1
|
Zhou B, Fan Z, He G, Zhang W, Yang G, Ye L, Xu J, Liu R. SHP2 mutations promote glycolysis and inhibit apoptosis via PKM2/hnRNPK signaling in colorectal cancer. iScience 2024; 27:110462. [PMID: 39104405 PMCID: PMC11298658 DOI: 10.1016/j.isci.2024.110462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/14/2024] [Accepted: 07/02/2024] [Indexed: 08/07/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most common gastrointestinal tumors. Src homology-2 domain-containing protein tyrosine phosphatase-2 (SHP2) mutations occur in human solid tumors, including CRC. However, the function and underlying mechanism in CRC have not been well characterized. We demonstrated that the SHP2D61Y and SHP2E76K mutations occurred in CRC tissues, and these mutations promoted CRC cell proliferation, migration/invasion, and reduced CDDP-induced cell apoptosis in vitro and in vivo. Mechanistically, SHP2D61Y and SHP2E76K promote glycolysis by accelerating pyruvate kinase M2 (PKM2) nuclear translocation through mechanism beyond ERK activation. PKM2-IN-1 attenuates PKM2-dependent glycolysis and reduce glucose uptake, lactate production, and ATP levels promoted by SHP2D61Y and SHP2E76K in CRC cells. Furthermore, PKM2 upregulates heterogeneous nuclear ribonucleoprotein K (hnRNPK) expression and increases CRC cell proliferation and migration/invasion via regulating hnRNPK ubiquitination. These findings provide evidence that SHP2D61Y and SHP2E76K regulate CDDP-induced apoptosis, glucose metabolism, and CRC migration/invasion through PKM2 nuclear translocation and PKM2/hnRNPK signaling.
Collapse
Affiliation(s)
- Bo Zhou
- Department of Interventional Radiology, Zhongshan Hospital Fudan University, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Zhuoyang Fan
- Department of Interventional Radiology, Zhongshan Hospital Fudan University, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Guodong He
- Department of Colorectal Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, China
- Shanghai Engineering Research Center of Colorectal Cancer Minimally Invasive Technology, Shanghai 200032, China
| | - Wei Zhang
- Department of Interventional Radiology, Zhongshan Hospital Fudan University, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Guowei Yang
- Department of Interventional Radiology, Zhongshan Hospital Fudan University, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
| | - Lechi Ye
- Department of Colorectal and Anal Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jianmin Xu
- Department of Colorectal Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, China
- Shanghai Engineering Research Center of Colorectal Cancer Minimally Invasive Technology, Shanghai 200032, China
| | - Rong Liu
- Department of Interventional Radiology, Zhongshan Hospital Fudan University, Shanghai 200032, China
- National Clinical Research Center for Interventional Medicine, Shanghai 200032, China
- Shanghai Institute of Medical Imaging, Shanghai 200032, China
| |
Collapse
|
2
|
Huang R, Zhang YT, Lin Y, Pang RL, Yang Z, Zhao WH. Clinical Characteristics and Prognosis of Acute Myeloid Leukemia Patients with Protein Tyrosine Phosphatase Non-Receptor Type 11 Gene Mutation. Pharmgenomics Pers Med 2023; 16:1011-1026. [PMID: 38023823 PMCID: PMC10648958 DOI: 10.2147/pgpm.s420254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Objective The purpose of our study was to investigate the clinical characteristics, molecular biological characteristics and prognosis of acute myeloid leukemia (AML) patients with protein tyrosine phosphatase non-receptor type 11 (PTPN11) gene mutation. Methods The clinical data of 30 newly diagnosed adult AML patients with PTPN11 gene mutation were analyzed retrospectively. Kaplan-Meier and Cox proportional risk regression model were examined for prognostic analysis and prognostic factor screening. Results High-frequency mutation sites of PTPN11 gene are located in exon 3 of chromosome 12, which are D61 and A72 (16.7%), followed by E76 (13.3%). The median variant allele frequency (VAF) of PTPN11 mutant gene is 18.4%. The patients were divided into two groups according to PTPN11 VAF 35.3% (upper quartile). We observed that the peripheral blood leukocyte count in patients with VAF ≥35.3% was significantly higher than patients with VAF < 35.3% (p = 0.019) and also closely related to M5 (p = 0.016) and internal tandem duplication (ITD) of FMS-like tyrosine kinase 3 (FLT3) (FLT3-ITD) mutation (p = 0.048). Taking PTPN11 VAF 20% and 35.3% as the cutoff value, the patients were divided into two groups, and the overall survival and event-free survival (EFS) of the two groups were not significant. Multivariate analysis of Cox risk ratio model showed that white blood cell count and Eastern Cooperative Oncology Group (ECOG) physical status score were independent risk factors affecting the EFS. Conclusion Our study observed that PTPN11 VAF may not be a prognostic factor in patients with PTPN11mut AML. Newly diagnosed high white blood cell count and poor performance status were independent risk factors for EFS in PTPN11mut AML.
Collapse
Affiliation(s)
- Rui Huang
- Department of Hematology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
| | - Yi-Ting Zhang
- Department of Hematology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
| | - Yu Lin
- Department of Hematology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
| | - Ru-Li Pang
- Department of Hematology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
| | - Zhi Yang
- Department of Hematology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
| | - Wei-Hua Zhao
- Department of Hematology, the First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, People’s Republic of China
| |
Collapse
|
3
|
Bellacchio E. Intramolecular Interaction with the E6 Region Stabilizes the Closed Conformation of the N-SH2 Domain and Concurs with the Self-Inhibitory Docking in Downregulating the Activity of the SHP2 Tyrosine Phosphatase: A Molecular Dynamics Study. Int J Mol Sci 2022; 23:ijms23094794. [PMID: 35563185 PMCID: PMC9105505 DOI: 10.3390/ijms23094794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 12/04/2022] Open
Abstract
The localization and activity of the SHP2 tyrosine phosphatase across different cellular compartments to the target substrates are steered by the binding of phosphotyrosine (pY) peptides to the tandem SH2 domains. The most N-terminal domain (N-SH2) can also keep the enzyme inactive by intramolecular occlusion of the catalytic site. Enzyme activity can be recovered by an allosteric disruption of this self-inhibitory docking upon the binding of pY peptides to the N-SH2 domain. Prior to this, the N-SH2 domain must abandon the closed conformation because it impedes the access of pY peptides to the binding cleft. Although it cooperates with the self-inhibitory docking in the negative regulation of the phosphatase activity, the structural determinants of the stability of the closed conformation in the self-inhibited phosphatase are still elusive. To address this issue, a molecular dynamics simulation study is carried out. It is shown that the closed conformation is stabilized by the interaction of the N-SH2 domain with a conserved peptide portion in the region encoded by PTPN11 exon 6 (E6).
Collapse
Affiliation(s)
- Emanuele Bellacchio
- Area di Ricerca Genetica e Malattie Rare, Bambino Gesù Children's Hospital, IRCCS, Piazza S. Onofrio 4, 00165 Rome, Italy
| |
Collapse
|
4
|
Kanumuri R, Pasupuleti SK, Burns SS, Ramdas B, Kapur R. Targeting SHP2 phosphatase in hematological malignancies. Expert Opin Ther Targets 2022; 26:319-332. [PMID: 35503226 PMCID: PMC9239432 DOI: 10.1080/14728222.2022.2066518] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/12/2022] [Indexed: 01/02/2023]
Abstract
INTRODUCTION Src homology-2-containing protein tyrosine phosphatase 2 (SHP2) is a ubiquitously expressed, non-receptor protein tyrosine phosphatase encoded by the PTPN11 gene. Gain-of-function (GOF) mutations in PTPN11 are associated with the development of various hematological malignancies and Noonan syndrome with multiple lentigines (NS-ML). Preclinical studies performed with allosteric SHP2 inhibitors and combination treatments of SHP2 inhibitors with inhibitors of downstream regulators (such as MEK, ERK, and PD-1/PD-L1) demonstrate improved antitumor benefits. However, the development of novel SHP2 inhibitors is necessary to improve the therapeutic strategies for hematological malignancies and tackle drug resistance and disease relapse. AREAS COVERED This review examines the structure of SHP2, its function in various signaling cascades, the consequences of constitutive activation of SHP2 and potential therapeutic strategies to treat SHP2-driven hematological malignancies. EXPERT OPINION While SHP2 inhibitors have exhibited promise in preclinical trials, numerous challenges remain in translation to the clinic, including drug resistance. Although PROTAC-based SHP2 degraders show better efficacy than SHP2 inhibitors, novel strategies need to be designed to improve SHP2-specific therapies in hematologic malignancies. Genome-wide CRISPR screening should also be used to identify molecules that confer resistance to SHP2 inhibitors. Targeting these molecules together with SHP2 can increase the target specificity and reduce drug resistance.
Collapse
Affiliation(s)
- Rahul Kanumuri
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Santhosh Kumar Pasupuleti
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sarah S Burns
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Baskar Ramdas
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Reuben Kapur
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
5
|
Hao F, Wang C, Sholy C, Cao M, Kang X. Strategy for Leukemia Treatment Targeting SHP-1,2 and SHIP. Front Cell Dev Biol 2021; 9:730400. [PMID: 34490276 PMCID: PMC8417302 DOI: 10.3389/fcell.2021.730400] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/28/2021] [Indexed: 11/29/2022] Open
Abstract
Protein tyrosine phosphatases (PTPs) are modulators of cellular functions such as differentiation, metabolism, migration, and survival. PTPs antagonize tyrosine kinases by removing phosphate moieties from molecular signaling residues, thus inhibiting signal transduction. Two PTPs, SHP-1 and SHP-2 (SH2 domain-containing phosphatases 1 and 2, respectively) and another inhibitory phosphatase, SH2 domain-containing inositol phosphatase (SHIP), are essential for cell function, which is reflected in the defective phenotype of mutant mice. Interestingly, SHP-1, SHP-2, and SHIP mutations are identified in many cases of human leukemia. However, the impact of these phosphatases and their mutations regarding the onset and progression of leukemia is controversial. The ambiguity of the role of these phosphatases imposes challenges on the development of targeting therapies for leukemia. This fundamental problem, confronted by the expanding investigational field of leukemia, will be addressed in this review, which will include a discussion of the molecular mechanisms of SHP-1, SHP-2, and SHIP in normal hematopoiesis and their role in leukemia. Clinical development of leukemic therapies achieved by targeting these phosphatases will be addressed as well.
Collapse
Affiliation(s)
- Fang Hao
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, MO, United States
| | - Chen Wang
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, MO, United States
| | - Christine Sholy
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, MO, United States
| | - Min Cao
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, MO, United States
| | - Xunlei Kang
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, MO, United States
| |
Collapse
|
6
|
Li T, Xie J, Yao X, Zhang J, Li C, Ren D, Li L, Xie Q, Shao H, Qin A, Ye J. The tyrosine phosphatase SHP-2 dephosphorylated by ALV-J via its Env efficiently promotes ALV-J replication. Virulence 2021; 12:1721-1731. [PMID: 34167452 PMCID: PMC8237968 DOI: 10.1080/21505594.2021.1939952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Avian leukosis virus subgroup J (ALV-J) generally induces hemangioma, myeloid leukosis, and immunosuppression in chickens, causing significant poultry industry economic losses worldwide. The unusual env gene of ALV-J, with low homology to other subgroups of ALVs, is associated with its unique pathogenesis. However, the exact molecular basis for the pathogenesis and oncogenesis of ALV-J is still not fully understood. In this study, ALV-J infection and the overexpression of Env could efficiently downregulate the phosphorylation of SHP-2 (pSHP-2) in vitro and in vivo. The membrane-spanning domain (MSD) in Env Gp37 was the functional domain responsible for pSHP-2 downregulation. Moreover, the overexpression of SHP-2 could effectively promote the replication of ALV-J, whereas knockout or allosteric inhibition of SHP-2 could inhibit ALV-J replication. In addition, the knockout of endogenous chicken SHP-2 could significantly increase the proliferation ability of DF-1 cells. All these data demonstrate that SHP-2 dephosphorylated by ALV-J Env could efficiently promote ALV-J replication, highlighting the important role of SHP-2 in the pathogenesis of ALV-J and providing a new target for developing antiviral drugs against ALV-J.
Collapse
Affiliation(s)
- Tuofan Li
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jing Xie
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaohui Yao
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jun Zhang
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chunping Li
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Dan Ren
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Luyuan Li
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Quan Xie
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Hongxia Shao
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China.,Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Aijian Qin
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China.,Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jianqiang Ye
- Key Laboratory of Jiangsu Preventive Veterinary Medicine, Key Laboratory for Avian Preventive Medicine, Ministry of Education, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China.,Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
7
|
Role of lncRNA Morrbid in PTPN11(Shp2)E76K-driven juvenile myelomonocytic leukemia. Blood Adv 2021; 4:3246-3251. [PMID: 32697817 DOI: 10.1182/bloodadvances.2020002123] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/14/2020] [Indexed: 11/20/2022] Open
Abstract
Mutations in PTPN11, which encodes the protein tyrosine phosphatase SHP2, contribute to ∼35% of cases of juvenile myelomonocytic leukemia (JMML). A common clinical picture in children with JMML is that it presents as a constitutive hyperinflammatory syndrome, partially reminiscent of chronic myelomonocytic leukemia in adults. Thus, a component of JMML is associated with a hyperinflammatory state and abundant innate immune cells such as neutrophils and monocytes. Recently, we showed that the evolutionarily conserved mouse lncRNA Morrbid is specifically expressed in myeloid cells and uniquely represses the expression of the proapoptotic gene Bim to regulate the lifespan of myeloid cells. However, its role in JMML has not been investigated. In this study, we characterized the role of Morrbid and its target Bim, which are significantly dysregulated in Shp2E76K/+-bearing myeloid cells, in driving JMML. Loss of Morrbid in a mouse model of JMML driven by the Shp2E76K/+ mutation resulted in a significant correction of myeloid and erythroid cell abnormalities associated with JMML, including overall survival. Consistently, patients with JMML who had PTPN11, KRAS, and NRAS mutations and high expression of MORRBID manifested poor overall survival. Our results suggest that Morrbid contributes to JMML pathogenesis.
Collapse
|
8
|
Targeting SHP2 as a therapeutic strategy for inflammatory diseases. Eur J Med Chem 2021; 214:113264. [PMID: 33582386 DOI: 10.1016/j.ejmech.2021.113264] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 12/19/2022]
Abstract
With the change of lifestyle and the acceleration of aging process, inflammatory diseases have increasingly become one of the most vital threats to global human health. SHP2 protein is a non-receptor tyrosine phosphatase encoded by PTPN11 gene, and it is widely expressed in various tissues and cells. Numerous studies have shown that SHP2 plays important roles in the regulation of inflammatory diseases, including cancer-related inflammation, neurodegenerative diseases and metabolic diseases. In this paper, the roles of SHP2 in inflammatory diseases of various physiological systems were reviewed. At the same time, the latest SHP2 inhibitors were summarized, which will hold a promise for the therapeutic potential in future.
Collapse
|
9
|
Pearson S, Guo B, Pierce A, Azadbakht N, Brazzatti JA, Patassini S, Mulero-Navarro S, Meyer S, Flotho C, Gelb BD, Whetton AD. Proteomic Analysis of an Induced Pluripotent Stem Cell Model Reveals Strategies to Treat Juvenile Myelomonocytic Leukemia. J Proteome Res 2020; 19:194-203. [PMID: 31657576 PMCID: PMC6942217 DOI: 10.1021/acs.jproteome.9b00495] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
Juvenile
myelomonocytic leukemia (JMML) is an aggressive myeloproliferative
neoplasm of early childhood with a poor survival rate, thus there
is a requirement for improved treatment strategies. Induced pluripotent
stem cells offer the ability to model disease and develop new treatment
strategies. JMML is frequently associated with mutations in PTPN11. Children with Noonan syndrome, a development disorder,
have an increased incidence of JMML associated with specific germline
mutations in PTPN11. We undertook a proteomic assessment
of myeloid cells derived from induced pluripotent stem cells obtained
from Noonan syndrome patients with PTPN11 mutations,
either associated or not associated with an increased incidence of
JMML. We report that the proteomic perturbations induced by the leukemia-associated PTPN11 mutations are associated with TP53 and NF-Kκb
signaling. We have previously shown that MYC is involved in the differential
gene expression observed in Noonan syndrome patients associated with
an increased incidence of JMML. Thus, we employed drugs to target
these pathways and demonstrate differential effects on clonogenic
hematopoietic cells derived from Noonan syndrome patients, who develop
JMML and those who do not. Further, we demonstrated these small molecular
inhibitors, JQ1 and CBL0137, preferentially extinguish primitive hematopoietic
cells from sporadic JMML patients as opposed to cells from healthy
individuals.
Collapse
Affiliation(s)
- Stella Pearson
- Stem Cell and Leukaemia Proteomics Laboratory, Manchester Academic Health Science Centre , The University of Manchester, Wolfson Molecular Imaging Centre , 27 Palatine Road , Withington, Manchester M20 3LJ , U.K
| | - Baoqiang Guo
- Stem Cell and Leukaemia Proteomics Laboratory, Manchester Academic Health Science Centre , The University of Manchester, Wolfson Molecular Imaging Centre , 27 Palatine Road , Withington, Manchester M20 3LJ , U.K
| | - Andrew Pierce
- Stem Cell and Leukaemia Proteomics Laboratory, Manchester Academic Health Science Centre , The University of Manchester, Wolfson Molecular Imaging Centre , 27 Palatine Road , Withington, Manchester M20 3LJ , U.K
| | - Narges Azadbakht
- Stem Cell and Leukaemia Proteomics Laboratory, Manchester Academic Health Science Centre , The University of Manchester, Wolfson Molecular Imaging Centre , 27 Palatine Road , Withington, Manchester M20 3LJ , U.K
| | - Julie A Brazzatti
- Stoller Biomarker Discovery Centre, Manchester Academic Health Science Centre , University of Manchester , Manchester M13 9NQ , U.K
| | - Stefano Patassini
- Stem Cell and Leukaemia Proteomics Laboratory, Manchester Academic Health Science Centre , The University of Manchester, Wolfson Molecular Imaging Centre , 27 Palatine Road , Withington, Manchester M20 3LJ , U.K
| | | | - Stefan Meyer
- Stem Cell and Leukaemia Proteomics Laboratory, Manchester Academic Health Science Centre , The University of Manchester, Wolfson Molecular Imaging Centre , 27 Palatine Road , Withington, Manchester M20 3LJ , U.K
| | - Christian Flotho
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine , University of Freiburg , 79106 Freiburg , Germany
| | - Bruce D Gelb
- The Mindich Child Health and Development Institute , Icahn School of Medicine at Mount Sinai , New York , New York 10029 , United States
| | - Anthony D Whetton
- Stem Cell and Leukaemia Proteomics Laboratory, Manchester Academic Health Science Centre , The University of Manchester, Wolfson Molecular Imaging Centre , 27 Palatine Road , Withington, Manchester M20 3LJ , U.K.,Stoller Biomarker Discovery Centre, Manchester Academic Health Science Centre , University of Manchester , Manchester M13 9NQ , U.K
| |
Collapse
|
10
|
Chong Y, Liu Y, Lu S, Cai B, Qin H, Chang CS, Ren M, Cowell JK, Hu T. Critical individual roles of the BCR and FGFR1 kinase domains in BCR-FGFR1-driven stem cell leukemia/lymphoma syndrome. Int J Cancer 2019; 146:2243-2254. [PMID: 31525277 DOI: 10.1002/ijc.32665] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/14/2019] [Accepted: 08/29/2019] [Indexed: 01/09/2023]
Abstract
Constitutive activation of FGFR1, as a result of diverse chromosome translocations, is the hallmark of stem cell leukemia/lymphoma syndrome. The BCR-FGFR1 variant is unique in that the BCR component contributes a serine-threonine kinase (STK) to the N-terminal end of the chimeric FGFR1 kinase. We have deleted the STK domain and mutated the critical Y177 residue and demonstrate that the transforming activity of these mutated genes is reduced compared to the BCR-FGFR1 parental kinase. In addition, we demonstrate that deletion of the FGFR1 tyrosine kinase domain abrogates transforming ability, which is not compensated for by BCR STK activity. Unbiased screening for proteins that are inactivated as a result of loss of the BCR STK identified activated S6 kinase and SHP2 kinase. Genetic and pharmacological inhibition of SHP2 function in SCLL cells expressing BCR-FGFR1 in vitro leads to reduced viability and increased apoptosis. In vivo treatment of SCLL in mice with SHP099 leads to suppression of leukemogenesis, supporting an important role for SHP2 in FGFR1-driven leukemogenesis. In combination with the BGJ398 FGFR1 inhibitor, cell viability in vitro is further suppressed and acts synergistically with SHP099 in vivo suggesting a potential combined targeted therapy option in this subtype of SCLL disease.
Collapse
Affiliation(s)
| | - Yun Liu
- Georgia Cancer Center, Augusta, GA.,Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Sumin Lu
- Georgia Cancer Center, Augusta, GA
| | - Baohuan Cai
- Georgia Cancer Center, Augusta, GA.,Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | | | | | | | | | | |
Collapse
|
11
|
Wang L, Cheng J, Lin F, Liu S, Pan H, Li M, Li S, Li N, Li W. Ortho-Topolin Riboside Induced Differentiation through Inhibition of STAT3 Signaling in Acute Myeloid Leukemia HL-60 Cells. Turk J Haematol 2019; 36:162-168. [PMID: 31117333 PMCID: PMC6682775 DOI: 10.4274/tjh.galenos.2019.2019.0020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Objective: We previously demonstrated that ortho-topolin riboside (oTR) as a naturally occurring cytokinin secreted from Populus × robusta has great potential anticancer effects via the mitochondrial apoptotic pathway and endoplasmic reticulum stress pathway. In the present study, we reveal that oTR induced the differentiation of acute myeloid leukemia (AML) HL-60 cells, which represent the M2 subtype of AML. Materials and Methods: After the incubation of HL-60 cells with oTR, its effect was analyzed with cell viability assay, Wright-Giemsa staining, CD11b protein expression analysis, western blot analysis, and polymerase chain reaction. Results: We found that oTR arrested the cell cycle at the S phase, upregulated the expression of myeloid surface marker CD11b, reduced the nuclear cytoplasmic ratio, and altered the horseshoe shape of nuclei, as evidenced by Wright-Giemsa staining. Furthermore, we found that the protein level of phosphorylated STAT3 was decreased when cells were treated with oTR, while phosphorylated STAT1 was activated. Moreover, the protein level of phosphorylated STAT3 and its upstream kinase, Janus kinase 2, were also inhibited when cells were treated with oTR after increased time. Additionally, the levels of phosphorylated SHP-1 were increased while phosphorylated SHP-2 was decreased. Conclusion: Collectively, our data indicate a differentiation-induced mechanism underlying the inhibition of STAT3 signaling upon treatment with oTR. Therefore, oTR may constitute a novel differentiation-induced therapeutic for use in clinical treatment of AML.
Collapse
Affiliation(s)
- Li Wang
- School of Life and Medicine, Dalian University of Technology, PanJin, China
| | - Jiao Cheng
- School of Life and Medicine, Dalian University of Technology, PanJin, China
| | - FanLin Lin
- School of Life and Medicine, Dalian University of Technology, PanJin, China
| | - ShengXian Liu
- School of Life and Medicine, Dalian University of Technology, PanJin, China
| | - Hui Pan
- School of Life and Medicine, Dalian University of Technology, PanJin, China
| | - MingDa Li
- School of Life and Medicine, Dalian University of Technology, PanJin, China
| | - ShanShan Li
- School of Life and Medicine, Dalian University of Technology, PanJin, China
| | - Na Li
- The Second Hospital of Dalian Medical University, Dalian, China
| | - WeiPing Li
- The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
12
|
Nunes-Xavier CE, Mingo J, López JI, Pulido R. The role of protein tyrosine phosphatases in prostate cancer biology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:102-113. [PMID: 30401533 DOI: 10.1016/j.bbamcr.2018.06.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/18/2018] [Accepted: 06/28/2018] [Indexed: 02/07/2023]
Abstract
Prostate cancer (PCa) is the most frequent malignancy in the male population of Western countries. Although earlier detection and more active surveillance have improved survival, it is still a challenge how to treat advanced cases. Since androgen receptor (AR) and AR-related signaling pathways are fundamental in the growth of normal and neoplastic prostate cells, targeting androgen synthesis or AR activity constitutes the basis of the current hormonal therapies in PCa. However, resistance to these treatments develops, both by AR-dependent and -independent mechanisms. Thus, alternative therapeutic approaches should be developed to target more efficiently advanced disease. Protein tyrosine phosphatases (PTPs) are direct regulators of the protein- and residue-specific phosphotyrosine (pTyr) content of cells, and dysregulation of the cellular Tyr phosphorylation/dephosphorylation balance is a major driving event in cancer, including PCa. Here, we review the current knowledge on the role of classical PTPs in the growth, differentiation, and survival of epithelial prostate cells, and their potential as important players and therapeutic targets for modulation in PCa.
Collapse
Affiliation(s)
- Caroline E Nunes-Xavier
- Department of Tumor Biology, Institute of Cancer Research, Oslo University Hospital Radiumhospitalet, N-0310 Oslo, Norway; Biomarkers in Cancer Unit, Biocruces Health Research Institute, 48903 Barakaldo, Bizkaia, Spain
| | - Janire Mingo
- Biomarkers in Cancer Unit, Biocruces Health Research Institute, 48903 Barakaldo, Bizkaia, Spain
| | - José I López
- Biomarkers in Cancer Unit, Biocruces Health Research Institute, 48903 Barakaldo, Bizkaia, Spain; Department of Pathology, Cruces University Hospital, University of the Basque Country (UPV/EHU), 48903 Barakaldo, Bizkaia, Spain
| | - Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces Health Research Institute, 48903 Barakaldo, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Spain.
| |
Collapse
|
13
|
Wang H, Wang W, Xue Y, Aweya JJ, Yang X, Zhu Z. Functional STR within PTPN11: a novel potential risk factor for colorectal cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:11710-11716. [PMID: 31966531 PMCID: PMC6966064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 10/24/2017] [Indexed: 06/10/2023]
Abstract
PTPN11 was previously regarded as a proto-oncogene, but recent reports have found that it acts as a tumor repressor in hepatocellular carcinogenesis and a prognostic predictor for colorectal carcinoma (CRC), although, its role in colorectal carcinogenesis is still unclear. This hospital-based case-control study with 830 CRC cases and 878 controls was carried out to determine the effect of the short tandem repeat (STR) polymorphism, located in the 3'UTR, on CRC risk in the study population of Chinese adults. Distribution of the genotypic frequency between CRC cases and controls in the Xuzhou study center revealed that the risk of CRC decreased as the repeat numbers increased. Compared with the 11/12 genotype, those with the 13/14 genotype were conferred reduced risk of CRC (OR=0.74, 95% CI=0.59-0.95, P=0.02), while carriers with the 15/16 genotype showed a marked reduction in CRC risk (OR=0.50, 95% CI=0.34-0.74, P=0.0004). A similar trend in genotype and allelic frequency was also observed in the Suining study center as well as in the pooled results. Using RT-qPCR analysis, longer alleles were found to upregulate the expression of PTPN11 in both tumor tissues and adjacent non-tumor tissues, with the expression of PTPN11 in non-CRC tissues observed to be 2.5-fold higher than those of CRC tissues. In the gain-of-function in vitro studies, it was found that constructs with allele 14 had the highest luciferase expression, while the allele 12 constructs had much lower expression, indicating that the STR polymorphism could influence the transcriptional activity and therefore was able to modulate PTPN11 expression. In conclusion, these findings indicate that the STR polymorphism located in PTPN11 modulates colorectal carcinogenesis probably through a motif change in the 3'UTR. Further studies with more study centers and the inclusion of other ethnic Chinese populations would have to be carried in the future so as to substantiate this observation.
Collapse
Affiliation(s)
- Huiping Wang
- New Drug Research and Clinical Pharmacy Key Laboratory, School of Pharmacy, Xuzhou Medical UniversityXuzhou, Jiangsu, China
- Department of Genetics, College of Biomedical Sciences, Xuzhou Medical UniversityXuzhou, Jiangsu, China
| | - Wen Wang
- Department of Oncology, Central Hospital of Development ZoneHeze, Shandong, China
| | - Yuanzhi Xue
- Department of General Surgery, Shehong Hospital of Traditional Chinese MedicineSuining, Sichuan, China
| | - Jude Juventus Aweya
- Department of Microbiology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of SingaporeSingapore
| | - Xue Yang
- Department of Preventive Medicine, School of Public Health, Xuzhou Medical UniversityXuzhou, Jiangsu, China
| | - Zhansheng Zhu
- Department of Pathology, College of Biomedical Sciences, Xuzhou Medical UniversityXuzhou, Jiangsu, China
- Department of Pathology, The Affiliated Hospital of Xuzhou Medical UniversityXuzhou, Jiangsu, China
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW SH2 domain-containing tyrosine phosphatase 2 (SHP2), encoded by PTPN11 plays an important role in regulating signaling from cell surface receptor tyrosine kinases during normal development as well as oncogenesis. Herein we review recently discovered roles of SHP2 in normal and aberrant hematopoiesis along with novel strategies to target it. RECENT FINDINGS Cell autonomous role of SHP2 in normal hematopoiesis and leukemogenesis has long been recognized. The review will discuss the newly discovered role of SHP2 in lineage specific differentiation. Recently, a noncell autonomous role of oncogenic SHP2 has been reported in which activated SHP2 was shown to alter the bone marrow microenvironment resulting in transformation of donor derived normal hematopoietic cells and development of myeloid malignancy. From being considered as an 'undruggable' target, recent development of allosteric inhibitor has made it possible to specifically target SHP2 in receptor tyrosine kinase driven malignancies. SUMMARY SHP2 has emerged as an attractive target for therapeutic targeting in hematological malignancies for its cell autonomous and microenvironmental effects. However a better understanding of the role of SHP2 in different hematopoietic lineages and its crosstalk with signaling pathways activated by other genetic lesions is required before the promise is realized in the clinic.
Collapse
|
15
|
Morotti A, Rocca S, Carrà G, Saglio G, Brancaccio M. Modeling myeloproliferative neoplasms: From mutations to mouse models and back again. Blood Rev 2016; 31:139-150. [PMID: 27899218 DOI: 10.1016/j.blre.2016.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/28/2016] [Accepted: 11/22/2016] [Indexed: 02/07/2023]
Abstract
Myeloproliferative neoplasms (MPNs) are defined according to the 2008 World Health Organization (WHO) classification and the recent 2016 revision. Over the years, several genetic lesions have been associated with the development of MPNs, with important consequences for identifying unique biomarkers associated with specific neoplasms and for developing targeted therapies. Defining the genotype-phenotype relationship in MPNs is essential to identify driver somatic mutations that promote MPN development and maintenance in order to develop curative targeted therapies. While studies with human samples can identify putative driver mutations, murine models are mandatory to demonstrate the causative role of mutations and for pre-clinical testing of specific therapeutic interventions. This review focuses on MPN mouse models specifically developed to assess the pathogenetic roles of gene mutations found in human patients, as well as murine MPN-like phenotypes identified in genetically modified mice.
Collapse
Affiliation(s)
- Alessandro Morotti
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole, 10, 10043 Orbassano, Italy.
| | - Stefania Rocca
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza, 52, 10126 Torino, Italy.
| | - Giovanna Carrà
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole, 10, 10043 Orbassano, Italy.
| | - Giuseppe Saglio
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole, 10, 10043 Orbassano, Italy.
| | - Mara Brancaccio
- Department of Molecular Biotechnology and Health Sciences, University of Torino, via Nizza, 52, 10126 Torino, Italy.
| |
Collapse
|
16
|
Inhibition of the Gab2/PI3K/mTOR signaling ameliorates myeloid malignancy caused by Ptpn11 (Shp2) gain-of-function mutations. Leukemia 2016; 31:1415-1422. [PMID: 27840422 PMCID: PMC5462847 DOI: 10.1038/leu.2016.326] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 10/11/2016] [Accepted: 10/18/2016] [Indexed: 12/23/2022]
Abstract
Activating mutations, such as E76K and D61Y, in PTPN11 (SHP2), a protein tyrosine phosphatase implicated in multiple cell signaling processes, are associated with 35% of patients with juvenile myelomonocytic leukemia (JMML), an aggressive childhood myeloproliferative neoplasm (MPN). Effective therapeutic interventions for this malignancy are still lacking. Here we show that the interaction between leukemia-associated mutant Shp2 and Gab2, a scaffolding protein important for cytokine-induced PI3K/Akt signaling, was enhanced, and that the mTOR pathway was elevated in Ptpn11E76K/+ leukemic cells. Importantly, MPN induced by the Ptpn11E76K/+ mutation was markedly attenuated in Ptpn11E76K/+/Gab2−/− double mutant mice — Overproduction of myeloid cells was alleviated, splenomegaly was diminished, and myeloid cell infiltration in non-hematopoietic organs was decreased in these double mutants. Excessive myeloid differentiation of stem cells was also normalized by depletion of Gab2. Acute leukemia progression of MPN was reduced in the double mutant mice, and as such, their survival was much prolonged. Furthermore, treatment of Ptpn11E76K/+ mice with Rapamycin, a specific and potent mTOR inhibitor, mitigated MPN phenotypes. Collectively, this study reveals an important role of the Gab2/PI3K/mTOR pathway in mediating the pathogenic signaling of the PTPN11 gain-of-function mutations, and a therapeutic potential of Rapamycin for PTPN11 mutation-associated JMML.
Collapse
|
17
|
Zheng J, Huang S, Huang Y, Song L, Yin Y, Kong W, Chen X, Ouyang X. Expression and prognosis value of SHP2 in patients with pancreatic ductal adenocarcinoma. Tumour Biol 2015; 37:7853-9. [PMID: 26695153 DOI: 10.1007/s13277-015-4675-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/16/2015] [Indexed: 12/14/2022] Open
Abstract
SHP2 is an src homology (SH) 2 domain-containing protein tyrosine phosphatase (PTP). SHP2 implicitly contributes to tumorigenesis, but the role of SHP2 in pancreatic ductal adenocarcinoma is still unknown. The purpose of this study was to evaluate the prognostic significance and associated expression of SHP2 in pancreatic ductal adenocarcinoma (PDAC) patients. We used immunohistochemistry to assess the protein expression levels of SHP2 in 79 PDAC specimens. The correlations between SHP2 expression and various clinicopathological features were evaluated by Pearson's chi-square (χ (2)) test, Fisher's exact test, and Spearman's rank. Univariate and multivariate Cox regression analyses were used to identify correlations between the immunohistochemical data for SHP2 expression and the clinicopathologic characteristics in PDAC. Kaplan-Meier survival analysis was used to demonstrate the relation between overall survival and the expression of SHP2. Immunohistochemistry revealed significantly higher rates of high SHP2 expression in PDAC tissues (55.7 %) versus adjacent non-cancer tissues (10.1 %) (P < 0.05). Expression of SHP2 was only significantly correlated with histological differentiation (P = 0.033) and vital status (P = 0.025). Patients with high SHP2 expression had shorter overall survival times compared to those with low SHP2 expression (P = 0.000). Multivariate Cox regression analysis revealed that SHP2 overexpression was an independent prognostic factor in PDAC (P = 0.012). Our study demonstrated for the first time that higher expression of SHP2 might be involved in the progression of pancreatic ductal adenocarcinoma, suggesting that SHP2 may be a potential prognostic marker and target for therapy.
Collapse
Affiliation(s)
- Jiawei Zheng
- Department of Medical Oncology, Fuzhou General Hospital of Nanjing Military Command, Fuzong Clinical College, Fujian Medical University, Fujian, China
| | - Shanshan Huang
- Department of Medical Oncology, Fuzhou General Hospital of Nanjing Military Command, Fuzong Clinical College, Fujian Medical University, Fujian, China
| | - Yufang Huang
- Department of Medical Oncology, Fuzhou General Hospital of Nanjing Military Command, Fuzong Clinical College, Fujian Medical University, Fujian, China
| | - Li Song
- Department of Medical Oncology, Fuzhou General Hospital of Nanjing Military Command, Fuzong Clinical College, Fujian Medical University, Fujian, China
| | - Yin Yin
- Department of Medical Oncology, Fuzhou General Hospital of Nanjing Military Command, Medical College, Xiamen University, Xiamen, China
| | - Wencui Kong
- Department of Medical Oncology, Fuzhou General Hospital of Nanjing Military Command, Fuzong Clinical College, Fujian Medical University, Fujian, China
| | - Xiong Chen
- Department of Medical Oncology, Fuzhou General Hospital of Nanjing Military Command, Fuzong Clinical College, Fujian Medical University, Fujian, China.
| | - Xuenong Ouyang
- Department of Medical Oncology, Fuzhou General Hospital of Nanjing Military Command, Fuzong Clinical College, Fujian Medical University, Fujian, China
| |
Collapse
|
18
|
Rainville N, Jachimowicz E, Wojchowski DM. Targeting EPO and EPO receptor pathways in anemia and dysregulated erythropoiesis. Expert Opin Ther Targets 2015; 20:287-301. [PMID: 26419263 DOI: 10.1517/14728222.2016.1090975] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Recombinant human erythropoietin (rhEPO) is a first-line therapeutic for the anemia of chronic kidney disease, cancer chemotherapy, AIDS (Zidovudine therapy), and lower-risk myelodysplastic syndrome. However, rhEPO frequently elevates hypertension, is costly, and may affect cancer progression. Potentially high merit therefore exists for defining new targets for anti-anemia agents within erythropoietin (EPO) and EPO receptor (EPOR) regulatory circuits. AREAS COVERED EPO production by renal interstitial fibroblasts is subject to modulation by several regulators of hypoxia-inducible factor 2a (HIF2a) including Iron Response Protein-1, prolyl hydroxylases, and HIF2a acetylases, each of which holds potential as anti-anemia drug targets. The cell surface receptor for EPO (EPOR) preassembles as a homodimer, together with Janus Kinase 2 (JAK2), and therefore it remains attractive to develop novel agents that trigger EPOR complex activation (activating antibodies, mimetics, small-molecule agonists). Additionally, certain downstream transducers of EPOR/JAK2 signaling may be druggable, including Erythroferrone (a hepcidin regulator), a cytoprotective Spi2a serpin, and select EPOR-associated protein tyrosine phosphatases. EXPERT OPINION While rhEPO (and biosimilars) are presently important mainstay erythropoiesis-stimulating agents (ESAs), impetus exists for studies of novel ESAs that fortify HIF2a's effects, act as EPOR agonists, and/or bolster select downstream EPOR pathways to erythroid cell formation. Such agents could lessen rhEPO dosing, side effects, and/or costs.
Collapse
Affiliation(s)
- Nicole Rainville
- a 1 Maine Medical Center Research Institute, Molecular Medicine Division , Scarborough, ME, USA
| | - Edward Jachimowicz
- a 1 Maine Medical Center Research Institute, Molecular Medicine Division , Scarborough, ME, USA
| | - Don M Wojchowski
- a 1 Maine Medical Center Research Institute, Molecular Medicine Division , Scarborough, ME, USA.,b 2 Tufts University School of Medicine , Boston, MA, USA.,c 3 Maine Medical Center Research Institute, Center of Excellence in Stem & Progenitor Cell Biology and Regenerative Medicine , Scarborough, ME 04074, USA ; .,d 4 Tufts University School of Medicine , Boston, MA, USA
| |
Collapse
|
19
|
SHP2 sails from physiology to pathology. Eur J Med Genet 2015; 58:509-25. [PMID: 26341048 DOI: 10.1016/j.ejmg.2015.08.005] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/24/2015] [Accepted: 08/30/2015] [Indexed: 02/08/2023]
Abstract
Over the two past decades, mutations of the PTPN11 gene, encoding the ubiquitous protein tyrosine phosphatase SHP2 (SH2 domain-containing tyrosine phosphatase 2), have been identified as the causal factor of several developmental diseases (Noonan syndrome (NS), Noonan syndrome with multiple lentigines (NS-ML), and metachondromatosis), and malignancies (juvenile myelomonocytic leukemia). SHP2 plays essential physiological functions in organism development and homeostasis maintenance by regulating fundamental intracellular signaling pathways in response to a wide range of growth factors and hormones, notably the pleiotropic Ras/Mitogen-Activated Protein Kinase (MAPK) and the Phosphoinositide-3 Kinase (PI3K)/AKT cascades. Analysis of the biochemical impacts of PTPN11 mutations first identified both loss-of-function and gain-of-function mutations, as well as more subtle defects, highlighting the major pathophysiological consequences of SHP2 dysregulation. Then, functional genetic studies provided insights into the molecular dysregulations that link SHP2 mutants to the development of specific traits of the diseases, paving the way for the design of specific therapies for affected patients. In this review, we first provide an overview of SHP2's structure and regulation, then describe its molecular roles, notably its functions in modulating the Ras/MAPK and PI3K/AKT signaling pathways, and its physiological roles in organism development and homeostasis. In the second part, we describe the different PTPN11 mutation-associated pathologies and their clinical manifestations, with particular focus on the biochemical and signaling outcomes of NS and NS-ML-associated mutations, and on the recent advances regarding the pathophysiology of these diseases.
Collapse
|
20
|
Lee KJ, Yoo YH, Kim MS, Yadav BK, Kim Y, Lim D, Hwangbo C, Moon KW, Kim D, Jeoung D, Lee H, Lee JH, Hahn JH. CD99 inhibits CD98-mediated β1 integrin signaling through SHP2-mediated FAK dephosphorylation. Exp Cell Res 2015; 336:211-22. [PMID: 26172215 DOI: 10.1016/j.yexcr.2015.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 06/28/2015] [Accepted: 07/10/2015] [Indexed: 01/18/2023]
Abstract
The human CD99 protein is a 32-kDa type I transmembrane glycoprotein, while CD98 is a disulfide-linked 125-kDa heterodimeric type II transmembrane glycoprotein. It has been previously shown that CD99 and CD98 oppositely regulate β1 integrin signaling, though the mechanisms by which this regulation occurs are not known. Our results revealed that antibody-mediated crosslinking of CD98 induced FAK phosphorylation at Y397 and facilitated the formation of the protein kinase Cα (PKCα)-syntenin-focal adhesion kinase (FAK), focal adhesions (FAs), and IPP-Akt1-syntenin complex, which mediates β1 integrin signaling. In contrast, crosslinking of CD99 disrupted the formation of the PKCα-syntenin-FAK complex as well as FA via FAK dephosphorylation. The CD99-induced dephosphorylation of FAK was apparently mediated by the recruitment of Src homology region 2 domain-containing phosphatase-2 (SHP2) to the plasma membrane and subsequent activation of its phosphatase activity. Further consequences of the activation of SHP2 included the disruption of FAK-talin and talin-β1 integrin interactions and attenuation in the formation of the IPP-Akt1-syntenin complex at the plasma membrane, which resulted in reduced cell-ECM adhesion. This report uncovers the molecular mechanisms underlying the inverse regulation of β1 integrin signaling by CD99 and CD98 and may provide a novel therapeutic approach to treat inflammation and cancer.
Collapse
Affiliation(s)
- Kyoung Jin Lee
- Department of Anatomy and Cell Biology, School of Medicine, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Yeon Ho Yoo
- Department of Anatomy and Cell Biology, School of Medicine, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Min Seo Kim
- Department of Anatomy and Cell Biology, School of Medicine, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Birendra Kumar Yadav
- Department of Anatomy and Cell Biology, School of Medicine, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Yuri Kim
- Department of Anatomy and Cell Biology, School of Medicine, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Dongyoung Lim
- Department of Anatomy and Cell Biology, School of Medicine, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Cheol Hwangbo
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Ki Won Moon
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Daejoong Kim
- Department of Anatomy and Cell Biology, School of Medicine, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Dooil Jeoung
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Hansoo Lee
- Department of Biological Sciences, College of Natural Sciences, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Jeong-Hyung Lee
- Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Jang-Hee Hahn
- Department of Anatomy and Cell Biology, School of Medicine, Kangwon National University, Chuncheon 200-701, Republic of Korea.
| |
Collapse
|
21
|
Zhang J, Zhang F, Niu R. Functions of Shp2 in cancer. J Cell Mol Med 2015; 19:2075-83. [PMID: 26088100 PMCID: PMC4568912 DOI: 10.1111/jcmm.12618] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 04/15/2015] [Indexed: 01/13/2023] Open
Abstract
Diagnostics and therapies have shown evident advances. Tumour surgery, chemotherapy and radiotherapy are the main techniques in treat cancers. Targeted therapy and drug resistance are the main focus in cancer research, but many molecular intracellular mechanisms remain unknown. Src homology region 2-containing protein tyrosine phosphatase 2 (Shp2) is associated with breast cancer, leukaemia, lung cancer, liver cancer, gastric cancer, laryngeal cancer, oral cancer and other cancer types. Signalling pathways involving Shp2 have also been discovered. Shp2 is related to many diseases. Mutations in the ptpn11 gene cause Noonan syndrome, LEOPARD syndrome and childhood leukaemia. Shp2 is also involved in several cancer-related processes, including cancer cell invasion and metastasis, apoptosis, DNA damage, cell proliferation, cell cycle and drug resistance. Based on the structure and function of Shp2, scientists have investigated specific mechanisms involved in cancer. Shp2 may be a potential therapeutic target because this phosphatase is implicated in many aspects. Furthermore, Shp2 inhibitors have been used in experiments to develop treatment strategies. However, conflicting results related to Shp2 functions have been presented in the literature, and such results should be resolved in future studies.
Collapse
Affiliation(s)
- Jie Zhang
- Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Fei Zhang
- Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Ruifang Niu
- Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
22
|
Ju A, Cho S. NSC 663284 Inhibits SHP-2. B KOREAN CHEM SOC 2013. [DOI: 10.5012/bkcs.2013.34.11.3491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Lazarini M, Machado-Neto JA, Archangelo LF, Mendes-Silva BF, Bigarella CL, Traina F, Saad STO. PTK2 and PTPN11 expression in myelodysplastic syndromes. Clinics (Sao Paulo) 2013; 68:1371-5. [PMID: 24212846 PMCID: PMC3798691 DOI: 10.6061/clinics/2013(10)13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 06/25/2013] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE The aim of this study was to evaluate the expression of protein tyrosine kinase 2 and protein tyrosine phosphatase non-receptor type 11, which respectively encode focal adhesion kinase protein and src homology 2 domain-containing protein-tyrosine phosphatase 2, in hematopoietic cells from patients with myelodysplastic syndromes. METHODS Protein tyrosine kinase 2 and tyrosine phosphatase non-receptor type 11 expressions were analyzed by quantitative polymerase chain reaction in bone marrow cells from patients with myelodysplastic syndromes and healthy donors. RESULTS Protein tyrosine kinase 2 and tyrosine phosphatase non-receptor type 11 expressions did not significantly differ between normal cells and myelodysplastic cells. CONCLUSIONS Our data suggest that despite the relevance of focal adhesion kinase and src homology 2 domain-containing protein-tyrosine phosphatase 2 in hematopoietic disorders, their mRNA expression do not significantly differ between total bone marrow cells from patients with myelodysplastic syndromes and healthy donors.
Collapse
Affiliation(s)
- Mariana Lazarini
- Hematology and Hemotherapy Center-University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, CampinasSP, Brazil
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
In this issue of Blood, Gandre-Babbe et al have, in part, overcome the obstacle of validating the molecular underpinnings of juvenile myelomonocytic leukemia (JMML) with the generation of induced pluripotent stem cells (iPSCs) from individuals with JMML.
Collapse
|