1
|
Aziz N, Nabi W, Khan M, Gulzar AHB, Rath S, Cheema AAA, Arshad MA, Hussain F, Titus A, Lal A, Anwar F. Analyzing Two Decades of Leukemia Mortality in the U.S. (1999-2020). CLINICAL LYMPHOMA MYELOMA AND LEUKEMIA 2025. [DOI: https:/doi.org/10.1016/j.clml.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
|
2
|
Bozzarelli I, Orsini A, Isidori F, Mastracci L, Malvi D, Lugaresi M, Fittipaldi S, Gozzellino L, Astolfi A, Räsänen J, D’Errico A, Rosati R, Fiocca R, Seri M, Krishnadath KK, Bonora E, Mattioli S. miRNA-221 and miRNA-483-3p Dysregulation in Esophageal Adenocarcinoma. Cancers (Basel) 2024; 16:591. [PMID: 38339342 PMCID: PMC10854562 DOI: 10.3390/cancers16030591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Alterations in microRNA (miRNA) expression have been reported in different cancers. We assessed the expression of 754 oncology-related miRNAs in esophageal adenocarcinoma (EAC) samples and evaluated their correlations with clinical parameters. We found that miR-221 and 483-3p were consistently upregulated in EAC patients vs. controls (Wilcoxon signed-rank test: miR-221 p < 0.0001; miR-483-3p p < 0.0001). Kaplan-Meier analysis showed worse cancer-related survival among all EAC patients expressing high miR-221 or miR-483-3p levels (log-rank p = 0.0025 and p = 0.0235, respectively). Higher miR-221 or miR-483-3p levels also correlated with advanced tumor stages (Mann-Whitney p = 0.0195 and p = 0.0085, respectively), and overexpression of miR-221 was associated with worse survival in low-risk EAC patients. Moreover, a significantly worse outcome was associated with the combined overexpression of miR-221 and miR-483-3p (log-rank p = 0.0410). To identify target genes affected by miRNA overexpression, we transfected the corresponding mimic RNA (miRVANA) for either miR-221 or miR-483-3p in a well-characterized esophageal adenocarcinoma cell line (OE19) and performed RNA-seq analysis. In the miRNA-overexpressing cells, we discovered a convergent dysregulation of genes linked to apoptosis, ATP synthesis, angiogenesis, and cancer progression, including a long non-coding RNA associated with oncogenesis, i.e., MALAT1. In conclusion, dysregulated miRNA expression, especially overexpression of miR-221 and 483-3p, was found in EAC samples. These alterations were connected with a lower cancer-specific patient survival, suggesting that these miRNAs could be useful for patient stratification and prognosis.
Collapse
Affiliation(s)
- Isotta Bozzarelli
- Gastrointestinal Genetics Lab, CIC bioGUNE—BRTA, 48160 Derio, Spain;
| | - Arianna Orsini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, via Massarenti 9, 40138 Bologna, Italy (L.G.); (M.S.)
| | - Federica Isidori
- Dipartimento di Genetica Medica, IRCCS Azienda Ospedaliero–Universitaria di Bologna, University of Bologna, via Massarenti 9, 40138 Bologna, Italy; (F.I.); (D.M.); (M.L.); (S.F.); (A.D.)
| | - Luca Mastracci
- Pathology Unit, Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16100 Genoa, Italy; (L.M.); (R.F.)
- IRCCS Ospedale Policlinico San Martino, 16100 Genoa, Italy
| | - Deborah Malvi
- Dipartimento di Genetica Medica, IRCCS Azienda Ospedaliero–Universitaria di Bologna, University of Bologna, via Massarenti 9, 40138 Bologna, Italy; (F.I.); (D.M.); (M.L.); (S.F.); (A.D.)
- Institute of Oncology and Transplant Pathology, University of Bologna, 40126 Bologna, Italy
| | - Marialuisa Lugaresi
- Dipartimento di Genetica Medica, IRCCS Azienda Ospedaliero–Universitaria di Bologna, University of Bologna, via Massarenti 9, 40138 Bologna, Italy; (F.I.); (D.M.); (M.L.); (S.F.); (A.D.)
| | - Silvia Fittipaldi
- Dipartimento di Genetica Medica, IRCCS Azienda Ospedaliero–Universitaria di Bologna, University of Bologna, via Massarenti 9, 40138 Bologna, Italy; (F.I.); (D.M.); (M.L.); (S.F.); (A.D.)
| | - Livia Gozzellino
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, via Massarenti 9, 40138 Bologna, Italy (L.G.); (M.S.)
| | - Annalisa Astolfi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, via Massarenti 9, 40138 Bologna, Italy (L.G.); (M.S.)
| | - Jari Räsänen
- Department of Cardiothoracic Surgery, University of Helsinki and Helsinki University Hospital, 00100 Helsinki, Finland;
| | - Antonia D’Errico
- Dipartimento di Genetica Medica, IRCCS Azienda Ospedaliero–Universitaria di Bologna, University of Bologna, via Massarenti 9, 40138 Bologna, Italy; (F.I.); (D.M.); (M.L.); (S.F.); (A.D.)
- Institute of Oncology and Transplant Pathology, University of Bologna, 40126 Bologna, Italy
| | - Riccardo Rosati
- Department of Gastrointestinal Surgery, San Raffaele Hospital, Vita–Salute San Raffaele University, 20132 Milan, Italy;
| | - Roberto Fiocca
- Pathology Unit, Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, 16100 Genoa, Italy; (L.M.); (R.F.)
- IRCCS Ospedale Policlinico San Martino, 16100 Genoa, Italy
| | - Marco Seri
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, via Massarenti 9, 40138 Bologna, Italy (L.G.); (M.S.)
- Dipartimento di Genetica Medica, IRCCS Azienda Ospedaliero–Universitaria di Bologna, University of Bologna, via Massarenti 9, 40138 Bologna, Italy; (F.I.); (D.M.); (M.L.); (S.F.); (A.D.)
| | - Kausilia K. Krishnadath
- Laboratory of Experimental Medicine and Pediatrics (LEMP), Department of Gastroenterology and Hepatology, University Hospital Antwerp, University of Antwerp, 2180 Antwerp, Belgium;
| | - Elena Bonora
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, via Massarenti 9, 40138 Bologna, Italy (L.G.); (M.S.)
- Dipartimento di Genetica Medica, IRCCS Azienda Ospedaliero–Universitaria di Bologna, University of Bologna, via Massarenti 9, 40138 Bologna, Italy; (F.I.); (D.M.); (M.L.); (S.F.); (A.D.)
| | - Sandro Mattioli
- Division of Thoracic Surgery, Maria Cecilia Hospital, 48010 Cotignola, Italy;
| |
Collapse
|
3
|
Greco M, Mirabelli M, Salatino A, Accattato F, Aiello V, Brunetti FS, Chiefari E, Pullano SA, Fiorillo AS, Foti DP, Brunetti A. From Euglycemia to Recent Onset of Type 2 Diabetes Mellitus: A Proof-of-Concept Study on Circulating microRNA Profiling Reveals Distinct, and Early microRNA Signatures. Diagnostics (Basel) 2023; 13:2443. [PMID: 37510186 PMCID: PMC10377827 DOI: 10.3390/diagnostics13142443] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Background and aim-Alterations in circulating microRNA (miRNA) expression patterns are thought to be involved in the early stages of prediabetes, as well as in the progression to overt type 2 diabetes mellitus (T2D) and its vascular complications. However, most research findings are conflicting, in part due to differences in miRNA extraction and normalization methods, and in part due to differences in the study populations and their selection. This cross-sectional study seeks to find new potentially useful biomarkers to predict and/or diagnose T2D by investigating the differential expression patterns of circulating miRNAs in the serum of patients with impaired fasting glucose (IFG) and new-onset T2D, with respect to euglycemic controls, using a high-throughput 384-well array and real-time PCR. Methods-Thirty subjects, aged 45-65 years, classified into three matched groups (of 10 participants each) according to their glycometabolic status, namely (1) healthy euglycemic controls, (2) patients with IFG and (3) patients with new-onset, uncomplicated T2D (<2 years since diagnosis) were enrolled. Circulating miRNAs were extracted from blood serum and profiled through real-time PCR on a commercial 384 well-array, containing spotted forward primers for 372 miRNAs. Data analysis was performed by using the online data analysis software GeneGlobe and normalized by the global Ct mean method. Results-Of the 372 analyzed miRNAs, 33 showed a considerably different expression in IFG and new-onset T2D compared to healthy euglycemic controls, with 2 of them down-regulated and 31 up-regulated. Stringent analysis conditions, using a differential fold regulation threshold ≥ 10, revealed that nine miRNAs (hsa-miR-3610, hsa-miR-3200-5p, hsa-miR-4651, hsa-miR-3135b, hsa-miR-1281, hsa-miR-4301, hsa-miR-195-5p, hsa-miR-523-5p and hsa-let-7a-5p) showed a specific increase in new-onset T2D patients compared to IFG patients, suggesting their possible role as early biomarkers of progression from prediabetes to T2D. Moreover, by conventional fold regulation thresholds of ±2, hsa-miR-146a-5p was down-regulated and miR-1225-3p up-regulated in new-onset T2D patients only. Whereas hsa-miR-146a-5p has a well-known role in glucose metabolism, insulin resistance and T2D complications, no association between hsa-miR-1225-3p and T2D has been previously reported. Bioinformatic and computational analysis predict a role of hsa-miR-1225-3p in the pathogenesis of T2D through the interaction with MAP3K1 and HMGA1. Conclusions-The outcomes of this study could aid in the identification and characterization of circulating miRNAs as potential novel biomarkers for the early diagnosis of T2D and may serve as a proof-of-concept for future mechanistic investigations.
Collapse
Affiliation(s)
- Marta Greco
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Maria Mirabelli
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Alessandro Salatino
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Accattato
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Vincenzo Aiello
- Department of Precision Medicine, Vanvitelli University, 80133 Naples, Italy
| | - Francesco S Brunetti
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Eusebio Chiefari
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Salvatore A Pullano
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Antonino S Fiorillo
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Daniela P Foti
- Department of Experimental and Clinical Medicine, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| | - Antonio Brunetti
- Department of Health Sciences, University "Magna Græcia" of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
4
|
Factors influencing circulating microRNAs as biomarkers for liver diseases. Mol Biol Rep 2022; 49:4999-5016. [DOI: 10.1007/s11033-022-07170-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/19/2022] [Indexed: 11/09/2022]
|
5
|
Wang D, Lin M, Utz B, Bosompem A, Guo Y, Daneshbod Y, Alford CE, Nettles SA, Scher J, Gagne EY, O'Neill M, Barrow L, Wojciechowska N, Keegan J, Mosse CA, Lederer JA, Kim AS. miR-378-3p Knockdown Recapitulates Many of the Features of Myelodysplastic Syndromes. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:2009-2022. [PMID: 34364880 PMCID: PMC8579243 DOI: 10.1016/j.ajpath.2021.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/26/2021] [Accepted: 07/08/2021] [Indexed: 11/19/2022]
Abstract
Myelodysplastic syndromes (MDS) are clonal neoplasms of the hematopoietic stem cell that result in aberrant differentiation of hematopoietic lineages caused by a wide range of underlying genetic, epigenetic, and other causes. Despite the myriad origins, a recognizable MDS phenotype has been associated with miRNA aberrant expression. A model of aberrant myeloid maturation that mimics MDS was generated using a stable knockdown of miR-378-3p. This model exhibited a transcriptional profile indicating aberrant maturation and function, immunophenotypic and morphologic dysplasia, and aberrant growth that characterizes MDS. Moreover, aberrant signal transduction in response to stimulation specific to the stage of myeloid maturation as indicated by CyTOF mass cytometry was similar to that found in samples from patients with MDS. The aberrant signaling, immunophenotypic changes, cellular growth, and colony formation ability seen in this myeloid model could be reversed with azacytidine, albeit without significant improvement of neutrophil function.
Collapse
Affiliation(s)
- Dahai Wang
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Miao Lin
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Begum Utz
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Amma Bosompem
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yan Guo
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yahya Daneshbod
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Catherine E Alford
- Department of Pathology, Tennessee Valley Healthcare System, Veterans Affairs, Nashville, Tennessee
| | - Sabin A Nettles
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jonathan Scher
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Emma Y Gagne
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Maria O'Neill
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Lia Barrow
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Natalia Wojciechowska
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Joshua Keegan
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Claudio A Mosse
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Pathology, Tennessee Valley Healthcare System, Veterans Affairs, Nashville, Tennessee
| | - James A Lederer
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Annette S Kim
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
6
|
Bhatnagar B, Garzon R. Clinical Applications of MicroRNAs in Acute Myeloid Leukemia: A Mini-Review. Front Oncol 2021; 11:679022. [PMID: 34458136 PMCID: PMC8385666 DOI: 10.3389/fonc.2021.679022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/13/2021] [Indexed: 01/19/2023] Open
Abstract
MicroRNAs (miRs) are short non-coding RNAs, typically 18-25 nucleotides in length, that are critically important, through their direct effects on target mRNAs, in a variety of cellular processes including cell differentiation, proliferation and survival. Dysregulated miR expression has been identified in numerous cancer types including acute myeloid leukemia (AML). From a clinical standpoint, several miRs have been shown to associate with prognosis in AML patients. Furthermore, they also carry the potential to be used as biomarkers and to inform medical decision making. In addition, several preclinical studies have provided strong rationale to develop novel therapeutic strategies to target miRs in AML. This review will focus on potential clinical applications of miRs in adult AML and will discuss unique miR signatures in specific AML subtypes, their role in prognostication and response to therapy, as well as miRs that are promising therapeutic targets and ongoing clinical trials directed towards targeting clinically relevant miRs in AML that could allow for improvements in current treatment strategies.
Collapse
Affiliation(s)
- Bhavana Bhatnagar
- Division of Hematology and Medical Oncology, West Virginia University Cancer Institute, Schiffler Cancer Center, Wheeling, WV, United States
| | - Ramiro Garzon
- Division of Hematology, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States.,The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| |
Collapse
|
7
|
Kheradmand P, Vallian Boroojeni S, Esmaeili-Mahani S. MiR-221 Expression Level Correlates with Insulin-Induced Doxorubicin Resistance in MCF-7 Breast Cancer Cells. CELL JOURNAL 2021; 23:329-334. [PMID: 34308576 PMCID: PMC8286461 DOI: 10.22074/cellj.2021.7153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 01/08/2020] [Indexed: 11/13/2022]
Abstract
Objective Insulin induces anti-cancer drugs resistance in tumor cells. However, the mechanism by which insulin
induces its drug resistance effects is not clear. In the present study, the expression of miR-221 in insulin-treated MCF-7
cells in response to the anti-cancer drug doxorubicin, was investigated.
Materials and Methods In this experimental study, cell viability was evaluated using MTT (3-[4,5 dimethylthiazol-2-
yl]-2,5-diphenyl tetrazolium bromide) assay. The expression level of miR-221 was determined by real time polymerase
chain reaction (RT-PCR). Furthermore, the expression of insulin receptor (IR) and cleaved caspase-3 protein was
assessed by Western blotting.
Results The results showed that treatment of the MCF-7 cells with insulin reduced the anti-cancer effects of
doxorubicin. Viability of naive and insulin-treated cells following doxorubicin (DOX) treatment was 62.9 ± 5.7% and 79
± 7.2%, respectively. Furthermore, the expression of miR-221 in insulin-treated cells was significantly increased (2.6
± 0.37-fold change) as compared with the control group. A significant decrease (26%) in the expression of caspase-3
protein and a significant increase (24%) in IR were observed in insulin-induced drug resistant MCF-7 cells as compared
to the naive cells.
Conclusion Together, the data showed a positive correlation between the expression of miR-221 and IR expression,
but a negative correlation with caspase3 expression, in insulin-induced drug resistant MCF-7 breast cancer cells. This
could suggest a new mechanism for the role of miR-221 in cancer drugs resistance induced by insulin.
Collapse
Affiliation(s)
- Parisa Kheradmand
- Department of Cellular and Molecular Biology and Microbology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | - Sadeq Vallian Boroojeni
- Department of Cellular and Molecular Biology and Microbology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran.
| | | |
Collapse
|
8
|
Zamani A, Fattahi Dolatabadi N, Houshmand M, Nabavizadeh N. miR-324-3p and miR-508-5p expression levels could serve as potential diagnostic and multidrug-resistant biomarkers in childhood acute lymphoblastic leukemia. Leuk Res 2021; 109:106643. [PMID: 34147937 DOI: 10.1016/j.leukres.2021.106643] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 11/18/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is one of the most frequent hematological malignancies in children, representing approximately 25 % of all pediatric cancers. Despite striking advances in ALL treatments, a small population of patients does not still respond to chemotherapy, raising the number of deaths in children. ABC transporters are one of the major causes of multidrug resistance (MDR) in cancers and overexpression of ABCA3 is directly associated with increased chemo-resistance in pediatric ALL. Here, we aimed to identify the microRNAs (miRNAs) which may regulate the expression of ABCA3 in childhood ALL. Bone marrow samples from a total of 50 ALLs and 59 controls were collected and after in silico and literature search, miR-324-3p and miR-508-5p were nominated from a list of putative miRNAs targeting ABCA3. Our qPCR analysis showed a low expression profile of selected miRNAs in pediatric ALL patients compared with non-cancer controls. Furthermore, we found that both miR-324-3p and miR-508-5p were significantly differentially expressed between patients with positive and negative minimal residual disease (MRD + vs MRD-) after one year of chemotherapy while only miR-508-5p was underexpressed in relapsed ALL patients. Additionally, a negative correlation was identified between the expression of these two miRNAs and ABCA3, supporting the regulatory effect of them on drug resistance through interacting with ABCA3. Overall, we suggested miR-324-3p and miR-508-5p as potential diagnostic and drug-resistant biomarkers in pediatric ALL. Moreover, our findings presented miR-508-5p to behave as a promising relapsed indicator in childhood ALL which can be applied in the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Atefeh Zamani
- Department of Genetics, High Institute Nour Danesh, Meymeh, Isfahan, Iran; Gene Raz Bu Ali, Genetic and Biotechnology Academy, Isfahan, Iran
| | | | - Massoud Houshmand
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| | - Nasrinsadat Nabavizadeh
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| |
Collapse
|
9
|
Kovynev IB, Titov SE, Ruzankin PS, Agakishiev MM, Veryaskina YA, Nedel’ko VM, Pospelova TI, Zhimulev IF. Profiling 25 Bone Marrow microRNAs in Acute Leukemias and Secondary Nonleukemic Hematopoietic Conditions. Biomedicines 2020; 8:biomedicines8120607. [PMID: 33327422 PMCID: PMC7764834 DOI: 10.3390/biomedicines8120607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/08/2020] [Accepted: 12/12/2020] [Indexed: 11/21/2022] Open
Abstract
Introduction: The standard treatment of acute leukemias (AL) is becoming more efficacious and more selective toward the mechanisms via which to suppress hematologic cancers. This tendency in hematology imposes additional requirements on the identification of molecular-genetic features of tumor clones. MicroRNA (miRNA, miR) expression levels correlate with cytogenetic and molecular subtypes of acute leukemias recognized by classification systems. The aim of this work is analyzing the miRNA expression profiles in acute myeloblastic leukemia (AML) and acute lymphoblastic leukemia (ALL) and hematopoietic conditions induced by non-tumor pathologies (NTP). Methods: A total of 114 cytological samples obtained by sternal puncture and aspiration biopsy of bone marrow (22 ALLs, 44 AMLs, and 48 NTPs) were analyzed by real-time PCR regarding preselected 25 miRNAs. For the classification of the samples, logistic regression was used with balancing of comparison group weights. Results: Our results indicated potential feasibility of (i) differentiating ALL+AML from a nontumor hematopoietic pathology with 93% sensitivity and 92% specificity using miR-150:miR-21, miR-20a:miR-221, and miR-24:nf3 (where nf3 is a normalization factor calculated from threshold cycle values of miR-103a, miR-191, and miR-378); (ii) diagnosing ALL with 81% sensitivity and 81% specificity using miR-181b:miR-100, miR-223:miR-124, and miR-24:nf3; and (iii) diagnosing AML with 81% sensitivity and 84% specificity using miR-150:miR-221, miR-100:miR-24, and miR-181a:miR-191. Conclusion: The results presented herein allow the miRNA expression profile to de used for differentiation between AL and NTP, no matter what AL subtype.
Collapse
Affiliation(s)
- Igor B. Kovynev
- Department of Therapy, Hematology and Transfusiology, Novosibirsk State Medical University, 630091 Novosibirsk, Russia; (I.B.K.); (M.M.A.); (T.I.P.)
| | - Sergei E. Titov
- Laboratory of Molecular Genetics, Department of the Structure and Function of Chromosomes, Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (S.E.T.); (I.F.Z.)
- AO Vector-Best, 630117 Novosibirsk, Russia
| | - Pavel S. Ruzankin
- Sobolev Institute of Mathematics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (P.S.R.); (V.M.N.)
- Department of Mathematics and Mechanics, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Mechti M. Agakishiev
- Department of Therapy, Hematology and Transfusiology, Novosibirsk State Medical University, 630091 Novosibirsk, Russia; (I.B.K.); (M.M.A.); (T.I.P.)
- Department of Hematology, City Clinical Hospital #2, 630051 Novosibirsk, Russia
| | - Yuliya A. Veryaskina
- Laboratory of Molecular Genetics, Department of the Structure and Function of Chromosomes, Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (S.E.T.); (I.F.Z.)
- Laboratory of Gene Engineering, Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Correspondence:
| | - Viktor M. Nedel’ko
- Sobolev Institute of Mathematics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (P.S.R.); (V.M.N.)
- Department of Mathematics and Mechanics, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Tatiana I. Pospelova
- Department of Therapy, Hematology and Transfusiology, Novosibirsk State Medical University, 630091 Novosibirsk, Russia; (I.B.K.); (M.M.A.); (T.I.P.)
| | - Igor F. Zhimulev
- Laboratory of Molecular Genetics, Department of the Structure and Function of Chromosomes, Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (S.E.T.); (I.F.Z.)
| |
Collapse
|
10
|
Chebly A, Chouery E, Ropio J, Kourie HR, Beylot-Barry M, Merlio JP, Tomb R, Chevret E. Diagnosis and treatment of lymphomas in the era of epigenetics. Blood Rev 2020; 48:100782. [PMID: 33229141 DOI: 10.1016/j.blre.2020.100782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/05/2020] [Accepted: 10/15/2020] [Indexed: 12/19/2022]
Abstract
Lymphomas represent a heterogeneous group of cancers characterized by clonal lymphoproliferation. Over the past decades, frequent epigenetic dysregulations have been identified in hematologic malignancies including lymphomas. Many of these impairments occur in genes with established roles and well-known functions in the regulation and maintenance of the epigenome. In hematopoietic cells, these dysfunctions can result in abnormal DNA methylation, erroneous chromatin state and/or altered miRNA expression, affecting many different cellular functions. Nowadays, it is evident that epigenetic dysregulations in lymphoid neoplasms are mainly caused by genetic alterations in genes encoding for enzymes responsible for histone or chromatin modifications. We summarize herein the recent epigenetic modifiers findings in lymphomas. We focus also on the most commonly mutated epigenetic regulators and emphasize on actual epigenetic therapies.
Collapse
Affiliation(s)
- Alain Chebly
- Bordeaux University, INSERM U1053 Bordeaux Research in Translational Oncology (BaRITOn), Cutaneous Lymphoma Oncogenesis Team, F-33000 Bordeaux, France; Saint Joseph University, Faculty of Medicine, Medical Genetics Unit (UGM), Beirut, Lebanon
| | - Eliane Chouery
- Saint Joseph University, Faculty of Medicine, Medical Genetics Unit (UGM), Beirut, Lebanon
| | - Joana Ropio
- Bordeaux University, INSERM U1053 Bordeaux Research in Translational Oncology (BaRITOn), Cutaneous Lymphoma Oncogenesis Team, F-33000 Bordeaux, France; Porto University, Institute of Biomedical Sciences of Abel Salazar, 4050-313 Porto, Instituto de Investigação e Inovação em Saúde, 4200-135 Porto, Institute of Molecular Pathology and Immunology (Ipatimup), Cancer Biology group, 4200-465 Porto, Portugal
| | - Hampig Raphael Kourie
- Saint Joseph University, Faculty of Medicine, Medical Genetics Unit (UGM), Beirut, Lebanon; Saint Joseph University, Faculty of Medicine, Hematology-Oncology Department, Beirut, Lebanon
| | - Marie Beylot-Barry
- Bordeaux University, INSERM U1053 Bordeaux Research in Translational Oncology (BaRITOn), Cutaneous Lymphoma Oncogenesis Team, F-33000 Bordeaux, France; Bordeaux University Hospital Center, Dermatology Department, 33000 Bordeaux, France
| | - Jean-Philippe Merlio
- Bordeaux University, INSERM U1053 Bordeaux Research in Translational Oncology (BaRITOn), Cutaneous Lymphoma Oncogenesis Team, F-33000 Bordeaux, France; Bordeaux University Hospital Center, Tumor Bank and Tumor Biology Laboratory, 33600 Pessac, France
| | - Roland Tomb
- Saint Joseph University, Faculty of Medicine, Medical Genetics Unit (UGM), Beirut, Lebanon; Saint Joseph University, Faculty of Medicine, Dermatology Department, Beirut, Lebanon
| | - Edith Chevret
- Bordeaux University, INSERM U1053 Bordeaux Research in Translational Oncology (BaRITOn), Cutaneous Lymphoma Oncogenesis Team, F-33000 Bordeaux, France.
| |
Collapse
|
11
|
Nair RA, Verma VK, Beevi SS, Rawoof A, Alexander LE, Prasad ER, Kumari PK, Kumar P, Dinesh Kumar L. MicroRNA Signatures in Blood or Bone Marrow Distinguish Subtypes of Pediatric Acute Lymphoblastic Leukemia. Transl Oncol 2020; 13:100800. [PMID: 32531485 PMCID: PMC7292917 DOI: 10.1016/j.tranon.2020.100800] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 12/18/2022] Open
Abstract
OncomiRs are microRNAs that are associated with early onset of specific cancers. To identify microRNAs involved in pediatric acute lymphoblastic leukemia (ALL) subtypes T-ALL and B-ALL, peripheral blood and bone marrow samples were independently subjected to microarray analysis using two different high-fidelity array platforms. The unique and common gene signatures from both arrays were validated by TaqMan individual assays in 100 pediatric ALL samples. Survival studies were carried out in the test set and validation set with 50 randomly selected samples in each set. MicroRNA expression profile revealed characteristic signatures for distinguishing T and B lineages and identified 51 novel microRNAs in pediatric ALL. Interestingly, the present study also revealed endogenous similarities and differences between blood and bone marrow within each ALL subtype. When Cox regression analysis was carried out with these identified microRNAs, 11 of them exhibited expression levels significantly correlated with survival. Validation of some of the common and relevant microRNAs from both arrays showed that their targets are involved in key oncogenic signaling pathways. Thus, this study suggests that microRNAs have the potential to become important diagnostic tools for identification and monitoring clinical outcomes in ALL patients.
Collapse
Affiliation(s)
- Rekha A Nair
- Department of Pathology and Medical oncology, Regional Cancer Centre (RCC), Medical College Campus, Trivandrum, 695011, India
| | - Vinod Kumar Verma
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, (CCMB) Uppal Road, Hyderabad, 500007, Telangana, India
| | - Syed Sultan Beevi
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, (CCMB) Uppal Road, Hyderabad, 500007, Telangana, India
| | - Abdul Rawoof
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, (CCMB) Uppal Road, Hyderabad, 500007, Telangana, India
| | - Liza Esther Alexander
- Department of Pathology and Medical oncology, Regional Cancer Centre (RCC), Medical College Campus, Trivandrum, 695011, India
| | - E Ramanjaneya Prasad
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, (CCMB) Uppal Road, Hyderabad, 500007, Telangana, India
| | - P Kusuma Kumari
- Department of Pathology and Medical oncology, Regional Cancer Centre (RCC), Medical College Campus, Trivandrum, 695011, India
| | - Prashant Kumar
- Institute of Bioinformatics, Discoverer Building, International Tech Park Whitefield, Bangalore - 560066, Karnataka, India
| | - Lekha Dinesh Kumar
- Cancer Biology, CSIR-Centre for Cellular and Molecular Biology, (CCMB) Uppal Road, Hyderabad, 500007, Telangana, India.
| |
Collapse
|
12
|
Przanowska RK, Sobierajska E, Su Z, Jensen K, Przanowski P, Nagdas S, Kashatus JA, Kashatus DF, Bhatnagar S, Lukens JR, Dutta A. miR-206 family is important for mitochondrial and muscle function, but not essential for myogenesis in vitro. FASEB J 2020; 34:7687-7702. [PMID: 32277852 DOI: 10.1096/fj.201902855rr] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 02/05/2023]
Abstract
miR-206, miR-1a-1, and miR-1a-2 are induced during differentiation of skeletal myoblasts and promote myogenesis in vitro. miR-206 is required for skeletal muscle regeneration in vivo. Although this miRNA family is hypothesized to play an essential role in differentiation, a triple knock-out (tKO) of the three genes has not been done to test this hypothesis. We report that tKO C2C12 myoblasts generated using CRISPR/Cas9 method differentiate despite the expected derepression of the miRNA targets. Surprisingly, their mitochondrial function is diminished. tKO mice demonstrate partial embryonic lethality, most likely due to the role of miR-1a in cardiac muscle differentiation. Two tKO mice survive and grow normally to adulthood with smaller myofiber diameter, diminished physical performance, and an increase in PAX7 positive satellite cells. Thus, unlike other miRNAs important in other differentiation pathways, the miR-206 family is not absolutely essential for myogenesis and is instead a modulator of optimal differentiation of skeletal myoblasts.
Collapse
Affiliation(s)
- Roza K Przanowska
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Ewelina Sobierajska
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Zhangli Su
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Kate Jensen
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Piotr Przanowski
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Sarbajeet Nagdas
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jennifer A Kashatus
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - David F Kashatus
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Sanchita Bhatnagar
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA.,Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - John R Lukens
- Department of Neuroscience, School of Medicine, Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA, USA
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
| |
Collapse
|
13
|
Exosomal miRNAs in osteoarthritis. Mol Biol Rep 2020; 47:4737-4748. [DOI: 10.1007/s11033-020-05443-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/06/2020] [Indexed: 12/17/2022]
|
14
|
Guo Y, Li D, Li J, Yang N, Wang D. Expression and Significance of MicroRNA155 in Serum of Patients with Cerebral Small Vessel Disease. J Korean Neurosurg Soc 2020; 63:463-469. [PMID: 32156102 PMCID: PMC7365280 DOI: 10.3340/jkns.2019.0179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/30/2019] [Indexed: 11/27/2022] Open
Abstract
Objective This study aimed to investigate the changes and significance of microRNA155 levels in serum of patients with cerebral small vessel disease (CSVD).
Methods Thirty patients with CSVD who met the inclusion criteria were selected and divided into eight patients with lacunar infarction (LI) group and 22 patients with multiple lacunar infarction (MLI) combined with white matter lesions (WML) group according to the results of head magnetic resonance imaging (MRI). Thirty samples from healthy volunteers without abnormalities after head MRI examination were selected as the control group. The levels of serum microRNA155 in each group were determined by real-time polymerase chain reaction, and the correlation between microRNA155 in the serum of patients with CSVD and the increase of imaging lesions was analyzed by Spearman correlation analysis.
Results Compared with the control group, the serum microRNA155 level in the LI group, MLI combined with WML group increased, the difference was statistically significant (p<0.05); serum microRNA155 level was positively correlated with the increase of imaging lesions (p<0.05).
Conclusion The change of serum microRNA155 level in patients with CSVD may be one of its self-protection mechanisms, and the intensity of this self-protection mechanism is positively correlated with the number of CSVD lesions.
Collapse
Affiliation(s)
- Ying Guo
- Department of Neurology, Pu'er People's Hospital, Pu'er, China
| | - Dongxue Li
- Department of Neurology, Pu'er People's Hospital, Pu'er, China
| | - Jiapei Li
- Department of Internal Medicine, Pu'er City Prison Hospital, Pu'er, China
| | - Nan Yang
- Department of Neurology, Pu'er People's Hospital, Pu'er, China
| | - Deyun Wang
- Department of Neurology, Pu'er People's Hospital, Pu'er, China
| |
Collapse
|
15
|
Conti I, Varano G, Simioni C, Laface I, Milani D, Rimondi E, Neri LM. miRNAs as Influencers of Cell-Cell Communication in Tumor Microenvironment. Cells 2020; 9:cells9010220. [PMID: 31952362 PMCID: PMC7016744 DOI: 10.3390/cells9010220] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 12/14/2022] Open
Abstract
microRNAs (miRNAs) are small noncoding RNAs that regulate gene expression at the posttranscriptional level, inducing the degradation of the target mRNA or translational repression. MiRNAs are involved in the control of a multiplicity of biological processes, and their absence or altered expression has been associated with a variety of human diseases, including cancer. Recently, extracellular miRNAs (ECmiRNAs) have been described as mediators of intercellular communication in multiple contexts, including tumor microenvironment. Cancer cells cooperate with stromal cells and elements of the extracellular matrix (ECM) to establish a comfortable niche to grow, to evade the immune system, and to expand. Within the tumor microenvironment, cells release ECmiRNAs and other factors in order to influence and hijack the physiological processes of surrounding cells, fostering tumor progression. Here, we discuss the role of miRNAs in the pathogenesis of multicomplex diseases, such as Alzheimer’s disease, obesity, and cancer, focusing on the contribution of both intracellular miRNAs, and of released ECmiRNAs in the establishment and development of cancer niche. We also review growing evidence suggesting the use of miRNAs as novel targets or potential tools for therapeutic applications.
Collapse
Affiliation(s)
- Ilaria Conti
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (G.V.); (C.S.); (I.L.); (D.M.); (E.R.)
| | - Gabriele Varano
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (G.V.); (C.S.); (I.L.); (D.M.); (E.R.)
| | - Carolina Simioni
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (G.V.); (C.S.); (I.L.); (D.M.); (E.R.)
| | - Ilaria Laface
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (G.V.); (C.S.); (I.L.); (D.M.); (E.R.)
| | - Daniela Milani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (G.V.); (C.S.); (I.L.); (D.M.); (E.R.)
| | - Erika Rimondi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (G.V.); (C.S.); (I.L.); (D.M.); (E.R.)
| | - Luca M. Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (I.C.); (G.V.); (C.S.); (I.L.); (D.M.); (E.R.)
- LTTA—Electron Microscopy Center, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: ; Tel.: +39-0532-455940
| |
Collapse
|
16
|
Ye J, Luo D, Yu J, Zhu S. Transcriptome analysis identifies key regulators and networks in Acute myeloid leukemia. ACTA ACUST UNITED AC 2019; 24:487-491. [PMID: 31210592 DOI: 10.1080/16078454.2019.1631506] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Acute myeloid leukemia (AML) is a heterogeneous and highly recurrent hematological malignancy. Studies have shown an association between microRNAs and drive genes in AMLs. However, the regulatory roles of miRNAs in AML and how they act on downstream targets and the signaling pathway has been little studied. METHODS As to understand the mechanism of mRNA-miRNA interaction in the blood malignancy from a large scale of transcriptomic sequencing studies, we applied a comprehensive miRNA-mRNA association, co-expression gene network and ingenuity pathway analysis using TCGA AML datasets. RESULTS Our results showed that his-mir-335 was a critical regulatory of homeobox A gene family. PBX3, KAT6A, MEIS1, and COMMD3-BMI1 were predicted as top transcription regulators in the regulatory network of the HOXA family. The most significantly enriched functions were cell growth, proliferation, and survival in the mRNA-miRNA network. CONCLUSION Our work revealed that regulation of the HOXA gene family and its regulation played an important role in the development of AML.
Collapse
Affiliation(s)
- Jiaxin Ye
- a Department of Hematology , Shaoxing Shangyu People's Hospital , Shaoxing , People's Republic of China
| | - Daliang Luo
- a Department of Hematology , Shaoxing Shangyu People's Hospital , Shaoxing , People's Republic of China
| | - Jianhong Yu
- b Department of Geriatric , Affiliated Hospital of Shaoxing University (Shaoxing Municipal Hospital) , Zhejiang , People's Republic of China
| | - Sibo Zhu
- c School of Life Sciences, Fudan University , Shanghai , People's Republic of China
| |
Collapse
|
17
|
Mei M, Zhang M. Non-coding RNAs in Natural Killer/T-Cell Lymphoma. Front Oncol 2019; 9:515. [PMID: 31263681 PMCID: PMC6584837 DOI: 10.3389/fonc.2019.00515] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 05/29/2019] [Indexed: 12/19/2022] Open
Abstract
Natural killer/T-cell lymphoma (NKTCL) is a rare and aggressive subtype of non-Hodgkin's lymphoma that is associated with a poor outcome. Non-coding RNAs (ncRNAs), which account for 98% of human RNAs, lack the function of encoding proteins but instead have the important function of regulating gene expression, including transcription, translation, RNA splicing, editing, and turnover. However, the roles and mechanisms of aberrantly expressed ncRNAs in NKTCL are not fully clear. Aberrant expressions of microRNA (miRNAs) affect the PI3K/AKT signaling pathways (miRNA-21, miRNA-155, miRNA-150, miRNA-142, miRNA-494), NF-κB (miRNA-146a, miRNA-155) and cell cycle signaling pathways to regulate cell function. Moreover, Epstein-Barr virus (EBV) encoded miRNAs and EBV oncoprotein LMP-1 regulated the expression of cellular genes that induce invasion, metastasis, cell cycle progression and cellular transformation. In addition, NKTCL-associated Long non-coding RNA (lncRNA) ZFAS1 regulated certain pathways and lncRNA MALAT1 acted as a predictive marker. This review article provides an overview of ncRNAs associated with NKTCL, summarizes the function of significantly differentially expressed hotspot non-coding RNAs that contribute to the pathogenesis, diagnoses, treatment and prognosis of NKTCL and discusses the relevance of these ncRNAs to clinical practice.
Collapse
Affiliation(s)
- Mei Mei
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,The Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
18
|
Kim M, Civin CI, Kingsbury TJ. MicroRNAs as regulators and effectors of hematopoietic transcription factors. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1537. [PMID: 31007002 DOI: 10.1002/wrna.1537] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/24/2019] [Accepted: 04/03/2019] [Indexed: 12/17/2022]
Abstract
Hematopoiesis is a highly-regulated development process orchestrated by lineage-specific transcription factors that direct the generation of all mature blood cells types, including red blood cells, megakaryocytes, granulocytes, monocytes, and lymphocytes. Under homeostatic conditions, the hematopoietic system of the typical adult generates over 1011 blood cells daily throughout life. In addition, hematopoiesis must be responsive to acute challenges due to blood loss or infection. MicroRNAs (miRs) cooperate with transcription factors to regulate all aspects of hematopoiesis, including stem cell maintenance, lineage selection, cell expansion, and terminal differentiation. Distinct miR expression patterns are associated with specific hematopoietic lineages and stages of differentiation and functional analyses have elucidated essential roles for miRs in regulating cell transitions, lineage selection, maturation, and function. MiRs function as downstream effectors of hematopoietic transcription factors and as upstream regulators to control transcription factor levels. Multiple miRs have been shown to play essential roles. Regulatory networks comprised of differentially expressed lineage-specific miRs and hematopoietic transcription factors are involved in controlling the quiescence and self-renewal of hematopoietic stem cells as well as proliferation and differentiation of lineage-specific progenitor cells during erythropoiesis, myelopoiesis, and lymphopoiesis. This review focuses on hematopoietic miRs that function as upstream regulators of central hematopoietic transcription factors required for normal hematopoiesis. This article is categorized under: RNA in Disease and Development > RNA in Development Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- MinJung Kim
- Department of Pediatrics, Center for Stem Cell Biology and Regenerative Medicine, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Curt I Civin
- Department of Pediatrics and Physiology, Center for Stem Cell Biology and Regenerative Medicine, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Tami J Kingsbury
- Department of Physiology, Center for Stem Cell Biology and Regenerative Medicine, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
19
|
Pandita A, Ramadas P, Poudel A, Saad N, Anand A, Basnet A, Wang D, Middleton F, Gilligan DM. Differential expression of miRNAs in acute myeloid leukemia quantified by Nextgen sequencing of whole blood samples. PLoS One 2019; 14:e0213078. [PMID: 30893351 PMCID: PMC6426230 DOI: 10.1371/journal.pone.0213078] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/08/2019] [Indexed: 12/13/2022] Open
Abstract
New approaches are needed for understanding and treating acute myeloid leukemia (AML). MicroRNAs (miRs) are important regulators of gene expression in all cells and disruption of their normal expression can lead to changes in phenotype of a cell, in particular the emergence of a leukemic clone. We collected peripheral blood samples from 10 adult patients with newly diagnosed AML, prior to induction chemotherapy, and 9 controls. Two and a half ml of whole blood was collected in Paxgene RNA tubes. MiRNA was purified using RNeasy mini column (Qiagen). We sequenced approximately 1000 miRs from each of 10 AML patients and 9 controls. In subset analysis, patients with NPM1 and FLT3 mutations showed the greatest number of miRNAs (63) with expression levels that differed from control with adjusted p-value of 0.05 or less. Some of these miRs have been described previously in association with leukemia, but many are new. Our approach of global sequencing of miRs as opposed to microarray analysis removes the bias regarding which miRs to assay and has demonstrated discovery of new associations of miRs with AML. Another strength of our approach is that sequencing miRs is specific for the 5p or 3p strand of the gene, greatly narrowing the proposed target genes to study further. Our study provides new information about the molecular changes that lead to evolution of the leukemic clone and offers new possibilities for monitoring relapse and developing new treatment strategies.
Collapse
Affiliation(s)
- Aakriti Pandita
- Department of Medicine, Division of Hematology/Oncology, Upstate Medical University, Syracuse, New York, United States of America
| | - Poornima Ramadas
- Department of Medicine, Division of Hematology/Oncology, Upstate Medical University, Syracuse, New York, United States of America
| | - Aarati Poudel
- Department of Medicine, Division of Hematology/Oncology, Upstate Medical University, Syracuse, New York, United States of America
| | - Nibal Saad
- Department of Medicine, Division of Hematology/Oncology, Upstate Medical University, Syracuse, New York, United States of America
| | - Ankit Anand
- Department of Medicine, Division of Hematology/Oncology, Upstate Medical University, Syracuse, New York, United States of America
| | - Alina Basnet
- Department of Medicine, Division of Hematology/Oncology, Upstate Medical University, Syracuse, New York, United States of America
| | - Dongliang Wang
- Department of Public Health and Preventive Medicine, Upstate Medical University, Syracuse, New York, United States of America
| | - Frank Middleton
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, New York, United States of America
| | - Diana M. Gilligan
- Department of Medicine, Division of Hematology/Oncology, Upstate Medical University, Syracuse, New York, United States of America
| |
Collapse
|
20
|
Sun XH, Song MF, Song HD, Wang YW, Luo MJ, Yin LM. miR‑155 mediates inflammatory injury of hippocampal neuronal cells via the activation of microglia. Mol Med Rep 2019; 19:2627-2635. [PMID: 30720115 PMCID: PMC6423572 DOI: 10.3892/mmr.2019.9917] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 08/09/2018] [Indexed: 01/05/2023] Open
Abstract
MicroRNA (miR)-155 has a crucial role in various cellular functions, including differentiation of hematopoietic cells, immunization, inflammation and cardiovascular diseases. The present study aimed to investigate the roles and mechanisms of miR-155 in treatment-resistant depression (TRD). A Cell Counting Kit-8 assay and flow cytometry were performed to assess the cell viability and apoptosis of microglial cells, respectively. Western blotting and reverse transcription-quantitative polymerase chain reaction assays were used to evaluate the associated protein and mRNA expression, respectively. The results revealed that miR-155 reduced the cell viability of BV-2 microglial cells, and miR-155 enhanced the expression levels of pro-inflammatory cytokines in BV-2 microglial cells. Furthermore, conditioned medium from miR-155-treated microglia decreased the cell viability of HT22 hippocampal cells. miR-155-treated microglia increased the apoptosis of neuronal hippocampal cells by modulating the expression levels of apoptosis regulator Bax, apoptosis regulator Bcl-2, pro-caspase-3 and cleaved-caspase-3. The cell cycle distribution was disrupted by miR-155-treated microglia through induction of S phase arrest. Furthermore, the overexpression of suppressor of cytokine signaling 1 reversed the pro-apoptotic effect of activated microglia on hippocampal neuronal cells. In conclusion, the present results suggested that miR-155 mediated the inflammatory injury in hippocampal neuronal cells by activating the microglial cells. The potential effects of miR-155 on the activation of microglial cells suggest that miR-155 may be an effective target for TRD therapies.
Collapse
Affiliation(s)
- Xiao-Hua Sun
- Department of Psychiatry, Mental Health Center, Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310027, P.R. China
| | - Ming-Fen Song
- Department of Psychiatry, Mental Health Center, Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310027, P.R. China
| | - Hai-Dong Song
- Department of Psychiatry, Mental Health Center, Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310027, P.R. China
| | - Yu-Wen Wang
- Department of Psychiatry, Mental Health Center, Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310027, P.R. China
| | - Ming-Jin Luo
- Department of Psychiatry, Mental Health Center, Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310027, P.R. China
| | - Li-Ming Yin
- Institute of Hematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
21
|
Hu N, Cheng Z, Pang Y, Zhao H, Chen L, Wang C, Qin T, Li Q, Han Y, Shi J, Fu L. High expression of MiR-98 is a good prognostic factor in acute myeloid leukemia patients treated with chemotherapy alone. J Cancer 2019; 10:178-185. [PMID: 30662538 PMCID: PMC6329859 DOI: 10.7150/jca.26391] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/09/2018] [Indexed: 12/29/2022] Open
Abstract
It has been demonstrated that microRNA-98 (miR-98) is dysregulated in multiple types of solid tumors, but its expression and impact in acute myeloid leukemia (AML) is unclear. To explore the prognostic role of miR-98 in AML, 164 AML patients with the miR-98 expression data were extracted from The Cancer Genome Atlas (TCGA) database and enrolled in this study. First, patients were divided into chemotherapy-only (chemotherapy) group and allogeneic hematopoietic stem cell transplant (allo-HSCT) group. Each group was then divided in two groups by the median expression level of miR-98. In chemotherapy group, high miR-98 expression was associated with longer event-free survival (EFS, P = 0.003) and overall survival (OS, P = 0.004), but in allo-HSCT group, EFS and OS were not significantly different between high and low miR-98 expressers. Second, All patients were divided in two groups by the median expression level of miR-98. In low miR-98 expressers, those treated with allo-HSCT had longer EFS (P = 0.001) and OS (P < 0.001) than chemotherapy, but in high miR-98 expressers, survival was independent from treatment modalities. Gene ontology enrichment analysis indicated that the genes associated with miR-98 expression were mainly concentrated in “definitive hemopoiesis”, “negative regulation of myeloid cell differentiation” and “signaling pathways regulating pluripotency of stem cells” pathways. In conclusion, our results indicated that high miR-98 expression confers good prognosis in AML patients treated with chemotherapy alone. Patients with low miR-98 expression may benefit from allo-HSCT.
Collapse
Affiliation(s)
- Ning Hu
- Department of Hematology, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Zhiheng Cheng
- Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Yifan Pang
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing, 100191, China.,Department of Medicine, William Beaumont Hospital, Royal Oak, MI 48073, USA
| | - Hongmian Zhao
- Department of Hematology, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Li Chen
- Department of Hematology, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Chao Wang
- Department of Hematology, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Tong Qin
- Department of Hematology, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Qianyu Li
- Department of Hematology, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Yu Han
- Department of Hematology, Huaihe Hospital of Henan University, Kaifeng, 475000, China
| | - Jinlong Shi
- Translational Medicine Center, Huaihe Hospital of Henan University, Kaifeng, 475000, China.,Department of Biomedical Engineering, Chinese PLA General Hospital, Beijing, 100853, China.,Department of Medical Big Data, Chinese PLA General Hospital, Beijing, 100853, China
| | - Lin Fu
- Department of Hematology, Huaihe Hospital of Henan University, Kaifeng, 475000, China.,Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing, 100191, China
| |
Collapse
|
22
|
Lee YG, Kim I, Oh S, Shin DY, Koh Y, Lee KW. Small RNA sequencing profiles of mir-181 and mir-221, the most relevant microRNAs in acute myeloid leukemia. Korean J Intern Med 2019; 34:178-183. [PMID: 29172404 PMCID: PMC6325437 DOI: 10.3904/kjim.2017.102] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/31/2017] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND/AIMS To evaluate and select microRNAs relevant to acute myeloid leukemia (AML) pathogenesis, we analyzed differential microRNA expression by quantitative small RNA next-generation sequencing using duplicate marrow samples from individual AML patients. METHODS For this study, we obtained paired marrow samples at two different time points (initial diagnosis and first complete remission status) in patients with AML. Bone marrow microRNAs were profiled by next-generation small RNA sequencing. Quantification of microRNA expression was performed by counting aligned reads to microRNA genes. RESULTS Among 38 samples (32 paired samples from 16 AML patients and 6 normal marrow controls), 27 were eligible for sequencing. Small RNA sequencing showed that 12 microRNAs were selectively expressed at higher levels in AML patients than in normal controls. Among these 12 microRNAs, mir-181, mir-221, and mir-3154 were more highly expressed at initial AML diagnosis as compared to first complete remission. Significant correlations were found between higher expression levels of mir-221, mir-146, and mir-155 and higher marrow blast counts. CONCLUSION Our results demonstrate that mir-221 and mir-181 are selectively enriched in AML marrow and reflect disease activity. mir-3154 is a novel microRNA that is relevant to AML but needs further validation.
Collapse
Affiliation(s)
- Yun-Gyoo Lee
- Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Inho Kim
- Department of Internal Medicine, Seoul National University Hospital and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
- Correspondence to Inho Kim, M.D. Department of Internal Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea Tel: +82-2-2072-0834 Fax: +82-2-762-9662 E-mail:
| | - Somi Oh
- Department of Internal Medicine, Seoul National University Hospital and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Dong-Yeop Shin
- Department of Internal Medicine, Seoul National University Hospital and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Youngil Koh
- Department of Internal Medicine, Seoul National University Hospital and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Keun-Wook Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| |
Collapse
|
23
|
Cao S, Wang G, Wang J, Li C, Zhang L. Hsa_circ_101280 promotes hepatocellular carcinoma by regulating miR-375/JAK2. Immunol Cell Biol 2018; 97:218-228. [PMID: 30302825 DOI: 10.1111/imcb.12213] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 10/08/2018] [Accepted: 10/08/2018] [Indexed: 12/14/2022]
Abstract
In this study, we sought to predict the effects of a certain circular RNA (circRNA), hsa_circ_101280 (also known as hsa_circ_0100929 and hsa_circ_SLAIN1), on hepatocellular carcinoma (HCC) cells and to determine the potential mechanism. After screening differentially expressed circRNAs in HCC tissues through Gene Expression Omnibus data analysis, hsa_circ_101280 was found to be highly expressed, and its high expression was verified in HCC cell lines with qRT-PCR along with the low expression of its downstream miRNA miR-375. Colony formation and flow cytometry assays showed that both hsa_circ_101280 silencing and miR-375 overexpression restrained proliferation and promoted apoptosis in HCC cells. JAK2 was identified as a downstream mRNA target of miR-375 by RNA pull-down and dual-luciferase reporter gene assays, its expression in HCC cell lines were positively regulated by hsa_circ_101280 and negatively by miR-375 expression. Furthermore, the silencing of hsa_circ_101280 significantly inhibited the growth of HCC xenografts in nude mice, with the downregulated expression of JAK2. Overall, both the in vitro and in vivo studies revealed that hsa_circ_101280 largely facilitated the tumorigenesis of HCC, characterized by the promoted proliferation and suppressed apoptosis of HCC cells, by sponging miR-375 and upregulating JAK2.
Collapse
Affiliation(s)
- Shuang Cao
- Department of Electroneurophysiology, Qilu Children's Hospital of Shandong University, Jinan, Shandong, 250022, China
| | - Guohua Wang
- Department of Gynecology, Affiliated Hospital of Taishan Medical University, Taian, Shandong, 271000, China
| | - Jia Wang
- School of Public Health, Taishan Medical University, Taian, Shandong, 271016, China
| | - Cheng Li
- School of Public Health, Taishan Medical University, Taian, Shandong, 271016, China
| | - Le Zhang
- School of Public Health, Taishan Medical University, Taian, Shandong, 271016, China
| |
Collapse
|
24
|
Di Marco M, Ramassone A, Pagotto S, Anastasiadou E, Veronese A, Visone R. MicroRNAs in Autoimmunity and Hematological Malignancies. Int J Mol Sci 2018; 19:ijms19103139. [PMID: 30322050 PMCID: PMC6213554 DOI: 10.3390/ijms19103139] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 10/02/2018] [Indexed: 12/13/2022] Open
Abstract
Autoimmunity and hematological malignancies are often concomitant in patients. A causal bidirectional relationship exists between them. Loss of immunological tolerance with inappropriate activation of the immune system, likely due to environmental and genetic factors, can represent a breeding ground for the appearance of cancer cells and, on the other hand, blood cancers are characterized by imbalanced immune cell subsets that could support the development of the autoimmune clone. Considerable effort has been made for understanding the proteins that have a relevant role in both processes; however, literature advances demonstrate that microRNAs (miRNAs) surface as the epigenetic regulators of those proteins and control networks linked to both autoimmunity and hematological malignancies. Here we review the most up-to-date findings regarding the miRNA-based molecular mechanisms that underpin autoimmunity and hematological malignancies.
Collapse
Affiliation(s)
- Mirco Di Marco
- Ageing Research Center and Translational medicine-CeSI-MeT, 66100 Chieti, Italy.
- Department of Medical, Oral and Biotechnological Sciences (DSMOB), "G. d'Annunzio" University Chieti-Pescara, 66100 Chieti, Italy.
| | - Alice Ramassone
- Ageing Research Center and Translational medicine-CeSI-MeT, 66100 Chieti, Italy.
- Department of Medical, Oral and Biotechnological Sciences (DSMOB), "G. d'Annunzio" University Chieti-Pescara, 66100 Chieti, Italy.
| | - Sara Pagotto
- Ageing Research Center and Translational medicine-CeSI-MeT, 66100 Chieti, Italy.
- Department of Medical, Oral and Biotechnological Sciences (DSMOB), "G. d'Annunzio" University Chieti-Pescara, 66100 Chieti, Italy.
| | - Eleni Anastasiadou
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Angelo Veronese
- Ageing Research Center and Translational medicine-CeSI-MeT, 66100 Chieti, Italy.
- Department of Medicine and Aging Science (DMSI), "G. d'Annunzio" University Chieti-Pescara, 66100 Chieti, Italy.
| | - Rosa Visone
- Ageing Research Center and Translational medicine-CeSI-MeT, 66100 Chieti, Italy.
- Department of Medical, Oral and Biotechnological Sciences (DSMOB), "G. d'Annunzio" University Chieti-Pescara, 66100 Chieti, Italy.
| |
Collapse
|
25
|
Differential expression profiles of miRNAs and correlation with clinical outcomes in acute myeloid leukemia. Meta Gene 2018. [DOI: 10.1016/j.mgene.2018.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
26
|
Dysregulation of EZH2/miR-138 axis contributes to drug resistance in multiple myeloma by downregulating RBPMS. Leukemia 2018; 32:2471-2482. [PMID: 29743723 DOI: 10.1038/s41375-018-0140-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 04/05/2018] [Accepted: 04/10/2018] [Indexed: 02/06/2023]
Abstract
EZH2 is highly expressed in multiple myeloma (MM). However, the molecular mechanisms underlying EZH2 overexpression and its role in drug resistance of MM remain undefined. Here we show that EZH2 is upregulated in drug-resistant MM cells and its aberrant overexpression is associated with poor prognosis of MM patients. Overexpression of EZH2 in parental MM cells renders them resistant to anti-myeloma drugs and suppression of EZH2 displays the opposite effects. Using miRNA target scan algorithms, we identify miR-138 as a regulator of EZH2, which is conversely repressed by EZH2-induced H3K27 trimethylation in MM-resistant cell lines and primary tumor cells. Analysis of ChIP-seq dataset and H3K27me3 ChIP reveals that RBPMS is a direct and functionally relevant target of EZH2. RBPMS silencing confers resistance to MM cells and restoration of RBPMS by miR-138 overexpression re-sensitizes the resistant cells to drug. Importantly, in vivo delivery of miR-138 mimics or pharmacological inhibitor of EZH2 in combination with a proteasome inhibitor, bortezomib, induces significant regression of tumors in xenograft model. This study establishes EZH2/miR-138 axis as a potential therapeutic target for MM.
Collapse
|
27
|
|
28
|
Ultimo S, Martelli AM, Zauli G, Vitale M, Calin GA, Neri LM. Roles and clinical implications of microRNAs in acute lymphoblastic leukemia. J Cell Physiol 2018; 233:5642-5654. [DOI: 10.1002/jcp.26290] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/14/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Simona Ultimo
- Department of Morphology, Surgery and Experimental MedicineUniversity of FerraraFerraraItaly
| | - Alberto M. Martelli
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBolognaItaly
| | - Giorgio Zauli
- Department of Morphology, Surgery and Experimental MedicineUniversity of FerraraFerraraItaly
| | - Marco Vitale
- Department of Medicine and Surgery, Sport and Exercise Medicine Centre (SEM)University of ParmaParmaItaly
- CoreLabHospital‐University of ParmaParmaItaly
| | - George A. Calin
- Departments of Experimental Therapeutics and LeukemiaThe University of Texas MD Anderson Cancer CenterHoustonTexas
- Center for RNA Interference and Non‐Coding RNAsThe University of Texas MD Anderson Cancer CenterHoustonTexas
| | - Luca M. Neri
- Department of Morphology, Surgery and Experimental MedicineUniversity of FerraraFerraraItaly
| |
Collapse
|
29
|
MicroRNA fingerprints in juvenile myelomonocytic leukemia (JMML) identified miR-150-5p as a tumor suppressor and potential target for treatment. Oncotarget 2018; 7:55395-55408. [PMID: 27447965 PMCID: PMC5342425 DOI: 10.18632/oncotarget.10577] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 05/13/2016] [Indexed: 12/20/2022] Open
Abstract
Juvenile myelomonocytic leukemia (JMML) is an aggressive leukemia of early childhood characterized by aberrant proliferation of myelomonocytic cells and hypersensitivity to GM-CSF stimulation. Mutually exclusive mutations in the RAS/ERK pathway genes such as PTPN11, NRAS, KRAS, CBL, or NF1 are found in ~90% of the cases. These mutations give rise to disease at least in part by activating STAT5 through phosphorylation and by promoting cell growth. MicroRNAs (miRs) are small non-coding RNAs that regulate gene expression, which are often deregulated in leukemia. However, little is known about their role in JMML. Here, we report distinctive miR expression signatures associated with the molecular subgroups of JMML. Among the downregulated miRs in JMML, miR-150-5p was found to target STAT5b, a gene which is often over-activated in JMML, and contributes to the characteristic aberrant signaling of this disorder. Moreover, loss of miR-150-5p and upregulation of STAT5b expression were also identified in a murine model of JMML. Ectopic overexpression of miR-150-5p in mononuclear cells from three JMML patients significantly decreased cell proliferation. Altogether, our data indicate that miR expression is deregulated in JMML and may play a role in the pathogenesis of this disorder by modulating key effectors of cytokine receptor pathways.
Collapse
|
30
|
Anti-leukemic activity of microRNA-26a in a chronic lymphocytic leukemia mouse model. Oncogene 2017; 36:6617-6626. [PMID: 28783166 DOI: 10.1038/onc.2017.269] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 05/10/2017] [Accepted: 06/29/2017] [Indexed: 12/23/2022]
Abstract
Dysregulation of microRNAs (miRNAs) plays an important role in the pathogenesis of chronic lymphocytic leukemia (CLL). The Eμ-TCL1 transgenic mouse develops a form of leukemia that is similar to the aggressive type of human B-CLL, and this valuable model has been widely used for testing novel therapeutic approaches. Here, we adopted this model to investigate the potential effects of miR-26a, miR-130an and antimiR-155 in CLL therapy. Improved delivery of miRNA molecules into CLL cells was obtained by developing a novel system based on lipid nanoparticles conjugated with an anti-CD38 monoclonal antibody. This methodology has proven to be highly effective in delivering miRNA molecules into leukemic cells. Short- and long-term experiments showed that miR-26a, miR-130a and anti-miR-155 increased apoptosis after in vitro and in vivo treatment. Of this miRNA panel, miR-26a was the most effective in reducing leukemic cell expansion. Following long-term treatment, apoptosis was readily detectable by analyzing cleavage of PARP and caspase-7. These effects could be directly attributed to miR-26a, as confirmed by significant downregulation of its proven targets, namely cyclin-dependent kinase 6 and Mcl1. The results of this study are relevant to two distinct areas. The first is related to the design of a technical strategy and to the selection of CD38 as a molecular target on CLL cells, both consenting efficient and specific intracellular transfer of miRNA. The original scientific finding inferred from the above approach is that miR-26a can elicit in vivo anti-leukemic activities mediated by increased apoptosis.
Collapse
|
31
|
Gong X, Chao R, Wang P, Huang X, Zhang J, Zhu X, Zhang Y, Yang X, Hou C, Ji X, Shi T, Wang Y. Interplay of transcription factors and microRNAs during embryonic hematopoiesis. SCIENCE CHINA. LIFE SCIENCES 2017; 60:168-177. [PMID: 27837403 DOI: 10.1007/s11427-016-0168-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 08/10/2016] [Indexed: 01/11/2023]
Abstract
Hematopoietic stem cells (HSCs), which are localized in the bone marrow of adult mammals, come from hematopoietic endothelium during embryonic stages. Although the basic processes of HSC generation and differentiation have been described in the past, the epigenetic regulation of embryonic hematopoiesis remains to be fully described. Here, by utilizing an in vitro differentiation system of mouse embryonic stem cells (ESCs), we identified more than 20 microRNAs that were highly enriched in embryonic hematopoietic cells, including some (e.g. miR-10b, miR-15b, and miR-27a) with previously unknown functions in blood formation. Luciferase and gene expression assays further revealed combinational binding and regulation of these microRNAs by key transcription factors in blood cells. Finally, bioinformatics and functional analyses supported an interactive regulatory control between transcription factors and microRNAs in hematopoiesis.
Collapse
Affiliation(s)
- Xueping Gong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Ruihua Chao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Pengxiang Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xiaoli Huang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jingjing Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xiaozhou Zhu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yanyang Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xue Yang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Chao Hou
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xiangjun Ji
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Tieliu Shi
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yuan Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
32
|
Arya D, Sachithanandan SP, Ross C, Palakodeti D, Li S, Krishna S. MiRNA182 regulates percentage of myeloid and erythroid cells in chronic myeloid leukemia. Cell Death Dis 2017; 8:e2547. [PMID: 28079885 PMCID: PMC5386378 DOI: 10.1038/cddis.2016.471] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/12/2016] [Accepted: 12/14/2016] [Indexed: 12/20/2022]
Abstract
The deregulation of lineage control programs is often associated with the progression of haematological malignancies. The molecular regulators of lineage choices in the context of tyrosine kinase inhibitor (TKI) resistance remain poorly understood in chronic myeloid leukemia (CML). To find a potential molecular regulator contributing to lineage distribution and TKI resistance, we undertook an RNA-sequencing approach for identifying microRNAs (miRNAs). Following an unbiased screen, elevated miRNA182-5p levels were detected in Bcr-Abl-inhibited K562 cells (CML blast crisis cell line) and in a panel of CML patients. Earlier, miRNA182-5p upregulation was reported in several solid tumours and haematological malignancies. We undertook a strategy involving transient modulation and CRISPR/Cas9 (clustered regularly interspersed short palindromic repeats)-mediated knockout of the MIR182 locus in CML cells. The lineage contribution was assessed by methylcellulose colony formation assay. The transient modulation of miRNA182-5p revealed a biased phenotype. Strikingly, Δ182 cells (homozygous deletion of MIR182 locus) produced a marked shift in lineage distribution. The phenotype was rescued by ectopic expression of miRNA182-5p in Δ182 cells. A bioinformatic analysis and Hes1 modulation data suggested that Hes1 could be a putative target of miRNA182-5p. A reciprocal relationship between miRNA182-5p and Hes1 was seen in the context of TK inhibition. In conclusion, we reveal a key role for miRNA182-5p in restricting the myeloid development of leukemic cells. We propose that the Δ182 cell line will be valuable in designing experiments for next-generation pharmacological interventions.
Collapse
Affiliation(s)
- Deepak Arya
- Cellular Organization and Signalling Group, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
- Manipal University, Manipal, India
| | - Sasikala P Sachithanandan
- Cellular Organization and Signalling Group, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Cecil Ross
- Department of Medicine, St Johns Medical College and Hospitals, Bangalore, India
| | - Dasaradhi Palakodeti
- Stem Cells and Regeneration Group, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India
| | - Shang Li
- Duke-NUS Graduate Medical School, Singapore
| | - Sudhir Krishna
- Cellular Organization and Signalling Group, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| |
Collapse
|
33
|
Rasko JEJ, Wong JJL. Nuclear microRNAs in normal hemopoiesis and cancer. J Hematol Oncol 2017; 10:8. [PMID: 28057040 PMCID: PMC5217201 DOI: 10.1186/s13045-016-0375-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 12/12/2016] [Indexed: 02/06/2023] Open
Abstract
Since the discovery of microRNAs (miRNAs) in the early 1990s, these small molecules have been increasingly recognized as key players in the regulation of critical biological processes. They have also been implicated in many diverse human diseases. The canonical function of miRNAs is to target the 3′ untranslated region (3′ UTR) of cytoplasmic messenger RNA to post-transcriptionally regulate mRNA and protein levels. It has now been shown that miRNAs can also bind to the promoter regions of genes or primary miRNA transcripts to regulate gene expression. Such observations have indicated the presence of miRNAs in the nucleus and implied additional non-canonical functions. Nevertheless, the role(s) of nuclear miRNAs in normal hemopoiesis and cancer remains elusive despite a burgeoning literature. Herein, we review current knowledge concerning the abundance and/or functions of nuclear miRNAs during blood cell development and cancer biology. We also discuss ongoing challenges in order to provoke further studies into identifying key roles for nuclear miRNAs in the development of other cell lineages and human cancers.
Collapse
Affiliation(s)
- John E J Rasko
- Gene & Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, 2050, Australia.,Sydney Medical School, University of Sydney, Camperdown, NSW, 2050, Australia.,Cell and Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, 2050, Australia
| | - Justin J-L Wong
- Gene & Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, 2050, Australia. .,Sydney Medical School, University of Sydney, Camperdown, NSW, 2050, Australia. .,Gene Regulation in Cancer Laboratory, Centenary Institute, University of Sydney, Camperdown, 2050, Australia. .,, Locked Bag 6, Newtown, NSW, 2042, Australia.
| |
Collapse
|
34
|
Hui J, Huishan W, Tao L, Zhonglu Y, Renteng Z, Hongguang H. miR-539 as a key negative regulator of the MEK pathway in myocardial infarction. Herz 2016; 42:781-789. [PMID: 27981363 DOI: 10.1007/s00059-016-4517-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 11/07/2016] [Accepted: 11/19/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Myocardial infarction is one of the most common causes of death, and the number of individuals at risk is increasing. A rapid and accurate differential diagnosis of myocardial infarction is crucial for timely interventions and for improvement of the prognosis. However, it is difficult to achieve using current methods. To better manage this condition, improved tools for risk prediction, including more accurate biomarkers, are needed. METHODS We studied the expression of microRNA-539 (miR-539) and of MEK protein using a rat model of myocardial infarction. RESULTS The results of our experiments demonstrated an increase in the expression of miR-539 and a decrease in the expression of MEK. Furthermore, we observed that miR-539 inhibited the expression of MEK through targeting of the 3'UTR of MEK; this led not only to suppressed proliferation but also to apoptosis and autophagy of H9C2 cells. CONCLUSION Overexpression of miR-539 plays a role in the degree of myocardial infarction. On the basis of our results, we conclude that miR-539 may be a potential therapeutic target for myocardial infarction.
Collapse
Affiliation(s)
- J Hui
- Department of Cardiovascular Surgery, The General Hospital of Shenyang Military Region, No. 83Wenhua Road, 110016, Shenhe District, Shenyang, Liaoning, China
| | - W Huishan
- Department of Cardiovascular Surgery, The General Hospital of Shenyang Military Region, No. 83Wenhua Road, 110016, Shenhe District, Shenyang, Liaoning, China.
| | - L Tao
- Department of Cardiovascular Surgery, The General Hospital of Shenyang Military Region, No. 83Wenhua Road, 110016, Shenhe District, Shenyang, Liaoning, China
| | - Y Zhonglu
- Department of Cardiovascular Surgery, The General Hospital of Shenyang Military Region, No. 83Wenhua Road, 110016, Shenhe District, Shenyang, Liaoning, China
| | - Z Renteng
- Department of Cardiovascular Surgery, The General Hospital of Shenyang Military Region, No. 83Wenhua Road, 110016, Shenhe District, Shenyang, Liaoning, China
| | - H Hongguang
- Department of Cardiovascular Surgery, The General Hospital of Shenyang Military Region, No. 83Wenhua Road, 110016, Shenhe District, Shenyang, Liaoning, China
| |
Collapse
|
35
|
Xu DD, Zhou PJ, Wang Y, Zhang Y, Zhang R, Zhang L, Chen SH, Fu WY, Ruan BB, Xu HP, Hu CZ, Tian L, Qin JH, Wang S, Wang X, Liu QY, Ren Z, Gu XK, Li YH, Liu Z, Wang YF. miR-150 Suppresses the Proliferation and Tumorigenicity of Leukemia Stem Cells by Targeting the Nanog Signaling Pathway. Front Pharmacol 2016; 7:439. [PMID: 27917123 PMCID: PMC5114241 DOI: 10.3389/fphar.2016.00439] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 11/03/2016] [Indexed: 12/18/2022] Open
Abstract
Proliferation, a key feature of cancer cells, accounts for the majority of cancer-related diseases resulting in mortality. MicroRNAs (miRNAs) plays important post-transcriptional modulation roles by acting on multiple signaling pathways, but the underlying mechanism in proliferation and tumorigenicity is unclear. Here, we identified the role of miR-150 in proliferation and tumorigenicity in leukemia stem cells (LSCs; CD34+CD38- cells). miR-150 expression was significantly down-regulated in LSCs from leukemia cell lines and clinical samples. Functional assays demonstrated that increased miR-150 expression inhibited proliferation and clonal and clonogenic growth, enhanced chemosensitivity, and attenuated tumorigenic activity of LSCs in vitro. Transplantation animal studies revealed that miR-150 overexpression progressively abrogates tumor growth. Immunohistochemistry assays demonstrated that miR-150 overexpression enhanced caspase-3 level and reduced Ki-67 level. Moreover, luciferase reporter assays indicated Nanog is a direct and functional target of miR-150. Nanog silencing using small interfering RNA recapitulated anti-proliferation and tumorigenicity inhibition effects. Furthermore, miR-150 directly down-regulated the expression of other cancer stem cell factors including Notch2 and CTNNB1. These results provide insights into the specific biological behavior of miR-150 in regulating LSC proliferation and tumorigenicity. Targeting this miR-150/Nanog axis would be a helpful therapeutic strategy to treat acute myeloid leukemia.
Collapse
Affiliation(s)
- Dan-Dan Xu
- College of Life Science and Technology, Jinan UniversityGuangzhou, China; College of Biology Technolgy, Guangdong Food and Drug Vocational CollegeGuangzhou, China
| | - Peng-Jun Zhou
- College of Life Science and Technology, Jinan University Guangzhou, China
| | - Ying Wang
- College of Life Science and Technology, Jinan UniversityGuangzhou, China; Faculty of Environmental and Biological Engineering, Guangdong University of Petrochemical TechnologyMaoming, China
| | - Yi Zhang
- Section of Otolaryngology, Department of Surgery, Yale School of Medicine, New Haven CT, USA
| | - Rong Zhang
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center Guangzhou, China
| | - Li Zhang
- College of Life Science and Technology, Jinan University Guangzhou, China
| | - Su-Hong Chen
- College of Biology Technolgy, Guangdong Food and Drug Vocational College Guangzhou, China
| | - Wu-Yu Fu
- Faculty of Environmental and Biological Engineering, Guangdong University of Petrochemical Technology Maoming, China
| | - Bi-Bo Ruan
- Faculty of Environmental and Biological Engineering, Guangdong University of Petrochemical Technology Maoming, China
| | - Hai-Peng Xu
- College of Life Science and Technology, Jinan University Guangzhou, China
| | - Chao-Zhi Hu
- College of Life Science and Technology, Jinan University Guangzhou, China
| | - Lu Tian
- College of Life Science and Technology, Jinan University Guangzhou, China
| | - Jin-Hong Qin
- College of Life Science and Technology, Jinan University Guangzhou, China
| | - Sheng Wang
- College of Life Science and Technology, Jinan University Guangzhou, China
| | - Xiao Wang
- College of Life Science and Technology, Jinan University Guangzhou, China
| | - Qiu-Ying Liu
- College of Life Science and Technology, Jinan University Guangzhou, China
| | - Zhe Ren
- College of Life Science and Technology, Jinan University Guangzhou, China
| | - Xue-Kui Gu
- The First Affiliated Hospital, Guangzhou Hospital of Traditional Chinese Medicine Guangzhou, China
| | - Yao-He Li
- The First Affiliated Hospital, Guangzhou Hospital of Traditional Chinese Medicine Guangzhou, China
| | - Zhong Liu
- College of Life Science and Technology, Jinan University Guangzhou, China
| | - Yi-Fei Wang
- College of Life Science and Technology, Jinan University Guangzhou, China
| |
Collapse
|
36
|
Vathipadiekal V, Farrell JJ, Wang S, Edward HL, Shappell H, Al-Rubaish A, Al-Muhanna F, Naserullah Z, Alsuliman A, Qutub HO, Simkin I, Farrer LA, Jiang Z, Luo HY, Huang S, Mostoslavsky G, Murphy GJ, Patra PK, Chui DH, Alsultan A, Al-Ali AK, Sebastiani P, Steinberg MH. A candidate transacting modulator of fetal hemoglobin gene expression in the Arab-Indian haplotype of sickle cell anemia. Am J Hematol 2016; 91:1118-1122. [PMID: 27501013 DOI: 10.1002/ajh.24527] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 12/30/2022]
Abstract
Fetal hemoglobin (HbF) levels are higher in the Arab-Indian (AI) β-globin gene haplotype of sickle cell anemia compared with African-origin haplotypes. To study genetic elements that effect HbF expression in the AI haplotype we completed whole genome sequencing in 14 Saudi AI haplotype sickle hemoglobin homozygotes-seven selected for low HbF (8.2% ± 1.3%) and seven selected for high HbF (23.5% ± 2.6%). An intronic single nucleotide polymorphism (SNP) in ANTXR1, an anthrax toxin receptor (chromosome 2p13), was associated with HbF. These results were replicated in two independent Saudi AI haplotype cohorts of 120 and 139 patients, but not in 76 Saudi Benin haplotype, 894 African origin haplotype and 44 AI haplotype patients of Indian origin, suggesting that this association is effective only in the Saudi AI haplotype background. ANTXR1 variants explained 10% of the HbF variability compared with 8% for BCL11A. These two genes had independent, additive effects on HbF and together explained about 15% of HbF variability in Saudi AI sickle cell anemia patients. ANTXR1 was expressed at mRNA and protein levels in erythroid progenitors derived from induced pluripotent stem cells (iPSCs) and CD34+ cells. As CD34+ cells matured and their HbF decreased ANTXR1 expression increased; as iPSCs differentiated and their HbF increased, ANTXR1 expression decreased. Along with elements in cis to the HbF genes, ANTXR1 contributes to the variation in HbF in Saudi AI haplotype sickle cell anemia and is the first gene in trans to HBB that is associated with HbF only in carriers of the Saudi AI haplotype. Am. J. Hematol. 91:1118-1122, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vinod Vathipadiekal
- Department of Medicine; Boston University School of Medicine; Boston Massachusetts
| | - John J. Farrell
- Department of Medicine; Boston University School of Medicine; Boston Massachusetts
| | - Shuai Wang
- Department of Biostatistics; Boston University School of Public Health; Boston Massachusetts
| | - Heather L. Edward
- Department of Medicine; Boston University School of Medicine; Boston Massachusetts
| | - Heather Shappell
- Department of Biostatistics; Boston University School of Public Health; Boston Massachusetts
| | - A.M. Al-Rubaish
- Department of Internal Medicine; College of Medicine, University of Dammam; Dammam Kingdom of Saudi Arabia
| | - Fahad Al-Muhanna
- Department of Internal Medicine; College of Medicine, University of Dammam; Dammam Kingdom of Saudi Arabia
| | - Z. Naserullah
- Al-Omran Scientific Chair for Hematological Diseases; King Faisal University; Al-Ahsa Kingdom of Saudi Arabia
- Department of Pediatrics; Maternity and Child Hospital; Dammam Kingdom of Saudi Arabia
| | - A. Alsuliman
- Alomran Scientific Chair; King Faisal University, King Fahd Hospital; Hafof Al-Ahsa Kingdom of Saudi Arabia
| | - Hatem Othman Qutub
- Alomran Scientific Chair; King Faisal University; Al-Ahsa Kingdom of Saudi Arabia
| | - Irene Simkin
- Department of Medicine; Boston University School of Medicine; Boston Massachusetts
| | - Lindsay A. Farrer
- Department of Medicine; Boston University School of Medicine; Boston Massachusetts
| | - Zhihua Jiang
- Department of Medicine; Boston University School of Medicine; Boston Massachusetts
| | - Hong-Yuan Luo
- Department of Medicine; Boston University School of Medicine; Boston Massachusetts
| | - Shengwen Huang
- Department of Medicine; Boston University School of Medicine; Boston Massachusetts
| | - Gustavo Mostoslavsky
- Department of Medicine; Boston University School of Medicine; Boston Massachusetts
| | - George J. Murphy
- Department of Medicine; Boston University School of Medicine; Boston Massachusetts
| | - Pradeep K. Patra
- Department of Biochemistry; Pt. J. N. M. Medical College; Raipur Chattisgarh India
| | - David H.K. Chui
- Department of Medicine; Boston University School of Medicine; Boston Massachusetts
| | - Abdulrahman Alsultan
- Sickle Cell Disease Research Center and Department of Pediatrics; College of Medicine, King Saud University; Riyadh Saudi Arabia
| | - Amein K. Al-Ali
- Center for Research and Medical Consultation; University of Dammam; Dammam Kingdom of Saudi Arabia
| | - Paola Sebastiani
- Department of Biostatistics; Boston University School of Public Health; Boston Massachusetts
| | - Martin H. Steinberg
- Department of Medicine; Boston University School of Medicine; Boston Massachusetts
| |
Collapse
|
37
|
Zhao Y, Li Y, Luo P, Gao Y, Yang J, Lao KH, Wang G, Cockerill G, Hu Y, Xu Q, Li T, Zeng L. XBP1 splicing triggers miR-150 transfer from smooth muscle cells to endothelial cells via extracellular vesicles. Sci Rep 2016; 6:28627. [PMID: 27338006 PMCID: PMC4919660 DOI: 10.1038/srep28627] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 06/06/2016] [Indexed: 12/23/2022] Open
Abstract
The interaction between endothelial cells (ECs) and smooth muscle cells (SMCs) plays a critical role in the maintenance of vessel wall homeostasis. The X-box binding protein 1 (XBP1) plays an important role in EC and SMC cellular functions. However, whether XBP1 is involved in EC-SMC interaction remains unclear. In this study, In vivo experiments with hindlimb ischemia models revealed that XBP1 deficiency in SMCs significantly attenuated angiogenesis in ischemic tissues, therefore retarded the foot blood perfusion recovery. In vitro studies indicated that either overexpression of the spliced XBP1 or treatment with platelet derived growth factor-BB up-regulated miR-150 expression and secretion via extracellular vesicles (EVs). The XBP1 splicing-mediated up-regulation of miR-150 might be due to increased stability. The SMC-derived EVs could trigger EC migration, which was abolished by miR-150 knockdown in SMCs, suggesting miR-150 is responsible for SMC-stimulated EC migration. The SMC-derived miR-150-containing EVs or premiR-150 transfection increased vascular endothelial growth factor (VEGF)-A mRNA and secretion in ECs. Both inhibitors SU5416 and LY294002 attenuated EVs-induced EC migration. This study demonstrates that XBP1 splicing in SMCs can control EC migration via SMC derived EVs-mediated miR-150 transfer and miR-150-driven VEGF-A/VEGFR/PI3K/Akt pathway activation, thereby modulating the maintenance of vessel wall homeostasis.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Heart Centre, Tianjin Third Central Hospital, Tianjin 300170, China
- Cardiovascular Division, King’s College London BHF centre, London SE5 9NU, United Kingdom
| | - Yi Li
- Cardiovascular Division, King’s College London BHF centre, London SE5 9NU, United Kingdom
| | - Peiyi Luo
- Cardiovascular Division, King’s College London BHF centre, London SE5 9NU, United Kingdom
| | - Yingtang Gao
- Key Laboratory of Artificial Cell, Tianjin Third Central Hospital, Tianjin 300170, China
| | - Junyao Yang
- Cardiovascular Division, King’s College London BHF centre, London SE5 9NU, United Kingdom
| | - Ka-Hou Lao
- Cardiovascular Division, King’s College London BHF centre, London SE5 9NU, United Kingdom
| | - Gang Wang
- Department of Emergency Medicine, the Second Affiliated Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an 710004, China
| | | | - Yanhua Hu
- Cardiovascular Division, King’s College London BHF centre, London SE5 9NU, United Kingdom
| | - Qingbo Xu
- Cardiovascular Division, King’s College London BHF centre, London SE5 9NU, United Kingdom
| | - Tong Li
- Department of Heart Centre, Tianjin Third Central Hospital, Tianjin 300170, China
- Key Laboratory of Artificial Cell, Tianjin Third Central Hospital, Tianjin 300170, China
| | - Lingfang Zeng
- Cardiovascular Division, King’s College London BHF centre, London SE5 9NU, United Kingdom
| |
Collapse
|
38
|
Pagano F, De Marinis E, Grignani F, Nervi C. Epigenetic role of miRNAs in normal and leukemic hematopoiesis. Epigenomics 2016; 5:539-52. [PMID: 24059800 DOI: 10.2217/epi.13.55] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hematopoiesis is a regulated multistep process, whereby transcriptional and epigenetic events contribute to progenitor fate determination. miRNAs have emerged as key players in hematopoietic cell development, differentiation and malignant transformation. From embryonic development through to adult life, miRNAs cooperate with, or are regulated, by epigenetic factors. Moreover, recent findings suggest that they contribute to chromatin structural modification, and the functional relevance of this 'epigenetic-miRNA axis' will be discussed in this article. Finally, emerging evidence has highlighted that miRNAs have functional control in human hematopoietic cells, involving targeted recruitment of epigenetic complexes to evolutionarily conserved complementary genomic loci. We propose the existence of epigenetic-miRNA loops that are able to organize the whole gene expression profile in hematopoietic cells.
Collapse
Affiliation(s)
- Francesca Pagano
- Department of Medical-Surgical Sciences & Biotechnologies, University La Sapienza, Latina, 04100, Italy
| | | | | | | |
Collapse
|
39
|
Bhise NS, Chauhan L, Shin M, Cao X, Pounds S, Lamba V, Lamba JK. MicroRNA-mRNA Pairs Associated with Outcome in AML: From In Vitro Cell-Based Studies to AML Patients. Front Pharmacol 2016; 6:324. [PMID: 26858643 PMCID: PMC4729948 DOI: 10.3389/fphar.2015.00324] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 12/30/2015] [Indexed: 12/22/2022] Open
Abstract
Cytarabine is the primary chemotherapeutic agent used for treatment of acute myeloid leukemia (AML). Disease relapse after initial remission remains one of the most pressing therapeutic challenges in the treatment of AML. Relapsed disease is often resistant to cytarabine and subsequent salvage therapy is ineffective. Recent studies have shown that some microRNAs (miRNAs) are associated with prognosis, but have not yet explored the role of miRNAs in cellular response to cytarabine. We identified 20 miRNAs that associate with the in vitro cytarabine chemo-sensitivity or apoptotic response of eight AML cell lines. Out of the 20 miRNAs, data on 18 miRNAs was available in AML patients from The Cancer Genome Atlas database. Our stepwise-integrated analyses (step 1 - miRNA-target mRNA that were significantly correlated in AML patients; step 2 - mRNAs from step 1 with significant association with overall survival (OS)) identified 23 unique miRNA-mRNA pairs predictive of OS in AML patients. As expected HOX genes (HOXA9, HOXB7, and HOXA10) were identified to be regulated by miRs as well as predictive of worse OS. Additionally, miR107-Myb, miR-378-granzyme B involved in granzyme signaling and miR10a-MAP4K4 were identified to be predictive of outcome through integrated analysis. Although additional functional validations to establish clinical/pharmacologic importance of miRNA-mRNA pairs are needed, our results from RNA electrophoretic mobility shift assay confirmed binding of miR-10a, miR-378, and miR-107 with their target genes GALNT1, GZMB, and MYB, respectively. Integration of pathogenic and pharmacologically significant miRNAs and miRNA-mRNA relationships identified in our study opens up opportunities for development of targeted/miRNA-directed therapies.
Collapse
Affiliation(s)
- Neha S Bhise
- Department of Pharmacotherapy and Translational Research, University of FloridaGainesville, FL, USA; Department of Experimental and Clinical Pharmacology, University of MinnesotaMinneapolis, MN, USA
| | - Lata Chauhan
- Department of Pharmacotherapy and Translational Research, University of Florida Gainesville, FL, USA
| | - Miyoung Shin
- Department of Pharmacotherapy and Translational Research, University of Florida Gainesville, FL, USA
| | - Xueyuan Cao
- Department of Biostatistics, St. Jude Children's Research Hospital Memphis, TN, USA
| | - Stanley Pounds
- Department of Biostatistics, St. Jude Children's Research Hospital Memphis, TN, USA
| | - Vishal Lamba
- Department of Pharmacotherapy and Translational Research, University of Florida Gainesville, FL, USA
| | - Jatinder K Lamba
- Department of Pharmacotherapy and Translational Research, University of Florida Gainesville, FL, USA
| |
Collapse
|
40
|
Zhou M, Zeng J, Wang X, Wang X, Huang T, Fu Y, Sun T, Jia J, Chen C. Histone demethylase RBP2 decreases miR-21 in blast crisis of chronic myeloid leukemia. Oncotarget 2015; 6:1249-61. [PMID: 25575817 PMCID: PMC4359230 DOI: 10.18632/oncotarget.2859] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 11/25/2014] [Indexed: 12/31/2022] Open
Abstract
Chronic myeloid leukemia in the blastic phase (CML-BP) responds poorly to clinical treatments and is usually fatal. In this study, we found that the histone H3 lysine 4 (H3K4) demethylase RBP2 (also called JARID1A and KDM5A) is underexpressed in CML-BP. The RBP2 histone demethylase stimulates leukemia cell differentiation and inhibits cell proliferation. We identified miR-21 was directly downregulated by RBP2 and found that miR-21 downregulated PDCD4 expression in leukemia cells. By binding to miR-21 promoter and by demethylating of trimethylated H3K4 at the miR-21 locus, RBP2 downregulated miR-21 expression. This in turn activated PDCD4. In conclusion, RBP2 epigenetically downregulated miR-21 in blast transformation of CML.
Collapse
Affiliation(s)
- Minran Zhou
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, P. R. China
| | - Jiping Zeng
- Department of Biochemistry, School of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Xiaoming Wang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, P. R. China
| | - Xiangyu Wang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, P. R. China
| | - Tao Huang
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, P. R. China
| | - Yue Fu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, P. R. China
| | - Ting Sun
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, P. R. China
| | - Jihui Jia
- Department of Microbiology/Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, Jinan, Shandong, P. R. China
| | - Chunyan Chen
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, P. R. China
| |
Collapse
|
41
|
Chapman BV, Wald AI, Akhtar P, Munko AC, Xu J, Gibson SP, Grandis JR, Ferris RL, Khan SA. MicroRNA-363 targets myosin 1B to reduce cellular migration in head and neck cancer. BMC Cancer 2015; 15:861. [PMID: 26545583 PMCID: PMC4635687 DOI: 10.1186/s12885-015-1888-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 10/30/2015] [Indexed: 01/07/2023] Open
Abstract
Background Squamous cell carcinoma of the head and neck (SCCHN) remains a prevalent and devastating disease. Recently, there has been an increase in SCCHN cases that are associated with high-risk human papillomavirus (HPV) infection. The clinical characteristics of HPV-positive and HPV-negative SCCHN are known to be different but their molecular features are only recently beginning to emerge. MicroRNAs (miRNAs, miRs) are small, non-coding RNAs that are likely to play significant roles in cancer initiation and progression where they may act as oncogenes or tumor suppressors. Previous studies in our laboratory showed that miR-363 is overexpressed in HPV-positive compared to HPV-negative SCCHN cell lines, and the HPV type 16-E6 oncoprotein upregulates miR-363 in SCCHN cell lines. However, the functional role of miR-363 in SCCHN in the context of HPV infection remains to be elucidated. Methods We analyzed miR-363 levels in SCCHN tumors with known HPV-status from The Cancer Genome Atlas (TCGA) and an independent cohort from our institution. Cell migration studies were conducted following the overexpression of miR-363 in HPV-negative cell lines. Bioinformatic tools and a luciferase reporter assay were utilized to confirm that miR-363 targets the 3’-UTR of myosin 1B (MYO1B). MYO1B mRNA and protein expression levels were evaluated following miR-363 overexpression in HPV-negative SCCHN cell lines. Small interfering RNA (siRNA) knockdown of MYO1B was performed to assess the phenotypic implication of reduced MYO1B expression in SCCHN cell lines. Results MiR-363 was found to be overexpressed in HPV-16-positive compared to the HPV-negative SCCHN tumors. Luciferase reporter assays performed in HPV-negative JHU028 cells confirmed that miR-363 targets one of its two potential binding sites in the 3’UTR of MYO1B. MYO1B mRNA and protein levels were reduced upon miR-363 overexpression in four HPV-negative SCCHN cell lines. Increased miR-363 expression or siRNA knockdown of MYO1B expression reduced Transwell migration of SCCHN cell lines, indicating that the miR-363-induced migration attenuation of SCCHN cells may act through MYO1B downregulation. Conclusions These findings demonstrate that the overexpression of miR-363 reduces cellular migration in head and neck cancer and reveal the biological relationship between miR-363, myosin 1b, and HPV-positive SCCHN. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1888-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bhavana V Chapman
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA. .,Department of Otolaryngology, University of Pittsburgh and University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15213, USA. .,Medical Research Fellows Program, Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA.
| | - Abigail I Wald
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA.
| | - Parvez Akhtar
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA.
| | - Ana C Munko
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA.
| | - Jingjing Xu
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA.
| | - Sandra P Gibson
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, 15216, USA. .,Department of Otolaryngology, University of Pittsburgh and University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15213, USA.
| | - Jennifer R Grandis
- Department of Otolaryngology, University of Pittsburgh and University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15213, USA. .,Department of Pharmacology and Chemical Biology, University of Pittsburgh and University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15213, USA. .,Present address: Clinical and Translational Science Institute,, Box 0558, 550 16th Street, 6th Floor, San Francisco, CA, 94158, USA.
| | - Robert L Ferris
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, 15216, USA. .,Department of Otolaryngology, University of Pittsburgh and University of Pittsburgh Cancer Institute, Pittsburgh, PA, 15213, USA.
| | - Saleem A Khan
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
42
|
Pal R, Greene S. microRNA-10b Is Overexpressed and Critical for Cell Survival and Proliferation in Medulloblastoma. PLoS One 2015; 10:e0137845. [PMID: 26394044 PMCID: PMC4579065 DOI: 10.1371/journal.pone.0137845] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 08/24/2015] [Indexed: 12/24/2022] Open
Abstract
This study demonstrates the effects of miRNA-10b on medulloblastoma proliferation through transcriptional induction of the anti-apoptotic protein BCL2. Using a cancer specific miRNA-array, high expression of miRNA-10b in medulloblastoma cell lines compared to a normal cerebellar control was shown, and this was confirmed with real time PCR (RT-PCR). Two medulloblastoma cell lines (DAOY and UW228) were transiently transfected with control miRNA, miRNA-10b inhibitor or miRNA-10b mimic and subjected to RT-PCR, MTT, apoptosis, clonogenic assay and western blot analysis. Transfection of miRNA-10b inhibitor induced a significant down-regulation of miRNA-10b expression, inhibited proliferation, and induced apoptosis, while miRNA-10b mimic exerted an opposite effect. Inhibition of miRNA-10b abrogated the colony-forming capability of medulloblastoma cells, and markedly down-regulated the expression of BCL2. Down-regulation of BCL2 by antisense oligonucleotides or siRNA also significantly down-regulated miRNA-10b, suggesting that BCL2 is a major mediator of the effects of miRNA-10b. ABT-737 and ABT-199, potent inhibitors of BCL2, downregulated the expression of miRNA-10b and increased apoptosis. Analysis of miRNA-10b levels in 13 primary medulloblastoma samples revealed that the 2 patients with the highest levels of miRNA-10b had multiple recurrences (4.5) and died within 8 years of diagnosis, compared with the 11 patients with low levels of miRNA-10b who had a mean of 1.2 recurrences and nearly 40% long-term survival. The data presented here indicate that miRNA-10b may act as an oncomir in medulloblastoma tumorigenesis, and reveal a previously unreported mechanism with Bcl-2 as a mediator of the effects of miRNA-10b upon medulloblastoma cell survival.
Collapse
Affiliation(s)
- Rekha Pal
- Department of Neurological Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania, United States of America
| | - Stephanie Greene
- Department of Neurological Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical School, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
43
|
Wang L, Li G, Yao ZQ, Moorman JP, Ning S. MicroRNA regulation of viral immunity, latency, and carcinogenesis of selected tumor viruses and HIV. Rev Med Virol 2015; 25:320-41. [PMID: 26258805 DOI: 10.1002/rmv.1850] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 06/09/2015] [Accepted: 06/28/2015] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) function as key regulators in immune responses and cancer development. In the contexts of infection with oncogenic viruses, miRNAs are engaged in viral persistence, latency establishment and maintenance, and oncogenesis. In this review, we summarize the potential roles and mechanisms of viral and cellular miRNAs in the host-pathogen interactions during infection with selected tumor viruses and HIV, which include (i) repressing viral replication and facilitating latency establishment by targeting viral transcripts, (ii) evading innate and adaptive immune responses via toll-like receptors, RIG-I-like receptors, T-cell receptor, and B-cell receptor pathways by targeting signaling molecules such as TRAF6, IRAK1, IKKε, and MyD88, as well as downstream targets including regulatory cytokines such as tumor necrosis factor α, interferon γ, interleukin 10, and transforming growth factor β, (iii) antagonizing intrinsic and extrinsic apoptosis pathways by targeting pro-apoptotic or anti-apoptotic gene transcripts such as the Bcl-2 family and caspase-3, (iv) modulating cell proliferation and survival through regulation of the Wnt, PI3K/Akt, Erk/MAPK, and Jak/STAT signaling pathways, as well as the signaling pathways triggered by viral oncoproteins such as Epstein-Barr Virus LMP1, by targeting Wnt-inhibiting factor 1, SHIP, pTEN, and SOCSs, and (v) regulating cell cycle progression by targeting cell cycle inhibitors such as p21/WAF1 and p27/KIP1. Further elucidation of the interaction between miRNAs and these key biological events will facilitate our understanding of the pathogenesis of viral latency and oncogenesis and may lead to the identification of miRNAs as novel targets for developing new therapeutic or preventive interventions.
Collapse
Affiliation(s)
- Ling Wang
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Division of Infectious Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Guangyu Li
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Division of Infectious Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Zhi Q Yao
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Division of Infectious Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Hepatitis (HCV/HIV) Program, James H Quillen VA Medical Center, Johnson City, TN, USA
| | - Jonathan P Moorman
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Division of Infectious Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Hepatitis (HCV/HIV) Program, James H Quillen VA Medical Center, Johnson City, TN, USA
| | - Shunbin Ning
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Division of Infectious Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| |
Collapse
|
44
|
Salemi D, Cammarata G, Agueli C, Augugliaro L, Corrado C, Bica MG, Raimondo S, Marfia A, Randazzo V, Dragotto P, Di Raimondo F, Alessandro R, Fabbiano F, Santoro A. miR-155 regulative network in FLT3 mutated acute myeloid leukemia. Leuk Res 2015; 39:883-96. [DOI: 10.1016/j.leukres.2015.04.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/16/2015] [Accepted: 04/23/2015] [Indexed: 12/26/2022]
|
45
|
Abstract
The field of miRNA biology is relatively young, but its impact on our understanding of the regulation of a wide array of cell functions is far-reaching. The importance of miRNAs in development has become nearly ubiquitous, with miRNAs contributing to development of most cells and organs. Although miRNAs are clearly interwoven into known regulatory networks that control cell development, the specific modalities by which they intersect are often quite distinct and cleverly achieved. The frequently emerging theme of feed-back and feed-forward loops to either counterbalance or reinforce the gene programs that they influence is a common thread. Many of these examples of miRNAs as developmental regulators are presently found in organs with different miRNAs and targets, whereas novel, unexpected themes emerge in the context of mouse development as we learn more about this rapidly developing area of biology.
Collapse
Affiliation(s)
- Kathryn N Ivey
- Gladstone Institute of Cardiovascular Disease and Departments of Pediatrics, Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94158
| | - Deepak Srivastava
- Gladstone Institute of Cardiovascular Disease and Departments of Pediatrics, Biochemistry and Biophysics, University of California, San Francisco, San Francisco, California 94158
| |
Collapse
|
46
|
Lamba G, Zaidi SK, Luebbers K, Verschraegen C, Stein GS, Rosmarin A. Epigenetic landscape of acute myelogenous leukemia--moving toward personalized medicine. J Cell Biochem 2015; 115:1669-72. [PMID: 24905899 DOI: 10.1002/jcb.24853] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 05/28/2014] [Indexed: 12/13/2022]
Abstract
Acute myeloid leukemia (AML) is an aggressive hematologic cancer that is characterized by accumulation of immature myeloid cells in the blood and bone marrow. The malignant cells in AML have reduced capacity to mature fully, and often exhibit chromosomal abnormalities, defects in cell signaling, and abnormal cell cycle control. Genetic and epigenetic changes are implicated in the onset and progression of AML. While progress has been made in using genetic and epigenetic changes as prognostic features of AML, these findings have not yet been effectively translated into novel treatment strategies. Disappointingly, rates of recurrence in AML remain high and overall survival is poor. Research strategies should focus on developing a comprehensive landscape of genetic and epigenetic changes in individual patients with AML to expand the clinicians' therapeutic armamentarium and to individualize and optimize treatment.
Collapse
Affiliation(s)
- Gurpreet Lamba
- Division of Hematology/Oncology, University of Vermont, Burlington, Vermont; Vermont Cancer Center, Burlington, Vermont
| | | | | | | | | | | |
Collapse
|
47
|
Robaina MC, Mazzoccoli L, Arruda VO, Reis FRDS, Apa AG, de Rezende LMM, Klumb CE. Deregulation of DNMT1, DNMT3B and miR-29s in Burkitt lymphoma suggests novel contribution for disease pathogenesis. Exp Mol Pathol 2015; 98:200-7. [PMID: 25746661 DOI: 10.1016/j.yexmp.2015.03.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/23/2015] [Accepted: 03/02/2015] [Indexed: 12/24/2022]
Abstract
Methylation of CpG islands in promoter gene regions is frequently observed in lymphomas. DNA methylation is established by DNA methyltransferases (DNMTs). DNMT1 maintains methylation patterns, while DNMT3A and DNMT3B are critical for de novo DNA methylation. Little is known about the expression of DNMTs in lymphomas. DNMT3A and 3B genes can be regulated post-transcriptionally by miR-29 family. Here, we demonstrated for the first time the overexpression of DNMT1 and DNMT3B in Burkitt lymphoma (BL) tumor samples (69% and 86%, respectively). Specifically, the treatment of two BL cell lines with the DNMT inhibitor 5-aza-dC decreased DNMT1 and DNMT3B protein levels and inhibited cell growth. Additionally, miR-29a, miR-29b and miR-29c levels were significantly decreased in the BL tumor samples. Besides, the ectopic expression of miR-29a, miR-29b and miR-29c reduced the DNMT3B expression and miR-29a and miR-29b lead to increase of p16(INK4a) mRNA expression. Altogether, our data suggest that deregulation of DNMT1, DNMT3B and miR29 may be involved in BL pathogenesis.
Collapse
Affiliation(s)
- Marcela C Robaina
- Programa de Pesquisa em Hemato-Oncologia Molecular, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Luciano Mazzoccoli
- Programa de Pesquisa em Hemato-Oncologia Molecular, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | - Viviane Oliveira Arruda
- Programa de Pesquisa em Hemato-Oncologia Molecular, Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | | | | | | | - Claudete Esteves Klumb
- Programa de Pesquisa em Hemato-Oncologia Molecular, Instituto Nacional de Câncer, Rio de Janeiro, Brazil.
| |
Collapse
|
48
|
Yang Y, Li F, Saha MN, Abdi J, Qiu L, Chang H. miR-137 and miR-197 Induce Apoptosis and Suppress Tumorigenicity by Targeting MCL-1 in Multiple Myeloma. Clin Cancer Res 2015; 21:2399-411. [PMID: 25724519 DOI: 10.1158/1078-0432.ccr-14-1437] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 02/16/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Deregulation of miRNA has been implicated in the pathogenesis of multiple myeloma. We identified miR-137 and miR-197, mapped to the chromosome 1p (12)-(21) deletion region, and examined their antimyeloma activity as tumor suppressors. EXPERIMENTAL DESIGN The expression of miR-137/197 was examined in multiple myeloma and normal plasma cells by qRT-PCR. Functional effect of miR-137/197 was analyzed by cell viability, apoptosis, clonogenic, and migration assays. Antimyeloma activity of miR-137/197 was further evaluated in vivo by lentiviral-based or lipid-based delivery in a mouse xenograft model of multiple myeloma. RESULTS miR-137/197 expression was significantly lower in multiple myeloma cell lines and multiple myeloma patient samples compared with normal plasma cells. Transfection of miR-137/197 resulted in reduction of MCL-1 protein expression, as well as alteration of apoptosis-related genes, and induction of apoptosis, inhibition of viability, colony formation, and migration in multiple myeloma cells. MCL-1 was further validated as a direct target of miR-137/197. Conversely, overexpression of MCL-1 partially reverted the effect of miR-137/197. Importantly, in vivo lentiviral-mediated or intratumor delivery of miR-137/197 induced regression of tumors in murine xenograft models of multiple myeloma. CONCLUSIONS Our study reveals a novel role of miR-137/197 as tumor suppressors in mediating apoptosis in multiple myeloma cells by targeting MCL-1. Our findings provide a proof-of-principle that lentivirus-based or formulated synthetic miR-137/197 exerts therapeutic activity in preclinical models, and support a framework for development of miR-137/197-based treatment strategies in patients with multiple myeloma.
Collapse
Affiliation(s)
- Yijun Yang
- Division of Molecular and Cellular Biology, Toronto General Research Institute, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Fei Li
- Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Manujendra N Saha
- Division of Molecular and Cellular Biology, Toronto General Research Institute, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Jahangir Abdi
- Division of Molecular and Cellular Biology, Toronto General Research Institute, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Lugui Qiu
- Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.
| | - Hong Chang
- Division of Molecular and Cellular Biology, Toronto General Research Institute, Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada. Department of Laboratory Hematology and Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
49
|
Altered MicroRNA Expression in Folliculotropic and Transformed Mycosis Fungoides. Pathol Oncol Res 2015; 21:821-5. [DOI: 10.1007/s12253-015-9897-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 01/06/2015] [Indexed: 10/24/2022]
|
50
|
Dasdag S, Akdag MZ, Erdal ME, Erdal N, Ay OI, Ay ME, Yilmaz SG, Tasdelen B, Yegin K. Long term and excessive use of 900 MHz radiofrequency radiation alter microRNA expression in brain. Int J Radiat Biol 2015; 91:306-11. [PMID: 25529971 DOI: 10.3109/09553002.2015.997896] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE We still do not have any information on the interaction between radiofrequency radiation (RF) and miRNA, which play paramount role in growth, differentiation, proliferation and cell death by suppressing one or more target genes. The purpose of this study was to bridge this gap by investigating effects of long-term 900 MHz mobile phone exposure on some of the miRNA in brain tissue. MATERIALS AND METHODS The study was carried out on 14 Wistar Albino adult male rats by dividing them into two groups: Sham (n = 7) and exposure (n = 7). Rats in the exposure group were exposed to 900 MHz RF radiation for 3 h per day (7 days a week) for 12 months (one year). The same procedure was applied to the rats in the sham group except the generator was turned off. Immediately after the last exposure, rats were sacrificed and their brains were removed. rno-miR-9-5p, rno-miR-29a-3p, rno-miR-106b-5p, rno-miR-107 and rno-miR-125a-3p in brain were investigated in detail. RESULTS Results revealed that long-term exposure of 900 MHz RF radiation only decreased rno-miR107 (adjP* = 0.045) value where the whole body (rms) SAR value was 0.0369 W/kg. However, our results indicated that other microRNA evaluated in this study was not altered by 900 MHz RF radiation. CONCLUSION 900 MHz RF radiation can alter some of the miRNA, which, in turn, may lead to adverse effects. Therefore, further studies should be performed.
Collapse
Affiliation(s)
- Suleyman Dasdag
- Department of Biophysics, Medical School of Dicle University , Diyarbakir , Turkey
| | | | | | | | | | | | | | | | | |
Collapse
|