1
|
Lathan R. Exploring unconventional targets in myofibroblast transdifferentiation outside classical TGF- β signaling in renal fibrosis. Front Physiol 2024; 15:1296504. [PMID: 38808357 PMCID: PMC11130449 DOI: 10.3389/fphys.2024.1296504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 04/22/2024] [Indexed: 05/30/2024] Open
Abstract
We propose that the key initiators of renal fibrosis are myofibroblasts which originate from four predominant sources-fibroblasts, pericytes, endothelial cells and macrophages. Increased accumulation of renal interstitial myofibroblasts correlates with an increase in collagen, fibrillar proteins, and fibrosis severity. The canonical TGF-β pathway, signaling via Smad proteins, is the central molecular hub that initiates these cellular transformations. However, directly targeting these classical pathway molecules has proven challenging due their integral roles in metabolic process, and/or non-sustainable effects involving compensatory cross-talk with TGF-β. This review explores recently discovered alternative molecular targets that drive transdifferentiation into myofibroblasts. Discovering targets outside of the classical TGF-β/Smad pathway is crucial for advancing antifibrotic therapies, and strategically targeting the development of myofibroblasts offers a promising approach to control excessive extracellular matrix deposition and impede fibrosis progression.
Collapse
Affiliation(s)
- Rashida Lathan
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
2
|
Chen Y, Bai X, Chen J, Huang M, Hong Q, Ouyang Q, Sun X, Zhang Y, Liu J, Wang X, Wu L, Chen X. Pyruvate kinase M2 regulates kidney fibrosis through pericyte glycolysis during the progression from acute kidney injury to chronic kidney disease. Cell Prolif 2024; 57:e13548. [PMID: 37749923 PMCID: PMC10849781 DOI: 10.1111/cpr.13548] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 09/27/2023] Open
Abstract
We aimed to investigate the role of renal pericyte pyruvate kinase M2 (PKM2) in the progression of acute kidney injury (AKI) to chronic kidney disease (CKD). The role of PKM2 in renal pericyte-myofibroblast transdifferentiation was investigated in an AKI-CKD mouse model. Platelet growth factor receptor beta (PDGFRβ)-iCreERT2; tdTomato mice were used for renal pericyte tracing. Western blotting and immunofluorescence staining were used to examine protein expression. An 5-ethynyl-2'-deoxyuridine assay was used to measure renal pericyte proliferation. A scratch cell migration assay was used to analyse cell migration. Seahorse experiments were used to examine glycolytic rates. Enzyme-linked immunoassay was used to measure pyruvate kinase enzymatic activity and lactate concentrations. The PKM2 nuclear translocation inhibitors Shikonin and TEPP-46 were used to alter pericyte transdifferentiation. In AKI-CKD, renal pericytes proliferated and transdifferentiated into myofibroblasts and PKM2 is highly expressed in renal pericytes. Shikonin and TEPP-46 inhibited pericyte proliferation, migration, and pericyte-myofibroblast transdifferentiation by reducing nuclear PKM2 entry. In the nucleus, PKM2 promoted downstream lactate dehydrogenase A (LDHA) and glucose transporter 1 (GLUT1) transcription, which are critical for glycolysis. Therefore, PKM2 regulates pericyte glycolytic and lactate production, which regulates renal pericyte-myofibroblast transdifferentiation. PKM2-regulated renal pericyte-myofibroblast transdifferentiation by regulating downstream LDHA and GLUT1 transcription and lactate production. Reducing nuclear PKM2 import can reduce renal pericytes-myofibroblasts transdifferentiation, providing new ideas for AKI-CKD treatment.
Collapse
Affiliation(s)
- Yulan Chen
- Department of NephrologyFirst Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases ResearchBeijingChina
- Chinese PLA Medical SchoolBeijingChina
| | - Xueyuan Bai
- Department of NephrologyFirst Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases ResearchBeijingChina
| | - Jianwen Chen
- Department of NephrologyFirst Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases ResearchBeijingChina
| | - Mengjie Huang
- Department of NephrologyFirst Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases ResearchBeijingChina
| | - Quan Hong
- Department of NephrologyFirst Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases ResearchBeijingChina
| | - Qing Ouyang
- Department of NephrologyFirst Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases ResearchBeijingChina
| | - Xuefeng Sun
- Department of NephrologyFirst Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases ResearchBeijingChina
| | - Yan Zhang
- Department of NephrologyFirst Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases ResearchBeijingChina
- Chinese PLA Medical SchoolBeijingChina
| | - Jiaona Liu
- Department of NephrologyFirst Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases ResearchBeijingChina
| | - Xu Wang
- Department of NephrologyFirst Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases ResearchBeijingChina
| | - Lingling Wu
- Department of NephrologyFirst Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases ResearchBeijingChina
| | - Xiangmei Chen
- Department of NephrologyFirst Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases ResearchBeijingChina
| |
Collapse
|
3
|
Chuang T, Bejar J, Yue Z, Slavinsky M, Marciano D, Drummond I, Oxburgh L. In Vivo Assessment of Laboratory-Grown Kidney Tissue Grafts. Bioengineering (Basel) 2023; 10:1261. [PMID: 38002385 PMCID: PMC10669198 DOI: 10.3390/bioengineering10111261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/20/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Directed differentiation of stem cells is an attractive approach to generate kidney tissue for regenerative therapies. Currently, the most informative platform to test the regenerative potential of this tissue is engraftment into kidneys of immunocompromised rodents. Stem cell-derived kidney tissue is vascularized following engraftment, but the connection between epithelial tubules that is critical for urine to pass from the graft to the host collecting system has not yet been demonstrated. We show that one significant obstacle to tubule fusion is the accumulation of fibrillar collagens at the interface between the graft and the host. As a screening strategy to identify factors that can prevent this collagen accumulation, we propose encapsulating laboratory-grown kidney tissue in fibrin hydrogels supplemented with candidate compounds such as recombinant proteins, small molecules, feeder cells, and gene therapy vectors to condition the local graft environment. We demonstrate that the AAV-DJ serotype is an efficient gene therapy vector for the subcapsular region and that it is specific for interstitial cells in this compartment. In addition to the histological evaluation of epithelial tubule fusion, we demonstrate the specificity of two urine biomarker assays that can be used to detect human-specific markers of the proximal nephron (CD59) and the distal nephron (uromodulin), and we demonstrate the deposition of human graft-derived urine into the mouse collecting system. Using the testing platform described in this report, it will be possible to systematically screen factors for their potential to promote epithelial fusion of graft and host tissue with a functional intravital read-out.
Collapse
Affiliation(s)
| | | | - Zhiwei Yue
- The Rogosin Institute, New York, NY 10021, USA
| | | | - Denise Marciano
- Division of Nephrology, Department of Internal Medicine, Department of Cell Biology, University of Texas Southwestern Medical School, Dallas, TX 75390, USA
| | - Iain Drummond
- Mount Desert Island Biological Laboratory, Bar Harbor, ME 04609, USA
| | | |
Collapse
|
4
|
Xu-Dubois Y, Kavvadas P, Keuylian Z, Hertig A, Rondeau E, Chatziantoniou C. Notch3 expression in capillary pericytes predicts worse graft outcome in human renal grafts with antibody-mediated rejection. J Cell Mol Med 2022; 26:3203-3212. [PMID: 35611804 PMCID: PMC9170800 DOI: 10.1111/jcmm.17325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/04/2022] [Accepted: 03/22/2022] [Indexed: 11/29/2022] Open
Abstract
Microvasculature consisting of endothelial cells and pericytes is the main site of injury during antibody-mediated rejection (ABMR) of renal grafts. Little is known about the mechanisms of activation of pericytes in this pathology. We have found recently that activation of Notch3, a mediator of vascular smooth muscle cell proliferation and dedifferentiation, promotes renal inflammation and fibrosis and aggravates progression of renal disease. Therefore, we studied the pericyte expression of Notch3 in 49 non-selected renal graft biopsies (32 for clinical cause, 17 for graft surveillance). We analysed its relationship with patients' clinical and morphological data, and compared with the expression of partial endothelial mesenchymal transition (pEndMT) markers, known to reflect endothelial activation during ABMR. Notch3 was de novo expressed in pericytes of grafts with ABMR, and was significantly correlated with the microcirculation inflammation scores of peritubular capillaritis and glomerulitis and with the expression of pEndMT markers. Notch3 expression was also associated with graft dysfunction and proteinuria at the time of biopsy and in the long term. Multivariate analysis confirmed pericyte expression of Notch3 as an independent risk factor predicting graft loss. These data suggest that Notch3 is activated in the pericytes of renal grafts with ABMR and is associated with poor graft outcome.
Collapse
Affiliation(s)
- Yichun Xu-Dubois
- INSERM UMRS 1155, Tenon Hospital, Paris, France.,Public Health, Assistance Publique-Hôpitaux de Paris (AP-HP), Tenon Hospital, Paris, France
| | - Panagiotis Kavvadas
- INSERM UMRS 1155, Tenon Hospital, Paris, France.,Sorbonne University, Paris, France
| | - Zela Keuylian
- INSERM UMRS 1155, Tenon Hospital, Paris, France.,Sorbonne University, Paris, France
| | - Alexandre Hertig
- INSERM UMRS 1155, Tenon Hospital, Paris, France.,Sorbonne University, Paris, France.,Nephrology Department, Foch Hospital, Suresnes, France
| | - Eric Rondeau
- INSERM UMRS 1155, Tenon Hospital, Paris, France.,Sorbonne University, Paris, France.,Intensive Care Nephrology and Transplantation Department, Tenon Hospital, APHP, Paris, France
| | | |
Collapse
|
5
|
Huang A, Guo G, Yu Y, Yao L. The roles of collagen in chronic kidney disease and vascular calcification. J Mol Med (Berl) 2020; 99:75-92. [PMID: 33236192 DOI: 10.1007/s00109-020-02014-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 01/16/2023]
Abstract
The extracellular matrix component collagen is widely expressed in human tissues and participates in various cellular biological processes. The collagen amount generally remains stable due to intricate regulatory networks, but abnormalities can lead to several diseases. During the development of renal fibrosis and vascular calcification, the expression of collagen is significantly increased, which promotes phenotypic changes in intrinsic renal cells and vascular smooth muscle cells, thereby exacerbating disease progression. Reversing the overexpression of collagen substantially prevents or slows renal fibrosis and vascular calcification in a wide range of animal models, suggesting a novel target for treating patients with these diseases. Stem cell therapy seems to be an effective strategy to alleviate these two conditions. However, recent findings indicate that the natural pore structure of collagen fibers is sufficient to induce the inappropriate differentiation of stem cells and thereby exacerbate renal fibrosis and vascular calcification. A comprehensive understanding of the role of collagen in these diseases and its effect on stem cell biology will assist in improving the unmet requirements for treating patients with kidney disease.
Collapse
Affiliation(s)
- Aoran Huang
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, 110000, China
| | - Guangying Guo
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, 110000, China
| | - Yanqiu Yu
- Department of Pathophysiology, College of Basic Medical Sciences, China Medical University, Shenyang, 110013, China. .,Shenyang Engineering Technology R&D Center of Cell Therapy Co. LTD., Shenyang, 110169, China.
| | - Li Yao
- Department of Nephrology, The First Hospital of China Medical University, Shenyang, 110000, China.
| |
Collapse
|
6
|
Hou Z, Neng L, Zhang J, Cai J, Wang X, Zhang Y, Lopez IA, Shi X. Acoustic Trauma Causes Cochlear Pericyte-to-Myofibroblast-Like Cell Transformation and Vascular Degeneration, and Transplantation of New Pericytes Prevents Vascular Atrophy. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1943-1959. [PMID: 32562655 DOI: 10.1016/j.ajpath.2020.05.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/19/2020] [Accepted: 05/26/2020] [Indexed: 12/20/2022]
Abstract
Acoustic trauma disrupts cochlear blood flow and damages sensory hair cells. Damage and regression of capillaries after acoustic trauma have long been observed, but the underlying mechanism of pathology has not been understood. We show herein that loud sound causes change of phenotype from neural/glial antigen 2 positive/α-smooth muscle actin negative to neural/glial antigen 2 positive/α-smooth muscle actin positive in some pericytes (PCs) on strial capillaries that is strongly associated with up-regulation of transforming growth factor-β1. The acoustic trauma also reduced capillary density and increased deposition of matrix proteins, particularly in the vicinity of transformed PCs. In a newly established in vitro three-dimensional endothelial cell (EC) and PC co-culture model, transformed PCs induced thicker capillary-like branches in ECs and increased collagen IV and laminin expression. Transplantation of exogenous PCs derived from neonatal day 10 mouse cochleae to acoustic traumatized cochleae, however, significantly attenuated the decreased vascular density in the stria. Transplantation of PCs pretransfected with adeno-associated virus 1-vascular endothelial growth factor-A165 under control of a hypoxia-response element markedly promotes vascular volume and blood flow, increased proliferation of PCs and ECs, and attenuated loud sound-caused loss in endocochlear potential and hearing. Our results indicate that loud sound-triggered PC transformation contributes to capillary wall thickening and regression, and young PC transplantation effectively rehabilitates the vascular regression and improves hearing.
Collapse
Affiliation(s)
- Zhiqiang Hou
- Department of Otolaryngology/Head & Neck Surgery, Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon
| | - Lingling Neng
- Department of Otolaryngology/Head & Neck Surgery, Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon
| | - Jinhui Zhang
- Department of Otolaryngology/Head & Neck Surgery, Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon
| | - Jing Cai
- Department of Otolaryngology/Head & Neck Surgery, Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon
| | - Xiaohan Wang
- Department of Otolaryngology/Head & Neck Surgery, Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon; Center for Life Sciences, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yunpei Zhang
- Department of Otolaryngology/Head & Neck Surgery, Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon
| | - Ivan A Lopez
- Cellular and Molecular Biology of the Inner Ear Laboratory, Department of Head and Neck Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Xiaorui Shi
- Department of Otolaryngology/Head & Neck Surgery, Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon.
| |
Collapse
|
7
|
Liu N, Zhang Y, Su H, Wang J, Liu Z, Kong J. Effects of cholecalciferol cholesterol emulsion on renal fibrosis and aquaporin 2 and 4 in mice with unilateral ureteral obstruction. Biomed Pharmacother 2018; 102:633-638. [DOI: 10.1016/j.biopha.2018.03.093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/15/2018] [Accepted: 03/15/2018] [Indexed: 01/25/2023] Open
|
8
|
Greite R, Thorenz A, Chen R, Jang MS, Rong S, Brownstein MJ, Tewes S, Wang L, Baniassad B, Kirsch T, Bräsen JH, Lichtinghagen R, Meier M, Haller H, Hueper K, Gueler F. Renal ischemia-reperfusion injury causes hypertension and renal perfusion impairment in the CD1 mice which promotes progressive renal fibrosis. Am J Physiol Renal Physiol 2018; 314:F881-F892. [DOI: 10.1152/ajprenal.00519.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Renal ischemia-reperfusion injury (IRI) is a severe complication of major surgery and a risk factor for increased morbidity and mortality. Here, we investigated mechanisms that might contribute to IRI-induced progression to chronic kidney disease (CKD). Acute kidney injury (AKI) was induced by unilateral IRI for 35 min in CD1 and C57BL/6 (B6) mice. Unilateral IRI was used to overcome early mortality. Renal morphology, NGAL upregulation, and neutrophil infiltration as well as peritubular capillary density were studied by immunohistochemistry. The composition of leukocyte infiltrates in the kidney after IRI was investigated by flow cytometry. Systemic blood pressure was measured with a tail cuff, and renal perfusion was quantified by functional magnetic resonance imaging (fMRI). Mesangial matrix expansion was assessed by silver staining. Following IRI, CD1 and B6 mice developed similar morphological signs of AKI and increases in NGAL expression, but neutrophil infiltration was greater in CD1 than B6 mice. IRI induced an increase in systemic blood pressure of 20 mmHg in CD1, but not in B6 mice; and CD1 mice also had a greater loss of renal perfusion and kidney volume than B6 mice ( P < 0.05). CD1 mice developed substantial interstitial fibrosis and decreased peritubular capillary (PTC) density by day 14 while B6 mice showed only mild renal scarring and almost normal PTC. Our results show that after IRI, CD1 mice develop more inflammation, hypertension, and later mesangial matrix expansion than B6 mice do. Subsequently, CD1 animals suffer from CKD due to impaired renal perfusion and pronounced permanent loss of peritubular capillaries.
Collapse
Affiliation(s)
- Robert Greite
- Nephrology, Hannover Medical School, Hannover, Germany
| | - Anja Thorenz
- Nephrology, Hannover Medical School, Hannover, Germany
| | - Rongjun Chen
- Nephrology, Hannover Medical School, Hannover, Germany
| | - Mi-Sun Jang
- Nephrology, Hannover Medical School, Hannover, Germany
| | - Song Rong
- Nephrology, Hannover Medical School, Hannover, Germany
- The Transplantation Center of the Affiliated Hospital, Zunyi Medical College, Zunyi, China
| | | | - Susanne Tewes
- Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Li Wang
- Nephrology, Hannover Medical School, Hannover, Germany
| | | | | | | | | | - Martin Meier
- Imaging Center, Institute of Laboratory Animal Sciences, Hannover Medical School, Hannover, Germany
| | | | - Katja Hueper
- Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Faikah Gueler
- Nephrology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
9
|
Bae YK, Kim GH, Lee JC, Seo BM, Joo KM, Lee G, Nam H. The Significance of SDF-1α-CXCR4 Axis in in vivo Angiogenic Ability of Human Periodontal Ligament Stem Cells. Mol Cells 2017; 40:386-392. [PMID: 28614918 PMCID: PMC5523014 DOI: 10.14348/molcells.2017.0004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/29/2017] [Indexed: 12/28/2022] Open
Abstract
Periodontal ligament stem cells (PDLSCs) are multipotent stem cells derived from periodontium and have mesenchymal stem cell (MSC)-like characteristics. Recently, the perivascular region was recognized as the developmental origin of MSCs, which suggests the in vivo angiogenic potential of PDLSCs. In this study, we investigated whether PDLSCs could be a potential source of perivascular cells, which could contribute to in vivo angiogenesis. PDLSCs exhibited typical MSC-like characteristics such as the expression pattern of surface markers (CD29, CD44, CD73, and CD105) and differentiation potentials (osteogenic and adipogenic differentiation). Moreover, PDLSCs expressed perivascular cell markers such as NG2, αsmooth muscle actin, platelet-derived growth factor receptor β, and CD146. We conducted an in vivo Matrigel plug assay to confirm the in vivo angiogenic potential of PDLSCs. We could not observe significant vessel-like structures with PDLSCs alone or human umbilical vein endothelial cells (HU-VECs) alone at day 7 after injection. However, when PDLSCs and HUVECs were co-injected, there were vessel-like structures containing red blood cells in the lumens, which suggested that anastomosis occurred between newly formed vessels and host circulatory system. To block the SDF-1α and CXCR4 axis between PDLSCs and HUVECs, AMD3100, a CXCR4 antagonist, was added into the Matrigel plug. After day 3 and day 7 after injection, there were no significant vessel-like structures. In conclusion, we demonstrated the peri-vascular characteristics of PDLSCs and their contribution to in vivo angiogenesis, which might imply potential application of PDLSCs into the neovascularization of tissue engineering and vascular diseases.
Collapse
Affiliation(s)
- Yoon-Kyung Bae
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351,
Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419,
Korea
- Stem Cell and Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351,
Korea
| | - Gee-Hye Kim
- Laboratory of Molecular Genetics, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080,
Korea
| | - Jae Cheoun Lee
- Children’s Dental Center and CDC Baby Tooth Stem Cell Bank, Seoul 06072,
Korea
| | - Byoung-Moo Seo
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Seoul National University, Seoul 03080,
Korea
| | - Kyeung-Min Joo
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351,
Korea
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419,
Korea
- Stem Cell and Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351,
Korea
- Department of Anatomy & Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419,
Korea
| | - Gene Lee
- Laboratory of Molecular Genetics, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080,
Korea
| | - Hyun Nam
- Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon 16419,
Korea
- Stem Cell and Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351,
Korea
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University, Seoul 06351,
Korea
| |
Collapse
|
10
|
Schnaper HW. The Tubulointerstitial Pathophysiology of Progressive Kidney Disease. Adv Chronic Kidney Dis 2017; 24:107-116. [PMID: 28284376 PMCID: PMC5351778 DOI: 10.1053/j.ackd.2016.11.011] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 11/07/2016] [Accepted: 11/13/2016] [Indexed: 02/07/2023]
Abstract
Accumulating evidence suggests that the central locus for the progression of CKD is the renal proximal tubule. As injured tubular epithelial cells dedifferentiate in attempted repair, they stimulate inflammation and recruit myofibroblasts. At the same time, tissue loss stimulates remnant nephron hypertrophy. Increased tubular transport workload eventually exceeds the energy-generating capacity of the hypertrophied nephrons, leading to anerobic metabolism, acidosis, hypoxia, endoplasmic reticulum stress, and the induction of additional inflammatory and fibrogenic responses. The result is a vicious cycle of injury, misdirected repair, maladaptive responses, and more nephron loss. Therapy that might be advantageous at one phase of this progression pathway could be deleterious during other phases. Thus, interrupting this downward spiral requires narrowly targeted approaches that promote healing and adequate function without generating further entry into the progression cycle.
Collapse
Affiliation(s)
- H William Schnaper
- Division of Kidney Diseases, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL.
| |
Collapse
|
11
|
Kim JH, Kim GH, Kim JW, Pyeon HJ, Lee JC, Lee G, Nam H. In Vivo Angiogenic Capacity of Stem Cells from Human Exfoliated Deciduous Teeth with Human Umbilical Vein Endothelial Cells. Mol Cells 2016; 39:790-796. [PMID: 27871176 PMCID: PMC5125934 DOI: 10.14348/molcells.2016.0131] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/07/2016] [Accepted: 11/07/2016] [Indexed: 01/09/2023] Open
Abstract
Dental pulp is a highly vascularized tissue requiring adequate blood supply for successful regeneration. In this study, we investigated the functional role of stem cells from human exfoliated deciduous teeth (SHEDs) as a perivascular source for in vivo formation of vessel-like structures. Primarily isolated SHEDs showed mesenchymal stem cell (MSC)-like characteristics including the expression of surface antigens and in vitro osteogenic and adipogenic differentiation potentials. Moreover, SHEDs were positive for NG2, α-smooth muscle actin (SMA), platelet-derived growth factor receptor beta (PDGFRβ), and CD146 as pericyte markers. To prove feasibility of SHEDs as perivascular source, SHEDs were transplanted into immunodeficient mouse using Matrigel with or without human umbilical vein endothelial cells (HUVECs). Transplantation of SHEDs alone or HUVECs alone resulted in no formation of vessel-like structures with enough red blood cells. However, when SHEDs and HUVECs were transplanted together, extensive vessel-like structures were formed. The presence of murine erythrocytes within lumens suggested the formation of anastomoses between newly formed vessel-like structures in Matrigel plug and the host circulatory system. To understand underlying mechanisms of in vivo angiogenesis, the expression of angiogenic cytokine and chemokine, their receptors, and MMPs was compared between SHEDs and HUVECs. SHEDs showed higher expression of VEGF, SDF-1α, and PDGFRβ than HUVECs. On the contrary, HUVECs showed higher expression of VEGF receptors, CXCR4, and PDGF-BB than SHEDs. This differential expression pattern suggested reciprocal interactions between SHEDs and HUVECs and their involvement during in vivo angiogenesis. In conclusion, SHEDs could be a feasible source of perivascular cells for in vivo angiogenesis.
Collapse
Affiliation(s)
- Ji-Hye Kim
- Laboratory of Molecular Genetics, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080,
Korea
| | - Gee-Hye Kim
- Laboratory of Molecular Genetics, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080,
Korea
| | - Jae-Won Kim
- Laboratory of Molecular Genetics, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080,
Korea
| | - Hee Jang Pyeon
- Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine, Seoul 06351,
Korea
- Stem Cell and Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351,
Korea
| | - Jae Cheoun Lee
- Children’s Dental Center and CDC Baby Tooth Stem Cell Bank, Seoul 06072,
Korea
| | - Gene Lee
- Laboratory of Molecular Genetics, Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080,
Korea
| | - Hyun Nam
- Stem Cell and Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center, Seoul 06351,
Korea
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University, Seoul 06351,
Korea
| |
Collapse
|
12
|
Abstract
Individuals age >65 years old are the fastest expanding population demographic throughout the developed world. Consequently, more aged patients than before are receiving diagnoses of impaired renal function and nephrosclerosis-age-associated histologic changes in the kidneys. Recent studies have shown that the aged kidney undergoes a range of structural changes and has altered transcriptomic, hemodynamic, and physiologic behavior at rest and in response to renal insults. These changes impair the ability of the kidney to withstand and recover from injury, contributing to the high susceptibility of the aged population to AKI and their increased propensity to develop subsequent progressive CKD. In this review, we examine these features of the aged kidney and explore the various validated and putative pathways contributing to the changes observed with aging in both experimental animal models and humans. We also discuss the potential for additional study to increase understanding of the aged kidney and lead to novel therapeutic strategies.
Collapse
Affiliation(s)
- Eoin D O'Sullivan
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom;
| | - Jeremy Hughes
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom.,MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom; and
| | - David A Ferenbach
- Department of Renal Medicine, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom.,MRC Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom; and.,Renal and.,Biomedical Engineering Divisions, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
13
|
Komers R, Xu B, Schneider J, Oyama TT. Effects of xanthine oxidase inhibition with febuxostat on the development of nephropathy in experimental type 2 diabetes. Br J Pharmacol 2016; 173:2573-88. [PMID: 27238746 DOI: 10.1111/bph.13527] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Elevated serum uric acid (UA) is a risk factor for the development of kidney disease. Inhibitors of xanthine oxidase (XOi), an enzyme involved in UA synthesis, have protective effects at early stages of experimental diabetic nephropathy (DN). However, long-term effects of XOi in models of DN remain to be determined. EXPERIMENTAL APPROACH The development of albuminuria, renal structure and molecular markers of DN were studied in type 2 diabetic Zucker obese (ZO) rats treated for 18 weeks with the XOi febuxostat and compared with vehicle-treated ZO rats, ZO rats treated with enalapril or a combination of both agents, and lean Zucker rats without metabolic defects. RESULTS Febuxostat normalized serum UA and attenuated the development of albuminuria, renal structural changes, with no significant effects on BP, metabolic control or systemic markers of oxidative stress (OS). Most of these actions were comparable with those of enalapril. Combination treatment induced marked decreases in BP and was more effective in ameliorating structural changes, expression of profibrotic genes and systemic OS than either monotherapy. Febuxostat attenuated renal protein expression of TGF-ß, CTGF, collagen 4, mesenchymal markers (FSP1 and vimentin) and a tissue marker of OS nitrotyrosine. Moreover, febuxostat attenuated TGF-ß- and S100B-induced increased expression of fibrogenic molecules in renal tubular cells in vitro in UA-free media in an Akt kinase-dependent manner. CONCLUSIONS AND IMPLICATIONS Febuxostat is protective and enhances the actions of enalapril in experimental DN. Multiple mechanisms might be involved, such as a reduction of UA, renal OS and inhibition of profibrotic signalling.
Collapse
Affiliation(s)
- Radko Komers
- Department of Medicine, Division of Nephrology and Hypertension, Oregon Health and Science University, Portland, OR, USA
| | - Bei Xu
- Department of Medicine, Division of Nephrology and Hypertension, Oregon Health and Science University, Portland, OR, USA
| | - Jennifer Schneider
- Department of Medicine, Division of Nephrology and Hypertension, Oregon Health and Science University, Portland, OR, USA
| | - Terry T Oyama
- Department of Medicine, Division of Nephrology and Hypertension, Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
14
|
Hutchenreuther J, Leask A. A tale of two orgins: do myofibroblasts originate from different sources in wound healing and fibrosis? Cell Tissue Res 2016; 365:507-9. [PMID: 27184951 DOI: 10.1007/s00441-016-2419-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/25/2016] [Indexed: 02/07/2023]
Affiliation(s)
- James Hutchenreuther
- Departments of Dentistry and Physiology and Pharmacology, University of Western Ontario, London, ON, N6A 5C1, Canada
| | - Andrew Leask
- Departments of Dentistry and Physiology and Pharmacology, University of Western Ontario, London, ON, N6A 5C1, Canada.
| |
Collapse
|
15
|
Saika S, Yamanaka O, Okada Y, Sumioka T. Modulation of Smad signaling by non-TGFβ components in myofibroblast generation during wound healing in corneal stroma. Exp Eye Res 2016; 142:40-8. [PMID: 26675402 DOI: 10.1016/j.exer.2014.12.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/05/2014] [Accepted: 12/26/2014] [Indexed: 10/22/2022]
Abstract
Corneal scarring/fibrosis disturbs normal transparency and curvature of the tissue and thus impairs vision. The lesion is characterized by appearance of myofibroblasts, the key player of the fibrogenic reaction, and excess accumulation of extracellular matrix. Inflammatory/fibrogenic growth factors or cytokines expressed in inflammatory cells that infiltrate into injured tissues play a pivotal role in fibrotic tissue formation. In this article the pathogenesis of fibrosis/scarring in the corneal stroma is reviewed focusing on the roles of myofibroblast, the key player in corneal stromal wound healing and fibrosis, and cytoplasmic signals activated by the fibrogenic cytokine, transforming growth factor β (TGFβ). Although it is established that TGFβ/Smad signal is essential to the process of keratocyte-myofibroblast transformation in a healing corneal stroma post-injury. This article emphasizes the involvement of non-TGFβ molecular mechanisms in modulating Smad signal. We focus on the roles of matricellular proteins, i.e., osteopontin and tenascin C, and as cellular components, the roles of transient receptor potential (TRP) cation channel receptors are discussed. Our intent is to draw attention to the possibility of signal transduction cascade modulation (e.g., Smad signal and mitogen-activated protein kinases, by gene transfer and other related technology) as being beneficial in a clinical setting to reduce or even prevent corneal stromal tissue fibrosis/scarring and inflammation.
Collapse
Affiliation(s)
- Shizuya Saika
- Department of Ophthalmology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-0012, Japan.
| | - Osamu Yamanaka
- Department of Ophthalmology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-0012, Japan
| | - Yuka Okada
- Department of Ophthalmology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-0012, Japan
| | - Takayoshi Sumioka
- Department of Ophthalmology, Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-0012, Japan
| |
Collapse
|
16
|
Ledo N, Susztak K, Palmer MB. Cell Phenotype Transitions in Renal Fibrosis. CURRENT PATHOBIOLOGY REPORTS 2016. [DOI: 10.1007/s40139-016-0098-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Kato M, Natarajan R. MicroRNAs in diabetic nephropathy: functions, biomarkers, and therapeutic targets. Ann N Y Acad Sci 2015; 1353:72-88. [PMID: 25877817 PMCID: PMC4607544 DOI: 10.1111/nyas.12758] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are short noncoding RNAs that regulate gene expression by posttranscriptional and epigenetic mechanisms and thereby affect many cellular processes and disease states. Over 2,000 human mature miRNAs have been identified, and at least 60% of all human protein-coding genes are known to be regulated by miRNAs. MicroRNA biogenesis involves classical transcription regulation and processing by key ribonucleases, as well as other protein factors and epigenetic mechanisms. Diabetic nephropathy (DN), a severe microvascular complication frequently associated with diabetes mellitus, is a major cause of renal failure. Although several mechanisms of regulation of key renal genes implicated in DN pathogenesis have been identified, a greater understanding is needed to develop better treatment modalities. Recent studies show that miRNAs induced in renal cells in vivo and in vitro under diabetic conditions can promote the accumulation of extracellular matrix proteins related to fibrosis and glomerular dysfunction. In this review, we highlight the significance of the expression of miRNAs in various stages of DN and emerging approaches to exploit them as biomarkers for early detection or novel therapeutic targets to prevent progression of DN.
Collapse
Affiliation(s)
- Mitsuo Kato
- Department of Diabetes Complications, Beckman Research Institute of City of Hope, Duarte, California
| | - Rama Natarajan
- Department of Diabetes Complications, Beckman Research Institute of City of Hope, Duarte, California
| |
Collapse
|
18
|
Miller RT, Janmey PA. Relationship of and cross-talk between physical and biologic properties of the glomerulus. Curr Opin Nephrol Hypertens 2015; 24:393-400. [PMID: 26050128 PMCID: PMC4493859 DOI: 10.1097/mnh.0000000000000138] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE OF REVIEW Cells and tissues must respond to physical stresses. Cells exist in an elastic environment determined by their matrix, matrix contacts, cell-cell contacts, and cytoskeletal structure. We discuss the determinants of the elastic environment of cells and its potential roles in glomerular disease. RECENT FINDINGS Control of the mechanical environment is sufficient to induce and maintain the differentiated state of cells including myofibroblasts. New experimental techniques permit precise measurement of the elastic characteristics of normal and diseased tissues and cells, and analysis of cell behavior and cytoskeletal structure in response to mechanical and elastic stimuli. Glomeruli become soft early in the course of several disease models, yet late stages are characterized by increased stiffness and fibrosis with loss of organ function. Work in hepatic fibrosis, arterial disease, and oncology demonstrate that increased collagen crosslinking by lysyl oxidase, an early step in the diseases, can result in a sufficient increase in tissue stiffness to alter cell behavior, leading to disease progression. SUMMARY The elastic environment of cells and tissues provides essential signals in development, differentiation, and disease. Identifying the mechanisms that determine the mechanical environment of glomerular cells will complement other approaches to reduce pathologic fibrosis and loss of tissue function.
Collapse
Affiliation(s)
- R. Tyler Miller
- Professor of Medicine, U.T. Southwestern Medical Center, Chief, Medical Service, Dallas VAMC, 4500 S. Lancaster Rd, Dallas, TX 75216, Tel 214-857-0409
| | - Paul A. Janmey
- Professor of Physiology, Physics, and Astronomy, Institute for Medicine and Engineering, University of Pennsylvania, 1010 Vagelos Research Laboratories, 3340 Smith Walk, Philadelphia, PA 19104, 215-573-7380
| |
Collapse
|
19
|
Roeder SS, Stefanska A, Eng DG, Kaverina N, Sunseri MW, McNicholas BA, Rabinovitch P, Engel FB, Daniel C, Amann K, Lichtnekert J, Pippin JW, Shankland SJ. Changes in glomerular parietal epithelial cells in mouse kidneys with advanced age. Am J Physiol Renal Physiol 2015; 309:F164-78. [PMID: 26017974 DOI: 10.1152/ajprenal.00144.2015] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 05/26/2015] [Indexed: 02/08/2023] Open
Abstract
Kidney aging is accompanied by characteristic changes in the glomerulus, but little is known about the effect of aging on glomerular parietal epithelial cells (PECs), nor if the characteristic glomerular changes in humans and rats also occur in very old mice. Accordingly, a descriptive analysis was undertaken in 27-mo-old C57B6 mice, considered advanced age. PEC density was significantly lower in older mice compared with young mice (aged 3 mo), and the decrease was more pronounced in juxtamedullary glomeruli compared with outer cortical glomeruli. In addition to segmental and global glomerulosclerosis in older mice, staining for matrix proteins collagen type IV and heparan sulfate proteoglycan were markedly increased in Bowman's capsules of older mouse glomeruli, consistent with increased extracellular matrix production by PECs. De novo staining for CD44, a marker of activated and profibrotic PECs, was significantly increased in aged glomeruli. CD44 staining was more pronounced in the juxtamedullary region and colocalized with phosphorylated ERK. Additionally, a subset of aged PECs de novo expressed the epithelial-to-mesenchymal transition markers α-smooth muscle and vimentin, with no changes in epithelial-to-mesenchymal transition markers E-cadherin and β-catenin. The mural cell markers neural/glial antigen 2, PDGF receptor-β, and CD146 as well as Notch 3 were also substantially increased in aged PECs. These data show that mice can be used to better understand the aging kidney and that PECs undergo substantial changes, especially in juxtamedullary glomeruli, that may participate in the overall decline in glomerular structure and function with advancing age.
Collapse
Affiliation(s)
- Sebastian S Roeder
- Division of Nephrology, University of Washington, Seattle, Washington; Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Ania Stefanska
- Division of Nephrology, University of Washington, Seattle, Washington
| | - Diana G Eng
- Division of Nephrology, University of Washington, Seattle, Washington
| | - Natalya Kaverina
- Division of Nephrology, University of Washington, Seattle, Washington
| | - Maria W Sunseri
- Division of Nephrology, University of Washington, Seattle, Washington
| | | | - Peter Rabinovitch
- Department of Pathology, University of Washington, Seattle, Washington
| | - Felix B Engel
- Department of Nephropathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; and
| | - Christoph Daniel
- Department of Nephropathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; and
| | - Kerstin Amann
- Department of Nephropathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; and
| | - Julia Lichtnekert
- Division of Nephrology, University of Washington, Seattle, Washington
| | - Jeffrey W Pippin
- Division of Nephrology, University of Washington, Seattle, Washington
| | | |
Collapse
|
20
|
Han Y, Zhang Y, Jia T, Sun Y. Molecular mechanism underlying the tumor-promoting functions of carcinoma-associated fibroblasts. Tumour Biol 2015; 36:1385-94. [PMID: 25680413 DOI: 10.1007/s13277-015-3230-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 02/05/2015] [Indexed: 12/16/2022] Open
Abstract
Tumor microenvironment is composed of all the untransformed elements in the vicinity of tumor, mainly including a large number of stromal cells and extracellular matrix proteins, which play an active role in most solid tumor initiation and progression. Carcinoma-associated fibroblasts (CAFs), one of the most common stromal cell types in the tumor microenvironment, have been demonstrated to be involved in tumor growth, invasion, and metastasis. Therefore, they are becoming a promising target for anti-cancer therapies. In this review, we firstly summarize the current understandings of CAFs' molecular biology, including the heterogeneous cellular origins and molecular markers, and then, we focus on reviewing their various tumor-promoting phenotypes involved in complex mechanisms, which can be summarized to the CAF-conveyed paracrine signals in tumor cells, cancer stem cells, and metastasis-initiating cancer cells, as well as the CAF-enhanced extrinsic tumor-promoting processes including angiogenesis, extracellular matrix remodeling, and tumor-related inflammation; finally, we describe the available directions of CAF-based target therapy and suggest research areas which need to be further explored so as to deepen the understanding of tumor evolution and provide new therapeutic targets for cancer treatment.
Collapse
Affiliation(s)
- Yali Han
- Department of Oncology, Jinan Central Hospital, Shandong University, Jinan, 250013, Shandong, China,
| | | | | | | |
Collapse
|
21
|
Kelly-Goss MR, Sweat RS, Stapor PC, Peirce SM, Murfee WL. Targeting pericytes for angiogenic therapies. Microcirculation 2015; 21:345-57. [PMID: 24267154 DOI: 10.1111/micc.12107] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/19/2013] [Indexed: 12/18/2022]
Abstract
In pathological scenarios, such as tumor growth and diabetic retinopathy, blocking angiogenesis would be beneficial. In others, such as myocardial infarction and hypertension, promoting angiogenesis might be desirable. Due to their putative influence on endothelial cells, vascular pericytes have become a topic of growing interest and are increasingly being evaluated as a potential target for angioregulatory therapies. The strategy of manipulating pericyte recruitment to capillaries could result in anti- or proangiogenic effects. Our current understanding of pericytes, however, is limited by knowledge gaps regarding pericyte identity and lineage. To use a music analogy, this review is a "mash-up" that attempts to integrate what we know about pericyte functionality and expression with what is beginning to be elucidated regarding their regenerative potential. We explore the lingering questions regarding pericyte phenotypic identity and lineage. The expression of different pericyte markers (e.g., SMA, Desmin, NG2, and PDGFR-β) varies for different subpopulations and tissues. Previous use of these markers to identify pericytes has suggested potential phenotypic overlaps and plasticity toward other cell phenotypes. Our review chronicles the state of the literature, identifies critical unanswered questions, and motivates future research aimed at understanding this intriguing cell type and harnessing its therapeutic potential.
Collapse
Affiliation(s)
- Molly R Kelly-Goss
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | | | | | | | | |
Collapse
|
22
|
Abstract
Diabetic nephropathy (DN), a severe microvascular complication frequently associated with both type 1 and type 2 diabetes mellitus, is a leading cause of renal failure. The condition can also lead to accelerated cardiovascular disease and macrovascular complications. Currently available therapies have not been fully efficacious in the treatment of DN, suggesting that further understanding of the molecular mechanisms underlying the pathogenesis of DN is necessary for the improved management of this disease. Although key signal transduction and gene regulation mechanisms have been identified, especially those related to the effects of hyperglycaemia, transforming growth factor β1 and angiotensin II, progress in functional genomics, high-throughput sequencing technology, epigenetics and systems biology approaches have greatly expanded our knowledge and uncovered new molecular mechanisms and factors involved in DN. These mechanisms include DNA methylation, chromatin histone modifications, novel transcripts and functional noncoding RNAs, such as microRNAs and long noncoding RNAs. In this Review, we discuss the significance of these emerging mechanisms, how they mediate the actions of growth factors to augment the expression of extracellular matrix and inflammatory genes associated with DN and their potential usefulness as diagnostic biomarkers or novel therapeutic targets for DN.
Collapse
Affiliation(s)
- Mitsuo Kato
- Department of Diabetes, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | - Rama Natarajan
- Department of Diabetes, Beckman Research Institute of City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| |
Collapse
|
23
|
Molitoris BA. Therapeutic translation in acute kidney injury: the epithelial/endothelial axis. J Clin Invest 2014; 124:2355-63. [PMID: 24892710 PMCID: PMC4089444 DOI: 10.1172/jci72269] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Acute kidney injury (AKI) remains a major clinical event with rising incidence, severity, and cost; it now has a morbidity and mortality exceeding acute myocardial infarction. There is also a documented conversion to and acceleration of chronic kidney disease to end-stage renal disease. The multifactorial nature of AKI etiologies and pathophysiology and the lack of diagnostic techniques have hindered translation of preclinical success. An evolving understanding of epithelial, endothelial, and inflammatory cell interactions and individualization of care will result in the eventual development of effective therapeutic strategies. This review focuses on epithelial and endothelial injury mediators, interactions, and targets for therapy.
Collapse
|
24
|
Zhang Z, Payne K, Pallone TL. Syncytial communication in descending vasa recta includes myoendothelial coupling. Am J Physiol Renal Physiol 2014; 307:F41-52. [PMID: 24785189 DOI: 10.1152/ajprenal.00178.2014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Using dual cell patch-clamp recording, we examined pericyte, endothelial, and myoendothelial cell-to-cell communication in descending vasa recta. Graded current injections into pericytes or endothelia yielded input resistances of 220 ± 21 and 128 ± 20 MΩ, respectively (P < 0.05). Injection of positive or negative current into an endothelial cell depolarized and hyperpolarized adjacent endothelial cells, respectively. Similarly, current injection into a pericyte depolarized and hyperpolarized adjacent pericytes. During myoendothelial studies, current injection into a pericyte or an endothelial cell yielded small, variable, but significant change of membrane potential in heterologous cells. Membrane potentials of paired pericytes or paired endothelia were highly correlated and identical. Paired measurements of resting potentials in heterologous cells were also correlated, but with slight hyperpolarization of the endothelium relative to the pericyte, -55.2 ± 1.8 vs. -52.9 ± 2.2 mV (P < 0.05). During dual recordings, angiotensin II or bradykinin stimulated temporally identical variations of pericyte and endothelial membrane potential. Similarly, voltage clamp depolarization of pericytes or endothelial cells induced parallel changes of membrane potential in the heterologous cell type. We conclude that the descending vasa recta endothelial syncytium is of lower resistance than the pericyte syncytium and that high-resistance myoendothelial coupling also exists. The myoendothelial communication between pericytes and endothelium maintains near identity of membrane potentials at rest and during agonist stimulation. Finally, endothelia membrane potential lies slightly below pericyte membrane potential, suggesting a tonic role for the former to hyperpolarize the latter and provide a brake on vasoconstriction.
Collapse
Affiliation(s)
- Zhong Zhang
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Kristie Payne
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Thomas L Pallone
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
25
|
Abstract
Cells use an exquisite network of mechanisms to maintain the integrity and functionality of their protein components. In the endoplasmic reticulum (ER), these networks of protein homeostasis--referred to as proteostasis--regulate protein synthesis, folding and degradation via the unfolded protein response (UPR) pathway. The UPR pathway has two components: the adaptive UPR pathway, which predominantly maintains the ER function or ER proteostasis, and the apoptotic UPR pathway, which eliminates dysfunctional cells that have been subject to long-term or severe ER stress. Dysregulation of the UPR pathway often occurs in glomerular or tubulointerstitial cells under a pathogenic microenvironment, such as oxidative stress, glycative stress or hypoxia. A defective UPR is highly deleterious to renal cell function and viability and is thereby implicated in the pathophysiology of various kidney diseases. Accumulating evidence provides a link between the UPR pathway and mitochondrial structure and function, indicating the important role of ER proteostasis in the maintenance of mitochondrial homeostasis. Restoration of normal proteostasis, therefore, holds promise in protecting the kidney from pathogenic stresses as well as ageing. This Review is focused on the role of the ER stress and UPR pathway in the maintenance of ER proteostasis, and highlights the involvement of the derangement of ER proteostasis and ER stress in various pathogenic stress signals in the kidney.
Collapse
|
26
|
Contrasting effects of systemic monocyte/macrophage and CD4+ T cell depletion in a reversible ureteral obstruction mouse model of chronic kidney disease. Clin Dev Immunol 2013; 2013:836989. [PMID: 24489579 PMCID: PMC3892942 DOI: 10.1155/2013/836989] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 11/15/2013] [Accepted: 11/21/2013] [Indexed: 12/11/2022]
Abstract
Using a reversible UUO model (rUUO), we have demonstrated that C57BL/6 mice are susceptible to development of CKD after obstruction-mediated kidney injury while BALB/c mice are resistant. We hypothesized that selective systemic depletion of subpopulations of inflammatory cells during injury or repair might alter the development of CKD. To investigate the impact of modification of Th-lymphocytes or macrophage responses on development of CKD after rUUO, we used an anti-CD4 antibody (GK1.5) or liposomal clodronate to systemically deplete CD4(+) T cells or monocyte/macrophages, respectively, prior to and throughout the rUUO protocol. Flow cytometry and immunohistochemistry confirmed depletion of target cell populations. C57BL/6 mice treated with the GK1.5 antibody to deplete CD4(+) T cells had higher BUN levels and delayed recovery from rUUO. Treatment of C57BL/6 mice with liposomal clodronate to deplete monocyte/macrophages led to a relative protection from CKD as assessed by BUN values. Our results demonstrate that modulation of the inflammatory response during injury and repair altered the susceptibility of C57BL/6 mice to development of CKD in our rUUO model.
Collapse
|
27
|
Oxidative and Endoplasmic Reticulum (ER) Stress in Tissue Fibrosis. CURRENT PATHOBIOLOGY REPORTS 2013. [DOI: 10.1007/s40139-013-0029-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Wang D, Zhang H, Li M, Frid MG, Flockton AR, McKeon BA, Yeager ME, Fini MA, Morrell NW, Pullamsetti SS, Velegala S, Seeger W, McKinsey TA, Sucharov CC, Stenmark KR. MicroRNA-124 controls the proliferative, migratory, and inflammatory phenotype of pulmonary vascular fibroblasts. Circ Res 2013; 114:67-78. [PMID: 24122720 DOI: 10.1161/circresaha.114.301633] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
RATIONALE Pulmonary hypertensive remodeling is characterized by excessive proliferation, migration, and proinflammatory activation of adventitial fibroblasts. In culture, fibroblasts maintain a similar activated phenotype. The mechanisms responsible for generation/maintenance of this phenotype remain unknown. OBJECTIVE We hypothesized that aberrant expression of microRNA-124 (miR-124) regulates this activated fibroblast phenotype and sought to determine the signaling pathways through which miR-124 exerts effects. METHODS AND RESULTS We detected significant decreases in miR-124 expression in fibroblasts isolated from calves and humans with severe pulmonary hypertension. Overexpression of miR-124 by mimic transfection significantly attenuated proliferation, migration, and monocyte chemotactic protein-1 expression of hypertensive fibroblasts, whereas anti-miR-124 treatment of control fibroblasts resulted in their increased proliferation, migration, and monocyte chemotactic protein-1 expression. Furthermore, the alternative splicing factor, polypyrimidine tract-binding protein 1, was shown to be a direct target of miR-124 and to be upregulated both in vivo and in vitro in bovine and human pulmonary hypertensive fibroblasts. The effects of miR-124 on fibroblast proliferation were mediated via direct binding to the 3' untranslated region of polypyrimidine tract-binding protein 1 and subsequent regulation of Notch1/phosphatase and tensin homolog/FOXO3/p21Cip1 and p27Kip1 signaling. We showed that miR-124 directly regulates monocyte chemotactic protein-1 expression in pulmonary hypertension/idiopathic pulmonary arterial hypertension fibroblasts. Furthermore, we demonstrated that miR-124 expression is suppressed by histone deacetylases and that treatment of hypertensive fibroblasts with histone deacetylase inhibitors increased miR-124 expression and decreased proliferation and monocyte chemotactic protein-1 production. CONCLUSIONS Stable decreases in miR-124 expression contribute to an epigenetically reprogrammed, highly proliferative, migratory, and inflammatory phenotype of hypertensive pulmonary adventitial fibroblasts. Thus, therapies directed at restoring miR-124 function, including histone deacetylase inhibitors, should be investigated.
Collapse
Affiliation(s)
- Daren Wang
- From the Department of Pediatrics (D.W., H.Z., M.L., M.G.F., A.R.F., B.A.K., M.E.Y., M.A.F.), Department of Medicine (T.A.M., C.C.S.), Department of Medicine and Pediatrics (K.R.S.), Department of Medicine (N.W.M.), Department of Lung Development and Remodeling (S.S.P., S.V., W.S.), Department of Medicine (H.Z.), University of Colorado Anschutz Medical Campus, Aurora, CO; University of Cambridge, Cambridge, United Kingdom (N.W.M.); Addenbrooke's & Papworth Hospitals, Cambridge, United Kingdom (N.W.M.); Max-Planck-Institute for Heart and Lung Research; University of Giessen and Marburg Lung Center, Bad Nauheim, Germany (S.S.P., S.V., W.S.); and Shengjing Hospital of China Medical University, Shenyang, China (H.Z.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|