1
|
Nedelcovych MT, Dash RP, Wu Y, Choi EY, Lapidus RS, Majer P, Jančařík A, Abou D, Penet MF, Nikolopoulou A, Amor-Coarasa A, Babich J, Thorek DL, Rais R, Kratochwil C, Slusher BS. JHU-2545 preferentially shields salivary glands and kidneys during PSMA-targeted imaging. Eur J Nucl Med Mol Imaging 2025; 52:1631-1641. [PMID: 39743616 PMCID: PMC11928385 DOI: 10.1007/s00259-024-07044-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025]
Abstract
PURPOSE Prostate-specific membrane antigen (PSMA) radioligand therapy is a promising treatment for metastatic castration-resistant prostate cancer (mCRPC). Several beta or alpha particle-emitting radionuclide-conjugated small molecules have shown efficacy in late-stage mCRPC and one, [[177Lu]Lu]Lu-PSMA-617, is FDA approved. In addition to tumor upregulation, PSMA is also expressed in kidneys and salivary glands where specific uptake can cause dose-limiting xerostomia and potential for nephrotoxicity. The PSMA inhibitor 2-(phosphonomethyl)pentanedioic acid (2-PMPA) can prevent kidney uptake in mice, but also blocks tumor uptake, precluding its clinical utility. Preferential delivery of 2-PMPA to non-malignant tissues could improve the therapeutic window of PSMA radioligand therapy. METHODS A tris(isopropoxycarbonyloxymethyl) (TrisPOC) prodrug of 2-PMPA, JHU-2545, was synthesized to enhance 2-PMPA delivery to non-malignant tissues. Mouse pharmacokinetic experiments were conducted to compare JHU-2545-mediated delivery of 2-PMPA to plasma, kidney, salivary glands, and C4-2 prostate tumor xenograft. Imaging studies were conducted in rats and mice to measure uptake of PSMA PET tracers in kidney, salivary glands, and prostate tumor xenografts with and without JHU-2545 pre-treatment. RESULTS JHU-2545 resulted in approximately 3- and 53-fold greater exposure of 2-PMPA in rodent salivary glands (18.0 ± 0.97 h*nmol/g) and kidneys (359 ± 4.16 h*nmol/g) versus prostate tumor xenograft (6.79 ± 0.19 h*nmol/g). JHU-2545 also blocked rodent kidneys and salivary glands uptake of the PSMA PET tracers [68Ga]Ga-PSMA-11 and [18 F]F-DCFPyL by up to 85% with little effect on tumor. CONCLUSIONS JHU-2545 pre-treatment may enable greater cumulative administered doses of PSMA radioligand therapy, possibly improving safety and efficacy.
Collapse
Affiliation(s)
- Michael T Nedelcovych
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
- Johns Hopkins Drug Discovery, 855 North Wolfe Street, Baltimore, Maryland, 21205, USA.
| | - Ranjeet P Dash
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Ying Wu
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Eun Yong Choi
- Translational Laboratory Shared Service, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD, 21201, USA
| | - Rena S Lapidus
- Translational Laboratory Shared Service, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD, 21201, USA
| | - Pavel Majer
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic v.v.i, Prague, 166 10, Czech Republic
| | - Andrej Jančařík
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic v.v.i, Prague, 166 10, Czech Republic
| | - Diane Abou
- Depatment of Radiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Marie-France Penet
- Departments of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Depatment of Radiology and Radiological Science, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Anastasia Nikolopoulou
- Division of Radiopharmaceutical Sciences and MI(3), Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Alex Amor-Coarasa
- Division of Radiopharmaceutical Sciences and MI(3), Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - John Babich
- Division of Radiopharmaceutical Sciences and MI(3), Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Daniel L Thorek
- Depatment of Radiology, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Rana Rais
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Clemens Kratochwil
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Barbara S Slusher
- Johns Hopkins Drug Discovery, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
- Departments of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
- Departments of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
- Departments of Psychiatry, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
- Departments of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
- Johns Hopkins Drug Discovery, 855 North Wolfe Street, Baltimore, Maryland, 21205, USA.
| |
Collapse
|
2
|
Happel C, Völler L, Bockisch B, Groener D, Leonhäuser B, Grünwald F, Sabet A. Development of a CT-less SPECT Acquisition Protocol for Kidney Dosimetry in 177Lu-PSMA-617 Radioligand Therapy. Mol Imaging Biol 2025:10.1007/s11307-025-01998-2. [PMID: 40111714 DOI: 10.1007/s11307-025-01998-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/22/2025]
Abstract
PURPOSE Targeted radioligand therapy of metastatic castration-resistant prostate cancer (mCRPC) with 177Lu-PSMA (RLT) requires sufficient dose monitoring of the kidneys. Currently, dosimetry using SPECT/CT-imaging is the most preferred method. However, SPECT/CT is a time-consuming procedure and comprises additional radiation exposure to the patient. Moreover, not every therapeutic nuclear medicine facility has access to SPECT/CT. Therefore, the aim of this study was to develop a new procedure of kidney dosimetry without the use of SPECT/CT and evaluate this method in a large cohort of patients with mCRPC undergoing RLT. PROCEDURES A dedicated torso phantom with kidneys filled with a solution of 177Lu-PSMA was used for quantitative calibration of a SPECT-camera. The calculated sensitivity was adapted according to the individual attenuation of the patient in four directions from the kidney surface to the body surface (ventral, dorsal, left and right) obtained from a previously performed CT. A total of 196 patients undergoing 926 cycles of 177Lu-PSMA therapy were retrospectively analyzed. Abdominal SPECT was performed 24, 48 and 72 h after administration of 177Lu-PSMA including scatter and dead-time correction in every patient. Kidney dose was calculated using an individual attenuation-based procedure and compared to values from international literature. RESULTS Volumes of interest of the kidneys were drawn in the three sequential SPECT-images to calculate intra-renal effective half-life. Absolute quantification of activity in the kidneys was accomplished obtaining a patient individual sensitivity based on the individual attenuation in the patient. Kidney dose was then calculated applying a bi-exponential time activity curve in Microsoft EXCEL. Mean kidney dose per administered activity was 0.54 (± 0.26) Gy/GBq. CONCLUSIONS With the presented procedure a reliable kidney dosimetry is possible without the use of SPECT/CT. Facilities without SPECT/CT are therefore able to perform an adequate kidney dosimetry without additional radiation exposure for the patient.
Collapse
Affiliation(s)
- Christian Happel
- Department of Nuclear Medicine, Clinic for Radiology and Nuclear Medicine, Goethe University Frankfurt, University Hospital Frankfurt, Theodor Stern Kai 7, D-60590, Frankfurt, Germany.
- Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany.
| | - Larissa Völler
- Department of Nuclear Medicine, Clinic for Radiology and Nuclear Medicine, Goethe University Frankfurt, University Hospital Frankfurt, Theodor Stern Kai 7, D-60590, Frankfurt, Germany
| | - Benjamin Bockisch
- Department of Nuclear Medicine, Clinic for Radiology and Nuclear Medicine, Goethe University Frankfurt, University Hospital Frankfurt, Theodor Stern Kai 7, D-60590, Frankfurt, Germany
| | - Daniel Groener
- Department of Nuclear Medicine, Clinic for Radiology and Nuclear Medicine, Goethe University Frankfurt, University Hospital Frankfurt, Theodor Stern Kai 7, D-60590, Frankfurt, Germany
- Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Britta Leonhäuser
- Department of Nuclear Medicine, Clinic for Radiology and Nuclear Medicine, Goethe University Frankfurt, University Hospital Frankfurt, Theodor Stern Kai 7, D-60590, Frankfurt, Germany
| | - Frank Grünwald
- Department of Nuclear Medicine, Clinic for Radiology and Nuclear Medicine, Goethe University Frankfurt, University Hospital Frankfurt, Theodor Stern Kai 7, D-60590, Frankfurt, Germany
| | - Amir Sabet
- Department of Nuclear Medicine, Clinic for Radiology and Nuclear Medicine, Goethe University Frankfurt, University Hospital Frankfurt, Theodor Stern Kai 7, D-60590, Frankfurt, Germany
| |
Collapse
|
3
|
Maroufpour S, Aryana K, Nasseri S, Fazeli Z, Arabi H, Momennezhad M. Validation of dosimetry programs (Olinda & IDAC) for evaluation of absorbed dose in 177LuPSMA therapy of metastatic castration-resistant prostate cancer (mCRPC) using Monte Carlo simulation. EJNMMI Phys 2024; 11:102. [PMID: 39623240 PMCID: PMC11612135 DOI: 10.1186/s40658-024-00691-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/10/2024] [Indexed: 12/06/2024] Open
Abstract
PURPOSE Clinical trials have yielded promising results for 177Lutetium Prostate Specific Membrane Antigen (177Lu-PSMA) therapy in metastatic castration resistant prostate cancer (mCRPC) patients. However, the development of precise methods for internal dosimetry and accurate dose estimation has been considered ongoing research. This study aimed to calculate the absorbed dose to the critical organs and metastasis regions using GATE 9.0 Monte Carlo simulation (MCS) as a gold standard to compare the OLINDA 1.1 and IDAC 2.1 software. MATERIAL AND METHODS This study investigated absorbed doses to different organs in 9 mCRPC patients during their first treatment cycle. Whole-body planar images were acquired at 1 ± 0.5, 4 ± 0.5, 24 ± 2, 48 ± 2, 72 ± 2, and 144 ± 2 h post-injection, with SPECT/CT images obtained at 24 ± 2 h. Absorbed doses were calculated for five organs and the entire metastasis regions using GATE, OLINDA, and IDAC platforms. The spherical method was used to determine and compare the absorbed doses in metastatic regions and undefined organs in OLINDA and IDAC Phantom. RESULTS The organ-absorbed dose calculations produced by GATE were consistent with those obtained from OLINDA and IDAC. The average percentage differences in absorbed dose for all organs between Monte Carlo calculations and the estimated from IDAC and OLINDA were -0.24 ± 2.14% and 5.16 ± 5.66%, respectively. There was a significant difference between GATE and both IDAC (17.55 ± 29.1%) and OLINDA (25.86 ± 18.04%) in determining absorbed doses to metastatic areas using the spherical model. CONCLUSION The absorbed dose of organs in the first treatment cycle remained below tolerable limits. However, cumulative absorbed doses should be considered for the administered activities in the next cycles of treatment. While Monte Carlo, IDAC, and OLINDA results were aligned for organ dose calculations, patient-specific dosimetry may be necessary due to anatomical and functional changes. Accurate dose estimation for undefined organs and metastatic regions using the spherical model is significantly influenced by tissue density, highlighting the value of CT imaging.
Collapse
Affiliation(s)
- Sirwan Maroufpour
- Medical Physics Group, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kamran Aryana
- Nuclear Medicine Research Center, Faculty of Medicine, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shahrokh Nasseri
- Medical Physics Group, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Fazeli
- Nuclear Medicine Research Center, Faculty of Medicine, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Arabi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
| | - Mehdi Momennezhad
- Medical Physics Group, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Ells Z, Grogan TR, Czernin J, Dahlbom M, Calais J. Dosimetry of [ 177Lu]Lu-PSMA-Targeted Radiopharmaceutical Therapies in Patients with Prostate Cancer: A Comparative Systematic Review and Metaanalysis. J Nucl Med 2024; 65:1264-1271. [PMID: 38960712 PMCID: PMC11294071 DOI: 10.2967/jnumed.124.267452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/29/2024] [Indexed: 07/05/2024] Open
Abstract
Novel theranostic approaches using radiopharmaceuticals targeting prostate-specific membrane antigen (PSMA) have emerged for treating metastatic castration-resistant prostate cancer. The physical properties and commercial availability of 177Lu make it one of the most used radionuclides for radiopharmaceutical therapy (RPT). In this literature review, we aimed at comparing the dosimetry of the most used [177Lu]Lu-PSMA RPT compounds. Methods: This was a systematic review and metaanalysis of [177Lu]Lu-PSMA RPT (617, I&T, and J591) dosimetry in patients with prostate cancer. Absorbed doses in Gy/GBq for each organ at risk (kidney, parotid and submandibular glands, bone marrow, liver, and lacrimal glands) and for tumor lesions (bone and nonbone lesions) were extracted from included articles. These were used to estimate the pooled average absorbed dose of each agent in Gy/GBq and in Gy/cycle, normalized to the injected activity (per cycle) used in the VISION (7.4 GBq), SPLASH (6.8 GBq), and PROSTACT trials (5.8 GBq). Results: Twenty-nine published articles comprising 535 patients were included in the metaanalysis. The pooled doses (weighted average across studies) of [177Lu]Lu-PSMA-617 and [177Lu]Lu-PSMA-I&T were 4.04 Gy/GBq (17 studies, 297 patients) and 4.70 Gy/GBq (10 studies, 153 patients) for the kidney (P = 0.10), 5.85 Gy/GBq (14 studies, 216 patients) and 2.62 Gy/GBq (5 studies, 86 patients) for the parotids (P < 0.01), 5.15 Gy/GBq (5 studies, 81 patients) and 4.35 Gy/GBq (1 study, 18 patients) for the submandibular glands (P = 0.56), 11.03 Gy/GBq (6 studies, 121 patients) and 19.23 Gy/GBq (3 studies, 53 patients) for the lacrimal glands (P = 0.20), 0.24 Gy/GBq (12 studies, 183 patients) and 0.19 Gy/GBq (4 studies, 68 patients) for the bone marrow (P = 0.31), and 1.11 Gy/GBq (9 studies, 154 patients) and 0.56 Gy/GBq (4 studies, 56 patients) for the liver (P = 0.05), respectively. Average tumor doses tended to be higher for [177Lu]Lu-PSMA-617 than for [177Lu]Lu-PSMA-I&T in soft tissue tumor lesions (4.19 vs. 2.94 Gy/GBq; P = 0.26). Dosimetry data of [177Lu]Lu-J591 were limited to one published study of 35 patients with reported absorbed doses of 1.41, 0.32, and 2.10 Gy/GBq to the kidney, bone marrow, and liver, respectively. Conclusion: In this metaanalysis, there was no significant difference in absorbed dose between [177Lu]Lu-PSMA-I&T and [177Lu]Lu-PSMA-617. There was a possible trend toward a higher kidney dose with [177Lu]Lu-PSMA-I&T and a higher tumor lesion dose with [177Lu]Lu-PSMA-617. It remains unknown whether this finding has any clinical impact. The dosimetry methodologies were strikingly heterogeneous among studies, emphasizing the need for standardization.
Collapse
Affiliation(s)
- Zachary Ells
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California; and
| | - Tristan R Grogan
- Department of Medicine Statistics Core, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Johannes Czernin
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California; and
| | - Magnus Dahlbom
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California; and
| | - Jeremie Calais
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California; and
| |
Collapse
|
5
|
Vergnaud L, Dewaraja YK, Giraudet AL, Badel JN, Sarrut D. A review of 177Lu dosimetry workflows: how to reduce the imaging workloads? EJNMMI Phys 2024; 11:65. [PMID: 39023648 PMCID: PMC11554969 DOI: 10.1186/s40658-024-00658-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/07/2024] [Indexed: 07/20/2024] Open
Abstract
177 Lu radiopharmaceutical therapy is a standardized systemic treatment, with a typical dose of 7.4 GBq per injection, but its response varies from patient to patient. Dosimetry provides the opportunity to personalize treatment, but it requires multiple post-injection images to monitor the radiopharmaceutical's biodistribution over time. This imposes an additional imaging burden on centers with limited resources. This review explores methods to lessen this burden by optimizing acquisition types and minimizing the number and duration of imaging sessions. After summarizing the different steps of dosimetry and providing examples of dosimetric workflows for177 Lu -DOTATATE and177 Lu -PSMA, we examine dosimetric workflows based on a reduced number of acquisitions, or even just one. We provide a non-exhaustive description of simplified methods and their assumptions, as well as their limitations. Next, we detail the specificities of each normal tissue and tumors, before reviewing dose-response relationships in the literature. In conclusion, we will discuss the current limitations of dosimetric workflows and propose avenues for improvement.
Collapse
Affiliation(s)
- Laure Vergnaud
- CREATIS; CNRS UMR 5220; INSERM U 1044, Université de Lyon; INSA-Lyon; Université Lyon 1, Lyon, France.
| | - Yuni K Dewaraja
- Department of Radiology, University of Michigan, Ann Arbor, USA
| | | | - Jean-Noël Badel
- CREATIS; CNRS UMR 5220; INSERM U 1044, Université de Lyon; INSA-Lyon; Université Lyon 1, Lyon, France
- Centre de lutte contre le cancer Léon Bérard, Lyon, France
| | - David Sarrut
- CREATIS; CNRS UMR 5220; INSERM U 1044, Université de Lyon; INSA-Lyon; Université Lyon 1, Lyon, France
- Centre de lutte contre le cancer Léon Bérard, Lyon, France
| |
Collapse
|
6
|
Zhang-Yin J. Lutetium-177-Prostate-Specific Membrane Antigen Radioligand Therapy: What Is the Value of Post-Therapeutic Imaging? Biomedicines 2024; 12:1512. [PMID: 39062085 PMCID: PMC11274713 DOI: 10.3390/biomedicines12071512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/24/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Lutetium-177 (Lu-177)-labelled radioligand therapies (RLT) targeting prostate-specific membrane antigen (PSMA) present a promising treatment for patients with progressive metastasized castration-resistant prostate cancer (mCRPC). Personalized dosimetry, facilitated by post-therapeutic imaging, offers the potential to enhance treatment efficacy by customizing radiation doses to individual patient needs, thereby maximizing therapeutic benefits while minimizing toxicity to healthy tissues. However, implementing personalized dosimetry is resource-intensive, requiring multiple single-photon emission-computed tomography (SPECT)/CT scans and posing significant logistical challenges for both healthcare facilities and patients. Despite these challenges, personalized dosimetry can lead to optimized radiation delivery, improved safety, and better management of complex cases. Nevertheless, the financial and resource burdens complicate its adoption in routine clinical practice. While the European Association of Nuclear Medicine (EANM) supports personalized dosimetry, standardization is lacking due to these practical constraints. Further research and streamlined methodologies are essential to balance the benefits and feasibility of personalized dosimetry, potentially improving treatment outcomes for mCRPC patients.
Collapse
Affiliation(s)
- Jules Zhang-Yin
- Department of Nuclear Medicine, Clinique Sud Luxembourg, Vivalia, B-6700 Arlon, Belgium
| |
Collapse
|
7
|
Kaur K, Nagi S, Satapathy S, Aggarwal P, Sood A, Mittal BR. Estimation of absorbed dose to salivary glands in mCRPC patients undergoing 177 Lu- PSMA-617 radioligand therapy using quantitative SPECT-CT at single time point: a single-center feasibility study. Nucl Med Commun 2024; 45:115-120. [PMID: 37982573 DOI: 10.1097/mnm.0000000000001792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
OBJECTIVE 177 Lu-PSMA-617-radioligand therapy (RLT) has shown promising therapeutic role in patients with metastatic castration-resistant prostate cancer. However, off-target action in salivary glands often presents with xerostomia. Personalized dosimetry can help in optimizing the treatment, however, has so far been tedious due to multiple time-point imaging. In this prospective study, we intended to estimate the absorbed dose delivered to the salivary glands in patients undergoing 177 Lu-PSMA-617-RLT using quantitative SPECT/CT at a single time point. METHODS Patients undergoing 177 Lu-PSMA-617 RLT were included in this prospective study. Post-therapy whole-body images and regional quantitative single time-point SPECT/CT were acquired at 24 h with high-energy collimator. The data was processed and analyzed using Q.Metrix software. A scaling factor, that is, the time-integrated activity conversion factor was applied for the image acquired at 24 h. Absorbed doses were computed using MIRD scheme and OLINDA software. RESULTS A total of 21 patients (mean age: 66 ± 9 years) were included. The value of mean absorbed dose for the parotid glands was 1.90 ± 1.31Gy (range: 0.26-6.23) and that for the submandibular glands was 1.37 ± 0.94Gy (range: 0.16-3.65). The mean absorbed doses per administered activity for the parotid and submandibular glands were 0.26 ± 0.18 Gy/GBq and 0.19 ± 0.12 Gy/GBq, respectively. The absorbed doses were estimated for one cycle of therapy and were well within acceptable limits. None of the patients experienced dryness of mouth. CONCLUSION Single time-point dosimetry with quantitative SPECT/CT is feasible and can be standardized to estimate the absorbed dose to salivary glands instead of multiple time-point acquisitions.
Collapse
Affiliation(s)
- Komalpreet Kaur
- Department of Nuclear Medicine, Postgraduate Institute of Medical Education and Research, Sector-12, Chandigarh, India
| | | | | | | | | | | |
Collapse
|
8
|
Herrmann K, Rahbar K, Eiber M, Sparks R, Baca N, Krause BJ, Lassmann M, Jentzen W, Tang J, Chicco D, Klein P, Blumenstein L, Basque JR, Kurth J. Renal and Multiorgan Safety of 177Lu-PSMA-617 in Patients with Metastatic Castration-Resistant Prostate Cancer in the VISION Dosimetry Substudy. J Nucl Med 2024; 65:71-78. [PMID: 38050121 PMCID: PMC10755516 DOI: 10.2967/jnumed.123.265448] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 10/10/2023] [Indexed: 12/06/2023] Open
Abstract
In the VISION trial, [177Lu]Lu-PSMA-617 (177Lu-PSMA-617) plus protocol-permitted standard of care significantly improved overall survival and radiographic progression-free survival compared with standard of care alone in patients with prostate-specific membrane antigen-positive metastatic castration-resistant prostate cancer. This VISION dosimetry substudy quantified absorbed doses of 177Lu-PSMA-617 in the kidneys and other organs. Methods: Participants were a separate cohort of 30 nonrandomized patients receiving standard of care plus 177Lu-PSMA-617 at 7.4 GBq per cycle for up to 6 cycles. Blood samples, whole-body conjugate planar image scintigraphy, and abdominal SPECT/CT images were collected. SPECT/CT images were collected at 2, 24, 48, and 168 h after administration in cycle 1 and at a single time point 48 h after administration in cycles 2-6. Outcomes were absorbed dose per unit activity per cycle and cumulative absorbed dose over all cycles. Cumulative absorbed doses were predicted by extrapolation from cycle 1, and calculation of observed values was based on measurements of cycle 1 and cycles 2-6. Safety was also assessed. Results: Mean (±SD) absorbed doses per cycle in the kidneys were 0.43 ± 0.16 Gy/GBq in cycle 1 and 0.44 ± 0.21 Gy/GBq in cycles 2-6. The observed and predicted 6-cycle cumulative absorbed doses in the kidneys were 15 ± 6 and 19 ± 7 Gy, respectively. Observed and predicted cumulative absorbed doses were similar in other at-risk organs. Safety findings were consistent with those in the VISION study; no patients experienced renal treatment-emergent adverse events of a grade higher than 3. Conclusion: The renal cumulative absorbed 177Lu-PSMA-617 dose was below the established limit. 177Lu-PSMA-617 had a good overall safety profile, and low renal radiotoxicity was not a safety concern. Cumulative absorbed doses in at-risk organs over multiple cycles can be predicted by extrapolation from cycle 1 data in patients with metastatic castration-resistant prostate cancer receiving 177Lu-PSMA-617.
Collapse
Affiliation(s)
- Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium, University Hospital Essen, Essen, Germany;
| | - Kambiz Rahbar
- Department of Nuclear Medicine, University Hospital Münster, Münster, Germany
| | | | | | | | - Bernd J Krause
- Department of Nuclear Medicine, Rostock University Medical Center, Rostock, Germany
| | - Michael Lassmann
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Walter Jentzen
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium, University Hospital Essen, Essen, Germany
| | - Jun Tang
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey
| | - Daniela Chicco
- Advanced Accelerator Applications, a Novartis Company, Turin, Italy
| | - Patrick Klein
- Novartis Institutes for BioMedical Research, East Hanover, New Jersey
| | - Lars Blumenstein
- Novartis Institutes for BioMedical Research, Basel, Switzerland; and
| | | | - Jens Kurth
- Department of Nuclear Medicine, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
9
|
Vergnaud L, Badel JN, Giraudet AL, Kryza D, Mognetti T, Baudier T, Rida H, Dieudonné A, Sarrut D. Performance study of a 360° CZT camera for monitoring 177Lu-PSMA treatment. EJNMMI Phys 2023; 10:58. [PMID: 37736779 PMCID: PMC10516832 DOI: 10.1186/s40658-023-00576-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND The aim of this study was to investigate the quantification performance of a 360° CZT camera for 177Lu-based treatment monitoring. METHODS Three phantoms with known 177Lu activity concentrations were acquired: (1) a uniform cylindrical phantom for calibration, (2) a NEMA IEC body phantom for analysis of different-sized spheres to optimise quantification parameters and (3) a phantom containing two large vials simulating organs at risk for tests. Four sets of reconstruction parameters were tested: (1) Scatter, (2) Scatter and Point Spread Function Recovery (PSFR), (3) PSFR only and (4) Penalised likelihood option and Scatter, varying the number of updates (iterations × subsets) with CT-based attenuation correction only. For each, activity concentration (ARC) and contrast recovery coefficients (CRC) were estimated as well as root mean square. Visualisation and quantification parameters were applied to reconstructed patient image data. RESULTS Optimised quantification parameters were determined to be: CT-based attenuation correction, scatter correction, 12 iterations, 8 subsets and no filter. ARC, CRC and RMS results were dependant on the methodology used for calculations. Two different reconstruction parameters were recommended for visualisation and for quantification. 3D whole-body SPECT images were acquired and reconstructed for 177Lu-PSMA patients in 2-3 times faster than the time taken for a conventional gamma camera. CONCLUSION Quantification of whole-body 3D images of patients treated with 177Lu-PSMA is feasible and an optimised set of parameters has been determined. This camera greatly reduces procedure time for whole-body SPECT.
Collapse
Affiliation(s)
- Laure Vergnaud
- Centre de lutte contre le cancer Léon Bérard, Lyon, France.
- CREATIS, CNRS UMR 5220, INSERM U 1044, Université de Lyon, INSA-Lyon, Université Lyon 1, Lyon, France.
| | - Jean-Noël Badel
- Centre de lutte contre le cancer Léon Bérard, Lyon, France
- CREATIS, CNRS UMR 5220, INSERM U 1044, Université de Lyon, INSA-Lyon, Université Lyon 1, Lyon, France
| | | | - David Kryza
- Centre de lutte contre le cancer Léon Bérard, Lyon, France
- Hospices Civils de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, LAGEPP UMR 5007 CNRS, Lyon, France
| | | | - Thomas Baudier
- Centre de lutte contre le cancer Léon Bérard, Lyon, France
- CREATIS, CNRS UMR 5220, INSERM U 1044, Université de Lyon, INSA-Lyon, Université Lyon 1, Lyon, France
| | - Hanan Rida
- Département de médecine nucléaire, Centre Henri Becquerel, Rouen, France
| | - Arnaud Dieudonné
- Département de médecine nucléaire, Centre Henri Becquerel, Rouen, France
| | - David Sarrut
- Centre de lutte contre le cancer Léon Bérard, Lyon, France
- CREATIS, CNRS UMR 5220, INSERM U 1044, Université de Lyon, INSA-Lyon, Université Lyon 1, Lyon, France
| |
Collapse
|
10
|
Kratochwil C, Fendler WP, Eiber M, Hofman MS, Emmett L, Calais J, Osborne JR, Iravani A, Koo P, Lindenberg L, Baum RP, Bozkurt MF, Delgado Bolton RC, Ezziddin S, Forrer F, Hicks RJ, Hope TA, Kabasakal L, Konijnenberg M, Kopka K, Lassmann M, Mottaghy FM, Oyen WJG, Rahbar K, Schoder H, Virgolini I, Bodei L, Fanti S, Haberkorn U, Hermann K. Joint EANM/SNMMI procedure guideline for the use of 177Lu-labeled PSMA-targeted radioligand-therapy ( 177Lu-PSMA-RLT). Eur J Nucl Med Mol Imaging 2023; 50:2830-2845. [PMID: 37246997 PMCID: PMC10317889 DOI: 10.1007/s00259-023-06255-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/25/2023] [Indexed: 05/30/2023]
Abstract
Prostate-specific membrane antigen (PSMA) is expressed by the majority of clinically significant prostate adenocarcinomas, and patients with target-positive disease can easily be identified by PSMA PET imaging. Promising results with PSMA-targeted radiopharmaceutical therapy have already been obtained in early-phase studies using various combinations of targeting molecules and radiolabels. Definitive evidence of the safety and efficacy of [177Lu]Lu-PSMA-617 in combination with standard-of-care has been demonstrated in patients with metastatic castration-resistant prostate cancer, whose disease had progressed after or during at least one taxane regimen and at least one novel androgen-axis drug. Preliminary data suggest that 177Lu-PSMA-radioligand therapy (RLT) also has high potential in additional clinical situations. Hence, the radiopharmaceuticals [177Lu]Lu-PSMA-617 and [177Lu]Lu-PSMA-I&T are currently being evaluated in ongoing phase 3 trials. The purpose of this guideline is to assist nuclear medicine personnel, to select patients with highest potential to benefit from 177Lu-PSMA-RLT, to perform the procedure in accordance with current best practice, and to prepare for possible side effects and their clinical management. We also provide expert advice, to identify those clinical situations which may justify the off-label use of [177Lu]Lu-PSMA-617 or other emerging ligands on an individual patient basis.
Collapse
Affiliation(s)
- Clemens Kratochwil
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany.
| | - Wolfgang P Fendler
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, 45147, Essen, Germany
| | - Matthias Eiber
- Department of Nuclear Medicine, Klinikum Rechts Der Isar, Technical University Munich (TUM), 81675, Munich, Germany
| | - Michael S Hofman
- Prostate Cancer Theranostics and Imaging Centre of Excellence, Molecular Imaging and Therapeutic Nuclear Medicine, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Department of Oncology, Sir Peter MacCallum, University of Melbourne, Melbourne, VIC, Australia
| | - Louise Emmett
- Department of Theranostics and Nuclear Medicine, St Vincent's Hospital Sydney, Darlinghurst, Australia
| | - Jeremie Calais
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, USA
| | - Joseph R Osborne
- Department of Radiology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Amir Iravani
- Department of Radiology, University of Washington School of Medicine, Seattle, WA, USA
| | - Phillip Koo
- Division of Diagnostic Imaging, Banner MD Anderson Cancer Center, Gilbert, AZ, USA
| | - Liza Lindenberg
- Molecular Imaging Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- F. Edward Hebert School of Medicine, Uniformed Services University, Bethesda, MD, USA
| | - Richard P Baum
- Curanosticum Wiesbaden-Frankfurt, Center for Advanced Radiomolecular Precision Oncology, Wiesbaden, Germany
| | - Murat Fani Bozkurt
- Hacettepe University Faculty of Medicine, Department of Nuclear Medicine, Ankara, Turkey
| | - Roberto C Delgado Bolton
- Department of Diagnostic Imaging (Radiology) and Nuclear Medicine, University Hospital San Pedro and Centre for Biomedical Research of La Rioja (CIBIR), Logroño (La Rioja), Spain
| | - Samer Ezziddin
- Department of Nuclear Medicine, Saarland University Medical Center, Homburg, Germany
| | - Flavio Forrer
- Department of Radiology and Nuclear Medicine, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Rodney J Hicks
- The University of Melbourne Department of Medicine, St Vincent's Hospital, Melbourne, Australia
| | - Thomas A Hope
- Department of Radiology and Biomedical Imaging / Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Levent Kabasakal
- Department of Nuclear Medicine, Cerrahpasa Medical Faculty, Istanbul University- Cerrahpasa, Istanbul, Turkey
| | - Mark Konijnenberg
- Radiology & Nuclear Medicine Department, Erasmus MC, Rotterdam, The Netherlands
| | - Klaus Kopka
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Radiopharmaceutical Cancer Research, Dresden, Germany
- Technical University Dresden, School of Science, Faculty of Chemistry and Food Chemistry; German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT) Dresden, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Michael Lassmann
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Felix M Mottaghy
- Department of Nuclear Medicine, RWTH Aachen University Medical Faculty, Aachen, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| | - Wim J G Oyen
- Department of Biomedical Sciences, Humanitas University, and Humanitas Clinical and Research Centre, Department of Nuclear Medicine, Milan, Italy
- Department of Radiology and Nuclear Medicine, Rijnstate Hospital, Arnhem, the Netherlands
- Department of Radiology and Nuclear Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Kambiz Rahbar
- Department of Nuclear Medicine, University Hospital Muenster, Muenster, Germany
| | - Heiko Schoder
- Department of Radiology, Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Irene Virgolini
- Department of Nuclear Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - Lisa Bodei
- Department of Radiology, Molecular Imaging and Therapy Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Stefano Fanti
- Division of Nuclear Medicine, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Uwe Haberkorn
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Ken Hermann
- Department of Nuclear Medicine, University of Duisburg-Essen and German Cancer Consortium (DKTK)-University Hospital Essen, 45147, Essen, Germany
| |
Collapse
|
11
|
Pathmanandavel S, Crumbaker M, Ho B, Yam AO, Wilson P, Niman R, Ayers M, Sharma S, Hickey A, Eu P, Stockler M, Martin AJ, Joshua AM, Nguyen A, Emmett L. Evaluation of 177Lu-PSMA-617 SPECT/CT Quantitation as a Response Biomarker Within a Prospective 177Lu-PSMA-617 and NOX66 Combination Trial (LuPIN). J Nucl Med 2023; 64:221-226. [PMID: 36008120 PMCID: PMC9902857 DOI: 10.2967/jnumed.122.264398] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 02/04/2023] Open
Abstract
177Lu-PSMA-617 is an effective and novel treatment in metastatic castration-resistant prostate cancer (mCRPC). Our ability to assess response rates and therefore efficacy may be improved using predictive tools. This study investigated the predictive value of serial 177Lu-PSMA-617 SPECT/CT (177Lu SPECT) imaging in monitoring treatment response. Methods: Fifty-six men with progressive mCRPC previously treated with chemotherapy and novel androgen signaling inhibitor were enrolled into the LuPIN trial and received up to 6 doses of 177Lu-PSMA-617 and a radiation sensitizer (3-(4-hydroxyphenyl)-2H-1-benzopyran-7-ol [NOX66]). 68Ga-PSMA-11 and 18F-FDG PET/CT were performed at study entry and exit, and 177Lu SPECT from vertex to mid thighs was performed 24 h after each treatment. SPECT quantitative analysis was undertaken at cycles 1 (baseline) and 3 (week 12) of treatment. Results: Thirty-two of the 56 men had analyzable serial 177Lu SPECT imaging at both cycle 1 and cycle 3. In this subgroup, median prostate-specific antigen (PSA) progression-free survival (PFS) was 6.3 mo (95% CI, 5-10 mo) and median overall survival was 12.3 mo (95% CI, 12-24 mo). The PSA 50% response rate was 63% (20/32). 177Lu SPECT total tumor volume (SPECT TTV) was reduced in 68% (22/32; median, -0.20 m3 [95% CI, -1.4 to -0.001]) and increased in 31% (10/32; median, 0.36 [95% CI, 0.1-1.4]). Any increase in SPECT TTV was associated with shorter PSA PFS (hazard ratio, 4.1 [95% CI, 1.5-11.2]; P = 0.006). An increase of 30% or more in SPECT TTV was also associated with a shorter PSA PFS (hazard ratio, 3.3 [95% CI, 1.3-8.6]; P =0.02). Tumoral SUVmax was reduced in 91% (29/32) and SUVmean in 84% (27/32); neither was associated with PSA PFS or overall survival outcomes. PSA progression by week 12 was also associated with a shorter PSA PFS (hazard ratio, 26.5 [95% CI, 5.4-131]). In the patients with SPECT TTV progression at week 12, 50% (5/10) had no concurrent PSA progression (median PSA PFS, 4.5 mo [95% CI, 2.8-5.6 mo]), and 5 of 10 men had both PSA and SPECT TTV progression at week 12 (median PSA PFS, 2.8 mo [95% CI, 1.8-3.7 mo]). Conclusion: Increasing SPECT TTV on quantitative 177Lu SPECT predicts a short PFS and may play a future role as an imaging response biomarker.
Collapse
Affiliation(s)
- Sarennya Pathmanandavel
- Department of Theranostics and Nuclear Medicine, St. Vincent’s Hospital, Sydney, New South Wales, Australia
| | - Megan Crumbaker
- Kinghorn Cancer Centre, St. Vincent’s Hospital, Sydney, New South Wales, Australia;,Garvan Institute of Medical Research, Sydney, New South Wales, Australia;,St. Vincent’s Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Bao Ho
- Department of Theranostics and Nuclear Medicine, St. Vincent’s Hospital, Sydney, New South Wales, Australia
| | - Andrew O. Yam
- Kinghorn Cancer Centre, St. Vincent’s Hospital, Sydney, New South Wales, Australia;,Garvan Institute of Medical Research, Sydney, New South Wales, Australia;,St. Vincent’s Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | | | | | - Maria Ayers
- Department of Theranostics and Nuclear Medicine, St. Vincent’s Hospital, Sydney, New South Wales, Australia
| | - Shikha Sharma
- Department of Theranostics and Nuclear Medicine, St. Vincent’s Hospital, Sydney, New South Wales, Australia
| | - Adam Hickey
- Department of Theranostics and Nuclear Medicine, St. Vincent’s Hospital, Sydney, New South Wales, Australia
| | - Peter Eu
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; and
| | - Martin Stockler
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Andrew J. Martin
- NHMRC Clinical Trials Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Anthony M. Joshua
- Kinghorn Cancer Centre, St. Vincent’s Hospital, Sydney, New South Wales, Australia;,Garvan Institute of Medical Research, Sydney, New South Wales, Australia;,St. Vincent’s Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Andrew Nguyen
- Department of Theranostics and Nuclear Medicine, St. Vincent’s Hospital, Sydney, New South Wales, Australia;,St. Vincent’s Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Louise Emmett
- Department of Theranostics and Nuclear Medicine, St. Vincent's Hospital, Sydney, New South Wales, Australia; .,Garvan Institute of Medical Research, Sydney, New South Wales, Australia.,St. Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
12
|
Peters SMB, Mink MCT, Privé BM, de Bakker M, de Lange F, Muselaers CHJ, Mehra N, Witjes JA, Gotthardt M, Nagarajah J, Konijnenberg MW. Optimization of the radiation dosimetry protocol in Lutetium-177-PSMA therapy: toward clinical implementation. EJNMMI Res 2023; 13:6. [PMID: 36692682 PMCID: PMC9873880 DOI: 10.1186/s13550-023-00952-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/11/2023] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Dosimetry in [177Lu]Lu-PSMA therapy is a valuable tool to assess treatment efficacy and toxicity. This study aims to develop a clinically implementable protocol to determine the absorbed dose in organs and tumor lesions after [177Lu]Lu-PSMA-617 therapy, by reducing the imaging time points and utilizing population-based kinetics with a single scan, with evaluation of its influence on the uncertainty in absorbed dose. METHODS Ten patients with metastatic hormone-sensitive prostate cancer received two cycles of [177Lu]Lu-PSMA-617. Post-treatment imaging was performed at 1 h, 24 h, 48 h, 72 h and 168 h, consisting of three-bed positions SPECT/CT and a whole-body planar scan. Five-time point SPECT dosimetry was performed for lesions and organs with physiological uptake (kidneys, liver and salivary glands) and used as the reference standard. Absorbed dose values for various simplified protocols were compared to the reference standard. RESULTS Accurate lesion dosimetry is possible using one-time point SPECT imaging at 168 h, with an increase in uncertainty (20% vs. 14% for the reference standard). By including a second time point, uncertainty was comparable to the reference standard (13%). Organ dosimetry can be performed using a single SPECT at 24 h or 48 h. Dosimetry based on planar scans did not provide accurate dose estimations. CONCLUSION Accurate lesion dosimetry in [177Lu]Lu-PSMA therapy can be performed using a one- or two-time point protocol, making dosimetry assessments more suitable for routine clinical implementation, although dosimetry based om multiple time points is more accurate. Clinical trial registration This study was approved by the Medical Review Ethics Committee Region Arnhem-Nijmegen on January 23, 2018 and was registered on clinicaltrials.gov (NCT03828838).
Collapse
Affiliation(s)
- Steffie M B Peters
- Department of Medical Imaging, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | - Maaike C T Mink
- Department of Medical Imaging, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.,Department of Physics and Astronomy, Radboud University, Nijmegen, The Netherlands
| | - Bastiaan M Privé
- Department of Medical Imaging, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Maarten de Bakker
- Department of Medical Imaging, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Frank de Lange
- Department of Medical Imaging, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | | - Niven Mehra
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - J Alfred Witjes
- Department of Urology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Martin Gotthardt
- Department of Medical Imaging, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - James Nagarajah
- Department of Medical Imaging, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | - Mark W Konijnenberg
- Department of Medical Imaging, Radboud University Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.,Department of Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
13
|
van der Gaag S, Bartelink IH, Vis AN, Burchell GL, Oprea-Lager DE, Hendrikse H. Pharmacological Optimization of PSMA-Based Radioligand Therapy. Biomedicines 2022; 10:3020. [PMID: 36551776 PMCID: PMC9775864 DOI: 10.3390/biomedicines10123020] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/09/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
Prostate cancer (PCa) is the most common malignancy in men of middle and older age. The standard treatment strategy for PCa ranges from active surveillance in low-grade, localized PCa to radical prostatectomy, external beam radiation therapy, hormonal treatment and chemotherapy. Recently, the use of prostate-specific membrane antigen (PSMA)-targeted radioligand therapy (RLT) for metastatic castration-resistant PCa has been approved. PSMA is predominantly, but not exclusively, expressed on PCa cells. Because of its high expression in PCa, PSMA is a promising target for diagnostics and therapy. To understand the currently used RLT, knowledge about pharmacokinetics (PK) and pharmacodynamics (PD) of the PSMA ligand and the PSMA protein itself is crucial. PK and PD properties of the ligand and its target determine the duration and extent of the effect. Knowledge on the concentration-time profile, the target affinity and target abundance may help to predict the effect of RLT. Increased specific binding of radioligands to PSMA on PCa cells may be associated with better treatment response, where nonspecific binding may increase the risk of toxicity in healthy organs. Optimization of the radioligand, as well as synergistic effects of concomitant agents and an improved dosing strategy, may lead to more individualized treatment and better overall survival.
Collapse
Affiliation(s)
- Suzanne van der Gaag
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Imke H. Bartelink
- Cancer Center Amsterdam, Imaging and Biomarkers, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
- Department of Clinical Pharmacology and Pharmacy, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - André N. Vis
- Department of Urology, Prostate Cancer Network Amsterdam, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - George L. Burchell
- Medical Library, VU University, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Daniela E. Oprea-Lager
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Harry Hendrikse
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
14
|
Truckenmueller P, Graef J, Scheel M, Vajkoczy P, Capper D, Kaul D, Furth C, Amthauer H, Brenner W, Onken JS. [68Ga]Ga-PSMA PET/MRI, histological PSMA expression and preliminary experience with [177Lu]Lu-PSMA therapy in relapsing high-grade glioma. Front Oncol 2022; 12:980058. [PMID: 36119502 PMCID: PMC9478729 DOI: 10.3389/fonc.2022.980058] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose High-grade gliomas (HGG) are still associated with a dismal prognosis. Prostate specific membrane antigen (PSMA) is discussed as a theranostic target for PSMA-directed radioligand therapy ([177Lu]Lu-PSMA RLT). Here, we report on the correlation of [68Ga]Ga-PSMA uptake with histological PSMA expression and on our preliminary experience with [177Lu]Lu-PSMA RLT in relapsing HGG. Methods Patients with relapsing HGG underwent [68Ga]Ga-PSMA PET/MRI to evaluate eligibility for an individualized treatment approach with [177Lu]Lu-PSMA. Standard uptake values (SUV) for tumor and liver and respective tumor-to-background ratios (compared to the liver) (TBR) on [68Ga]Ga-PSMA PET/MRI were assessed. Eligibility criteria for [177Lu]Lu-PSMA therapy were exhaustion of all standard treatment options available and TBRmax>1.0. In 11 samples, immunohistochemical PSMA expression was determined, quantified using the H-score and correlated with uptake on [68Ga]Ga-PSMA PET/MRI. Results We included 20 patients with a median age of 53 years (IQR 42-57). The median SUV on [68Ga]Ga-PSMA PET/MRI was 4.5 (3.7-6.2) for SUVmax and 1.4 (1.1-1.7) for SUVmean. The respective TBR was maximum 0.6 (0.4-0.8) and mean 0.3 (0.2-0.4). High TBRmax correlated with increased endothelial PSMA expression [H-score of 65 (62.5-77.5)]. Three patients (15%) presented a TBRmax>1.0 and qualified for [177Lu]Lu-PSMA RLT. No treatment related toxicity was observed. Conclusion Only a minority of patients with relapsing HGG qualified for [177Lu]Lu-PSMA RLT. Our data demonstrates that PSMA expression in the neo-vasculature corresponds to PSMA uptake on [68Ga]Ga-PSMA PET/MRI and might be used as a screening tool for patient selection. Future prospective studies need to focus the debate on TBRmax thresholds as inclusion criteria for PSMA RLT.
Collapse
Affiliation(s)
- Peter Truckenmueller
- Department of Neurosurgery, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Josefine Graef
- Department of Nucelar Medicine, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michael Scheel
- Department of Neuroradiology, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - David Capper
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - David Kaul
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christian Furth
- Department of Nucelar Medicine, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Holger Amthauer
- Department of Nucelar Medicine, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Winfried Brenner
- Department of Nucelar Medicine, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Julia Sophie Onken
- Department of Neurosurgery, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- *Correspondence: Julia Sophie Onken,
| |
Collapse
|
15
|
Piwowarska-Bilska H, Kurkowska S, Birkenfeld B. Individualization of Radionuclide Therapies: Challenges and Prospects. Cancers (Basel) 2022; 14:cancers14143418. [PMID: 35884478 PMCID: PMC9316481 DOI: 10.3390/cancers14143418] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Currently, patient-specific treatment plans and dosimetry calculations are not routinely performed for radionuclide therapies. In external beam radiotherapy, it is quite the opposite. As a result, a small fraction of patients receives optimal radioactivity. This conservative approach provides “radiation safety” to healthy tissues but delivers a lower than indicated absorbed dose to the tumors, resulting in a lower response rate and a higher disease relapse rate. Evidence shows that better and more predictable outcomes can be achieved with patient-individualized dose assessment. Therefore, the incorporation of individual planning into radionuclide therapies is a high priority for nuclear medicine physicians and medical physicists alike. Internal dosimetry is used in tumor therapy to optimize the absorbed dose to the target tissue. The main reasons for the difficulties in incorporating patients’ internal dosimetry into routine clinical practice are discussed. The article presents the prospects for the routine implementation of personalized radionuclide therapies. Abstract The article presents the problems of clinical implementation of personalized radioisotope therapy. The use of radioactive drugs in the treatment of malignant and benign diseases is rapidly expanding. Currently, in the majority of nuclear medicine departments worldwide, patients receive standard activities of therapeutic radiopharmaceuticals. Intensively conducted clinical trials constantly provide more evidence of a close relationship between the dose of radiopharmaceutical absorbed in pathological tissues and the therapeutic effect of radioisotope therapy. Due to the lack of individual internal dosimetry (based on the quantitative analysis of a series of diagnostic images) before or during the treatment, only a small fraction of patients receives optimal radioactivity. The vast majority of patients receive too-low doses of ionizing radiation to the target tissues. This conservative approach provides “radiation safety” to healthy tissues, but also delivers lower radiopharmaceutical activity to the neoplastic tissue, resulting in a low level of response and a higher relapse rate. The article presents information on the currently used radionuclides in individual radioisotope therapies and on radionuclides newly introduced to the therapeutic market. It discusses the causes of difficulties with the implementation of individualized radioisotope therapies as well as possible changes in the current clinical situation.
Collapse
|
16
|
Song H, Guja KE, Iagaru A. PSMA theragnostics for metastatic castration resistant prostate cancer. Transl Oncol 2022; 22:101438. [PMID: 35659674 PMCID: PMC9163091 DOI: 10.1016/j.tranon.2022.101438] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 01/23/2023] Open
Abstract
PSMA targeted theragnostic agents have shown tremendous potential in detecting and treating metastatic prostate cancer. The PSMA small molecular inhibitor-based imaging agents achieve extraordinary tumor to background ratios and the PSMA small molecule therapeutic agents have shown impressive therapeutic index in mCRPC. The development and optimization of PSMA theragnostic agents provides invaluable information that may help guide development of future theragnostics for other solid tumors.
There has been tremendous growth in the development of theragnostics for personalized cancer diagnosis and treatment over the past two decades. In prostate cancer, the new generation of prostate specific membrane antigen (PSMA) small molecular inhibitor-based imaging agents achieve extraordinary tumor to background ratios and allow their therapeutic counterparts to deliver effective tumor doses while minimizing normal tissue toxicity. The PSMA targeted small molecule positron emission tomography (PET) agents 18F-DCFPyL (2-(3-{1-carboxy-5-((6-(18)F-fluoro-pyridine-3-carbonyl)-amino)-pentyl}-ureido)-pentanedioic acid) and Gallium-68 (68Ga)-PSMA-11 have been approved by the United States Food and Drug Administration (FDA) for newly diagnosed high risk prostate cancer patients and for patients with biochemical recurrence. More recently, the Phase III VISION trial showed that Lutetium-177 (177Lu)-PSMA-617 treatment increases progression-free survival and overall survival in patients with heavily pre-treated advanced PSMA-positive metastatic castration-resistant prostate cancer (mCRPC). Here, we review the PSMA targeted theragnostic pairs under clinical investigation for detection and treatment of metastatic prostate cancer.
Collapse
Affiliation(s)
- Hong Song
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Stanford University and Hospital, 300 Pasteur Dr H2200, Stanford 94305, United States
| | - Kip E Guja
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Stanford University and Hospital, 300 Pasteur Dr H2200, Stanford 94305, United States
| | - Andrei Iagaru
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Stanford University and Hospital, 300 Pasteur Dr H2200, Stanford 94305, United States.
| |
Collapse
|
17
|
Assessment of salivary gland function after 177Lu-PSMA radioligand therapy: Current concepts in imaging and management. Transl Oncol 2022; 21:101445. [PMID: 35523007 PMCID: PMC9079342 DOI: 10.1016/j.tranon.2022.101445] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/11/2022] [Accepted: 04/26/2022] [Indexed: 11/22/2022] Open
Abstract
The United States food and drug administration has recently granted approval to the targeted 177Lu-PSMA-617 therapy in prostate cancer patients. Salivary glands show high PSMA-ligand uptake and are prone to radiation damage secondary to accumulation of 177Lu-PSMA-617. Salivary gland scintigraphy is a noninvasive highly reproducible technique, useful for objective and quantitative assessment of salivary flow and function of parotid and submandibular glands and can help detect early changes post 177Lu-PSMA-617 therapy.
Prostate specific membrane antigen (PSMA) is a transmembrane protein that is highly expressed on prostate epithelial cells and is strongly upregulated in prostate cancer. Radioligand therapy using beta-emitting Lutetium-177 (177Lu)-labeled-PSMA-617, a radiolabeled small molecule, has gained attention as a novel targeted therapy for metastatic prostate cancer, given its high affinity and long tumor retention, and rapid blood pool clearance. In March 2022, the United States Food and Drug administration has granted approval to the targeted 177Lu-PSMA-617 therapy for treatment of patients with PSMA-positive metastatic castration resistant prostate cancer, who have been previously treated with an androgen-receptor pathway inhibitor and taxane-based chemotherapy. Studies have demonstrated the adverse effects of this treatment, mainly encountered due to radiation exposure to non-target tissues. Salivary glands show high PSMA-ligand uptake and receive increased radiation dose secondary to accumulation of 177Lu-PSMA-617. This predisposes the glands to radiation-mediated toxicity. The exact mechanism, scope and severity of radiation-mediated salivary gland toxicity are not well understood, however, the strategies for its prevention and treatment are under evaluation. This review will focus on the current knowledge about salivary gland impairment post 177Lu labeled PSMA-based radioligand therapies, diagnostic methodologies, and imaging with emphasis on salivary gland scintigraphy. The preventive strategies and known treatment options would also be briefly highlighted.
Collapse
|
18
|
Nautiyal A, Jha AK, Mithun S, Rangarajan V. Dosimetry in Lu-177-PSMA-617 prostate-specific membrane antigen targeted radioligand therapy: a systematic review. Nucl Med Commun 2022; 43:369-377. [PMID: 35045551 DOI: 10.1097/mnm.0000000000001535] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND 177Lu-prostate-specific membrane antigen (PSMA) gained popularity as a choice of agent in the treatment of patients with advanced prostate cancer or metastatic castration-resistant stage of prostate carcinoma (mCRPC) diseases. However, this treatment may cause fatal effects, probably due to unintended irradiation of normal organs. We performed an extensive systematic review to assess the organs at risk and the absorbed dose received by tumor lesions in 177Lu-PSMA therapy. DESIGN In this review, published peer-reviewed articles that cover clinical dosimetry in patients following peptide radionuclide ligand therapy using 177Lu-PSMA have been included. Two senior researchers independently checked the articles for inclusion. A systematic search in the database was made using PubMed, Publons and DOAJ. All selected articles were categorized into three groups: (1) clinical studies with the technical description of dosimetry in 177Lu-PSMA therapy (2) organ dosimetry in 177Lu-PSMA therapy or (3) tumor dosimetry in 177Lu-PSMA therapy. RESULT In total, 182 citations were identified on PSMA therapy and 17 original articles on 177Lu-PSMA dosimetry were recognized as eligible for review. The median absorbed dose per unit of administered activity for kidneys, salivary, liver, spleen, lacrimal and bone marrow was 0.55, 0.81, 0.1, 0.1, 2.26 and 0.03 Gy/GBq, respectively. The median absorbed dose per unit of activity for tumor lesions was found in a range of 2.71-10.94 Gy/GBq. CONCLUSION 177Lu-PSMA systemic radiation therapy (SRT) is a well-tolerated and reliable treatment option against the management of the mCRPC stage of prostate carcinoma. Lacrimal glands and salivary glands are the major critical organs in 177Lu-PSMA SRT. Besides, tumors receive 3-6 times higher absorbed doses compared to organs at risk.
Collapse
Affiliation(s)
- Amit Nautiyal
- Department of Nuclear Medicine and Molecular Imaging, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Kharghar, Navi Mumbai
- Homi Bhabha National Institute
| | - Ashish K Jha
- Homi Bhabha National Institute
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Hospital, Parel, Mumbai, Maharashtra, India
| | - Sneha Mithun
- Homi Bhabha National Institute
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Hospital, Parel, Mumbai, Maharashtra, India
| | - Venkatesh Rangarajan
- Homi Bhabha National Institute
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Hospital, Parel, Mumbai, Maharashtra, India
| |
Collapse
|
19
|
EANM dosimetry committee recommendations for dosimetry of 177Lu-labelled somatostatin-receptor- and PSMA-targeting ligands. Eur J Nucl Med Mol Imaging 2022; 49:1778-1809. [PMID: 35284969 PMCID: PMC9015994 DOI: 10.1007/s00259-022-05727-7] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/13/2022] [Indexed: 12/25/2022]
Abstract
The purpose of the EANM Dosimetry Committee is to provide recommendations and guidance to scientists and clinicians on patient-specific dosimetry. Radiopharmaceuticals labelled with lutetium-177 (177Lu) are increasingly used for therapeutic applications, in particular for the treatment of metastatic neuroendocrine tumours using ligands for somatostatin receptors and prostate adenocarcinoma with small-molecule PSMA-targeting ligands. This paper provides an overview of reported dosimetry data for these therapies and summarises current knowledge about radiation-induced side effects on normal tissues and dose-effect relationships for tumours. Dosimetry methods and data are summarised for kidneys, bone marrow, salivary glands, lacrimal glands, pituitary glands, tumours, and the skin in case of radiopharmaceutical extravasation. Where applicable, taking into account the present status of the field and recent evidence in the literature, guidance is provided. The purpose of these recommendations is to encourage the practice of patient-specific dosimetry in therapy with 177Lu-labelled compounds. The proposed methods should be within the scope of centres offering therapy with 177Lu-labelled ligands for somatostatin receptors or small-molecule PSMA.
Collapse
|
20
|
Dosimetry in radionuclide therapy: the clinical role of measuring radiation dose. Lancet Oncol 2022; 23:e75-e87. [DOI: 10.1016/s1470-2045(21)00657-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 12/22/2022]
|
21
|
Jackson P, Hofman M, McIntosh L, Buteau JP, Ravi Kumar A. Radiation Dosimetry in 177Lu-PSMA-617 Therapy. Semin Nucl Med 2021; 52:243-254. [PMID: 34893320 DOI: 10.1053/j.semnuclmed.2021.11.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Radionuclide therapy using the small molecule PSMA bound to the beta-emitting radionuclide, Lutetium-177 (177Lu-PSMA) has demonstrated efficacy and survival benefit castrate resistant metastatic disease and represents a novel new line of therapy. Whilst dosimetry was critical for early development, it was not incorporated into either the TheraP or VISION randomized studies, highlighting the difficulty of adopting dosimetry in routine clinical practice. Accumulated clinical experience has also shown that the common (and generally low grade) toxicities such as nausea, xerostomia, and cytopenias are not readily predicted on the basis of dosimetry estimates. The majority of dosimetry and clinical literature deals with the radiopharmaceutical 177Lu-PSMA-617 which displays relatively consistent patterns of retention among normal tissues and high specificity for metastatic prostate cancer phenotypes. Population dosimetry incorporating estimates to the kidneys, salivary glands, and bone marrow have been widely reported the typical range of doses is becoming well established. There is growing interest on tumor dosimetry in 177Lu-PSMA-617 therapy as an overall modest side-effect profile from primary organ retention has been observed. A focus away from normal organ dosimetry to whole body tumor dosimetry may enable early prediction of treatment failure. Given the safety of 177Lu-PSMA there is also potential to escalate administered radioactivity to further improve outcomes. Importantly, the variability of uptake between individuals, both to tumor and normal organs, has also been highlighted which provides some rationale for the utility of personalized radiation analysis to optimize treatment based on potential toxicity thresholds or tumor control. Methods to perform dosimetry using serial post treatment imaging may incorporate planar, 3D SPECT, or hybrid datasets. Reliable measurements may be obtained through either method, however, continued developments in computational analysis are better suited to fully 3D imaging; particularly in conjunction with volumetric CT to assist with alignment and contouring. Dose analysis over sequential treatment cycles is vital to understand the radiobiology of these treatments which is unique compared to external beam therapy due to dose rate, fractionation scheme, and potential for intratumoral nonuniformity.
Collapse
Affiliation(s)
- Price Jackson
- Molecular Imaging and Therapeutic Nuclear Medicine, Dept of Cancer Imaging, The Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Dept of Oncology, The University of Melbourne, Melbourne, Australia.
| | - Michael Hofman
- Molecular Imaging and Therapeutic Nuclear Medicine, Dept of Cancer Imaging, The Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Dept of Oncology, The University of Melbourne, Melbourne, Australia
| | - Lachlan McIntosh
- Molecular Imaging and Therapeutic Nuclear Medicine, Dept of Cancer Imaging, The Peter MacCallum Cancer Centre, Melbourne, Australia
| | - James Patrick Buteau
- Molecular Imaging and Therapeutic Nuclear Medicine, Dept of Cancer Imaging, The Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Aravind Ravi Kumar
- Molecular Imaging and Therapeutic Nuclear Medicine, Dept of Cancer Imaging, The Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Dept of Oncology, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
22
|
|
23
|
Kumar A, ArunRaj ST, Bhullar K, Haresh KP, Gupta S, Ballal S, Yadav M, Singh M, Damle NA, Garg A, Tripathi M, Bal C. Ga-68 PSMA PET/CT in recurrent high-grade gliomas: evaluating PSMA expression in vivo. Neuroradiology 2021; 64:969-979. [PMID: 34648046 DOI: 10.1007/s00234-021-02828-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/09/2021] [Indexed: 01/24/2023]
Abstract
PURPOSE We planned this prospective study to evaluate PSMA expression in recurrent high-grade gliomas (rHGG), including anaplastic astrocytoma and glioblastoma using Glu-NH-CO-NH-Lys-(Ahx)-[Ga-68 (HBED-CC)]- (Ga-68 PSMA) positron emission tomography (PET), with its theranostic potential in mind. METHODS This was a prospective study enrolling patients with clinical and MRI evidence of rHGG on follow-up. Three treated cases of HGG with RN on MRI were also included as negative controls. Abnormal tracer accumulation in the brain parenchyma, more than the contralateral hemisphere was interpreted as positive study. For semiquantitative analysis, a 3D spherical region of interest (ROI) was drawn around the site of the abnormal Ga-68 PSMA uptake, and the ratio of SUVmax of tumor (T) to SUVmax of the contralateral corresponding area (TBR) was calculated. Each patients' PSMA brain PET was fused to the corresponding MRI and reviewed for concordance. RESULTS Thirty patients were included in the study, a total of 49 lesions were detected on MRI, and fused PET/MR images showed increased Ga-68 PSMA uptake in all these lesions. Multifocal lesions were better appreciated on fused PET-MR images, and concordance between MRI and PET was 100 % for patient and lesion-wise detection. Recurrent glioma lesions showed SUVmax and SUVmean values (median and IQR) 6.0 (4.4-8.2) and 3.3 (2.8-3.7), respectively. Lesions labeled as radiation necrosis on MRI did not show tracer accumulation. CONCLUSION Ga-68 PSMA has potential utility for evaluating recurrence in HGG and its potential for theranostics would encourage its use in the evaluation of these patients.
Collapse
Affiliation(s)
- Arunav Kumar
- Department of Nuclear Medicine and PET/CT, All India Institute of Medical Sciences, New Delhi, India
| | | | - Khush Bhullar
- Department of Neuroimaging & Interventional Neuroradiology, All India Institute of Medical Sciences, New Delhi, India
| | - K P Haresh
- Department of Radiation Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Subhash Gupta
- Department of Radiation Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Sanjana Ballal
- Department of Nuclear Medicine and PET/CT, All India Institute of Medical Sciences, New Delhi, India
| | - Madhav Yadav
- Department of Nuclear Medicine and PET/CT, All India Institute of Medical Sciences, New Delhi, India
| | | | - Nishikant Avinash Damle
- Department of Nuclear Medicine and PET/CT, All India Institute of Medical Sciences, New Delhi, India
| | - Ajay Garg
- Department of Neuroimaging & Interventional Neuroradiology, All India Institute of Medical Sciences, New Delhi, India
| | - Madhavi Tripathi
- Department of Nuclear Medicine and PET/CT, All India Institute of Medical Sciences, New Delhi, India.
| | - Chandrasekhar Bal
- Department of Nuclear Medicine and PET/CT, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
24
|
Armstrong WR, Gafita A, Zhu S, Thin P, Nguyen K, Alano R, Lira S, Booker K, Gardner L, Grogan T, Elashoff D, Allen-Auerbach M, Dahlbom M, Czernin J, Calais J. The Impact of Monosodium Glutamate on 68Ga-PSMA-11 Biodistribution in Men with Prostate Cancer: A Prospective Randomized, Controlled Imaging Study. J Nucl Med 2021; 62:1244-1251. [PMID: 33509974 PMCID: PMC9364769 DOI: 10.2967/jnumed.120.257931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/29/2020] [Indexed: 01/19/2023] Open
Abstract
The prostate-specific membrane antigen (PSMA) has been targeted for PET imaging and radioligand therapy (RLT) in patients with prostate cancer. Xerostomia is a common side effect of RLT because of the high salivary gland uptake of PSMA radioligands. Here, we aimed to determine the impact of monosodium glutamate (MSG) administration on PSMA-radioligand biodistribution within healthy organs and tumor lesions by using 68Ga-PSMA-11 PET imaging. Methods: Sixteen men with prostate cancer were randomized (1:1) into oral ingestion and oral topical application ("swishing") arms. Each subject underwent 2 68Ga-PSMA-11 PET/CT scans within 14 d under baseline and MSG conditions. The salivary glands and whole-body tumor lesions were segmented using qPSMA software. We quantified tracer uptake via SUVmean and SUVmax and compared parameters within each patient. Results: For the oral ingestion arm, salivary gland SUVmean and SUVmax decreased on average from the control scan to the MSG scan by 45% ± 15% (P = 0.004) and 53% ± 11% (P < 0.001), respectively. Tumor lesion SUVmean and SUVmax also decreased by 38% (interquartile range, -67% to -33%) and -52% (interquartile range, -70% to -49%), respectively (P = 0.018). Swishing had no significant effect on 68Ga-PSMA-11 accumulation in normal organs or tumor lesions. Conclusion: Oral ingestion but not topical application of MSG reduced 68Ga-PSMA-11 uptake in salivary glands. Tumor uptake also declined; therefore, the clinical application of MSG is unlikely to be useful in the framework of RLT.
Collapse
Affiliation(s)
- Wesley R Armstrong
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California
| | - Andrei Gafita
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California
| | - Shaojun Zhu
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California
| | - Pan Thin
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California
| | - Kathleen Nguyen
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California
| | - Rejah Alano
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California
| | - Stephanie Lira
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California
| | - Kiara Booker
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California
| | - Linda Gardner
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California
| | - Tristan Grogan
- Department of Medicine Statistics Core, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - David Elashoff
- Department of Medicine Statistics Core, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Martin Allen-Auerbach
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California
- Institute of Urologic Oncology, UCLA, Los Angeles, California
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California; and
| | - Magnus Dahlbom
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California
- Physics and Biology in Medicine Interdepartmental Graduate Program, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Johannes Czernin
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California
- Institute of Urologic Oncology, UCLA, Los Angeles, California
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California; and
- Physics and Biology in Medicine Interdepartmental Graduate Program, David Geffen School of Medicine, UCLA, Los Angeles, California
| | - Jeremie Calais
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California;
- Institute of Urologic Oncology, UCLA, Los Angeles, California
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, California; and
- Physics and Biology in Medicine Interdepartmental Graduate Program, David Geffen School of Medicine, UCLA, Los Angeles, California
| |
Collapse
|
25
|
Mokoala K, Lawal I, Lengana T, Kgatle M, Giesel FL, Vorster M, Sathekge M. PSMA Theranostics: Science and Practice. Cancers (Basel) 2021; 13:3904. [PMID: 34359805 PMCID: PMC8345360 DOI: 10.3390/cancers13153904] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/05/2021] [Accepted: 07/14/2021] [Indexed: 12/14/2022] Open
Abstract
Prostate cancer (PCa) causes significant morbidity and mortality in men globally. While localized PCa may be managed with curative intent by surgery and/or radiation therapy, the management of advanced hormone resistant metastatic disease (mCRPC) is more challenging. Theranostics is a principle based on the ability to use an organ specific ligand and label it to both a diagnostic and a therapeutic agent. The overexpression of prostate specific membrane antigen (PSMA) on prostate cancer cells creates a unique opportunity for development of targeted radionuclide therapy. The use of both beta and alpha emitting particles has shown great success. Several clinical trials have been initiated assessing the efficacy and safety profile of these radionuclide agents. The results are encouraging with PSMA directed radioligand therapy performing well in patients who have exhausted all other standard treatment options. Future studies need to assess the timing of introduction of these radionuclide therapies in the management schema of mCRPC. Drugs or therapies are not without side effects and targeted radionuclide therapies presents a new set of toxicities including xerostomia and myelosuppression. New therapeutic strategies are being explored to improve outcomes while keeping toxicities to a minimum. This review aims to look at the various PSMA labelled tracers that form part of the theragnostic approach and subsequently delve into the progress made in the area of radionuclide therapy.
Collapse
Affiliation(s)
- Kgomotso Mokoala
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0001, South Africa; (K.M.); (I.L.); (M.V.)
| | - Ismaheel Lawal
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0001, South Africa; (K.M.); (I.L.); (M.V.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa;
| | - Thabo Lengana
- KVNR Molecular Imaging, Pretoria 0001, South Africa;
| | - Mankgopo Kgatle
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa;
| | - Frederik L. Giesel
- Department of Nuclear Medicine, University Hospital Duesseldorf, 40210 Duesseldorf, Germany;
| | - Mariza Vorster
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0001, South Africa; (K.M.); (I.L.); (M.V.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa;
| | - Mike Sathekge
- Department of Nuclear Medicine, University of Pretoria, Pretoria 0001, South Africa; (K.M.); (I.L.); (M.V.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa;
| |
Collapse
|
26
|
Kuyumcu S, Kovan B, Sanli Y, Buyukkaya F, Has Simsek D, Özkan ZG, Isik EG, Ekenel M, Turkmen C. Safety of Fibroblast Activation Protein-Targeted Radionuclide Therapy by a Low-Dose Dosimetric Approach Using 177Lu-FAPI04. Clin Nucl Med 2021; 46:641-646. [PMID: 33883494 DOI: 10.1097/rlu.0000000000003667] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES This study is set out to estimate the radiation-absorbed doses to normal organs and tumor tissue using low-dose 177Lu-FAPI04 dosimetry to determine the safety and theranostic potential of fibroblast activation protein-targeted radionuclide therapy. PATIENTS AND METHODS Four patients with metastatic advanced-stage cancer were administered low-dose 177Lu-FAPI04 for dosimetry measurements. Data acquisition for dosimetry of normal organs and tumors was performed by whole-body and 3D SPECT/CT imaging at 4, 24, 48, and 96 hours after administering 177Lu-FAPI04. Blood samples were drawn at 5, 15, 30, 60, 60, 120, and 180 minutes, and at 24, 48, and 96 hours for bone marrow dosimetry calculations. RESULTS Mean absorbed doses per megabecquerel were 0.25 ± 0.16 mGy (range, 0.11-0.47 mGy), 0.11 ± 0.08 mGy (range, 0.06-0.22 mGy), and 0.04 ± 0.002 mGy (range, 0.04-0.046 mGy) for kidneys, liver, and bone marrow, respectively. The respective maximum estimated amount of radioactivity to reach radiation-absorbed dose limits were 120.9 ± 68.6 GBq, 47.5 ± 2.8 GBq, 397.8 ± 217.1 GBq, and 52.4 ± 15.3 GBq for kidneys, bone marrow, liver, and total body. The mean absorbed dose per megabecquerel was 0.62 ± 0.55 mGy for bone metastases, 0.38 ± 0.22 mGy for metastatic lymph nodes, 0.33 ± 0.21 mGy for liver metastases, and 0.37 ± 0.29 for metastatic soft tissue. The maximum absorbed dose in a tumor lesion was 1.67 mGy/MBq for bone, 0.6 mGy/MBq for lymph node, 0.62 mGy/MBq for liver, and 1 mGy/MBq for soft tissue. CONCLUSIONS The mean absorbed dose to organs at risk with 177Lu-FAPI04 is reasonably low, allowing for low tumor-absorbed dose rates by administering a higher dose. Further research on optimizing therapeutic efficacy and using alternative radioisotopes is necessary, along with an individualized dosimetric approach.
Collapse
Affiliation(s)
- Serkan Kuyumcu
- From the Department of Nuclear Medicine, Istanbul Medical Faculty
| | - Bilal Kovan
- From the Department of Nuclear Medicine, Istanbul Medical Faculty
| | - Yasemin Sanli
- From the Department of Nuclear Medicine, Istanbul Medical Faculty
| | - Fikret Buyukkaya
- From the Department of Nuclear Medicine, Istanbul Medical Faculty
| | - Duygu Has Simsek
- From the Department of Nuclear Medicine, Istanbul Medical Faculty
| | | | | | - Meltem Ekenel
- Department of Medical Oncology, Institute of Oncology, Istanbul University, Istanbul, Turkey
| | - Cuneyt Turkmen
- From the Department of Nuclear Medicine, Istanbul Medical Faculty
| |
Collapse
|
27
|
Cao J, Chen Y, Hu M, Zhang W. 177Lu-PSMA-RLT of metastatic castration-resistant prostate cancer: limitations and improvements. Ann Nucl Med 2021; 35:861-870. [PMID: 34176105 DOI: 10.1007/s12149-021-01649-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/22/2021] [Indexed: 01/01/2023]
Abstract
The prevalence of metastatic castration-resistant prostate cancer (mCRPC) is increasing, and its prognosis is often poor. As a highly expressed target in mCRPC, prostate-specific membrane antigen (PSMA) is very attractive for its diagnosis and treatment. When the efficacy of chemical therapy is limited, radioligand therapy (RLT)-based on Lutetium-177 (177Lu)-PSMA has received more research as an emerging treatment. To date, most published related studies have proven this method is effective and safe. However, about 1/3 of mCRPC patients have not benefited from 177Lu-PSMA-RLT. The underlying mechanism of this phenomenon remains unclear. So based on the comprehensive research in recent years, this article proposes the possible reasons, including tumor lesions, PSMA heterogeneity, differences in DNA repair defects, and accelerated repopulation. Combining with the existing experience to give suggestions to improve the treatment efficacy, benefit more mCRPC patients.
Collapse
Affiliation(s)
- Jianpeng Cao
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No. 25 TaiPing St, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, No. 25 TaiPing St, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, No. 25 TaiPing St, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China
| | - Yue Chen
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No. 25 TaiPing St, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, No. 25 TaiPing St, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, No. 25 TaiPing St, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China
| | - Mei Hu
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No. 25 TaiPing St, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, No. 25 TaiPing St, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, No. 25 TaiPing St, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China
| | - Wei Zhang
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, No. 25 TaiPing St, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China.
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, No. 25 TaiPing St, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China.
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, The Affiliated Hospital of Southwest Medical University, No. 25 TaiPing St, Jiangyang District, Luzhou, 646000, Sichuan, People's Republic of China.
- Sichuan Academy of Medical Sciences/Sichuan Provincial People's Hospital, Chengdu, 610072, China.
| |
Collapse
|
28
|
Baum RP, Schuchardt C, Singh A, Chantadisai M, Robiller FC, Zhang J, Mueller D, Eismant A, Almaguel F, Zboralski D, Osterkamp F, Hoehne A, Reineke U, Smerling C, Kulkarni HR. Feasibility, Biodistribution and Preliminary Dosimetry in Peptide-Targeted Radionuclide Therapy (PTRT) of Diverse Adenocarcinomas using 177Lu-FAP-2286: First-in-Human Results. J Nucl Med 2021; 63:415-423. [PMID: 34168013 PMCID: PMC8978187 DOI: 10.2967/jnumed.120.259192] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
Fibroblast activation protein (FAP) is a promising target for diagnosis and therapy of numerous malignant tumors. FAP-2286 is the conjugate of a FAP-binding peptide, which can be labeled with radionuclides for theranostic applications. We present the first-in-human results using 177Lu-FAP-2286 for peptide-targeted radionuclide therapy (PTRT). Methods: PTRT using 177Lu-FAP-2286 was performed in 11 patients with advanced adenocarcinomas of pancreas, breast, rectum and ovary after prior confirmation of uptake on 68Ga-FAP-2286/-FAPI-04- PET/CT. Results: Administration of 177Lu-FAP-2286 (5.8 ± 2.0 GBq; range, 2.4-9.9 GBq) was well tolerated, with no adverse symptoms or clinically detectable pharmacologic effects being noticed or reported in any of the patients. The whole-body effective doses were 0.07 ± 0.02 Gy/GBq (range 0.04 - 0.1). The mean absorbed doses for kidneys and red marrow were 1.0 ± 0.6 Gy/GBq (range 0.4 - 2.0) and 0.05 ± 0.02 Gy/GBq (range 0.03 - 0.09), respectively. Significant uptake and long tumor retention of 177Lu-FAP-2286 resulted in high absorbed tumor doses, e.g., 3.0 ± 2.7 Gy/GBq (range 0.5 - 10.6) in bone metastases. No grade (G) 4 adverse events were observed. G3 events occurred in 3 patients - 1 pancytopenia, 1 leukocytopenia and 1 pain flare-up; 3 patients reported pain-response. Conclusion: 177Lu-FAP-2286 PTRT, applied in a broad spectrum of cancers, was relatively well-tolerated with acceptable side effects and demonstrated long retention of the radiopeptide. Prospective clinical studies are warranted.
Collapse
Affiliation(s)
- Richard P Baum
- CURANOSTICUM Wiesbaden-Frankfurt, Center for Advanced Radiomolecular Precision Oncology, Germany
| | | | | | - Maythinee Chantadisai
- Chulalongkorn University, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society
| | | | - Jingjing Zhang
- THERANOSTICS Center for Molecular Radiotherapy & Molecular Imaging, Zentralklinik Bad Berka
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Renal Safety of [ 177Lu]Lu-PSMA-617 Radioligand Therapy in Patients with Compromised Baseline Kidney Function. Cancers (Basel) 2021; 13:cancers13123095. [PMID: 34205686 PMCID: PMC8235711 DOI: 10.3390/cancers13123095] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/13/2021] [Accepted: 06/16/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Radioligand therapy (RLT) targeting prostate-specific membrane antigen (PSMA) is an effective antitumor-treatment in metastatic castration-resistant prostate carcinoma (mCRPC). Concerns of potential nephrotoxicity are based on renal tubular PSMA expression and the resulting radiopharmaceutical retention during RLT, but data confirming clinically significant renal toxicity are still lacking. In this study, patients with significantly impaired baseline kidney function before initiation of therapy were investigated for treatment-associated nephrotoxicity and the potential relationship with administered activities of [177Lu]Lu-PSMA-617. Methods: Twenty-two mCRPC patients with impaired renal function (glomerular filtration rate (GFR) ≤ 60 mL/min) who received more than two cycles of [177Lu]Lu-PSMA-617 RLT (median 5 cycles and median 6-week time interval between consecutive cycles) were analyzed in this study. Patients were treated within a prospective patient registry (REALITY Study, NCT04833517). Cumulative administered activities ranged from 17.1 to 85.6 GBq with a median activity of 6.5 GBq per cycle. Renal function was closely monitored during and after PSMA-RLT. Results: Mean pre-treatment GFR was 45.0 ± 10.7 mL/min. After two (22/22 patients), four (20/22 patients), and six cycles (10/22 patients) of RLT, a significant increase of GFR was noted (each p < 0.05). End-of-treatment GFR (54.1 ± 16.7 mL/min) was significantly higher than baseline GFR (p = 0.016). Only one patient experienced deterioration of renal function (change of CTCAE grade 2 to 3). The remaining patients showed no significant reduction of GFR, including follow-up assessments (6, 9, and 12 months), and even showed improved (10/22 patients) or unchanged (11/22 patients) CTCAE-based renal impairment grades during and after the end of PSMA-RLT. No significant correlation between the change in GFR and per-cycle (p = 0.605) or cumulative (p = 0.132) administered activities were found. Conclusions: As pre-treatment chronic kidney failure did not lead to detectable RLT-induced deterioration of renal function in our study, the nephrotoxic potential of [177Lu]Lu-PSMA-617 RLT may be overestimated and not of clinical priority in the setting of palliative treatment in mCRPC. We suggest not to categorically exclude patients from enrolment to PSMA-RLT due to renal impairment.
Collapse
|
30
|
Yadav MP, Ballal S, Sahoo RK, Tripathi M, Damle NA, Shamim SA, Kumar R, Seth A, Bal C. Long-term outcome of 177Lu-PSMA-617 radioligand therapy in heavily pre-treated metastatic castration-resistant prostate cancer patients. PLoS One 2021; 16:e0251375. [PMID: 33970962 PMCID: PMC8109776 DOI: 10.1371/journal.pone.0251375] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/23/2021] [Indexed: 11/18/2022] Open
Abstract
Objective Investigators have extensively explored the short-term safety and efficacy data on 177Lu-PSMA-617 radioligand therapy (RLT) in mCRPC patients. However, scarce literature is reported on the long-term outcome of these patients. The current goal of this study is focused on the long-term outcome of mCRPC patients treated with 177Lu-PSMA-617 RLT. Methods Among 135 patients, 121 mCRPC patients fulfilled the eligibility criteria and were included in the final analysis. Patients received a median of 3 cycles of 177Lu-PSMA-617 RLT at 6 to 12-week intervals. Primary endpoint included overall survival (OS) and secondary endpoints involved progression-free survival (PFS), predictive factors of OS and PFS, PSA response rate, molecular response, clinical response, and toxicity assessment. Results The median administered cumulative activity was 20 GBq (3.7–37 GBq). The median follow-up duration was 36 months (6–72 months). The estimated median PFS and OS were 12 months (mo) (95% CI: 10.3–13 mo) and 16 mo (95% CI: 13–17 mo), respectively. Any PSA decline and PSA decline >50% was achieved in 73% and 61% of the patients, respectively. Multivariate analysis revealed only failure to achieve >50% PSA decline as a significant factor associated with a poor PFS. Prognostic factors associated with reduced OS included, failure to experience >50% PSA decline, heavily pre-treated patient cohort who received >2 lines of prior treatment options, and patient sub-group treated with ≥2 lines of chemotherapy. Patients re-treated with additional treatment options after attaining 177Lu-PSMA refractory disease showed a remarkably prolonged OS. A significant clinical benefit was achieved post 177Lu-PSMA-617 RLT. The most common toxicities observed were fatigue (34.7%), followed by nausea (33%), and dry mouth (24.7%). Conclusion The current study supports the short-term safety and efficacy results of high response rates, prolonged PFS and OS, improved quality of life, and low treatment-related toxicities in patients treated with 177Lu-PSMA-617 radioligand therapy.
Collapse
Affiliation(s)
- Madhav Prasad Yadav
- Department of Nuclear Medicine, Thyroid Clinic, AIIMS, Ansari Nagar, New Delhi, India
| | - Sanjana Ballal
- Department of Nuclear Medicine, Thyroid Clinic, AIIMS, Ansari Nagar, New Delhi, India
| | - Ranjit Kumar Sahoo
- Department of Medical Oncology, IRCH, AIIMS, Ansari Nagar, New Delhi, India
| | - Madhavi Tripathi
- Department of Nuclear Medicine, Thyroid Clinic, AIIMS, Ansari Nagar, New Delhi, India
| | | | - Shamim Ahmed Shamim
- Department of Nuclear Medicine, Thyroid Clinic, AIIMS, Ansari Nagar, New Delhi, India
| | - Rakesh Kumar
- Department of Nuclear Medicine, Thyroid Clinic, AIIMS, Ansari Nagar, New Delhi, India
| | - Amlesh Seth
- Department of Urology, AIIMS, Ansari Nagar, New Delhi, India
| | - Chandrasekhar Bal
- Department of Nuclear Medicine, Thyroid Clinic, AIIMS, Ansari Nagar, New Delhi, India
- * E-mail:
| |
Collapse
|
31
|
Rosar F, Schön N, Bohnenberger H, Bartholomä M, Stemler T, Maus S, Khreish F, Ezziddin S, Schaefer-Schuler A. Comparison of different methods for post-therapeutic dosimetry in [ 177Lu]Lu-PSMA-617 radioligand therapy. EJNMMI Phys 2021; 8:40. [PMID: 33950333 PMCID: PMC8099965 DOI: 10.1186/s40658-021-00385-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/23/2021] [Indexed: 12/24/2022] Open
Abstract
Background Dosimetry is of high importance for optimization of patient-individual PSMA-targeted radioligand therapy (PSMA-RLT). The aim of our study was to evaluate and compare the feasibility of different approaches of image-based absorbed dose estimation in terms of accuracy and effort in clinical routine. Methods Whole-body planar images and SPECT/CT images were acquired from 24 patients and 65 cycles at 24h, 48h, and ≥96h after administration of a mean activity of 6.4 GBq [177Lu]Lu-PSMA-617 (range 3–10.9 GBq). Dosimetry was performed by use of the following approaches: 2D planar-based dosimetry, 3D SPECT/CT-based dosimetry, and hybrid dosimetry combining 2D and 3D data. Absorbed doses were calculated according to IDAC 2.1 for the kidneys, the liver, the salivary glands, and bone metastases. Results Mean absorbed doses estimated by 3D dosimetry (the reference method) were 0.54 ± 0.28 Gy/GBq for the kidneys, 0.10 ± 0.05 Gy/GBq for the liver, 0.81 ± 0.34 Gy/GBq for the parotid gland, 0.72 ± 0.39 Gy/GBq for the submandibular gland, and 1.68 ± 1.32 Gy/GBq for bone metastases. Absorbed doses of normal organs estimated by hybrid dosimetry showed small, non-significant differences (median up to 4.0%) to the results of 3D dosimetry. Using 2D dosimetry, in contrast, significant differences (median up to 10.9%) were observed. Regarding bone metastases, small, but significant differences (median up to 7.0%) of absorbed dose were found for both, 2D dosimetry and hybrid dosimetry. Bland-Altman analysis revealed high agreement between hybrid dosimetry and 3D dosimetry for normal organs and bone metastases, but substantial differences between 2D dosimetry and 3D dosimetry. Conclusion Hybrid dosimetry provides high accuracy in estimation of absorbed dose in comparison to 3D dosimetry for all important organs and is therefore feasible for use in individualized PSMA-RLT.
Collapse
Affiliation(s)
- Florian Rosar
- Department of Nuclear Medicine, Saarland University-Medical Center, Kirrberger Str. Geb. 50, D-66421, Homburg, Germany
| | - Niklas Schön
- Department of Nuclear Medicine, Saarland University-Medical Center, Kirrberger Str. Geb. 50, D-66421, Homburg, Germany
| | - Hendrik Bohnenberger
- Department of Nuclear Medicine, Saarland University-Medical Center, Kirrberger Str. Geb. 50, D-66421, Homburg, Germany
| | - Mark Bartholomä
- Department of Nuclear Medicine, Saarland University-Medical Center, Kirrberger Str. Geb. 50, D-66421, Homburg, Germany
| | - Tobias Stemler
- Department of Nuclear Medicine, Saarland University-Medical Center, Kirrberger Str. Geb. 50, D-66421, Homburg, Germany
| | - Stephan Maus
- Department of Nuclear Medicine, Saarland University-Medical Center, Kirrberger Str. Geb. 50, D-66421, Homburg, Germany
| | - Fadi Khreish
- Department of Nuclear Medicine, Saarland University-Medical Center, Kirrberger Str. Geb. 50, D-66421, Homburg, Germany
| | - Samer Ezziddin
- Department of Nuclear Medicine, Saarland University-Medical Center, Kirrberger Str. Geb. 50, D-66421, Homburg, Germany
| | - Andrea Schaefer-Schuler
- Department of Nuclear Medicine, Saarland University-Medical Center, Kirrberger Str. Geb. 50, D-66421, Homburg, Germany.
| |
Collapse
|
32
|
Sanli Y, Simsek DH, Sanli O, Subramaniam RM, Kendi AT. 177Lu-PSMA Therapy in Metastatic Castration-Resistant Prostate Cancer. Biomedicines 2021; 9:430. [PMID: 33921146 PMCID: PMC8071500 DOI: 10.3390/biomedicines9040430] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/25/2022] Open
Abstract
The aim of this narrative review is to evaluate the current status of 177Lu-PSMA (prostate specific membrane antigen) therapy for metastatic castration-resistant prostate cancer (mCRPC) in the light of the current literature. We also addressed patient preparation, therapy administration and side effect profiles. 177Lu-PSMA therapy efficacy was assessed by using prospective trials, meta-analyses and major retrospective trials. Predictors of efficacy were also mentioned. Although there are some different approaches regarding the use of 177Lu-PSMA therapy in different countries, this type of therapy is generally safe, with a low toxicity profile. From the oncological point of view, a PSA (prostate specific antigen) decline of ≥50% was seen in 10.6-69% of patients with mCRPC; whereas progression-free survival (PFS) was reported to be 3-13.7 months in different studies. Consequently, 177Lu-PSMA therapy is a promising treatment in patients with mCRPC, with good clinical efficacy, even in heavily pretreated patients with multiple lines of systemic therapy. Currently, there are ongoing clinical trials in the United States, including a phase III multicenter FDA registration trial.
Collapse
Affiliation(s)
- Yasemin Sanli
- Department of Nuclear Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul 34093, Turkey; (Y.S.); (D.H.S.)
| | - Duygu Has Simsek
- Department of Nuclear Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul 34093, Turkey; (Y.S.); (D.H.S.)
| | - Oner Sanli
- Department of Urology, Istanbul Faculty of Medicine, Istanbul University, Istanbul 34093, Turkey;
| | - Rathan M. Subramaniam
- Dean’s Office, Otago Medical School, University of Otago, Dunedin 9054, New Zealand;
| | - Ayse Tuba Kendi
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
33
|
Kamaldeep, Wanage G, Sahu SK, Maletha P, Adnan A, Suman S, Basu S, Das T, Banerjee S. Examining Absorbed Doses of Indigenously Developed 177Lu-PSMA-617 in Metastatic Castration-Resistant Prostate Cancer Patients at Baseline and During Course of Peptide Receptor Radioligand Therapy. Cancer Biother Radiopharm 2021; 36:292-304. [DOI: 10.1089/cbr.2020.3640] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Kamaldeep
- Health Physics Division, Bhabha Atomic Research Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Gaurav Wanage
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Mumbai, India
| | - Sudeep Kumar Sahu
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Mumbai, India
| | - Pravind Maletha
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Mumbai, India
| | - Aadil Adnan
- Homi Bhabha National Institute, Mumbai, India
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Mumbai, India
| | - Sonam Suman
- Homi Bhabha National Institute, Mumbai, India
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Mumbai, India
| | - Sandip Basu
- Homi Bhabha National Institute, Mumbai, India
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Mumbai, India
| | - Tapas Das
- Homi Bhabha National Institute, Mumbai, India
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Sharmila Banerjee
- Homi Bhabha National Institute, Mumbai, India
- Radiation Medicine Centre, Bhabha Atomic Research Centre, Mumbai, India
| |
Collapse
|
34
|
Brosch-Lenz J, Uribe C, Gosewisch A, Kaiser L, Todica A, Ilhan H, Gildehaus FJ, Bartenstein P, Rahmim A, Celler A, Ziegler S, Böning G. Influence of dosimetry method on bone lesion absorbed dose estimates in PSMA therapy: application to mCRPC patients receiving Lu-177-PSMA-I&T. EJNMMI Phys 2021; 8:26. [PMID: 33709253 PMCID: PMC7952490 DOI: 10.1186/s40658-021-00369-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/23/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Patients with metastatic, castration-resistant prostate cancer (mCRPC) present with an increased tumor burden in the skeleton. For these patients, Lutetium-177 (Lu-177) radioligand therapy targeting the prostate-specific membrane antigen (PSMA) has gained increasing interest with promising outcome data. Patient-individualized dosimetry enables improvement of therapy success with the aim of minimizing absorbed dose to organs at risk while maximizing absorbed dose to tumors. Different dosimetric approaches with varying complexity and accuracy exist for this purpose. The Medical Internal Radiation Dose (MIRD) formalism applied to tumors assumes a homogeneous activity distribution in a sphere with unit density for derivation of tumor S values (TSV). Voxel S value (VSV) approaches can account for heterogeneous activities but are simulated for a specific tissue. Full patient-individual Monte Carlo (MC) absorbed dose simulation addresses both, heterogeneous activity and density distributions. Subsequent CT-based density weighting has the potential to overcome the assumption of homogeneous density in the MIRD formalism with TSV and VSV methods, which could be a major limitation for the application in bone metastases with heterogeneous density. The aim of this investigation is a comparison of these methods for bone lesion dosimetry in mCRPC patients receiving Lu-177-PSMA therapy. RESULTS In total, 289 bone lesions in 15 mCRPC patients were analyzed. Percentage difference (PD) of average absorbed dose per lesion compared to MC, averaged over all lesions, was + 14 ± 10% (min: - 21%; max: + 56%) for TSVs. With lesion-individual density weighting using Hounsfield Unit (HU)-to-density conversion on the patient's CT image, PD was reduced to - 8 ± 1% (min: - 10%; max: - 3%). PD on a voxel level for three-dimensional (3D) voxel-wise dosimetry methods, averaged per lesion, revealed large PDs of + 18 ± 11% (min: - 27%; max: + 58%) for a soft tissue VSV approach compared to MC; after voxel-wise density correction, this was reduced to - 5 ± 1% (min: - 12%; max: - 2%). CONCLUSION Patient-individual MC absorbed dose simulation is capable to account for heterogeneous densities in bone lesions. Since the computational effort prevents its routine clinical application, TSV or VSV dosimetry approaches are used. This study showed the necessity of lesion-individual density weighting for TSV or VSV in Lu-177-PSMA therapy bone lesion dosimetry.
Collapse
Affiliation(s)
- Julia Brosch-Lenz
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistrasse 15, 81377 Munich, Germany
| | - Carlos Uribe
- PET Functional Imaging, BC Cancer, 600 West 10th Avenue, Vancouver, BC V5Z 4E6 Canada
- Department of Radiology, University of British Columbia, 2775 Laurel Street, Vancouver, BC V5Z 1M9 Canada
| | - Astrid Gosewisch
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistrasse 15, 81377 Munich, Germany
| | - Lena Kaiser
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistrasse 15, 81377 Munich, Germany
| | - Andrei Todica
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistrasse 15, 81377 Munich, Germany
| | - Harun Ilhan
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistrasse 15, 81377 Munich, Germany
| | - Franz Josef Gildehaus
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistrasse 15, 81377 Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistrasse 15, 81377 Munich, Germany
| | - Arman Rahmim
- PET Functional Imaging, BC Cancer, 600 West 10th Avenue, Vancouver, BC V5Z 4E6 Canada
- Department of Radiology, University of British Columbia, 2775 Laurel Street, Vancouver, BC V5Z 1M9 Canada
- Department of Integrative Oncology, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC V5Z 1L3 Canada
| | - Anna Celler
- Department of Radiology, University of British Columbia, 2775 Laurel Street, Vancouver, BC V5Z 1M9 Canada
| | - Sibylle Ziegler
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistrasse 15, 81377 Munich, Germany
| | - Guido Böning
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistrasse 15, 81377 Munich, Germany
| |
Collapse
|
35
|
Preclinical Dosimetry, Imaging, and Targeted Radionuclide Therapy Studies of Lu-177-Labeled Albumin-Binding, PSMA-Targeted CTT1403. Mol Imaging Biol 2021; 22:274-284. [PMID: 31321650 PMCID: PMC6980512 DOI: 10.1007/s11307-019-01404-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE Prostate-specific membrane antigen (PSMA) continues to be the hallmark biomarker for prostate cancer as it is expressed on nearly all prostatic tumors. In addition, increased PSMA expression correlates with castration resistance and progression to the metastatic stage of the disease. Recently, we combined both an albumin-binding motif and an irreversible PSMA inhibitor to develop the novel PSMA-targeted radiotherapeutic agent, CTT1403. This molecule was novel in the field of PSMA-targeted agents as its key motifs resulted in extended blood circulation time and tumor uptake, rapid and extensive internalization into PSMA+ cells, and promising therapeutic efficacy. The objective of this study was to perform IND-enabling translational studies on CTT1403 in rodent models. PROCEDURES A dose optimization study was performed in PC3-PIP (PSMA+) tumor-bearing mice. Treatment groups were randomly selected to receive one to three 14-MBq injections of CTT1403. Control groups included (1) saline, (2) non-radioactive [175Lu]CTT1403, or (3) two injections of 14 MBq CTT1751, a Lu-177-labeled non-targeted albumin-binding moiety. Tumor growth was monitored up to 120 days. Small-animal single photon emission tomography/X-ray computed tomography imaging was performed with CTT1403 and CTT1751 in PC3-PIP tumor-bearing mice to visualize infiltration of the Lu-177-labeled agent into the tumor. In preparation for a first-in-human study, human absorbed doses were estimated based on rat biodistribution out to 5 weeks to determine a safe CTT1403 therapy dose in humans. RESULTS Two to 3 injections of 14 MBq CTT1403 yielded significant tumor growth inhibition and increased survival compared with all control groups and mice receiving 1 injection of 14 MBq CTT1403. Five of 12 mice receiving 2 or 3 injections of CTT1403 survived to the 120-day post-treatment study endpoint. Dosimetry identified the kidneys as the dose-limiting organ, with an equivalent dose of 5.18 mSv/MBq, resulting in a planned maximum dose of 4.4 GBq for phase 1 clinical trials. CONCLUSIONS The preclinical efficacy and dosimetry of CTT1403 suggest that this agent has significant potential to be safe and effective in humans.
Collapse
|
36
|
Hanaoka K, Miyaji N, Yoneyama H, Ogawa M, Maeda T, Sakaguchi K, Iimori T, Tsushima H. [Radiological Technology for Targeted Radionuclide Therapy]. Nihon Hoshasen Gijutsu Gakkai Zasshi 2020; 76:1237-1247. [PMID: 33342942 DOI: 10.6009/jjrt.2020_jsrt_76.12.1237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Targeted radioisotope therapy (TRT) is a radiotherapy using radioisotope or drug incorporating it and has been used as a treatment for selectively irradiating cancer cells. In recent years, interest in TRT has increased due to improvements in radionuclide production technology, development of new drugs and imaging modalities, and improvements in radiation technology. In order to enhance the effect of TRT, measurement of individual radiation doses to tumor tissue and organs at risk is important using highly quantitative nuclear medicine images. In this paper, we present a review of literature on optimization of TRT, which is a new research area from the perspective of radiation technology.
Collapse
Affiliation(s)
- Kohei Hanaoka
- Institute of Advanced Clinical Medicine, Kindai University
| | - Noriaki Miyaji
- Department of Nuclear Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research
| | - Hiroto Yoneyama
- Department of Radiological Technology, Kanazawa University Hospital
| | | | - Takamasa Maeda
- Radiological Technology Section, QST Hospital, National Institutes for Quantum and Radiological Science and Technology
| | | | | | - Hiroyuki Tsushima
- Department of Radiological Sciences, Ibaraki Prefectural University of Health Sciences
| |
Collapse
|
37
|
Kreppel B, Gaertner FC, Essler M. Sialoscintigraphy - Shopworn or Bestselling? A Traditional Procedure with New Prominent Role in Theranostics and Immuno-Oncology. Nuklearmedizin 2020; 59:375-380. [PMID: 32422668 DOI: 10.1055/a-1152-2279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Sialoscintigraphy has been used in nuclear imaging for almost sixty years. It allows functional assessment and quantification of all large salivary glands. Physiological function of the salivary glands is essential for the preservation of the oral mucosa, the sense of taste and dental health. Impaired salivary gland function may lead to reduced or even absent salivation resulting in various complaints such as loss of taste reducing quality of life. During the recent years clinical relevance of assessment of salivary gland function has been rising. As novel radiopharmaceuticals such as 225Ac-PSMA or 177Lu-PSMA may cause damage to the salivary glands in a subset of patients, reliable methods for quantification of salivary gland function are vital for therapy planning and follow-up. Standardized protocols for the implementation and interpretation of this procedure are necessary to achieve comparable results from individual theranostic centers and to facilitate multicenter trials. Sialocintigraphy is also of clinical relevance for immunooncology. Treatments with checkpoint inhibitors such as Ipilimumab or Nivulomab frequently cause autoimmune disorders affecting the salivary glands that may lead to reduced production of saliva and finally loss of taste. Therefore, standardized procedure protocols for sialoscintigraphy are also important for general oncology.Here we suggest a protocol for sialoscintigraphy that may be used as standard in centers for theranostics or immunooncology and discuss the potential future role of this traditional procedure.
Collapse
Affiliation(s)
- Barbara Kreppel
- Department of Nuclear Medicine, University Medical Center Bonn, Bonn, Germany
| | - Florian C Gaertner
- Department of Nuclear Medicine, University Medical Center Bonn, Bonn, Germany
| | - Markus Essler
- Department of Nuclear Medicine, University Medical Center Bonn, Bonn, Germany
| |
Collapse
|
38
|
Dosimetry and safety of 177Lu PSMA-617 along with polyglutamate parotid gland protector: preliminary results in metastatic castration-resistant prostate cancer patients. Eur J Nucl Med Mol Imaging 2020; 47:3008-3017. [PMID: 32430583 DOI: 10.1007/s00259-020-04856-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/04/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE Radioligand therapy (RLT) with 177Lu-PSMA-617 is a promising option for patients with metastatic castration-resistant prostate cancer (mCRPC). The present study was designed to define the safety and initial response to a minimal effective injected activity/cycle of 177Lu-PSMA-617 in mCRPC patients. New protective agents for salivary glands and kidney were co-administered and dosimetry was carried out. PATIENTS AND METHODS A prospective single-arm, open label phase II study on mCRPC was activated at our institute in April 2017. Patients with histologically confirmed advanced mCRPC previously treated with standard life-prolonging agents were enrolled. Folic polyglutamate tablets were orally administered as parotid gland protectors and 500 mL of a 10% mannitol solution was intravenously infused to reduce kidney uptake before the injection of 3.7-5.5 GBq of 177Lu-PSMA-617 repeated four times at interval of 8 weeks. The adsorbed dose calculation was performed with MIRD formalism (OLINDA/EXM software). The Bryant and Day design was used to estimate the sample size taking account of both activity and toxicity. RESULTS Forty-three eligible patients were evaluated for toxicity and initial response. Dosimetry was carried out in 13 patients. Two (4.8%) patients had G3 and 8 (19.5%) had G2 hematological toxicity. Only 3 (6.9%) patients had mild G1 salivary gland toxicity and 8 (19.5%) had G1 renal toxicity. A decrease of ≥ 30% in prostate-specific antigen (PSA) was achieved after the first cycle in 17 (40.5%) patients, of whom 13 had a PSA decline of >50% after the second cycle. The median adsorbed doses were 0.65 mGy/MBq (range 0.33-2.63) for parotid glands, 0.42 mGy/MBq (0.14-0.81) for kidneys, 0.036 mGy/MBq (0.023-0.067) for red marrow, and 0.038 mGy/MBq (0.018-0.135) for the whole body. CONCLUSION In advanced, heavily pre-treated mCRPC patients, 3.7 GBq/cycle of 177Lu-PSMA-617 was safe and produced early biochemical and imaging responses at PSMA whole-body scan post injection. Dosimetry of salivary glands suggests that the co-administration of polyglutamate tablets may reduce salivary gland uptake. CLINICAL TRIAL REGISTRATION EU Clinical Trials Register No.: 2016-002732-32; NCT03454750. Collection and assembly of data: April 2017 and February 2019.
Collapse
|
39
|
Czerwińska M, Bilewicz A, Kruszewski M, Wegierek-Ciuk A, Lankoff A. Targeted Radionuclide Therapy of Prostate Cancer-From Basic Research to Clinical Perspectives. Molecules 2020; 25:E1743. [PMID: 32290196 PMCID: PMC7181060 DOI: 10.3390/molecules25071743] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/23/2020] [Accepted: 04/07/2020] [Indexed: 12/18/2022] Open
Abstract
Prostate cancer is the most commonly diagnosed malignancy in men and the second leading cause of cancer-related deaths in Western civilization. Although localized prostate cancer can be treated effectively in different ways, almost all patients progress to the incurable metastatic castration-resistant prostate cancer. Due to the significant mortality and morbidity rate associated with the progression of this disease, there is an urgent need for new and targeted treatments. In this review, we summarize the recent advances in research on identification of prostate tissue-specific antigens for targeted therapy, generation of highly specific and selective molecules targeting these antigens, availability of therapeutic radionuclides for widespread medical applications, and recent achievements in the development of new-generation small-molecule inhibitors and antibody-based strategies for targeted prostate cancer therapy with alpha-, beta-, and Auger electron-emitting radionuclides.
Collapse
Affiliation(s)
- Malwina Czerwińska
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (M.C.); (M.K.)
| | - Aleksander Bilewicz
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland;
| | - Marcin Kruszewski
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (M.C.); (M.K.)
- Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland
| | - Aneta Wegierek-Ciuk
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Uniwersytecka 7, 24-406 Kielce, Poland;
| | - Anna Lankoff
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (M.C.); (M.K.)
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Uniwersytecka 7, 24-406 Kielce, Poland;
| |
Collapse
|
40
|
Efficacy and Safety of 177Lu-PSMA-617 Radioligand Therapy in Metastatic Castration-Resistant Prostate Cancer Patients. Clin Nucl Med 2020; 45:19-31. [PMID: 31789908 DOI: 10.1097/rlu.0000000000002833] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE The aim of this study was to evaluate the efficacy and safety of Lu-PSMA-617 radioligand therapy in metastatic castration-resistant prostate cancer (mCRPC). METHODS In this prospective, single-arm, single-institutional study, 90 mCRPC patients with progressive disease (PD) on second-line hormonal therapy and/or docetaxel chemotherapy were recruited for the study. All patients underwent diagnostic Ga-PSMA-HBED-CC PET/CT, prior to inclusion for therapy. Included patients underwent Lu-PSMA-617 therapy at 8- to 12-weekly intervals. The primary end point was to assess the overall survival. The secondary and cosecondary end points included biochemical response assessment as per the Prostate Cancer Working Group 3 criteria, progression-free survival, radiological and molecular response criteria, clinical response, safety profile, and disease control rates. All the outcome parameters were evaluated in 90 patients except for the radiographic and molecular response, which was evaluated in 69 patients. RESULTS The median age of patients was 66.5 years (range, 30-88 years). The median activity administered per cycle was 3.7 to 8 GBq ranging from 1 to 7 cycles, and patients were followed up over a median duration of 28 months. At 2- to 3-month interval after the first therapy and the end of the assessment, greater than 50% decline in prostate-specific antigen was observed in 32.2% and 45.5%, respectively. Univariate analysis did not reveal any variables such as prior therapies, laboratory parameters, concomitant hormonal therapy, and SUV patient parameters associated with prostate-specific antigen decline. Radiographic response by diagnostic CT revealed partial remission in 23% (16/69), stable disease in 54% (37/69), and PD in 23% (16/69) of patients. Molecular tumor response by PET Response Criteria in Solid Tumor 1 criteria revealed 19 (27.5%) of 69 patients with partial remission, 30 (43.5%) of 69 with stable disease, and 20 (29%) of 69 with PD. The disease control rates according to the radiographic and molecular response were 77% and 71%, respectively. The median overall survival and median progression-free survivals were 14 and 11.8 months, respectively. Toxicities related to radioligand therapy were low and transient with no serious adverse effects. CONCLUSIONS Lu-PSMA-617 radionuclide therapy is a safe and effective approach to the treatment of mCRPC patients.
Collapse
|
41
|
Jackson PA, Hofman MS, Hicks RJ, Scalzo M, Violet J. Radiation Dosimetry in 177Lu-PSMA-617 Therapy Using a Single Posttreatment SPECT/CT Scan: A Novel Methodology to Generate Time- and Tissue-Specific Dose Factors. J Nucl Med 2019; 61:1030-1036. [PMID: 31806772 DOI: 10.2967/jnumed.119.233411] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/14/2019] [Indexed: 12/25/2022] Open
Abstract
Calculation of radiation dosimetry in targeted nuclear medicine therapies is traditionally resource-intensive, requiring multiple posttherapy SPECT acquisitions. An alternative approach is to take advantage of existing pharmacokinetic data from these smaller cohorts to enable dose computation from a single posttreatment scan in a manner that may be applied to a much broader patient population. Methods: In this work, a technical description of simplified dose estimation is presented and applied to the assessment of 177Lu-prostate-specific membrane antigen (PSMA)-617 therapy for metastatic prostate cancer. By normalizing existing time-activity curves to a single measurement time, it is possible to calculate a mean and range of time-integrated activity values that relate to absorbed radiation dose. To assist with accurate pharmacokinetic modeling of the training cohort, a method for contour-guided image registration was developed. Results: Tissue-specific dose conversion factors for common posttreatment imaging times are reported along with a characterization of added uncertainty in comparison to a traditional serial imaging protocol. Single-time-point dose factors for tumor were determined to be 11.0, 12.1, 13.6, and 15.2 Gy per MBq/mL at image times of 24, 48, 72, and 96 h, respectively. For normal tissues, parotid gland factors were 6.7, 9.4, 13.3, and 19.3 Gy per MBq/mL at those times, and kidneys were 7.1, 10.3, 15.0, and 22.0 Gy per MBq/mL. Tumor dose estimates were most accurate using delayed scanning at times beyond 72 h. Dose to healthy tissues is best characterized by scanning patients in the first 2 d of treatment because of the larger degree of tracer clearance in this early phase. Conclusion: This work demonstrates a means for efficient dose estimation in 177Lu-PSMA-617 therapy. By providing methods to simplify and potentially automate radiation dosimetry, we hope to accelerate the understanding of radiobiology and development of dose-response models in this unique therapeutic context.
Collapse
Affiliation(s)
- Price A Jackson
- Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia .,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia; and
| | - Michael S Hofman
- Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia; and
| | - Rodney J Hicks
- Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia; and
| | - Mark Scalzo
- Department of Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - John Violet
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| |
Collapse
|
42
|
Violet J, Sandhu S, Iravani A, Ferdinandus J, Thang SP, Kong G, Kumar AR, Akhurst T, Pattison DA, Beaulieu A, Mooi J, Tran B, Guo C, Kalff V, Murphy DG, Jackson P, Eu P, Scalzo M, Williams S, Hicks RJ, Hofman MS. Long-Term Follow-up and Outcomes of Retreatment in an Expanded 50-Patient Single-Center Phase II Prospective Trial of 177Lu-PSMA-617 Theranostics in Metastatic Castration-Resistant Prostate Cancer. J Nucl Med 2019; 61:857-865. [PMID: 31732676 DOI: 10.2967/jnumed.119.236414] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 10/22/2019] [Indexed: 01/19/2023] Open
Abstract
177Lu-PSMA-617 is a radioligand with high affinity for prostate-specific membrane antigen (PSMA), enabling targeted β-irradiation of prostate cancer. We have previously reported favorable activity with low toxicity in a prospective phase II trial involving 30 men with metastatic castration-resistant prostate cancer. We now report their longer-term outcomes, including a 20-patient extension cohort and outcomes of subsequent systemic treatments after completion of trial therapy. Methods: Fifty patients with PSMA-avid metastatic castration-resistant prostate cancer who had progressed after standard therapies received up to 4 cycles of 177Lu-PSMA every 6 wk. Endpoints included prostate-specific antigen (PSA) response (Prostate Cancer Working Group 2), toxicity (Common Terminology Criteria for Adverse Events, version 4.03), imaging response, patient-reported health-related quality of life, progression-free survival, and overall survival. We also describe, as a novel finding, outcomes of men who subsequently progressed and had further systemic therapies, including 177Lu-PSMA. Results: Seventy-five men were screened to identify 50 patients eligible for treatment. Adverse prognostic features of the cohort included short median PSA doubling time (2.3 mo) and extensive prior treatment, including prior docetaxel (84%), cabazitaxel (48%), and abiraterone or enzalutamide (92%). The mean administered radioactivity was 7.5 GBq/cycle. A PSA decline of at least 50% was achieved in 32 of 50 patients (64%; 95% confidence interval [CI], 50%-77%), including 22 patients (44%; 95% CI, 30%-59%) with at least an 80% decrease. Of 27 patients with measurable soft-tissue disease, 15 (56%) achieved an objective response by RECIST 1.1. The most common toxicities attributed to 177Lu-PSMA were self-limiting G1-G2 dry mouth (66%), transient G1-G2 nausea (48%), G3-G4 thrombocytopenia (10%), and G3 anemia (10%). Brief Pain Inventory severity and interference scores decreased at all time points, including at the 3-mo follow-up, with a decrease of -1.2 (95% CI, -0.5 to -1.9; P = 0.001) and -1.0 (95% CI, -0.2 to -0.18; P = 0.013), respectively. At a median follow-up of 31.4 mo, median overall survival was 13.3 mo (95% CI, 10.5-18.7 mo), with a significantly longer survival of 18.4 mo (95% CI, 13.8-23.8 mo) in patients achieving a PSA decline of at least 50%. At progression after prior response, further 177Lu-PSMA was administered to 15 (30%) patients (median of 2 cycles commencing 359 d from enrollment), with a PSA decline of at least 50% in 11 patients (73%). Four of 21 patients (19%) receiving other systemic therapies on progression experienced a PSA decline of at least 50%. There were no unexpected adverse events with 177Lu-PSMA retreatment. Conclusion: This expanded 50-patient cohort of men with extensive prior therapy confirms our earlier report of high response rates, low toxicity, and improved quality of life with 177Lu-PSMA radioligand therapy. On progression, rechallenge 177Lu-PSMA demonstrated higher response rates than other systemic therapies.
Collapse
Affiliation(s)
- John Violet
- Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Shahneen Sandhu
- Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Amir Iravani
- Sir Peter MacCallum Department of Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Molecular Imaging and Therapeutic Nuclear Medicine, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Justin Ferdinandus
- Molecular Imaging and Therapeutic Nuclear Medicine, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Sue-Ping Thang
- Molecular Imaging and Therapeutic Nuclear Medicine, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Grace Kong
- Sir Peter MacCallum Department of Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Molecular Imaging and Therapeutic Nuclear Medicine, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Aravind Ravi Kumar
- Sir Peter MacCallum Department of Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Molecular Imaging and Therapeutic Nuclear Medicine, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Tim Akhurst
- Sir Peter MacCallum Department of Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Molecular Imaging and Therapeutic Nuclear Medicine, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - David A Pattison
- Molecular Imaging and Therapeutic Nuclear Medicine, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Alexis Beaulieu
- Sir Peter MacCallum Department of Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Jennifer Mooi
- Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Ben Tran
- Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Christina Guo
- Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Victor Kalff
- Molecular Imaging and Therapeutic Nuclear Medicine, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Declan G Murphy
- Sir Peter MacCallum Department of Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Division of Cancer Surgery, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; and
| | - Price Jackson
- Medical Physics, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Peter Eu
- Molecular Imaging and Therapeutic Nuclear Medicine, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Mark Scalzo
- Molecular Imaging and Therapeutic Nuclear Medicine, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Scott Williams
- Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Sir Peter MacCallum Department of Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Rodney J Hicks
- Sir Peter MacCallum Department of Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,Molecular Imaging and Therapeutic Nuclear Medicine, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Michael S Hofman
- Sir Peter MacCallum Department of Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia .,Molecular Imaging and Therapeutic Nuclear Medicine, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| |
Collapse
|
43
|
First-in-human dosimetry of gastrin-releasing peptide receptor antagonist [ 177Lu]Lu-RM2: a radiopharmaceutical for the treatment of metastatic castration-resistant prostate cancer. Eur J Nucl Med Mol Imaging 2019; 47:123-135. [PMID: 31482426 DOI: 10.1007/s00259-019-04504-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/22/2019] [Indexed: 12/19/2022]
Abstract
PURPOSE Besides PSMA, prostate cancer cells also express gastrin-releasing peptide receptor (GRPr) which is therefore a promising target for theranostic approaches. The high affinity GRPr antagonist RM2 can be labeled with beta-emitting radiometals for therapeutic purposes. The aim of this study was to calculate absorbed doses for critical organs and tumor lesions for [177Lu]Lu-RM2 therapy administered in a group of metastatic castration-resistant prostate cancer (mCRPC) patients who had insufficient PSMA expression or showed lower PSMA accumulation after previous cycles of [177Lu]Lu-PSMA-617 therapy. METHODS Thirty-five patients suffering from mCRPC without further treatment options for approved therapies were examined with [68Ga]Ga-RM2-PET/CT. Out of these, 4 patients (mean age 68 years) were treated with [177Lu]Lu-RM2; two of these also received a 2nd therapy cycle. Mean activity was 4.5 ± 0.9 GBq. For dosimetry, patients underwent planar WB-scintigraphy and SPECT/CT imaging of the upper and lower abdomen at approximately 1, 24, 48, and 72 h p.i. along with blood sampling. Absorbed doses for kidneys, pancreas, liver, spleen, gallbladder wall, and tumor lesions were derived based on quantitative SPECT/CT according to RADAR dosimetry scheme; individual organ masses were extracted from CT. Absorbed dose to bone marrow was calculated based on serial whole-body images and blood sampling according to the EANM guideline. RESULTS Therapy was well tolerated by all patients and no side effects were observed. An increased uptake in tumor lesions and the pancreas was seen within the first 1 h. Mean absorbed organ doses were 1.08 ± 0.44 Gy/GBq in the pancreas, 0.35 ± 0.14 Gy/GBq in the kidneys, 0.05 ± 0.02 Gy/GBq in the liver, 0.07 ± 0.02 Gy/GBq in the gallbladder wall, 0.10 ± 0.06 Gy/GBq in the spleen, and 0.02 ± 0.01 Gy/GBq for the red bone marrow. The mean dose for tumor lesions was 6.20 ± 3.00 Gy/GBq. CONCLUSIONS Application of GRPr antagonist [177Lu]Lu-RM2 is suitable for targeted radiotherapy of mCRPC as it shows high tumor uptake and rapid clearance from normal organs. Absorbed doses in tumor lesions are therapeutically relevant. The critical organ receiving the highest absorbed dose was the pancreas. Results suggest that the activity administered for each cycle could be increased to maximize the absorbed dose of tumors and metastases.
Collapse
|
44
|
Radioligand Therapy With177Lu-PSMA for Metastatic Castration-Resistant Prostate Cancer: A Systematic Review and Meta-Analysis. AJR Am J Roentgenol 2019; 213:275-285. [DOI: 10.2214/ajr.18.20845] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
45
|
Hoberück S, Wunderlich G, Michler E, Hölscher T, Walther M, Seppelt D, Platzek I, Zöphel K, Kotzerke J. Dual-time-point 64 Cu-PSMA-617-PET/CT in patients suffering from prostate cancer. J Labelled Comp Radiopharm 2019; 62:523-532. [PMID: 31042811 DOI: 10.1002/jlcr.3745] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/12/2019] [Accepted: 04/23/2019] [Indexed: 12/24/2022]
Abstract
Regardless of its high positron energy, 68 Ga-labeled PSMA ligands have become standard of care in metabolic prostate cancer imaging. 64 Cu, a radionuclide with a much longer half-life (12.7 h), is available for PSMA labeling allowing imaging much later than 68 Ga. In this study, the diagnostic performance of 64 Cu-labeled PSMA was compared between early and late scans. Sixteen men (median age: 70 y) with prostate cancer in different stages underwent 64 Cu-PSMA-617-PET/CT 2 and 22 hours post tracer injection. Pathologic and physiologic uptakes were analyzed for both points of time. Pathologic tracer accumulations occurred in 12 patients. Five patients presented with pathologic uptake in 17 different lymph nodes, two patients showed pathologic bone uptake in nine lesions, and seven patients had pathologic PSMA uptake in eight prostatic lesions. Physiologic uptake of the renal parenchyma, urine bladder, and salivary glands decreased over time, while the physiologic uptake of liver and bowel increased. In the present study, 64 Cu-PSMA-617-PET demonstrated to be feasible for imaging prostate cancer for both the primary tumor site and metastases. Later imaging showed no additional, clinically relevant benefit compared with the early scans. At least the investigated time points we chose did not vindicate the additional expenditure.
Collapse
Affiliation(s)
- Sebastian Hoberück
- Department of Nuclear Medicine, Faculty of Medicine, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Gerd Wunderlich
- Department of Nuclear Medicine, Faculty of Medicine, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Enrico Michler
- Department of Nuclear Medicine, Faculty of Medicine, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Tobias Hölscher
- Department of Radiotherapy and Radiation Oncology, Faculty of Medicine, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Martin Walther
- Institute of Radiopharmacy, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Danilo Seppelt
- Department of Radiology, Faculty of Medicine, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Ivan Platzek
- Department of Radiology, Faculty of Medicine, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Klaus Zöphel
- Department of Nuclear Medicine, Faculty of Medicine, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Jörg Kotzerke
- Department of Nuclear Medicine, Faculty of Medicine, University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| |
Collapse
|
46
|
Choudhury PS, Gupta M. Theranostics in India: a Particularly Exquisite Concept or an Experimental Tool. Nucl Med Mol Imaging 2019; 53:92-95. [PMID: 31057679 PMCID: PMC6473004 DOI: 10.1007/s13139-019-00577-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/13/2019] [Accepted: 01/13/2019] [Indexed: 12/17/2022] Open
Abstract
The term theranostics is a combination of a diagnostic tool that helps to define a right therapeutic tool for specific disease and paves the approach towards personalized or precision medicine. In Nuclear Medicine, a diagnostic radionuclide is labeled with the target and once expression is documented, the same target is labeled with a therapeutic radionuclide and treatment is executed. The theranostic concept was applied first time in 1964 in the treatment of thyroid cancer with I-131 (RAI). Over the years, other theranostic radiotracers became available indigenously from the Bhabha Atomic Research Centre (BARC) in the country. Currently Lu-177 is produced in India and peptides like DOTATATE and PSMA are available in a kit form indigenously. At the present time, the radionuclide therapies of oncological disorders which are being performed in India are mainly for neuroendocrine tumors (NET) and metastatic castration resistant prostate cancer (mCRPC). The main constraints pertaining to this concept is the cost of treatment and awareness among the clinicians which are gradually being taken care of by the private health insurance and our participation in disease management group meetings respectively. The theranostic concept has become popular over the years and has the potential for sustained growth.
Collapse
Affiliation(s)
- Partha S. Choudhury
- Department of Nuclear Medicine, Rajiv Gandhi Cancer Institute and Research Centre Delhi, New Delhi, India
| | - Manoj Gupta
- Department of Nuclear Medicine, Rajiv Gandhi Cancer Institute and Research Centre Delhi, New Delhi, India
| |
Collapse
|
47
|
Abstract
The current mainstay of treatment in metastatic prostate cancer is based on hormonal manipulations. Standard androgen deprivation therapy and novel androgen axis drugs are commonly well tolerable and can stabilize metastatic hormone-sensitive prostate cancers for years. However, metastatic castration-resistant prostate cancer is still challenging to treat. Except taxanes, prostate cancer presents intrinsic resistance against conventional chemotherapies. The typically elderly patient population excludes more aggressive treatment regimens. First clinical trials evaluating immunotherapy or tyrosine-kinase-inhibitors against prostate cancer failed. In contrast, prostate cancer can be radiosensitive and external beam radiotherapy is effective in localized prostate cancer, thus providing a good rationale for the use of systemic radiopharmaceuticals in the metastatic setting. Beta-particle emitting "bone-seekers" have a long history and are effective as analgesics but do not improve survival because they are limited by red-marrow dose. Alpha emitting 223Radium can be used in a dose that prolongs survival but is restricted to bone-confined patients. Currently radiolabeled high-affinity ligands to the prostate-specific membrane antigen are in clinical evaluation. While radioimmunotherapy approaches were limited by the long circulation time and slow tumor-accumulation of antibodies, low molecular weight PSMA-specific ligands offer an approx. ten-fold improved tumor to red-marrow ratio in comparison to the unspecific bone-seekers. Early clinical studies demonstrate that regarding surrogate markers, such as >50% PSA reduction (60%) and radiologic response (80%), PSMA-therapy exceeds the antitumor activity of all approved or other recently tested compounds; for example, PSA-response was only observed in approx. a total of 10% of patients treated with ipilimumab, sunitinib, cabozantinib, or xofigo, respectively and in approx. 30, 40, 50% of patients treated with abiraterone, cabazitaxel, or enzalutamide. Also progression free and overall survivals of these single-arm studies appear promising when compared to historical controls. Consecutively, the first PSMA-RLT recently advanced into phase-3 (177Lu-PSMA-617; VISION-trial). Future developments aim to avoid off-target radiation by ligand-optimization and to outperform the antitumor activity of beta-emitter PSMA-RLT by labeling with highly focused, high energy transferring alpha-nuclides; however the latter potentially also increasing the risk of side-effects and additional early phase studies are needed to improve treatment protocols. Academically clinical research is developing prognostic tools to improve treatment benefit by selecting the most appropriate patients in advance.
Collapse
Affiliation(s)
- Clemens Kratochwil
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany.
| | - Uwe Haberkorn
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany; Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frederik L Giesel
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
48
|
Violet J, Jackson P, Ferdinandus J, Sandhu S, Akhurst T, Iravani A, Kong G, Kumar AR, Thang SP, Eu P, Scalzo M, Murphy D, Williams S, Hicks RJ, Hofman MS. Dosimetry of 177Lu-PSMA-617 in Metastatic Castration-Resistant Prostate Cancer: Correlations Between Pretherapeutic Imaging and Whole-Body Tumor Dosimetry with Treatment Outcomes. J Nucl Med 2018; 60:517-523. [PMID: 30291192 DOI: 10.2967/jnumed.118.219352] [Citation(s) in RCA: 312] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 09/17/2018] [Indexed: 01/15/2023] Open
Abstract
177Lu-prostate-specific membrane antigen (PSMA)-617 enables targeted delivery of β-particle radiation to prostate cancer. We determined its radiation dosimetry and relationships to pretherapeutic imaging and outcomes. Methods: Thirty patients with prostate cancer receiving 177Lu-PSMA-617 within a prospective clinical trial (ACTRN12615000912583) were studied. Screening 68Ga-PSMA-11 PET/CT demonstrated high PSMA expression in all patients. After therapy, patients underwent quantitative SPECT/CT at 4, 24, and 96 h. Pharmacokinetic uptake and clearance at a voxel level were calculated and translated into absorbed dose using voxel S values. Volumes of interest were drawn on normal tissues and tumor to assess radiation dose, and a whole-body tumor dose was defined. Correlations between PSMA PET/CT parameters, dosimetry, and biochemical and therapeutic response were analyzed to identify relationships between absorbed dose, tumor burden, and patient physiology. Results: Mean absorbed dose to kidneys, submandibular and parotid glands, liver, spleen, and bone marrow was 0.39, 0.44, 0.58, 0.1, 0.06, and 0.11 Gy/MBq, respectively. Median whole-body tumor-absorbed dose was 11.55 Gy and correlated with prostate-specific antigen (PSA) response at 12 wk. A median dose of 14.1 Gy was observed in patients achieving a PSA decline of at least 50%, versus 9.6 Gy for those achieving a PSA decline of less than 50% (P < 0.01). Of 11 patients receiving a tumor dose of less than 10 Gy, only one achieved a PSA response of at least 50%. On screening PSMA PET, whole-body tumor SUVmean correlated with mean absorbed dose (r = 0.62), and SUVmax of the parotids correlated with absorbed dose (r = 0.67). There was an inverse correlation between tumor volume and mean dose to the parotids (r = -0.41) and kidneys (r = -0.43). The mean parotid dose was also reduced with increasing body mass (r = -0.41) and body surface area (r = -0.37). Conclusion: 177Lu-PSMA-617 delivers high absorbed doses to tumor, with a significant correlation between whole-body tumor dose and PSA response. Patients receiving less than 10 Gy were unlikely to achieve a fall in PSA of at least 50%. Significant correlations between aspects of screening 68Ga-PET/CT and tumor and normal tissue dose were observed, providing a rationale for patient-specific dosing. Reduced salivary and kidney doses were observed in patients with a higher tumor burden. The parotid dose also reduced with increasing body mass and body surface area.
Collapse
Affiliation(s)
- John Violet
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Price Jackson
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia.,Department of Molecular Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Justin Ferdinandus
- Department of Molecular Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Shahneen Sandhu
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Tim Akhurst
- Department of Molecular Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Amir Iravani
- Department of Molecular Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Grace Kong
- Department of Molecular Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Aravind Ravi Kumar
- Department of Molecular Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Sue Ping Thang
- Department of Molecular Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Peter Eu
- Department of Molecular Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Mark Scalzo
- Department of Molecular Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Declan Murphy
- Department of Uro-Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia; and.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Scott Williams
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Rodney J Hicks
- Department of Molecular Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | - Michael S Hofman
- Department of Molecular Imaging, Peter MacCallum Cancer Centre, Melbourne, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| |
Collapse
|
49
|
177Lu–Prostate-Specific Membrane Antigen Super Scan and Good Response Even After 1 Cycle of Radioligand Therapy. Clin Nucl Med 2018; 43:273-275. [DOI: 10.1097/rlu.0000000000001986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
50
|
Taïeb D, Foletti JM, Bardiès M, Rocchi P, Hicks RJ, Haberkorn U. PSMA-Targeted Radionuclide Therapy and Salivary Gland Toxicity: Why Does It Matter? J Nucl Med 2018; 59:747-748. [PMID: 29439016 DOI: 10.2967/jnumed.118.207993] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 01/09/2018] [Indexed: 11/16/2022] Open
Affiliation(s)
- David Taïeb
- Department of Nuclear Medicine, La Timone University Hospital, CERIMED, Aix-Marseille University, Marseille, France
| | - Jean-Marc Foletti
- Aix-Marseille University, APHM, IFSTTAR, LBA, Hôpital de la Conception, Chirurgie Maxillo-Faciale, Marseille, France
| | - Manuel Bardiès
- Inserm, UMR1037, CRCT, Toulouse, France.,Université Toulouse III-Paul Sabatier, UMR1037, CRCT, Toulouse, France
| | - Palma Rocchi
- Inserm, UMR1068, CRCM, Aix-Marseille University, Marseille, France
| | - Rodney J Hicks
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Uwe Haberkorn
- Department of Nuclear Medicine, University Hospital Heidelberg, Heidelberg, Germany; and.,Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|