low high-density lipoprotein blood levels), and increased blood pressure. Oxidative stress, caused by the imbalance between pro-oxidant and endogenous antioxidant systems, is the primary pathological basis of MetS. The major sources of reactive oxygen species (ROS) associated with MetS are nicotinamide-adenine dinucleotide phosphate (NADPH) oxidases and mitochondria. In this review, we summarize the current knowledge regarding the generation of ROS from NADPH oxidases and mitochondria, discuss the NADPH oxidase- and mitochondria-derived ROS signaling and pathophysiological effects, and the interplay between these two major sources of ROS, which leads to chronic inflammation, adipocyte proliferation, insulin resistance, and other metabolic abnormalities. The mechanisms linking MetS and chronic kidney disease are not well known. The role of NADPH oxidases and mitochondria in renal injury in the setting of MetS, particularly the influence of the pyruvate dehydrogenase complex in oxidative stress, inflammation, and subsequent renal injury, is highlighted. Understanding the molecular mechanism(s) underlying MetS may lead to novel therapeutic approaches by targeting the pyruvate dehydrogenase complex in MetS and prevent its sequelae of chronic cardiovascular and renal diseases.
Collapse
Affiliation(s)
- Hewang Lee
- Department of Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Pedro A Jose
- Department of Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States.,Department of Pharmacology and Physiology, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| |
Collapse
|
16
|
Pamphlett R, Doble PA, Bishop DP. The Prevalence of Inorganic Mercury in Human Kidneys Suggests a Role for Toxic Metals in Essential Hypertension. TOXICS 2021; 9:67. [PMID: 33801008 PMCID: PMC8004013 DOI: 10.3390/toxics9030067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023]
Abstract
The kidney plays a dominant role in the pathogenesis of essential hypertension, but the initial pathogenic events in the kidney leading to hypertension are not known. Exposure to mercury has been linked to many diseases including hypertension in epidemiological and experimental studies, so we studied the distribution and prevalence of mercury in the human kidney. Paraffin sections of kidneys were available from 129 people ranging in age from 1 to 104 years who had forensic/coronial autopsies. One individual had injected himself with metallic mercury, the other 128 were from varied clinicopathological backgrounds without known exposure to mercury. Sections were stained for inorganic mercury using autometallography. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was used on six samples to confirm the presence of autometallography-detected mercury and to look for other toxic metals. In the 128 people without known mercury exposure, mercury was found in: (1) proximal tubules of the cortex and Henle thin loops of the medulla, in 25% of kidneys (and also in the man who injected himself with mercury), (2) proximal tubules only in 16% of kidneys, and (3) Henle thin loops only in 23% of kidneys. The age-related proportion of people who had any mercury in their kidney was 0% at 1-20 years, 66% at 21-40 years, 77% at 41-60 years, 84% at 61-80 years, and 64% at 81-104 years. LA-ICP-MS confirmed the presence of mercury in samples staining with autometallography and showed cadmium, lead, iron, nickel, and silver in some kidneys. In conclusion, mercury is found commonly in the adult human kidney, where it appears to accumulate in proximal tubules and Henle thin loops until an advanced age. Dysfunctions of both these cortical and medullary regions have been implicated in the pathogenesis of essential hypertension, so these findings suggest that further studies of the effects of mercury on blood pressure are warranted.
Collapse
Affiliation(s)
- Roger Pamphlett
- Discipline of Pathology, Brain and Mind Centre, Sydney Medical School, The University of Sydney, Sydney 2050, Australia
- Department of Neuropathology, Royal Prince Alfred Hospital, Sydney 2050, Australia
| | - Philip A. Doble
- Elemental Bio-Imaging Facility, School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney 2007, Australia; (P.A.D.); (D.P.B.)
| | - David P. Bishop
- Elemental Bio-Imaging Facility, School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney 2007, Australia; (P.A.D.); (D.P.B.)
| |
Collapse
|
17
|
Dwivedi M, Shaw A. Implication of cation-proton antiporters (CPA) in human health and diseases causing microorganisms. Biochimie 2021; 182:85-98. [PMID: 33453344 DOI: 10.1016/j.biochi.2021.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/03/2021] [Accepted: 01/07/2021] [Indexed: 12/15/2022]
Abstract
Cation and protons perform a substantial role in all the organism and its homeostasis within the cells are maintained by the cation-proton antiporters (CPAs). CPA is the huge family of the membrane transporter protein throughout the plant and animal kingdom including microorganism. In human, any malfunctioning of these proteins may lead to severe diseases like hypertension, heart diseases etc and CPAs are recently proposed to be responsible for the virulent property of various pathogens including Vibrio cholerae, Yersinia pestis etc. Human Sodium-Proton exchangers (Na+/H+ exchangers, NHEs) are crucial in ion homeostasis whereas Ec-NhaA, Na + -H + Antiporters maintain a balance of Na+ and proton in E. coli, regulating pH and cell volume within the cell. These Sodium-Proton antiporters are found to be responsible for the virulence in various pathogens causing human diseases. Understanding of these CPAs may assist investigators to target such human diseases, that further may lead to establishing the effective path for therapeutics or drug designing against associated human disease. Here we have compiled all such information on CPAs and provide a systematic approach to unravel the mechanism and role of antiporter proteins in a wide range of organisms. Being involved throughout all the species, this review on cation-proton antiporters may attract the attention of many investigators and concerned researchers and will be provided with the recent detailed information on the role of CPA in human health.
Collapse
Affiliation(s)
- Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, 226028, India.
| | | |
Collapse
|
18
|
Lima NKS, Farias WRA, Cirilo MAS, Oliveira AG, Farias JS, Aires RS, Muzi-Filho H, Paixão ADO, Vieira LD. Renal ischemia-reperfusion leads to hypertension and changes in proximal tubule Na + transport and renin-angiotensin-aldosterone system: Role of NADPH oxidase. Life Sci 2020; 266:118879. [PMID: 33310030 DOI: 10.1016/j.lfs.2020.118879] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/13/2020] [Accepted: 12/01/2020] [Indexed: 12/28/2022]
Abstract
Acute renal injury (AKI) is a risk factor for the development of hypertension, which involves oxidative stress, changes in Na+ handling, and the intrarenal renin-angiotensin-aldosterone system (RAAS) as underlying mechanisms. We investigated in rats whether renal ischemia-reperfusion (IR) leads to changes in the proximal tubule ATP-dependent Na+ transport and the intrarenal content of RAAS components, as well as the role of NADPH oxidase. Rats weighing 300-350 g were submitted to AKI by bilateral IR (n = 25). After IR injury, the animals were followed up for 4 weeks. One part (n = 7) received daily treatment with the NADPH oxidase inhibitor apocynin (100 mg/kg, drinking water), while another part (n = 9) received apocynin 24 h before and after IR. One group was submitted to sham surgery (n = 8). Four weeks after IR, the rats presented elevated systolic blood pressure, as well as increased lipid peroxidation, NADPH oxidase activity, (Na++K+)ATPase activity, and upregulation of type 1 angiotensin II receptor in the renal cortex. On the other hand, there was a decrease in Na+-ATPase activity and downregulation of the isoforms 1 and 2 of the angiotensin-converting enzyme, type 2 angiotensin II receptor, and of the α and ε isoforms of protein kinase C. Most of these alterations was prevented by both apocynin treatment protocols. Thus, we conclude that AKI-induced by IR may induce changes in proximal tubule ATPases and RAAS components compatible with renal Na+ retention and hypertension. These data also indicate that the NADPH oxidase represents a key factor in the origin of these alterations.
Collapse
Affiliation(s)
- Natália K S Lima
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil
| | - Wilka R A Farias
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil
| | - Marry A S Cirilo
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil
| | - Angélica G Oliveira
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil
| | - Juliane S Farias
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil
| | - Regina S Aires
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil
| | - Humberto Muzi-Filho
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; National Center for Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana D O Paixão
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil; National Center for Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leucio D Vieira
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife, Brazil; National Center for Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
19
|
Generation of a p16 Reporter Mouse and Its Use to Characterize and Target p16 high Cells In Vivo. Cell Metab 2020; 32:814-828.e6. [PMID: 32949498 DOI: 10.1016/j.cmet.2020.09.006] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 12/25/2022]
Abstract
Cell senescence plays a key role in age-associated organ dysfunction, but the in vivo pathogenesis is largely unclear. Here, we generated a p16-CreERT2-tdTomato mouse model to analyze the in vivo characteristics of p16high cells at a single-cell level. We found tdTomato-positive p16high cells detectable in all organs, which were enriched with age. We also found that these cells failed to proliferate and had half-lives ranging from 2.6 to 4.2 months, depending on the tissue examined. Single-cell transcriptomics in the liver and kidneys revealed that p16high cells were present in various cell types, though most dominant in hepatic endothelium and in renal proximal and distal tubule epithelia, and that these cells exhibited heterogeneous senescence-associated phenotypes. Further, elimination of p16high cells ameliorated nonalcoholic steatohepatitis-related hepatic lipidosis and immune cell infiltration. Our new mouse model and single-cell analysis provide a powerful resource to enable the discovery of previously unidentified senescence functions in vivo.
Collapse
|
20
|
Rani L, Saini S, Shukla N, Chowdhuri DK, Gautam NK. High sucrose diet induces morphological, structural and functional impairments in the renal tubules of Drosophila melanogaster: A model for studying type-2 diabetes mediated renal tubular dysfunction. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 125:103441. [PMID: 32735915 DOI: 10.1016/j.ibmb.2020.103441] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 07/13/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Continuous feeding of high dietary sugar is strongly associated with type 2 diabetes (T2D) and its secondary complications. Diabetic nephropathy (DN) is a major secondary complication that leads to glomerular and renal tubular dysfunction. The present study is aimed to investigate the effects of chronic exposure of high sugar diet (HSD) on renal tubules. Malpighian tubules (MTs), a renal organ of Drosophila, were used as a model in the study. Feeding of HSD develops T2D condition in Drosophila. The MTs showed structural abnormalities in 20 days of HSD fed flies. Impaired insulin signaling, oxidative stress, enhanced levels of AGE-RAGE and induction of apoptosis were observed in the MTs of these flies. Further, altered expression of transporters, enhanced uric acid level and reduced fluid secretion rate confirmed the impaired function of MTs in these flies. RNA-seq and RT-PCR analyses in the MTs of HSD fed-and control-flies revealed the altered expression of candidate genes that regulate several important pathways including extracellular matrix (ECM), advanced glycation end products-receptor for advanced glycation end products (AGE-RAGE), transforming growth factor β (TGF-β), galactose, starch and sucrose metabolism that are well known mediators of renal tubular dysfunction in DN patients. Disruption of insulin signaling in the MTs also causes renal tubular dysfunction similar to HSD fed flies. Overall, the study suggests that phenotypes observed in the MTs of HSD fed flies recapitulate several hallmarks of renal tubular dysfunction in DN patients. Therefore, we conclude that MTs of HSD fed flies may be used for deciphering the underlying mechanisms of T2D mediated renal tubular dysfunction.
Collapse
Affiliation(s)
- Lavi Rani
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, India
| | - Sanjay Saini
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow, 226007, India
| | - Neha Shukla
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Department of Urology and Renal Transplantation, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow, 226014, Uttar Pradesh, India
| | - Debapratim Kar Chowdhuri
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, India
| | - Naveen Kumar Gautam
- Embryotoxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31 Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Campus, Lucknow, India; Department of Urology and Renal Transplantation, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow, 226014, Uttar Pradesh, India.
| |
Collapse
|
21
|
Górriz JL, Navarro-González JF, Ortiz A, Vergara A, Nuñez J, Jacobs-Cachá C, Martínez-Castelao A, Soler MJ. Sodium-glucose cotransporter 2 inhibition: towards an indication to treat diabetic kidney disease. Nephrol Dial Transplant 2020; 35:i13-i23. [PMID: 32003834 PMCID: PMC6993197 DOI: 10.1093/ndt/gfz237] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Indexed: 12/19/2022] Open
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i) have clearly demonstrated their beneficial effect in diabetic kidney disease (DKD) on top of the standard of care [blood glucose control, renin–angiotensin system blockade, smoking cessation and blood pressure (BP) control], even in patients with overt DKD. However, the indication of this drug class is still blood glucose lowering in type 2 diabetic patients with estimated glomerular filtration rate >45 mL/min/1.73 m2. Based on the new evidence, several scientific societies have emphasized the preferential prescription of SGLT2i for patients at risk of heart failure or kidney disease, but still within the limits set by health authorities. A rapid positioning of both the European Medicines Agency and the US Food and Drug Administration will allow patients with overt DKD to benefit from SGLT2i. Clinical experience suggests that SGLT2i safety management may in part mirror renin–angiotensin blockade safety management in patients with overt DKD. This review focuses on the rationale for an indication of SGTL2i in DKD. We further propose clinical steps for maximizing the safety of SGLT2i in DKD patients on other antidiabetic, BP or diuretic medication.
Collapse
Affiliation(s)
- Jose Luis Górriz
- Hospital Clínico Universitario de Valencia, Universitat de València, INCLIVA, GEENDIAB, Valencia, Spain.,REDINREN, Madrid, Spain
| | - Juan F Navarro-González
- REDINREN, Madrid, Spain.,Unidad de Investigación y Servicio de Nefrología, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.,Instituto de Tecnologías Biomédicas, Universidad de La Laguna, GEENDIAB, Santa Cruz de Tenerife, Spain
| | - Alberto Ortiz
- REDINREN, Madrid, Spain.,IIS-Fundación Jimenez Diaz UAM and School of Medicine, UAM, GEENDIAB, Madrid, Spain
| | - Ander Vergara
- Department of Nephrology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.,Nephrology Research Group, Vall d'Hebron Research Institute (VHIR), GEENDIAB, Barcelona, Spain
| | - Julio Nuñez
- Department of Cardiology, Hospital Clínico Universitario de Valencia, Universitat de Valencia, INCLIVA, Valencia, Spain.,CIBER Cardiovascular
| | - Conxita Jacobs-Cachá
- Department of Nephrology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.,Nephrology Research Group, Vall d'Hebron Research Institute (VHIR), GEENDIAB, Barcelona, Spain
| | | | - Maria Jose Soler
- REDINREN, Madrid, Spain.,Department of Nephrology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.,Nephrology Research Group, Vall d'Hebron Research Institute (VHIR), GEENDIAB, Barcelona, Spain
| |
Collapse
|
22
|
The Perlman syndrome DIS3L2 exoribonuclease safeguards endoplasmic reticulum-targeted mRNA translation and calcium ion homeostasis. Nat Commun 2020; 11:2619. [PMID: 32457326 PMCID: PMC7250864 DOI: 10.1038/s41467-020-16418-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 04/30/2020] [Indexed: 11/16/2022] Open
Abstract
DIS3L2-mediated decay (DMD) is a surveillance pathway for certain non-coding RNAs (ncRNAs) including ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), small nuclear RNAs (snRNAs), and RMRP. While mutations in DIS3L2 are associated with Perlman syndrome, the biological significance of impaired DMD is obscure and pathological RNAs have not been identified. Here, by ribosome profiling (Ribo-seq) we find specific dysregulation of endoplasmic reticulum (ER)-targeted mRNA translation in DIS3L2-deficient cells. Mechanistically, DMD functions in the quality control of the 7SL ncRNA component of the signal recognition particle (SRP) required for ER-targeted translation. Upon DIS3L2 loss, sustained 3’-end uridylation of aberrant 7SL RNA impacts ER-targeted translation and causes ER calcium leakage. Consequently, elevated intracellular calcium in DIS3L2-deficient cells activates calcium signaling response genes and perturbs ESC differentiation. Thus, DMD is required to safeguard ER-targeted mRNA translation, intracellular calcium homeostasis, and stem cell differentiation. The DIS3L2 exonuclease degrades aberrant 7SL RNAs tagged by an oligouridine 3′-tail. Here the authors analyze DIS3L2 knockout mouse embryonic stem cells and suggest that DIS3L2-mediated quality control of 7SL RNA is important for ER-mediated translation and calcium ion homeostasis.
Collapse
|
23
|
Banday AA, Diaz AD, Lokhandwala M. Kidney dopamine D 1-like receptors and angiotensin 1-7 interaction inhibits renal Na + transporters. Am J Physiol Renal Physiol 2019; 317:F949-F956. [PMID: 31411069 DOI: 10.1152/ajprenal.00135.2019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The role of dopamine D1-like receptors (DR) in the regulation of renal Na+ transporters, natriuresis, and blood pressure is well established. However, the involvement of the angiotensin 1-7 (ANG 1-7)-Mas receptor in the regulation of Na+ balance and blood pressure is not clear. The present study aimed to investigate the hypothesis that ANG 1-7 can regulate Na+ homeostasis by modulating the renal dopamine system. Sprague-Dawley rats were infused with saline alone (vehicle) or saline with ANG 1-7, ANG 1-7 antagonist A-779, DR agonist SKF38393, and antagonist SCH23390. Infusion of ANG 1-7 caused significant natriuresis and diuresis compared with saline alone. Both natriuresis and diuresis were blocked by A-779 and SCH23390. SKF38393 caused a significant, SCH23390-sensitive natriuresis and diuresis, and A-779 had no effect on the SKF38393 response. Concomitant infusion of ANG 1-7 and SKF38393 did not show a cumulative effect compared with either agonist alone. Treatment of renal proximal tubules with ANG 1-7 or SKF38393 caused a significant decrease in Na+-K+-ATPase and Na+/H+ exchanger isoform 3 activity. While SCH23390 blocked both ANG 1-7- and SKF38393-induced inhibition, the DR response was not sensitive to A-779. Additionally, ANG 1-7 activated PKG, enhanced tyrosine hydroxylase activity via Ser40 phosphorylation, and increased renal dopamine production. These data suggest that ANG 1-7, via PKG, enhances tyrosine hydroxylase activity, which increases renal dopamine production and activation of DR and subsequent natriuresis. This study provides evidence for a unidirectional functional interaction between two G protein-coupled receptors to regulate renal Na+ transporters and induce natriuresis.
Collapse
Affiliation(s)
- Anees A Banday
- University of Houston, College of Pharmacy, Heart and Kidney Institute, Houston, Texas
| | - Andrea Diaz Diaz
- University of Houston, College of Pharmacy, Heart and Kidney Institute, Houston, Texas.,School of Pharmacy, University College Cork, Cork, Ireland
| | - Mustafa Lokhandwala
- University of Houston, College of Pharmacy, Heart and Kidney Institute, Houston, Texas
| |
Collapse
|
24
|
Reyes-Pardo H, Bautista R, Vargas-Robles H, Rios A, Sánchez D, Escalante B. Role of sodium/glucose cotransporter inhibition on a rat model of angiotensin II-dependent kidney damage. BMC Nephrol 2019; 20:292. [PMID: 31375080 PMCID: PMC6679465 DOI: 10.1186/s12882-019-1490-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 07/25/2019] [Indexed: 12/31/2022] Open
Abstract
Background Renal proximal tubular sodium and glucose reabsorption are regulated by the sodium-glucose cotransporter (SGLT2). Changes in this transporter can play a role in hyperglycaemia and reactive oxygen species (ROS) production. We demonstrated increased glucose absorption in proximal tubule membrane vesicles and increased expression of SGLT2 in hypertensive rats. Here we investigated Angiotensin II (Ang II) -dependent SGLT2 expression induction and the role of SGLT2 induction in the development of Ang II-dependent kidney damage. The aim of this study was to determine whether SGLT2 induction by Ang II is associated with Ang II-dependent kidney damage. We propose the following objectives a) to demonstrate that Ang II induces SGLT2 expression and b) to demonstrate that prevention of SGLT2 expression and activity prevent Ang II-induced kidney damage. Methods We used chronic Ang II infusion as a model of kidney damage in male Wistar rats and evaluated systolic blood pressure by telemetric methods. SGLT2 mRNA and protein expression were evaluated by PCR and immunoblotting. SGLT2 activity was evaluated in brush border membrane vesicles by measuring glucose uptake. ROS production was measured by confocal microscopy. The glomerular filtration rate (GFR) was evaluated by the inulin excretion method, and urinary protein excretion was evaluated by the Bradford method. Biological parameter evaluations were performed, after two weeks of infusion of Ang II. We compared the effects of Angiotensin II (AT1) receptor blockade by Losartan and SGLT2 inhibition by Empagliflozin both as monotherapy treatments and in combination on the development of kidney damage. Results Chronic Ang II infusion led to a blood pressure elevation and increased SGLT2 mRNA expression and activity as well as kidney damage, as reflected by increased ROS production, decreased GFR and increased urinary protein excretion. AT1 receptor blockade prevented all these changes. By contrast, SGLT2 inhibition did not affect blood pressure and had a small effect on kidney damage. However, the combination of both drugs resulted in the potentiation of the effects observed by AT1 receptor blockade alone. Conclusions We suggest that Ang II-dependent increased SGLT2 induction is one mechanism by which Ang II induces kidney damage. Electronic supplementary material The online version of this article (10.1186/s12882-019-1490-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Humberto Reyes-Pardo
- Unidad Monterrey, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Vía del Conocimiento 201, PIIT, N.L, 66600, Apodaca, Nuevo León, Mexico
| | - Rocío Bautista
- Department of Nephrology, Instituto Nacional de Cardiología "Ignacio Chávez", México City, Mexico
| | - Hilda Vargas-Robles
- Department of Molecular Biomedicine, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, Mexico
| | - Amelia Rios
- Unidad Monterrey, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Vía del Conocimiento 201, PIIT, N.L, 66600, Apodaca, Nuevo León, Mexico
| | - Daniel Sánchez
- Unidad Monterrey, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Vía del Conocimiento 201, PIIT, N.L, 66600, Apodaca, Nuevo León, Mexico
| | - Bruno Escalante
- Unidad Monterrey, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Vía del Conocimiento 201, PIIT, N.L, 66600, Apodaca, Nuevo León, Mexico. .,Basic Science Department, Monterrey University, Morones Prieto 4500, 66238, San Pedro Garza Garcia Nuevo León, N.L., Mexico.
| |
Collapse
|
25
|
García-Carro C, Vergara A, Agraz I, Jacobs-Cachá C, Espinel E, Seron D, Soler MJ. The New Era for Reno-Cardiovascular Treatment in Type 2 Diabetes. J Clin Med 2019; 8:E864. [PMID: 31212945 PMCID: PMC6617211 DOI: 10.3390/jcm8060864] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/03/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage renal disease in the developed world. Until 2016, the only treatment that was clearly demonstrated to delay the DKD was the renin-angiotensin system blockade, either by angiotensin-converting enzyme inhibitors or angiotensin receptor blockers. However, this strategy only partially covered the DKD progression. Thus, new strategies for reno-cardiovascular protection in type 2 diabetic patients are urgently needed. In the last few years, hypoglycaemic drugs, such as sodium-glucose co-transporter 2 inhibitors and glucagon-like peptide-1 receptor agonists, demonstrated a cardioprotective effect, mainly in terms of decreasing hospitalization for heart failure and cardiovascular death in type 2 diabetic patients. In addition, these drugs also demonstrated a clear renoprotective effect by delaying DKD progression and decreasing albuminuria. Another hypoglycaemic drug class, dipeptidyl peptidase 4 inhibitors, has been approved for its use in patients with advanced chronic kidney disease, avoiding, in part, the need for insulinization in this group of DKD patients. Studies in diabetic and non-diabetic experimental models suggest that these drugs may exert their reno-cardiovascular protective effect by glucose and non-glucose dependent mechanisms. This review focuses on newly demonstrated strategies that have shown reno-cardiovascular benefits in type 2 diabetes and that may change diabetes management algorithms.
Collapse
Affiliation(s)
- Clara García-Carro
- Nephrology Research Group, Vall d'Hebron Research Institute (VHIR), Nephrology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain.
| | - Ander Vergara
- Nephrology Research Group, Vall d'Hebron Research Institute (VHIR), Nephrology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain.
| | - Irene Agraz
- Nephrology Research Group, Vall d'Hebron Research Institute (VHIR), Nephrology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain.
- Red de Investigación Renal (REDINREN), Instituto Carlos IIIFEDER, 28029 Madrid, Spain.
| | - Conxita Jacobs-Cachá
- Nephrology Research Group, Vall d'Hebron Research Institute (VHIR), Nephrology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain.
- Red de Investigación Renal (REDINREN), Instituto Carlos IIIFEDER, 28029 Madrid, Spain.
| | - Eugenia Espinel
- Nephrology Research Group, Vall d'Hebron Research Institute (VHIR), Nephrology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain.
- Red de Investigación Renal (REDINREN), Instituto Carlos IIIFEDER, 28029 Madrid, Spain.
| | - Daniel Seron
- Nephrology Research Group, Vall d'Hebron Research Institute (VHIR), Nephrology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain.
- Red de Investigación Renal (REDINREN), Instituto Carlos IIIFEDER, 28029 Madrid, Spain.
| | - María José Soler
- Nephrology Research Group, Vall d'Hebron Research Institute (VHIR), Nephrology Department, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain.
- Red de Investigación Renal (REDINREN), Instituto Carlos IIIFEDER, 28029 Madrid, Spain.
| |
Collapse
|
26
|
Li XC, Zheng X, Chen X, Zhao C, Zhu D, Zhang J, Zhuo JL. Genetic and genomic evidence for an important role of the Na +/H + exchanger 3 in blood pressure regulation and angiotensin II-induced hypertension. Physiol Genomics 2019; 51:97-108. [PMID: 30849009 PMCID: PMC6485378 DOI: 10.1152/physiolgenomics.00122.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The sodium (Na+)/hydrogen (H+) exchanger 3 (NHE3) and sodium-potassium adenosine triphosphatase (Na+/K+-ATPase) are two of the most important Na+ transporters in the proximal tubules of the kidney. On the apical membrane side, NHE3 primarily mediates the entry of Na+ into and the exit of H+ from the proximal tubules, directly and indirectly being responsible for reabsorbing ~50% of filtered Na+ in the proximal tubules of the kidney. On the basolateral membrane side, Na+/K+-ATPase serves as a powerful engine driving Na+ out of, while pumping K+ into the proximal tubules against their concentration gradients. While the roles of NHE3 and Na+/K+-ATPase in proximal tubular Na+ transport under in vitro conditions are well recognized, their respective contributions to the basal blood pressure regulation and angiotensin II (ANG II)-induced hypertension remain poorly understood. Recently, we have been fortunate to be able to use genetically modified mouse models with global, kidney- or proximal tubule-specific deletion of NHE3 to directly determine the cause and effect relationship between NHE3, basal blood pressure homeostasis, and ANG II-induced hypertension at the whole body, kidney and/or proximal tubule levels. The purpose of this article is to review the genetic and genomic evidence for an important role of NHE3 with a focus in the regulation of basal blood pressure and ANG II-induced hypertension, as we learned from studies using global, kidney- or proximal tubule-specific NHE3 knockout mice. We hypothesize that NHE3 in the proximal tubules is necessary for maintaining basal blood pressure homeostasis and the development of ANG II-induced hypertension.
Collapse
Affiliation(s)
- Xiao C Li
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology; Division of Nephrology, Internal Medicine; Cardiovascular and Renal Research Center; The University of Mississippi Medical Center , Jackson, Mississippi
| | - Xiaowen Zheng
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology; Division of Nephrology, Internal Medicine; Cardiovascular and Renal Research Center; The University of Mississippi Medical Center , Jackson, Mississippi
| | - Xu Chen
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology; Division of Nephrology, Internal Medicine; Cardiovascular and Renal Research Center; The University of Mississippi Medical Center , Jackson, Mississippi
| | - Chunling Zhao
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology; Division of Nephrology, Internal Medicine; Cardiovascular and Renal Research Center; The University of Mississippi Medical Center , Jackson, Mississippi
| | - Dongmin Zhu
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology; Division of Nephrology, Internal Medicine; Cardiovascular and Renal Research Center; The University of Mississippi Medical Center , Jackson, Mississippi
| | - Jianfeng Zhang
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology; Division of Nephrology, Internal Medicine; Cardiovascular and Renal Research Center; The University of Mississippi Medical Center , Jackson, Mississippi
| | - Jia L Zhuo
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology; Division of Nephrology, Internal Medicine; Cardiovascular and Renal Research Center; The University of Mississippi Medical Center , Jackson, Mississippi
| |
Collapse
|
27
|
Ma C, de Baaij JHF, Millar PJ, Gault VA, de Galan BE, Bindels RJM, Hoenderop JGJ. Effect of Dapagliflozin Treatment on the Expression of Renal Sodium Transporters/Channels on High-Fat Diet Diabetic Mice. Nephron Clin Pract 2019; 142:51-60. [PMID: 30799406 DOI: 10.1159/000496617] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 12/21/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Inhibition of the Na+/glucose co-transporter 2 is a new therapeutic strategy for diabetes. It is unclear how proximal loss of Na+ (and glucose) affects the subsequent Na+ transporters in the proximal tubule (PT), thick ascending limb of loop of Henle (TAL), distal convoluted tubule (DCT) and collecting duct (CD). METHODS Mice on a high fat diet were administered 3 doses streptozotocin 6 days prior to oral dapagliflozin administration or vehicle for 18 days. A control group of lean mice were also included. Body weight and glucose were recorded at regular intervals during treatment. Renal Na+ transporters expression in nephron segments were analyzed by RT-qPCR and Western blot. RESULTS Dapagliflozin treatment resulted in a significant reduction in body weight and blood glucose compared to vehicle-treated controls. mRNA results showed that Na+-hydrogen antiporter 3 (NHE3), Na+/phosphate cotransporter (NaPi-2a) and epithelial Na+ channel expression was increased, Ncx1, ENaCβ and ENaCγ expression declined (p all < 0.05), respectively, in dapagliflozin-treated mice when compared with saline vehicle mice. Na-K-2Cl cotransporters and Na-Cl cotransporter mRNA expression was not affected by dapagliflozin treatment. Na+/K+-ATPase (Atp1b1) expression was also increased significantly by dapagliflozin treatment, but it did not affect Atp1a1 and glucose transporter 2 expression. Western blot analysis showed that NaPi-2a, NHE3 and ATP1b1 expression was upregulated in dapagliflozin-treated diabetic mice when compared with saline vehicle mice (p < 0.05). CONCLUSION Our findings suggest that dapagliflozin treatment augments compensatory changes in the renal PT in diabetic mice.
Collapse
Affiliation(s)
- Chao Ma
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jeroen H F de Baaij
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Paul J Millar
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine, United Kingdom
| | - Victor A Gault
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine, United Kingdom
| | - Bastiaan E de Galan
- Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - René J M Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joost G J Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands,
| |
Collapse
|
28
|
Singh S, Sharma R, Kumari M, Tiwari S. Insulin receptors in the kidneys in health and disease. World J Nephrol 2019; 8:11-22. [PMID: 30705868 PMCID: PMC6354081 DOI: 10.5527/wjn.v8.i1.11] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/15/2018] [Accepted: 12/10/2018] [Indexed: 02/06/2023] Open
Abstract
Insulin is an important hormone that affects various metabolic processes, including kidney function. Impairment in insulin’s action leads to insulin resistance in the target tissue. Besides defects in post-receptor insulin signaling, impairment at the receptor level could significantly affect insulin sensitivity of the target tissue. The kidney is a known target of insulin; however, whether the kidney develops “insulin resistance” is debatable. Regulation of the insulin receptor (IR) expression and its function is very well studied in major metabolic tissues like liver, skeletal muscles, and adipose tissue. The physiological relevance of IRs in the kidney has recently begun to be clarified. The credit goes to studies that showed a wide distribution of IR throughout the nephron segments and their reduced expression in the insulin resistance state. Moreover, altered renal and systemic metabolism observed in mice with targeted deletion of the IR from various epithelial cells of the kidney has strengthened this proposition. In this review, we recapitulate the crucial findings from literature that have expanded our knowledge regarding the significance of the renal IR in normal- and insulin-resistance states.
Collapse
Affiliation(s)
- Sarojini Singh
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Rajni Sharma
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Manju Kumari
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| | - Swasti Tiwari
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India
| |
Collapse
|
29
|
MST3 (mammalian Ste20-like protein kinase 3), a novel gene involved in ion homeostasis and renal regulation of blood pressure in spontaneous hypertensive rats. Int Urol Nephrol 2018; 50:2299-2307. [PMID: 30328087 DOI: 10.1007/s11255-018-2011-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 10/08/2018] [Indexed: 12/29/2022]
Abstract
Defective renal salt and water excretion, together with increased salt intake, frequently contributes to hypertension. Recent studies indicate that Ste20 family kinases, such as proline-alanine-rich Ste20-related kinase (SPAK) and oxidative stress-response protein 1 (OSR1), are regulators of cell volume, ion transport, and hypertension. The aim of this study was to investigate whether mammalian sterile 20-like protein kinase 3 (MST3), which is also a stress-regulated kinase, is involved in the development of hypertension. MST3 expression was compared in Wistar-Kyoto (WKY) and spontaneously hypertensive rat (SHR) kidneys. MST3 expression was markedly reduced in principal cells of the collecting ducts from the renal inner medulla of SHR. The downregulation of MST3 expression was observed before and after the onset of hypertension in SHR. Mice fed high-salt diets (HS) exhibited a significant increase in MST3 protein level. This is the first study reporting that MST3, a Ste20-like kinase, exerts a conserved regulatory role in sodium homeostasis after high-salt diet and in the development of hypertension.
Collapse
|
30
|
Silva-Aguiar RP, Bezerra NCF, Lucena MC, Sirtoli GM, Sudo RT, Zapata-Sudo G, Takiya CM, Pinheiro AAS, Dias WB, Caruso-Neves C. O-GlcNAcylation reduces proximal tubule protein reabsorption and promotes proteinuria in spontaneously hypertensive rats. J Biol Chem 2018; 293:12749-12758. [PMID: 29954945 DOI: 10.1074/jbc.ra118.001746] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 06/27/2018] [Indexed: 12/11/2022] Open
Abstract
Hypertensive individuals are at greater risk for developing chronic kidney disease (CKD). Reducing proteinuria has been suggested as a possible therapeutic approach to treat CKD. However, the mechanisms underlying the development of proteinuria in hypertensive conditions are incompletely understood. Cardiac and vascular dysfunction is associated with changes in the O-GlcNAcylation pathway in hypertensive models. We hypothesized that O-GlcNAcylation is also involved in renal damage, especially development of proteinuria, associated with hypertension. Using the spontaneously hypertensive rat (SHR) model, we observed higher renal cortex O-GlcNAcylation, glutamine-fructose aminotransferase (GFAT), and O-GlcNAc transferase (OGT) protein expression, which positively correlated with proteinuria. Interestingly, this was observed in hypertensive, but not pre-hypertensive, rats. Pharmacological inhibition of GFAT decreased renal cortex O-GlcNAcylation, proteinuria, and albuminuria in SHR. Using a proximal tubule cell line, we observed that increased O-GlcNAcylation reduced megalin surface expression and albumin endocytosis in vitro, and the effects were correlated in vivo Moreover, megalin is O-GlcNAcylated both in vitro and in vivo In conclusion, our results demonstrate a new mechanism involved in hypertension-associated proteinuria.
Collapse
Affiliation(s)
- Rodrigo Pacheco Silva-Aguiar
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | - Nathália C F Bezerra
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | - Miguel C Lucena
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | - Gabriela M Sirtoli
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | - Roberto T Sudo
- Programa de Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Gisele Zapata-Sudo
- Programa de Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Christina M Takiya
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | - Ana Acacia S Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | - Wagner Barbosa Dias
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil
| | - Celso Caruso-Neves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21949-900, Brazil; Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa (INCT-Regenera), Rio de Janeiro 21941-902, Brazil.
| |
Collapse
|
31
|
Gildea JJ, Xu P, Kemp BA, Carlson JM, Tran HT, Bigler Wang D, Langouët-Astrié CJ, McGrath HE, Carey RM, Jose PA, Felder RA. Sodium bicarbonate cotransporter NBCe2 gene variants increase sodium and bicarbonate transport in human renal proximal tubule cells. PLoS One 2018; 13:e0189464. [PMID: 29642240 PMCID: PMC5895442 DOI: 10.1371/journal.pone.0189464] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 11/28/2017] [Indexed: 01/11/2023] Open
Abstract
RATIONALE Salt sensitivity of blood pressure affects >30% of the hypertensive and >15% of the normotensive population. Variants of the electrogenic sodium bicarbonate cotransporter NBCe2 gene, SLC4A5, are associated with increased blood pressure in several ethnic groups. SLC4A5 variants are also highly associated with salt sensitivity, independent of hypertension. However, little is known about how NBCe2 contributes to salt sensitivity, although NBCe2 regulates renal tubular sodium bicarbonate transport. We hypothesized that SLC4A5 rs10177833 and rs7571842 increase NBCe2 expression and human renal proximal tubule cell (hRPTC) sodium transport and may be a cause of salt sensitivity of blood pressure. OBJECTIVE To characterize the hRPTC ion transport of wild-type (WT) and homozygous variants (HV) of SLC4A5. METHODS AND RESULTS The expressions of NBCe2 mRNA and protein were not different between hRPTCs carrying WT or HV SLC4A5 before or after dopaminergic or angiotensin (II and III) stimulation. However, luminal to basolateral sodium transport, NHE3 protein, and Cl-/HCO3- exchanger activity in hRPTCs were higher in HV than WT SLC4A5. Increasing intracellular sodium enhanced the apical location of NBCe2 in HV hRPTCs (4.24±0.35% to 11.06±1.72% (P<0.05, N = 3, 2-way ANOVA, Holm-Sidak test)) as determined by Total Internal Reflection Fluorescence Microscopy (TIRFM). In hRPTCs isolated from kidney tissue, increasing intracellular sodium enhanced bicarbonate-dependent pH recovery rate and increased NBCe2 mRNA and protein expressions to a greater extent in HV than WT SLC4A5 (+38.00±6.23% vs HV normal salt (P<0.01, N = 4, 2-way ANOVA, Holm-Sidak test)). In hRPTCs isolated from freshly voided urine, bicarbonate-dependent pH recovery was also faster in those from salt-sensitive and carriers of HV SLC4A5 than from salt-resistant and carriers of WT SLC4A5. The faster NBCe2-specific bicarbonate-dependent pH recovery rate in HV SCL4A5 was normalized by SLC4A5- but not SLC4A4-shRNA. The binding of purified hepatocyte nuclear factor type 4A (HNF4A) to DNA was increased in hRPTCs carrying HV SLC4A5 rs7571842 but not rs10177833. The faster NBCe2-specific bicarbonate-dependent pH recovery rate in HV SCL4A5 was abolished by HNF4A antagonists. CONCLUSION NBCe2 activity is stimulated by an increase in intracellular sodium and is hyper-responsive in hRPTCs carrying HV SLC4A5 rs7571842 through an aberrant HNF4A-mediated mechanism.
Collapse
Affiliation(s)
- John J. Gildea
- The University of Virginia Department of Pathology, Charlottesville, VA, United States of America
| | - Peng Xu
- The University of Virginia Department of Pathology, Charlottesville, VA, United States of America
| | - Brandon A. Kemp
- The University of Virginia Department of Medicine, Charlottesville, VA, United States of America
| | - Julia M. Carlson
- The University of Virginia Department of Pathology, Charlottesville, VA, United States of America
| | - Hanh T. Tran
- The University of Virginia Department of Pathology, Charlottesville, VA, United States of America
| | - Dora Bigler Wang
- The University of Virginia Department of Pathology, Charlottesville, VA, United States of America
| | | | - Helen E. McGrath
- The University of Virginia Department of Pathology, Charlottesville, VA, United States of America
| | - Robert M. Carey
- The University of Virginia Department of Medicine, Charlottesville, VA, United States of America
| | - Pedro A. Jose
- The George Washington University School of Medicine & Health Sciences, Department of Medicine, Division of Renal Disease and Hypertension and Department of Pharmacology and Physiology, Washington, DC, United States of America
| | - Robin A. Felder
- The University of Virginia Department of Pathology, Charlottesville, VA, United States of America
| |
Collapse
|
32
|
Fakhruddin S, Alanazi WA, Alhamami HN, Briski KP, Jackson KE. Hyperglycaemia induced by chronic i.p. and oral glucose loading leads to hypertension through increased Na + retention in proximal tubule. Exp Physiol 2018; 103:236-249. [PMID: 29114945 DOI: 10.1113/ep086604] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/03/2017] [Indexed: 12/11/2022]
Abstract
NEW FINDINGS What is the central question of the study? Chronic glucose feeding accompanied by glucose injection (i.p.) causes sustained hyperglycaemia and hypertension in rats. The exact reason for the hypertension is not known. We explore some molecular pathways of the renal proximal tubule that might promote Na+ retention. What is the main finding and its importance? Development of hypertension was mediated by upregulation of the renal renin-angiotensin system and oxidative stress, acting via the Na+ -K+ -ATPase α1 -subunit in the proximal tubule, which appears to pump intracellular Na+ into the extracellular space, increasing Na+ reabsorption and blood pressure. Targeting the Na+ -K+ -ATPase α1 -subunit might provide a therapeutic strategy for treatment of hypertension. Feeding animals glucose-, fructose-, sucrose- and fat-enriched diets can lead to diet-induced hyperglycaemia, the severity of which largely depends on the types and concentrations of the nutrients used and duration of the dietary intervention. As a dietary intervention strategy, we adopted glucose-enriched diet and drinking water, with i.p. glucose injection at a dose previously determined to be effective to establish a sustained hyperglycaemia over a period of 2 weeks. We used four groups of Sprague-Dawley rats: control; glucose treated; glucose plus tempol treated; and glucose plus captopril treated. Blood glucose concentrations started to increase gradually from day 3, peaked (321 mg dl-1 ) at day 12 and remained at similar levels until the end of the study on day 14 in the glucose treated-group compared with the control group. In contrast, the tempol- and captopril-treated groups showed significantly high glucose concentrations only in the second week. The plasma insulin concentration was significantly increased in glucose-treated animals but not in tempol- and captopril-treated groups when compared with the control rats. We also observed elevated blood pressure in the glucose-treated group compared with the control group, which can be attributed to the increase in angiotensin II concentrations from 46.67 to 99 pg ml-1 (control versus glucose), increased oxidative stress in the cortical proximal tubule (PT), decreased urine flow, and increased expression and activity of the PT-specific α1 -subunit of Na+ -K+ -ATPase in the renal cortex, which is responsible for increased sodium reabsorption from epithelial cells of PT into the peritubular capillaries, leading to increased blood volume and eventual blood pressure. All these events were reversed in captopril- and tempol-treated animals.
Collapse
Affiliation(s)
- Selim Fakhruddin
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe (ULM), Monroe, LA, USA
| | - Wael A Alanazi
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe (ULM), Monroe, LA, USA
| | - Hussain N Alhamami
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe (ULM), Monroe, LA, USA
| | - Karen P Briski
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe (ULM), Monroe, LA, USA
| | - Keith E Jackson
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe (ULM), Monroe, LA, USA
| |
Collapse
|
33
|
Li XC, Zhuo JL. Recent Updates on the Proximal Tubule Renin-Angiotensin System in Angiotensin II-Dependent Hypertension. Curr Hypertens Rep 2017; 18:63. [PMID: 27372447 DOI: 10.1007/s11906-016-0668-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
It is well recognized that the renin-angiotensin system (RAS) exists not only as circulating, paracrine (cell to cell), but also intracrine (intracellular) system. In the kidney, however, it is difficult to dissect the respective contributions of circulating RAS versus intrarenal RAS to the physiological regulation of proximal tubular Na(+) reabsorption and hypertension. Here, we review recent studies to provide an update in this research field with a focus on the proximal tubular RAS in angiotensin II (ANG II)-induced hypertension. Careful analysis of available evidence supports the hypothesis that both local synthesis or formation and AT1 (AT1a) receptor- and/or megalin-mediated uptake of angiotensinogen (AGT), ANG I and ANG II contribute to high levels of ANG II in the proximal tubules of the kidney. Under physiological conditions, nearly all major components of the RAS including AGT, prorenin, renin, ANG I, and ANG II would be filtered by the glomerulus and taken up by the proximal tubules. In ANG II-dependent hypertension, the expression of AGT, prorenin, and (pro)renin receptors, and angiotensin-converting enzyme (ACE) is upregulated rather than downregulated in the kidney. Furthermore, hypertension damages the glomerular filtration barrier, which augments the filtration of circulating AGT, prorenin, renin, ANG I, and ANG II and their uptake in the proximal tubules. Together, increased local ANG II formation and augmented uptake of circulating ANG II in the proximal tubules, via activation of AT1 (AT1a) receptors and Na(+)/H(+) exchanger 3, may provide a powerful feedforward mechanism for promoting Na(+) retention and the development of ANG II-induced hypertension.
Collapse
Affiliation(s)
- Xiao C Li
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, 2500 North State Street, Jackson, MS, 39216-4505, USA
| | - Jia L Zhuo
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, 2500 North State Street, Jackson, MS, 39216-4505, USA.
| |
Collapse
|
34
|
Zhou X, Packialakshmi B, Xiao Y, Nurmukhambetova S, Lees JR. Progression of experimental autoimmune encephalomyelitis is associated with up-regulation of major sodium transporters in the mouse kidney cortex under a normal salt diet. Cell Immunol 2017; 317:18-25. [PMID: 28438314 DOI: 10.1016/j.cellimm.2017.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 04/13/2017] [Accepted: 04/13/2017] [Indexed: 01/11/2023]
Abstract
Recent demonstrations of exacerbation of experimental autoimmune encephalomyelitis (EAE) by high salt diets prompted us to study whether EAE stimulated Na absorption by the renal cortex, a primary regulatory site for Na balance, even under a normal NaCl diet. We found that as EAE progressed from mild to severe symptoms, there were parallel increases in the protein abundance of NHE3 and αENaC and the Na,K-ATPase activity with an affiliated elevation of its β1-subunit protein. These effects are associated with increases in the protein levels of the well-known regulators SGK1 and scaffold NHERF2, and phosphorylation of ERK1/2. These effects of EAE could not be explained by reduction in water or food intake. We conclude that EAE progression is associated with up-regulation of major Na transporters, which is most likely driven by increased expression of SGK1 and NHERF2 and activation of ERK1/2. These data suggest that EAE progression increases Na absorption by the renal cortex.
Collapse
Affiliation(s)
- Xiaoming Zhou
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States.
| | - Balamurugan Packialakshmi
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Yao Xiao
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Saule Nurmukhambetova
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Jason R Lees
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
35
|
Horita S, Nakamura M, Suzuki M, Satoh N, Suzuki A, Homma Y, Nangaku M. The role of renal proximal tubule transport in the regulation of blood pressure. Kidney Res Clin Pract 2017; 36:12-21. [PMID: 28428931 PMCID: PMC5331971 DOI: 10.23876/j.krcp.2017.36.1.12] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 10/18/2016] [Accepted: 12/05/2016] [Indexed: 12/15/2022] Open
Abstract
The electrogenic sodium/bicarbonate cotransporter 1 (NBCe1) on the basolateral side of the renal proximal tubule plays a pivotal role in systemic acid-base homeostasis. Mutations in the gene encoding NBCe1 cause severe proximal renal tubular acidosis accompanied by other extrarenal symptoms. The proximal tubule reabsorbs most of the sodium filtered in the glomerulus, contributing to the regulation of plasma volume and blood pressure. NBCe1 and other sodium transporters in the proximal tubule are regulated by hormones, such as angiotensin II and insulin. Angiotensin II is probably the most important stimulator of sodium reabsorption. Proximal tubule AT1A receptor is crucial for the systemic pressor effect of angiotensin II. In rodents and rabbits, the effect on proximal tubule NBCe1 is biphasic; at low concentration, angiotensin II stimulates NBCe1 via PKC/cAMP/ERK, whereas at high concentration, it inhibits NBCe1 via NO/cGMP/cGKII. In contrast, in human proximal tubule, angiotensin II has a dose-dependent monophasic stimulatory effect via NO/cGMP/ERK. Insulin stimulates the proximal tubule sodium transport, which is IRS2-dependent. We found that in insulin resistance and overt diabetic nephropathy, stimulatory effect of insulin on proximal tubule transport was preserved. Our results suggest that the preserved stimulation of the proximal tubule enhances sodium reabsorption, contributing to the pathogenesis of hypertension with metabolic syndrome. We describe recent findings regarding the role of proximal tubule transport in the regulation of blood pressure, focusing on the effects of angiotensin II and insulin.
Collapse
Affiliation(s)
- Shoko Horita
- Department of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
| | - Motonobu Nakamura
- Department of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
| | - Masashi Suzuki
- Department of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
| | - Nobuhiko Satoh
- Department of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
| | - Atsushi Suzuki
- Department of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
| | - Yukio Homma
- Department of Urology, The University of Tokyo Hospital, Tokyo, Japan
| | - Masaomi Nangaku
- Department of Nephrology and Endocrinology, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
36
|
Affiliation(s)
- Jian Yang
- Department of Nutrition, Daping Hospital, The Third Military Medical University, Chongqing, China.,Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Pedro A Jose
- Division of Renal Disease & Hypertension, The George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
| |
Collapse
|
37
|
Barros ER, Carvajal CA. Urinary Exosomes and Their Cargo: Potential Biomarkers for Mineralocorticoid Arterial Hypertension? Front Endocrinol (Lausanne) 2017; 8:230. [PMID: 28951728 PMCID: PMC5599782 DOI: 10.3389/fendo.2017.00230] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 08/23/2017] [Indexed: 12/13/2022] Open
Abstract
Arterial hypertension (AHT) currently affects approximately 40% of adults worldwide, and its pathological mechanisms are mainly related to renal, vascular, and endocrine systems. Steroid hormones as aldosterone and cortisol are highly relevant to human endocrine physiology, and also to endocrine hypertension. Pathophysiological conditions, such as primary aldosteronism, affect approximately 10% of patients diagnosed with AHT and are secondary to a high production of aldosterone, increasing the risk also for cardiovascular damage and heart diseases. Excess of aldosterone or cortisol increases the activity of the mineralocorticoid receptor (MR) in epithelial and non-epithelial cells. Current research in this field highlights the potential regulatory mechanisms of the MR pathway, including pre-receptor regulation of the MR (action of 11BHSD2), MR activating proteins, and the downstream genes/proteins sensitive to MR (e.g., epithelial sodium channel, NCC, NKCC2). Mineralocorticoid AHT is present in 15-20% of hypertensive subjects, but the mechanisms associated to this condition have been poorly described, due mainly to the absence of reliable biomarkers. In this way, steroids, peptides, and lately urinary exosomes are thought to be potential reporters of biological processes. This review highlight exosomes and their cargo as potential biomarkers of metabolic changes associated to mineralocorticoid AHT. Recent reports have shown the presence of RNA, microRNAs, and proteins in urinary exosomes, which could be used as biomarkers in physiological and pathophysiological conditions. However, more studies are needed in order to benefit from exosomes and the exosomal cargo as a diagnostic tool in mineralocorticoid AHT.
Collapse
Affiliation(s)
- Eric R. Barros
- Center of Translational Endocrinology (CETREN), Faculty of Medicine, Endocrinology Department, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cristian A. Carvajal
- Center of Translational Endocrinology (CETREN), Faculty of Medicine, Endocrinology Department, Pontificia Universidad Católica de Chile, Santiago, Chile
- *Correspondence: Cristian A. Carvajal,
| |
Collapse
|
38
|
Ascher SB, Scherzer R, Peralta CA, Tien PC, Grunfeld C, Estrella MM, Abraham A, Gustafson DR, Nowicki M, Sharma A, Cohen MH, Butch AW, Young MA, Bennett MR, Shlipak MG. Association of Kidney Function and Early Kidney Injury With Incident Hypertension in HIV-Infected Women. Hypertension 2016; 69:304-313. [PMID: 27993956 DOI: 10.1161/hypertensionaha.116.08258] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 08/16/2016] [Accepted: 11/23/2016] [Indexed: 12/17/2022]
Abstract
Subclinical kidney disease is associated with developing hypertension in the general population, but data are lacking among HIV-infected people. We examined associations of kidney function and injury with incident hypertension in 823 HIV-infected and 267 HIV-uninfected women in the Women's Interagency HIV Study, a multicenter, prospective cohort of HIV-infected and uninfected women in the United States. Baseline kidney biomarkers included estimated glomerular filtration rate using cystatin C, urine albumin-to-creatinine ratio, and 7 urine biomarkers of tubular injury: α-1-microglobulin, interleukin-18, kidney injury molecule-1, neutrophil gelatinase-associated lipocalin, liver fatty acid-binding protein, N-acetyl-β-d-glucosaminidase, and α1-acid-glycoprotein. We used multivariable Poisson regression to evaluate associations of kidney biomarkers with incident hypertension, defined as 2 consecutive visits of antihypertensive medication use. During a median follow-up of 9.6 years, 288 HIV-infected women (35%) developed hypertension. Among the HIV-infected women, higher urine albumin-to-creatinine ratio was independently associated with incident hypertension (relative risk =1.13 per urine albumin-to-creatinine ratio doubling, 95% confidence interval, 1.07-1.20), as was lower estimated glomerular filtration rate (relative risk =1.10 per 10 mL/min/1.73 m2 lower estimated glomerular filtration rate; 95% confidence interval, 1.04-1.17). No tubular injury and dysfunction biomarkers were independently associated with incident hypertension in HIV-infected women. In contrast, among the HIV-uninfected women, urine albumin-to-creatinine ratio was not associated with incident hypertension, whereas higher urine interleukin-18, α1-acid-glycoprotein, and N-acetyl-β-d-glucosaminidase levels were significantly associated with incident hypertension. These findings suggest that early glomerular injury and kidney dysfunction may be involved in the pathogenesis of hypertension in HIV-infected people. The associations of tubular markers with hypertension in HIV-uninfected women should be validated in other studies.
Collapse
Affiliation(s)
- Simon B Ascher
- From the Kidney Health Research Collaborative, Department of Medicine, San Francisco VA Medical Center (S.B.A., R.S., C.A.P., P.C.T., C.G., M.G.S.) and Department of Epidemiology and Biostatistics (C.A.P., P.C.T., C.G., M.G.S.), University of California, San Francisco; Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD (M.M.E., A.A.); Department of Medicine, SUNY Downstate Medical Center, Brooklyn, NY (D.R.G.); Department of Medicine, University of Southern California, Los Angeles (M.N.); Department of Medicine, Albert Einstein College of Medicine, Bronx, NY (A.S.); Department of Medicine, Stroger Hospital and Rush University, Chicago, IL (M.H.C.); Department of Pathology and Laboratory Medicine, UCLA Health System, Los Angeles, CA (A.W.B.); Georgetown University Medical Center, Washington, DC (M.A.Y.); and Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, OH (M.R.B.)
| | - Rebecca Scherzer
- From the Kidney Health Research Collaborative, Department of Medicine, San Francisco VA Medical Center (S.B.A., R.S., C.A.P., P.C.T., C.G., M.G.S.) and Department of Epidemiology and Biostatistics (C.A.P., P.C.T., C.G., M.G.S.), University of California, San Francisco; Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD (M.M.E., A.A.); Department of Medicine, SUNY Downstate Medical Center, Brooklyn, NY (D.R.G.); Department of Medicine, University of Southern California, Los Angeles (M.N.); Department of Medicine, Albert Einstein College of Medicine, Bronx, NY (A.S.); Department of Medicine, Stroger Hospital and Rush University, Chicago, IL (M.H.C.); Department of Pathology and Laboratory Medicine, UCLA Health System, Los Angeles, CA (A.W.B.); Georgetown University Medical Center, Washington, DC (M.A.Y.); and Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, OH (M.R.B.)
| | - Carmen A Peralta
- From the Kidney Health Research Collaborative, Department of Medicine, San Francisco VA Medical Center (S.B.A., R.S., C.A.P., P.C.T., C.G., M.G.S.) and Department of Epidemiology and Biostatistics (C.A.P., P.C.T., C.G., M.G.S.), University of California, San Francisco; Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD (M.M.E., A.A.); Department of Medicine, SUNY Downstate Medical Center, Brooklyn, NY (D.R.G.); Department of Medicine, University of Southern California, Los Angeles (M.N.); Department of Medicine, Albert Einstein College of Medicine, Bronx, NY (A.S.); Department of Medicine, Stroger Hospital and Rush University, Chicago, IL (M.H.C.); Department of Pathology and Laboratory Medicine, UCLA Health System, Los Angeles, CA (A.W.B.); Georgetown University Medical Center, Washington, DC (M.A.Y.); and Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, OH (M.R.B.)
| | - Phyllis C Tien
- From the Kidney Health Research Collaborative, Department of Medicine, San Francisco VA Medical Center (S.B.A., R.S., C.A.P., P.C.T., C.G., M.G.S.) and Department of Epidemiology and Biostatistics (C.A.P., P.C.T., C.G., M.G.S.), University of California, San Francisco; Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD (M.M.E., A.A.); Department of Medicine, SUNY Downstate Medical Center, Brooklyn, NY (D.R.G.); Department of Medicine, University of Southern California, Los Angeles (M.N.); Department of Medicine, Albert Einstein College of Medicine, Bronx, NY (A.S.); Department of Medicine, Stroger Hospital and Rush University, Chicago, IL (M.H.C.); Department of Pathology and Laboratory Medicine, UCLA Health System, Los Angeles, CA (A.W.B.); Georgetown University Medical Center, Washington, DC (M.A.Y.); and Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, OH (M.R.B.)
| | - Carl Grunfeld
- From the Kidney Health Research Collaborative, Department of Medicine, San Francisco VA Medical Center (S.B.A., R.S., C.A.P., P.C.T., C.G., M.G.S.) and Department of Epidemiology and Biostatistics (C.A.P., P.C.T., C.G., M.G.S.), University of California, San Francisco; Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD (M.M.E., A.A.); Department of Medicine, SUNY Downstate Medical Center, Brooklyn, NY (D.R.G.); Department of Medicine, University of Southern California, Los Angeles (M.N.); Department of Medicine, Albert Einstein College of Medicine, Bronx, NY (A.S.); Department of Medicine, Stroger Hospital and Rush University, Chicago, IL (M.H.C.); Department of Pathology and Laboratory Medicine, UCLA Health System, Los Angeles, CA (A.W.B.); Georgetown University Medical Center, Washington, DC (M.A.Y.); and Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, OH (M.R.B.)
| | - Michelle M Estrella
- From the Kidney Health Research Collaborative, Department of Medicine, San Francisco VA Medical Center (S.B.A., R.S., C.A.P., P.C.T., C.G., M.G.S.) and Department of Epidemiology and Biostatistics (C.A.P., P.C.T., C.G., M.G.S.), University of California, San Francisco; Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD (M.M.E., A.A.); Department of Medicine, SUNY Downstate Medical Center, Brooklyn, NY (D.R.G.); Department of Medicine, University of Southern California, Los Angeles (M.N.); Department of Medicine, Albert Einstein College of Medicine, Bronx, NY (A.S.); Department of Medicine, Stroger Hospital and Rush University, Chicago, IL (M.H.C.); Department of Pathology and Laboratory Medicine, UCLA Health System, Los Angeles, CA (A.W.B.); Georgetown University Medical Center, Washington, DC (M.A.Y.); and Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, OH (M.R.B.)
| | - Alison Abraham
- From the Kidney Health Research Collaborative, Department of Medicine, San Francisco VA Medical Center (S.B.A., R.S., C.A.P., P.C.T., C.G., M.G.S.) and Department of Epidemiology and Biostatistics (C.A.P., P.C.T., C.G., M.G.S.), University of California, San Francisco; Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD (M.M.E., A.A.); Department of Medicine, SUNY Downstate Medical Center, Brooklyn, NY (D.R.G.); Department of Medicine, University of Southern California, Los Angeles (M.N.); Department of Medicine, Albert Einstein College of Medicine, Bronx, NY (A.S.); Department of Medicine, Stroger Hospital and Rush University, Chicago, IL (M.H.C.); Department of Pathology and Laboratory Medicine, UCLA Health System, Los Angeles, CA (A.W.B.); Georgetown University Medical Center, Washington, DC (M.A.Y.); and Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, OH (M.R.B.)
| | - Deborah R Gustafson
- From the Kidney Health Research Collaborative, Department of Medicine, San Francisco VA Medical Center (S.B.A., R.S., C.A.P., P.C.T., C.G., M.G.S.) and Department of Epidemiology and Biostatistics (C.A.P., P.C.T., C.G., M.G.S.), University of California, San Francisco; Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD (M.M.E., A.A.); Department of Medicine, SUNY Downstate Medical Center, Brooklyn, NY (D.R.G.); Department of Medicine, University of Southern California, Los Angeles (M.N.); Department of Medicine, Albert Einstein College of Medicine, Bronx, NY (A.S.); Department of Medicine, Stroger Hospital and Rush University, Chicago, IL (M.H.C.); Department of Pathology and Laboratory Medicine, UCLA Health System, Los Angeles, CA (A.W.B.); Georgetown University Medical Center, Washington, DC (M.A.Y.); and Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, OH (M.R.B.)
| | - Marek Nowicki
- From the Kidney Health Research Collaborative, Department of Medicine, San Francisco VA Medical Center (S.B.A., R.S., C.A.P., P.C.T., C.G., M.G.S.) and Department of Epidemiology and Biostatistics (C.A.P., P.C.T., C.G., M.G.S.), University of California, San Francisco; Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD (M.M.E., A.A.); Department of Medicine, SUNY Downstate Medical Center, Brooklyn, NY (D.R.G.); Department of Medicine, University of Southern California, Los Angeles (M.N.); Department of Medicine, Albert Einstein College of Medicine, Bronx, NY (A.S.); Department of Medicine, Stroger Hospital and Rush University, Chicago, IL (M.H.C.); Department of Pathology and Laboratory Medicine, UCLA Health System, Los Angeles, CA (A.W.B.); Georgetown University Medical Center, Washington, DC (M.A.Y.); and Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, OH (M.R.B.)
| | - Anjali Sharma
- From the Kidney Health Research Collaborative, Department of Medicine, San Francisco VA Medical Center (S.B.A., R.S., C.A.P., P.C.T., C.G., M.G.S.) and Department of Epidemiology and Biostatistics (C.A.P., P.C.T., C.G., M.G.S.), University of California, San Francisco; Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD (M.M.E., A.A.); Department of Medicine, SUNY Downstate Medical Center, Brooklyn, NY (D.R.G.); Department of Medicine, University of Southern California, Los Angeles (M.N.); Department of Medicine, Albert Einstein College of Medicine, Bronx, NY (A.S.); Department of Medicine, Stroger Hospital and Rush University, Chicago, IL (M.H.C.); Department of Pathology and Laboratory Medicine, UCLA Health System, Los Angeles, CA (A.W.B.); Georgetown University Medical Center, Washington, DC (M.A.Y.); and Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, OH (M.R.B.)
| | - Mardge H Cohen
- From the Kidney Health Research Collaborative, Department of Medicine, San Francisco VA Medical Center (S.B.A., R.S., C.A.P., P.C.T., C.G., M.G.S.) and Department of Epidemiology and Biostatistics (C.A.P., P.C.T., C.G., M.G.S.), University of California, San Francisco; Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD (M.M.E., A.A.); Department of Medicine, SUNY Downstate Medical Center, Brooklyn, NY (D.R.G.); Department of Medicine, University of Southern California, Los Angeles (M.N.); Department of Medicine, Albert Einstein College of Medicine, Bronx, NY (A.S.); Department of Medicine, Stroger Hospital and Rush University, Chicago, IL (M.H.C.); Department of Pathology and Laboratory Medicine, UCLA Health System, Los Angeles, CA (A.W.B.); Georgetown University Medical Center, Washington, DC (M.A.Y.); and Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, OH (M.R.B.)
| | - Anthony W Butch
- From the Kidney Health Research Collaborative, Department of Medicine, San Francisco VA Medical Center (S.B.A., R.S., C.A.P., P.C.T., C.G., M.G.S.) and Department of Epidemiology and Biostatistics (C.A.P., P.C.T., C.G., M.G.S.), University of California, San Francisco; Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD (M.M.E., A.A.); Department of Medicine, SUNY Downstate Medical Center, Brooklyn, NY (D.R.G.); Department of Medicine, University of Southern California, Los Angeles (M.N.); Department of Medicine, Albert Einstein College of Medicine, Bronx, NY (A.S.); Department of Medicine, Stroger Hospital and Rush University, Chicago, IL (M.H.C.); Department of Pathology and Laboratory Medicine, UCLA Health System, Los Angeles, CA (A.W.B.); Georgetown University Medical Center, Washington, DC (M.A.Y.); and Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, OH (M.R.B.)
| | - Mary A Young
- From the Kidney Health Research Collaborative, Department of Medicine, San Francisco VA Medical Center (S.B.A., R.S., C.A.P., P.C.T., C.G., M.G.S.) and Department of Epidemiology and Biostatistics (C.A.P., P.C.T., C.G., M.G.S.), University of California, San Francisco; Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD (M.M.E., A.A.); Department of Medicine, SUNY Downstate Medical Center, Brooklyn, NY (D.R.G.); Department of Medicine, University of Southern California, Los Angeles (M.N.); Department of Medicine, Albert Einstein College of Medicine, Bronx, NY (A.S.); Department of Medicine, Stroger Hospital and Rush University, Chicago, IL (M.H.C.); Department of Pathology and Laboratory Medicine, UCLA Health System, Los Angeles, CA (A.W.B.); Georgetown University Medical Center, Washington, DC (M.A.Y.); and Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, OH (M.R.B.)
| | - Michael R Bennett
- From the Kidney Health Research Collaborative, Department of Medicine, San Francisco VA Medical Center (S.B.A., R.S., C.A.P., P.C.T., C.G., M.G.S.) and Department of Epidemiology and Biostatistics (C.A.P., P.C.T., C.G., M.G.S.), University of California, San Francisco; Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD (M.M.E., A.A.); Department of Medicine, SUNY Downstate Medical Center, Brooklyn, NY (D.R.G.); Department of Medicine, University of Southern California, Los Angeles (M.N.); Department of Medicine, Albert Einstein College of Medicine, Bronx, NY (A.S.); Department of Medicine, Stroger Hospital and Rush University, Chicago, IL (M.H.C.); Department of Pathology and Laboratory Medicine, UCLA Health System, Los Angeles, CA (A.W.B.); Georgetown University Medical Center, Washington, DC (M.A.Y.); and Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, OH (M.R.B.)
| | - Michael G Shlipak
- From the Kidney Health Research Collaborative, Department of Medicine, San Francisco VA Medical Center (S.B.A., R.S., C.A.P., P.C.T., C.G., M.G.S.) and Department of Epidemiology and Biostatistics (C.A.P., P.C.T., C.G., M.G.S.), University of California, San Francisco; Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD (M.M.E., A.A.); Department of Medicine, SUNY Downstate Medical Center, Brooklyn, NY (D.R.G.); Department of Medicine, University of Southern California, Los Angeles (M.N.); Department of Medicine, Albert Einstein College of Medicine, Bronx, NY (A.S.); Department of Medicine, Stroger Hospital and Rush University, Chicago, IL (M.H.C.); Department of Pathology and Laboratory Medicine, UCLA Health System, Los Angeles, CA (A.W.B.); Georgetown University Medical Center, Washington, DC (M.A.Y.); and Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, OH (M.R.B.).
| |
Collapse
|
39
|
Meliopoulos VA, Marvin SA, Freiden P, Moser LA, Nighot P, Ali R, Blikslager A, Reddivari M, Heath RJ, Koci MD, Schultz-Cherry S. Oral Administration of Astrovirus Capsid Protein Is Sufficient To Induce Acute Diarrhea In Vivo. mBio 2016; 7:e01494-16. [PMID: 27803180 PMCID: PMC5090040 DOI: 10.1128/mbio.01494-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 10/03/2016] [Indexed: 12/27/2022] Open
Abstract
The disease mechanisms associated with the onset of astrovirus diarrhea are unknown. Unlike other enteric virus infections, astrovirus infection is not associated with an inflammatory response or cellular damage. In vitro studies in differentiated Caco-2 cells demonstrated that human astrovirus serotype 1 (HAstV-1) capsid protein alone disrupts the actin cytoskeleton and tight junction complex, leading to increased epithelial barrier permeability. In this study, we show that oral administration of purified recombinant turkey astrovirus 2 (TAstV-2) capsid protein results in acute diarrhea in a dose- and time-dependent manner in turkey poults. Similarly to that induced by infectious virus, TAstV-2 capsid-induced diarrhea was independent of inflammation or histological changes but was associated with increased intestinal barrier permeability, as well as redistribution of sodium hydrogen exchanger 3 (NHE3) from the membrane to the cytoplasm of the intestinal epithelium. Unlike other viral enterotoxins that have been identified, astrovirus capsid induces diarrhea after oral administration, reproducing the natural route of infection and demonstrating that ingestion of intact noninfectious capsid protein may be sufficient to provoke acute diarrhea. Based on these data, we hypothesize that the astrovirus capsid acts like an enterotoxin and induces intestinal epithelial barrier dysfunction. IMPORTANCE Acute gastroenteritis, with its sequela diarrhea, is one of the most important causes of childhood morbidity and mortality worldwide. A variety of infectious agents cause gastroenteritis, and in many cases, an enterotoxin produced by the agent is involved in disease manifestations. Although we commonly think of bacteria as a source of toxins, at least one enteric virus, rotavirus, produces a protein with enterotoxigenic activity during viral replication. In these studies, we demonstrate that oral administration of the turkey astrovirus 2 (TAstV-2) structural (capsid) protein induces acute diarrhea, increases barrier permeability, and causes relocalization of NHE3 in the small intestine, suggesting that rotavirus may not be alone in possessing enterotoxigenic activity.
Collapse
Affiliation(s)
- Victoria A Meliopoulos
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Shauna A Marvin
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Pamela Freiden
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Lindsey A Moser
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Prashant Nighot
- Department of Clinical Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Rizwana Ali
- Department of Poultry Science, North Carolina State University, Raleigh, North Carolina, USA
| | - Anthony Blikslager
- Department of Clinical Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Muralidhar Reddivari
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Richard J Heath
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Matthew D Koci
- Department of Poultry Science, North Carolina State University, Raleigh, North Carolina, USA
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
40
|
Dominguez Rieg JA, de la Mora Chavez S, Rieg T. Novel developments in differentiating the role of renal and intestinal sodium hydrogen exchanger 3. Am J Physiol Regul Integr Comp Physiol 2016; 311:R1186-R1191. [PMID: 27733387 DOI: 10.1152/ajpregu.00372.2016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 09/22/2016] [Accepted: 10/05/2016] [Indexed: 11/22/2022]
Abstract
The Na+/H+ exchanger isoform 3 (NHE3) facilitates Na+ absorption and H+ secretion and is expressed in the intestine, proximal tubule, and thick ascending limb of the kidney. While the function of NHE3 for Na+ and [Formula: see text](re)absorption has been defined using conventional NHE3 knockout mice (NHE3-/-), the recent generation of conditional NHE3 knockout mice started to give critical new insight into the role of this protein by allowing for temporal and spatial control of NHE3 expression. For example, in contrast to NHE3-/- mice, knockout of NHE3 in the S1 and S2 segments of the proximal tubule or along the entire tubule/collecting duct does not cause any lethality. Nonabsorbable NHE3 inhibitors have been developed, and preclinical as well as clinical trials indicate possible pharmacological use in fluid overload, hypertension, chronic kidney disease, hyperphosphatemia, and constipation. Some of the therapeutic considerations seem to be directly related to the pharmacodynamic properties of these drugs; however, little is known about the effects of these nonabsorbable NHE3 inhibitors on intestinal phosphate transport and the mechanisms so far remain elusive. This review focuses on novel findings of NHE3 in the intestine and the kidney as well as novel drug developments targeting NHE3.
Collapse
Affiliation(s)
- Jessica A Dominguez Rieg
- Department of Basic Sciences, Bastyr University California, San Diego, California.,Veterans Affairs San Diego Healthcare System, San Diego, California; and
| | | | - Timo Rieg
- Veterans Affairs San Diego Healthcare System, San Diego, California; and .,Division of Nephrology-Hypertension, Department of Medicine, University of California San Diego, La Jolla, California
| |
Collapse
|
41
|
Shah PT, Martin R, Yan Y, Shapiro JI, Liu J. Carbonylation Modification Regulates Na/K-ATPase Signaling and Salt Sensitivity: A Review and a Hypothesis. Front Physiol 2016; 7:256. [PMID: 27445847 PMCID: PMC4923243 DOI: 10.3389/fphys.2016.00256] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/11/2016] [Indexed: 01/01/2023] Open
Abstract
Na/K-ATPase signaling has been implicated in different physiological and pathophysiological conditions. Accumulating evidence indicates that oxidative stress not only regulates the Na/K-ATPase enzymatic activity, but also regulates its signaling and other functions. While cardiotonic steroids (CTS)-induced increase in reactive oxygen species (ROS) generation is an intermediate step in CTS-mediated Na/K-ATPase signaling, increase in ROS alone also stimulates Na/K-ATPase signaling. Based on literature and our observations, we hypothesize that ROS have biphasic effects on Na/K-ATPase signaling, transcellular sodium transport, and urinary sodium excretion. Oxidative modulation, in particular site specific carbonylation of the Na/K-ATPase α1 subunit, is a critical step in proximal tubular Na/K-ATPase signaling and decreased transcellular sodium transport leading to increases in urinary sodium excretion. However, once this system is overstimulated, the signaling, and associated changes in sodium excretion are blunted. This review aims to evaluate ROS-mediated carbonylation of the Na/K-ATPase, and its potential role in the regulation of pump signaling and sodium reabsorption in the renal proximal tubule (RPT).
Collapse
Affiliation(s)
- Preeya T Shah
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University Huntington, WV, USA
| | - Rebecca Martin
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University Huntington, WV, USA
| | - Yanling Yan
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University Huntington, WV, USA
| | - Joseph I Shapiro
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University Huntington, WV, USA
| | - Jiang Liu
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University Huntington, WV, USA
| |
Collapse
|
42
|
Briffa JF, Grinfeld E, Jenkin KA, Mathai ML, Poronnik P, McAinch AJ, Hryciw DH. Diet induced obesity in rats reduces NHE3 and Na(+) /K(+) -ATPase expression in the kidney. Clin Exp Pharmacol Physiol 2016; 42:1118-26. [PMID: 26173747 DOI: 10.1111/1440-1681.12452] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 06/25/2015] [Accepted: 07/01/2015] [Indexed: 01/25/2023]
Abstract
The consumption of a high fat diet (HFD) is associated with proteinuria and altered sodium handling and excretion, which can lead to kidney disease. In the proximal tubule, the Na(+) /H(+) Exchanger 3 (NHE3) is responsible for normal protein reabsorption and the reabsorption of approximately 70% of the renal sodium load. It is the Na(+) /K(+) -ATPase that provides the driving force for the reabsorption of sodium and its exit across the basolateral membrane. This study investigates the effects that consumption of a HFD for 12 weeks has on NHE3 and Na(+) /K(+) -ATPase expression in the kidney. Western blot analysis identified a significant reduction in NHE3 and its modulator, phosphorylated protein kinase B, in renal lysate from obese rats. In the obese rats, a reduction in NHE3 expression in the proximal tubule may impact on the acidification of endosomes which are responsible for albumin uptake, suggesting a key role for the exchanger in protein endocytosis in obesity. Western blot analysis identified a reduction in Na(+) /K(+) -ATPase which could also potentially impact on albumin uptake and sodium reabsorption. This study demonstrates that consumption of a HFD for 12 weeks reduces renal NHE3 and Na(+) /K(+) -ATPase expression, an effect that may contribute to the albuminuria associated with obesity. Furthermore the reduction in these transporters is not likely to contribute to the reduced sodium excretion in obesity. These data highlight a potential link between NHE3 and Na(+) /K(+) -ATPase in the pathophysiological changes in renal protein handling observed in obesity.
Collapse
Affiliation(s)
- J F Briffa
- Centre for Chronic Disease Prevention and Management, College of Health and Biomedicine, Victoria University, St Albans, Victoria, Australia.,Department of Physiology, The University of Melbourne, Parkville, Victoria, Australia
| | - E Grinfeld
- Centre for Chronic Disease Prevention and Management, College of Health and Biomedicine, Victoria University, St Albans, Victoria, Australia
| | - K A Jenkin
- Centre for Chronic Disease Prevention and Management, College of Health and Biomedicine, Victoria University, St Albans, Victoria, Australia
| | - M L Mathai
- Centre for Chronic Disease Prevention and Management, College of Health and Biomedicine, Victoria University, St Albans, Victoria, Australia
| | - P Poronnik
- Department of Physiology, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - A J McAinch
- Centre for Chronic Disease Prevention and Management, College of Health and Biomedicine, Victoria University, St Albans, Victoria, Australia
| | - D H Hryciw
- Department of Physiology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
43
|
Caffeine intake antagonizes salt sensitive hypertension through improvement of renal sodium handling. Sci Rep 2016; 6:25746. [PMID: 27173481 PMCID: PMC4866033 DOI: 10.1038/srep25746] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 04/15/2016] [Indexed: 01/05/2023] Open
Abstract
High salt intake is a major risk factor for hypertension. Although acute caffeine intake produces moderate diuresis and natriuresis, caffeine increases the blood pressure (BP) through activating sympathetic activity. However, the long-term effects of caffeine on urinary sodium excretion and blood pressure are rarely investigated. Here, we investigated whether chronic caffeine administration antagonizes salt sensitive hypertension by promoting urinary sodium excretion. Dahl salt-sensitive (Dahl-S) rats were fed with high salt diet with or without 0.1% caffeine in drinking water for 15 days. The BP, heart rate and locomotor activity of rats was analyzed and urinary sodium excretion was determined. The renal epithelial Na+ channel (ENaC) expression and function were measured by in vivo and in vitro experiments. Chronic consumption of caffeine attenuates hypertension induced by high salt without affecting sympathetic nerve activity in Dahl-S rats. The renal α-ENaC expression and ENaC activity of rats decreased after chronic caffeine administration. Caffeine increased phosphorylation of AMPK and decrease α-ENaC expression in cortical collecting duct cells. Inhibiting AMPK abolished the effect of caffeine on α-ENaC. Chronic caffeine intake prevented the development of salt-sensitive hypertension through promoting urinary sodium excretion, which was associated with activation of renal AMPK and inhibition of renal tubular ENaC.
Collapse
|
44
|
The Role of Epithelial Sodium Channel ENaC and the Apical Cl-/HCO3- Exchanger Pendrin in Compensatory Salt Reabsorption in the Setting of Na-Cl Cotransporter (NCC) Inactivation. PLoS One 2016; 11:e0150918. [PMID: 26963391 PMCID: PMC4786216 DOI: 10.1371/journal.pone.0150918] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/18/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The absence of NCC does not cause significant salt wasting in NCC deficient mice under basal conditions. We hypothesized that ENaC and pendrin play important roles in compensatory salt absorption in the setting of NCC inactivation, and their inhibition and/or downregulation can cause significant salt wasting in NCC KO mice. METHODS WT and NCC KO mice were treated with a daily injection of either amiloride, an inhibitor of ENaC, or acetazolamide (ACTZ), a blocker of salt and bicarbonate reabsorption in the proximal tubule and an inhibitor of carbonic anhydrases in proximal tubule and intercalated cells, or a combination of acetazolamide plus amiloride for defined durations. Animals were subjected to daily balance studies. At the end of treatment, kidneys were harvested and examined. Blood samples were collected for electrolytes and acid base analysis. RESULTS Amiloride injection significantly increased the urine output (UO) in NCC KO mice (from 1.3 ml/day before to 2.5 ml/day after amiloride, p<0.03, n = 4) but caused only a slight change in UO in WT mice (p>0.05). The increase in UO in NCC KO mice was associated with a significant increase in sodium excretion (from 0.25 mmol/24 hrs at baseline to 0.35 mmol/24 hrs after amiloride injection, p<0.05, n = 4). Daily treatment with ACTZ for 6 days resulted in >80% reduction of kidney pendrin expression in both WT and NCC KO mice. However, ACTZ treatment noticeably increased urine output and salt excretion only in NCC KO mice (with urine output increasing from a baseline of 1.1 ml/day to 2.3 ml/day and sodium excretion increasing from 0.22 mmole/day before to 0.31 mmole/day after ACTZ) in NCC KO mice; both parameters were significantly higher than in WT mice. Western blot analysis demonstrated significant enhancement in ENaC expression in medulla and cortex of NCC KO and WT mice in response to ACTZ injection for 6 days, and treatment with amiloride in ACTZ-pretreated mice caused a robust increase in salt excretion in both NCC KO and WT mice. Pendrin KO mice did not display a significant increase in urine output or salt excretion after treatment with amiloride or ACTZ. CONCLUSION 1. ENaC plays an important role in salt reabsorption in NCC KO mice. 2. NCC contributes to compensatory salt reabsorption in the setting of carbonic anhydrase inhibition, which is associated with increased delivery of salt from the proximal tubule and the down regulation of pendrin. 3. ENaC is upregulated by ACTZ treatment and its inhibition by amiloride causes significant diuresis in NCC KO and WT mice. Despite being considered mild agents individually, we propose that the combination of acetazolamide and amiloride in the setting of NCC inhibition (i.e., hydrochlorothiazide) will be a powerful diuretic regimen.
Collapse
|
45
|
Ellison DH. Outstanding translational science at American Society of Hypertension 2015. ACTA ACUST UNITED AC 2015; 9:828-30. [PMID: 26553599 DOI: 10.1016/j.jash.2015.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 08/24/2015] [Accepted: 08/30/2015] [Indexed: 10/23/2022]
Affiliation(s)
- David H Ellison
- Division of Nephrology and Hypertension, Oregon Clinical and Translational Research Institute, Oregon Health and Science University, Portland, OR, USA; Portland VA Medical Center, Portland, OR, USA.
| |
Collapse
|
46
|
Li XC, Shull GE, Miguel-Qin E, Zhuo JL. Role of the Na+/H+ exchanger 3 in angiotensin II-induced hypertension. Physiol Genomics 2015; 47:479-87. [PMID: 26242933 PMCID: PMC4593829 DOI: 10.1152/physiolgenomics.00056.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/29/2015] [Indexed: 01/11/2023] Open
Abstract
The renal mechanisms responsible for angiotensin II (ANG II)-induced hypertension remain incompletely understood. The present study tested the hypothesis that the Na(+)/H(+) exchanger 3 (NHE3) is required for ANG II-induced hypertension in mice. Five groups of wild-type (Nhe3(+/+)) and Nhe3(-/-) mice were treated with vehicle or high pressor doses of ANG II (1.5 mg/kg/day ip, via minipump for 2 wk, or 10 pmol/min iv for 30 min). Under basal conditions, Nhe3(-/-) mice had significantly lower systolic blood pressure (SBP) and mean intra-arterial pressure (MAP) (P < 0.01), 24 h urine (P < 0.05), urinary Na(+) (P < 0.01) and urinary K(+) excretion (P < 0.01). In response to ANG II, SBP and MAP markedly increased in Nhe3(+/+) mice in a time-dependent manner, as expected (P < 0.01). However, these acute and chronic pressor responses to ANG II were significantly attenuated in Nhe3(-/-) mice (P < 0.01). Losartan blocked ANG II-induced hypertension in Nhe3(+/+) mice but induced marked mortality in Nhe3(-/-) mice. The attenuated pressor responses to ANG II in Nhe3(-/-) mice were associated with marked compensatory humoral and renal responses to genetic loss of intestinal and renal NHE3. These include elevated basal plasma ANG II and aldosterone and kidney ANG II levels, salt wasting from the intestines, increased renal AQP1, Na(+)/HCO3 (-), and Na(+)/K(+)-ATPase expression, and increased PKCα, mitogen-activated protein kinases ERK1/2, and glycogen synthase kinase 3αβ signaling proteins in the proximal tubules (P < 0.01). We concluded that NHE3 in proximal tubules of the kidney, along with NHE3 in intestines, is required for maintaining basal blood pressure as well as the full development of ANG II-induced hypertension.
Collapse
Affiliation(s)
- Xiao C Li
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology; Division of Nephrology, Department of Medicine; University of Mississippi Medical Center, Jackson, Mississippi; and
| | - Gary E Shull
- Department of Molecular Genetics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Elisa Miguel-Qin
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology; Division of Nephrology, Department of Medicine; University of Mississippi Medical Center, Jackson, Mississippi; and
| | - Jia L Zhuo
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology; Division of Nephrology, Department of Medicine; University of Mississippi Medical Center, Jackson, Mississippi; and
| |
Collapse
|
47
|
Yamamoto-Kabasawa K, Hosojima M, Yata Y, Saito M, Tanaka N, Tanaka J, Tanabe N, Narita I, Arakawa M, Saito A. Benefits of a 12-week lifestyle modification program including diet and combined aerobic and resistance exercise on albuminuria in diabetic and non-diabetic Japanese populations. Clin Exp Nephrol 2015; 19:1079-89. [DOI: 10.1007/s10157-015-1103-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 02/22/2015] [Indexed: 11/30/2022]
|
48
|
Herrera VL, Pasion KA, Moran AM, Zaninello R, Ortu MF, Fresu G, Piras DA, Argiolas G, Troffa C, Glorioso V, Masala W, Glorioso N, Ruiz-Opazo N. A functional 12T-insertion polymorphism in the ATP1A1 promoter confers decreased susceptibility to hypertension in a male Sardinian population. PLoS One 2015; 10:e0116724. [PMID: 25615575 PMCID: PMC4304799 DOI: 10.1371/journal.pone.0116724] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 12/12/2014] [Indexed: 12/13/2022] Open
Abstract
Identification of susceptibility genes for essential hypertension in humans has been a challenge due to its multifactorial pathogenesis complicated by gene-gene and gene-environment interactions, developmental programing and sex specific differences. These concurrent features make identification of causal hypertension susceptibility genes with a single approach difficult, thus requiring multiple lines of evidence involving genetic, biochemical and biological experimentation to establish causal functional mutations. Here we report experimental evidence encompassing genetic, biochemical and in vivo modeling that altogether support ATP1A1 as a hypertension susceptibility gene in males in Sardinia, Italy. ATP1A1 encodes the α1Na,K-ATPase isoform, the sole sodium pump in vascular endothelial and renal tubular epithelial cells. DNA-sequencing detected a 12-nucleotide long thymidine (12T) insertion(ins)/deletion(del) polymorphism within a poly-T sequence (38T vs 26T) in the ATP1A1 5’-regulatory region associated with hypertension in a male Sardinian population. The 12T-insertion allele confers decreased susceptibility to hypertension (P = 0.035; OR = 0.50 [0.28–0.93]) accounting for 12.1 mmHg decrease in systolic BP (P = 0.02) and 6.6 mmHg in diastolic BP (P = 0.046). The ATP1A1 promoter containing the 12T-insertion exhibited decreased transcriptional activity in in vitro reporter-assay systems, indicating decreased α1Na,K-ATPase expression with the 12T-insertion, compared with the 12T-deletion ATP1A1 promoter. To test the effects of decreased α1Na,K-ATPase expression on blood pressure, we measured blood pressure by radiotelemetry in three month-old, highly inbred heterozygous knockout ATP1A1+/− male mice with resultant 58% reduction in ATP1A1 protein levels. Male ATP1A1+/− mice showed significantly lower blood pressure (P < 0.03) than age-matched male wild-type littermate controls. Concordantly, lower ATP1A1 expression is expected to lower Na-reabsorption in the kidney thereby decreasing sodium-associated risk for hypertension and sodium-induced endothelial stiffness and dysfunction. Altogether, data support ATP1A1 as a hypertension susceptibility gene in a male Sardinian population, and mandate further investigation of its involvement in hypertension in the general population.
Collapse
Affiliation(s)
- Victoria L. Herrera
- Whitaker Cardiovascular Institute, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Khristine A. Pasion
- Whitaker Cardiovascular Institute, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Ann Marie Moran
- Whitaker Cardiovascular Institute, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Roberta Zaninello
- Hypertension and Related Diseases Center, AOU-Universita’ di Sassari, Sassari, Sardinia, Italy
| | - Maria Francesca Ortu
- Hypertension and Related Diseases Center, AOU-Universita’ di Sassari, Sassari, Sardinia, Italy
| | - Giovanni Fresu
- Hypertension and Related Diseases Center, AOU-Universita’ di Sassari, Sassari, Sardinia, Italy
| | - Daniela Antonella Piras
- Hypertension and Related Diseases Center, AOU-Universita’ di Sassari, Sassari, Sardinia, Italy
| | - Giuseppe Argiolas
- Hypertension and Related Diseases Center, AOU-Universita’ di Sassari, Sassari, Sardinia, Italy
| | - Chiara Troffa
- Hypertension and Related Diseases Center, AOU-Universita’ di Sassari, Sassari, Sardinia, Italy
| | - Valeria Glorioso
- Hypertension and Related Diseases Center, AOU-Universita’ di Sassari, Sassari, Sardinia, Italy
| | - Wanda Masala
- Hypertension and Related Diseases Center, AOU-Universita’ di Sassari, Sassari, Sardinia, Italy
| | - Nicola Glorioso
- Hypertension and Related Diseases Center, AOU-Universita’ di Sassari, Sassari, Sardinia, Italy
| | - Nelson Ruiz-Opazo
- Whitaker Cardiovascular Institute, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
49
|
Pokkunuri I, Chugh G, Rizvi I, Asghar M. Age-related hypertension and salt sensitivity are associated with unique cortico-medullary distribution of D1R, AT1R, and NADPH-oxidase in FBN rats. Clin Exp Hypertens 2015; 37:1-7. [PMID: 25562528 DOI: 10.3109/10641963.2014.977489] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We examined effects of normal (NS) and high salt (HS) on blood pressure (BP) and cortico-medullary distribution of dopamine D1 receptor (D1R), angiotensin AT1 receptor (AT1R), NADPH oxidase-gp(91phox), and sodium transporters (NHE-3, Na, K ATPase) in adult and aged rats. Aged rats fed with NS diet had higher BP, which further increased with HS. HS increased D1R mRNA and protein levels in cortex and medulla of adult rats. NS or HS fed-aged rats had higher AT1R and gp(91phox) mRNA levels in cortex and medulla. Aged rats fed with NS diet had higher gp(91phox) protein levels in cortex. HS diet increased AT1R and gp(91phox) protein levels in medulla of aged rats. Aged rats fed with NS or HS diet had higher NHE-3 protein levels in medulla. HS increased Na, K ATPase protein levels in medulla of aged rats. HS increased urinary kidney injury molecule-1 (KIM-1) but not protein or albumin levels in aged rats. These results suggest that cortical gp(91phox) and medullary NHE-3 contribute to age-related hypertension. Whereas D1R (cortical and medullary) together with medullary AT1R, gp(91phox) and Na, K-ATPase contribute to salt sensitivity in aged rats. And, KIM-1 may be a better marker for kidney damage.
Collapse
Affiliation(s)
- Indira Pokkunuri
- Department of Pharmacological and Pharmaceutical Sciences, Heart and Kidney Institute, College of Pharmacy, University of Houston , Houston, TX , USA
| | | | | | | |
Collapse
|
50
|
Li XC, Zhuo JL. Mechanisms of AT1a receptor-mediated uptake of angiotensin II by proximal tubule cells: a novel role of the multiligand endocytic receptor megalin. Am J Physiol Renal Physiol 2014; 307:F222-33. [PMID: 24740791 DOI: 10.1152/ajprenal.00693.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The present study tested the hypothesis that the multiligand endocytic receptor megalin is partially involved in the uptake of ANG II and downstream signaling responses in mouse proximal tubule cells (mPCT) by interacting with AT1a receptors. mPCT cells of wild-type (WT) and AT1a receptor-deficient (AT1a-KO) mice were treated with vehicle, the AT1 receptor blocker losartan (10 μM), or a selective megalin small interfering (si) RNA for 48 h. The uptake of fluorescein (FITC)-labeled ANG II (10 nM, 37°C) and downstream signaling responses were analyzed by fluorescence imaging and Western blotting. AT1a receptors and megalin were abundantly expressed in mPCT cells, whereas AT1a receptors were absent in AT1a-KO mPCT cells (P < 0.01). In WT mPCT cells, FITC-ANG II uptake was visualized at 30 min in the cytoplasm and in the nuclei 1 h after exposure. Losartan alone completely blocked the uptake of FITC-ANG II, whereas megalin siRNA inhibited only 30% of the response (P < 0.01). The remaining FITC-ANG II uptake in the presence of megalin siRNA was completely abolished by losartan. ANG II induced threefold increases in phosphorylated MAP kinases ERK1/2 and a onefold increase in phosphorylated sodium and hydrogen exchanger 3 (NHE3) proteins, which were also blocked by losartan and megalin-siRNA. By contrast, losartan and megalin siRNA had no effects on these signaling proteins in AT1a-KO mPCT cells. We conclude that the uptake of ANG II and downstream MAP kinases ERK1/2 and NHE3 signaling responses in mPCT cells are mediated primarily by AT1a receptors. However, megalin may also play a partial role in these responses to ANG II.
Collapse
Affiliation(s)
- Xiao C Li
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, Cardiovascular and Renal Research Center, Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jia L Zhuo
- Laboratory of Receptor and Signal Transduction, Department of Pharmacology and Toxicology, Cardiovascular and Renal Research Center, Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|