1
|
Kovilakath A, Mauro AG, Valentine YA, Raucci FJ, Jamil M, Carter C, Thompson J, Chen Q, Beutner G, Yue Y, Allegood J, Wang XX, Dail J, Devarakonda T, Myakala K, Windle JJ, Subler MA, Montefusco D, Willard B, Javaheri A, Bernas T, Mahata SK, Levi M, Liu J, Porter GA, Lesnefsky EJ, Salloum FN, Cowart LA. SPTLC3 Is Essential for Complex I Activity and Contributes to Ischemic Cardiomyopathy. Circulation 2024; 150:622-641. [PMID: 38660786 PMCID: PMC11333184 DOI: 10.1161/circulationaha.123.066879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 03/21/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Dysregulated metabolism of bioactive sphingolipids, including ceramides and sphingosine-1-phosphate, has been implicated in cardiovascular disease, although the specific species, disease contexts, and cellular roles are not completely understood. Sphingolipids are produced by the serine palmitoyltransferase enzyme, canonically composed of 2 subunits, SPTLC1 (serine palmitoyltransferase long chain base subunit 1) and SPTLC2 (serine palmitoyltransferase long chain base subunit 2). Noncanonical sphingolipids are produced by a more recently described subunit, SPTLC3 (serine palmitoyltransferase long chain base subunit 3). METHODS The noncanonical (d16) and canonical (d18) sphingolipidome profiles in cardiac tissues of patients with end-stage ischemic cardiomyopathy and in mice with ischemic cardiomyopathy were analyzed by targeted lipidomics. Regulation of SPTLC3 by HIF1α under ischemic conditions was determined with chromatin immunoprecipitation. Transcriptomics, lipidomics, metabolomics, echocardiography, mitochondrial electron transport chain, mitochondrial membrane fluidity, and mitochondrial membrane potential were assessed in the cSPTLC3KO transgenic mice we generated. Furthermore, morphological and functional studies were performed on cSPTLC3KO mice subjected to permanent nonreperfused myocardial infarction. RESULTS Herein, we report that SPTLC3 is induced in both human and mouse models of ischemic cardiomyopathy and leads to production of atypical sphingolipids bearing 16-carbon sphingoid bases, resulting in broad changes in cell sphingolipid composition. This induction is in part attributable to transcriptional regulation by HIF1α under ischemic conditions. Furthermore, cardiomyocyte-specific depletion of SPTLC3 in mice attenuates oxidative stress, fibrosis, and hypertrophy in chronic ischemia, and mice demonstrate improved cardiac function and increased survival along with increased ketone and glucose substrate metabolism utilization. Depletion of SPTLC3 mechanistically alters the membrane environment and subunit composition of mitochondrial complex I of the electron transport chain, decreasing its activity. CONCLUSIONS Our findings suggest a novel essential role for SPTLC3 in electron transport chain function and a contribution to ischemic injury by regulating complex I activity.
Collapse
Affiliation(s)
- Anna Kovilakath
- Department of Human and Molecular Genetics (A.K., M.J., J.J.W., M.A.S.), Virginia Commonwealth University, Richmond
| | - Adolfo G Mauro
- Department of Internal Medicine, Division of Cardiology, Pauley Heart Center, Richmond, VA (A.G.M., J.T., Q.C., T.D., E.J.L., F.N.S.)
| | - Yolander A Valentine
- C. Kenneth and Dianne Wright Center for Clinical and Translational Research (Y.A.V.), Virginia Commonwealth University, Richmond
- Department of Biochemistry and Molecular Biology (Y.A.V., Y.Y., J.A., J.D., D.M., E.J.L., L.A.C.), Virginia Commonwealth University, Richmond
| | - Frank J Raucci
- Department of Pediatrics, Division of Pediatric Cardiology (F.J.R.), Virginia Commonwealth University, Richmond
| | - Maryam Jamil
- Department of Human and Molecular Genetics (A.K., M.J., J.J.W., M.A.S.), Virginia Commonwealth University, Richmond
| | - Christiane Carter
- Bioinformatics Shared Resource, Massey Comprehensive Cancer Center (C.C., J.L.), Virginia Commonwealth University, Richmond
| | - Jeremy Thompson
- Department of Internal Medicine, Division of Cardiology, Pauley Heart Center, Richmond, VA (A.G.M., J.T., Q.C., T.D., E.J.L., F.N.S.)
| | - Qun Chen
- Department of Internal Medicine, Division of Cardiology, Pauley Heart Center, Richmond, VA (A.G.M., J.T., Q.C., T.D., E.J.L., F.N.S.)
| | - Gisela Beutner
- Department of Pediatrics (G.B., G.A.P.), University of Rochester Medical Center, NY
| | - Yang Yue
- Department of Biochemistry and Molecular Biology (Y.A.V., Y.Y., J.A., J.D., D.M., E.J.L., L.A.C.), Virginia Commonwealth University, Richmond
| | - Jeremy Allegood
- Department of Biochemistry and Molecular Biology (Y.A.V., Y.Y., J.A., J.D., D.M., E.J.L., L.A.C.), Virginia Commonwealth University, Richmond
| | - Xiaoxin X Wang
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC (X.X.W., K.M., M.L.)
| | - Jordan Dail
- Department of Biochemistry and Molecular Biology (Y.A.V., Y.Y., J.A., J.D., D.M., E.J.L., L.A.C.), Virginia Commonwealth University, Richmond
| | - Teja Devarakonda
- Department of Physiology and Biophysics (F.N.S., T.D., E.J.L.), Virginia Commonwealth University, Richmond
- Department of Internal Medicine, Division of Cardiology, Pauley Heart Center, Richmond, VA (A.G.M., J.T., Q.C., T.D., E.J.L., F.N.S.)
| | - Komuraiah Myakala
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC (X.X.W., K.M., M.L.)
| | - Jolene J Windle
- Department of Human and Molecular Genetics (A.K., M.J., J.J.W., M.A.S.), Virginia Commonwealth University, Richmond
- Massey Comprehensive Cancer Center (J.J.W., J.L., F.N.S., L.A.C.), Virginia Commonwealth University, Richmond
| | - Mark A Subler
- Department of Human and Molecular Genetics (A.K., M.J., J.J.W., M.A.S.), Virginia Commonwealth University, Richmond
| | - David Montefusco
- Department of Biochemistry and Molecular Biology (Y.A.V., Y.Y., J.A., J.D., D.M., E.J.L., L.A.C.), Virginia Commonwealth University, Richmond
| | - Belinda Willard
- Proteomics and Metabolomics Shared Laboratory Resource, Lerner Research Institute, Cleveland Clinic, OH (B.W.)
| | - Ali Javaheri
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO (A.J.)
- St. Louis Veterans' Affairs Medical Center, MO (A.J.)
| | - Tytus Bernas
- Department of Anatomy and Neurobiology (T.B.), Virginia Commonwealth University, Richmond
| | - Sushil K Mahata
- Veterans' Affairs San Diego Healthcare System and University of California San Diego, (S.K.M)
| | - Moshe Levi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC (X.X.W., K.M., M.L.)
| | - Jinze Liu
- Bioinformatics Shared Resource, Massey Comprehensive Cancer Center (C.C., J.L.), Virginia Commonwealth University, Richmond
- Massey Comprehensive Cancer Center (J.J.W., J.L., F.N.S., L.A.C.), Virginia Commonwealth University, Richmond
| | - George A Porter
- Department of Pediatrics (G.B., G.A.P.), University of Rochester Medical Center, NY
- Department of Pharmacology and Physiology (G.A.P.), University of Rochester Medical Center, NY
- Aab Cardiovascular Research Institute (G.A.P.), University of Rochester Medical Center, NY
| | - Edward J Lesnefsky
- Department of Biochemistry and Molecular Biology (Y.A.V., Y.Y., J.A., J.D., D.M., E.J.L., L.A.C.), Virginia Commonwealth University, Richmond
- Department of Physiology and Biophysics (F.N.S., T.D., E.J.L.), Virginia Commonwealth University, Richmond
- Department of Internal Medicine, Division of Cardiology, Pauley Heart Center, Richmond, VA (A.G.M., J.T., Q.C., T.D., E.J.L., F.N.S.)
- Richmond Veterans' Affairs Medical Center, VA (E.J.L., L.A.C.)
| | - Fadi N Salloum
- Department of Physiology and Biophysics (F.N.S., T.D., E.J.L.), Virginia Commonwealth University, Richmond
- Massey Comprehensive Cancer Center (J.J.W., J.L., F.N.S., L.A.C.), Virginia Commonwealth University, Richmond
- Department of Internal Medicine, Division of Cardiology, Pauley Heart Center, Richmond, VA (A.G.M., J.T., Q.C., T.D., E.J.L., F.N.S.)
| | - L Ashley Cowart
- Department of Biochemistry and Molecular Biology (Y.A.V., Y.Y., J.A., J.D., D.M., E.J.L., L.A.C.), Virginia Commonwealth University, Richmond
- Massey Comprehensive Cancer Center (J.J.W., J.L., F.N.S., L.A.C.), Virginia Commonwealth University, Richmond
- Richmond Veterans' Affairs Medical Center, VA (E.J.L., L.A.C.)
| |
Collapse
|
2
|
Lahiri SK, Jin F, Zhou Y, Quick AP, Kramm CF, Wang MC, Wehrens XH. Altered myocardial lipid regulation in junctophilin-2-associated familial cardiomyopathies. Life Sci Alliance 2024; 7:e202302330. [PMID: 38438248 PMCID: PMC10912815 DOI: 10.26508/lsa.202302330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/06/2024] Open
Abstract
Myocardial lipid metabolism is critical to normal heart function, whereas altered lipid regulation has been linked to cardiac diseases including cardiomyopathies. Genetic variants in the JPH2 gene can cause hypertrophic cardiomyopathy (HCM) and, in some cases, dilated cardiomyopathy (DCM). In this study, we tested the hypothesis that JPH2 variants identified in patients with HCM and DCM, respectively, cause distinct alterations in myocardial lipid profiles. Echocardiography revealed clinically significant cardiac dysfunction in both knock-in mouse models of cardiomyopathy. Unbiased myocardial lipidomic analysis demonstrated significantly reduced levels of total unsaturated fatty acids, ceramides, and various phospholipids in both mice with HCM and DCM, suggesting a common metabolic alteration in both models. On the contrary, significantly increased di- and triglycerides, and decreased co-enzyme were only found in mice with HCM. Moreover, mice with DCM uniquely exhibited elevated levels of cholesterol ester. Further in-depth analysis revealed significantly altered metabolites from all the lipid classes with either similar or opposing trends in JPH2 mutant mice with HCM or DCM. Together, these studies revealed, for the first time, unique alterations in the cardiac lipid composition-including distinct increases in neutral lipids and decreases in polar membrane lipids-in mice with HCM and DCM were caused by distinct JPH2 variants. These studies may aid the development of novel biomarkers or therapeutics for these inherited disorders.
Collapse
Affiliation(s)
- Satadru K Lahiri
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Feng Jin
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Yue Zhou
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Ann P Quick
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Carlos F Kramm
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Meng C Wang
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, USA
| | - Xander Ht Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
3
|
Bowen TJ, Southam AD, Hall AR, Weber RJM, Lloyd GR, Macdonald R, Wilson A, Pointon A, Viant MR. Simultaneously discovering the fate and biochemical effects of pharmaceuticals through untargeted metabolomics. Nat Commun 2023; 14:4653. [PMID: 37537184 PMCID: PMC10400635 DOI: 10.1038/s41467-023-40333-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/20/2023] [Indexed: 08/05/2023] Open
Abstract
Untargeted metabolomics is an established approach in toxicology for characterising endogenous metabolic responses to xenobiotic exposure. Detecting the xenobiotic and its biotransformation products as part of the metabolomics analysis provides an opportunity to simultaneously gain deep insights into its fate and metabolism, and to associate the internal relative dose directly with endogenous metabolic responses. This integration of untargeted exposure and response measurements into a single assay has yet to be fully demonstrated. Here we assemble a workflow to discover and analyse pharmaceutical-related measurements from routine untargeted UHPLC-MS metabolomics datasets, derived from in vivo (rat plasma and cardiac tissue, and human plasma) and in vitro (human cardiomyocytes) studies that were principally designed to investigate endogenous metabolic responses to drug exposure. Our findings clearly demonstrate how untargeted metabolomics can discover extensive biotransformation maps, temporally-changing relative systemic exposure, and direct associations of endogenous biochemical responses to the internal dose.
Collapse
Affiliation(s)
- Tara J Bowen
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Andrew D Southam
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Andrew R Hall
- Safety Sciences, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Ralf J M Weber
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Gavin R Lloyd
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Ruth Macdonald
- Animal Sciences and Technology, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Amanda Wilson
- Integrated Bioanalysis, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Amy Pointon
- Safety Sciences, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Mark R Viant
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
- Phenome Centre Birmingham, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
4
|
Silva da Fonsêca V, Goncalves VDC, Augusto Izidoro M, Guimarães de Almeida AC, Luiz Affonso Fonseca F, Alexandre Scorza F, Finsterer J, Scorza CA. Parkinson's Disease and the Heart: Studying Cardiac Metabolism in the 6-Hydroxydopamine Model. Int J Mol Sci 2023; 24:12202. [PMID: 37569578 PMCID: PMC10418594 DOI: 10.3390/ijms241512202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Parkinson's-disease (PD) is an incurable, age-related neurodegenerative disease, and its global prevalence of disability and death has increased exponentially. Although motor symptoms are the characteristic manifestations of PD, the clinical spectrum also contains a wide variety of non-motor symptoms, which are the main cause of disability and determinants of the decrease in a patient's quality of life. Noteworthy in this regard is the stress on the cardiac system that is often observed in the course of PD; however, its effects have not yet been adequately researched. Here, an untargeted metabolomics approach was used to assess changes in cardiac metabolism in the 6-hydroxydopamine model of PD. Beta-sitosterol, campesterol, cholesterol, monoacylglycerol, α-tocopherol, stearic acid, beta-glycerophosphoric acid, o-phosphoethanolamine, myo-inositol-1-phosphate, alanine, valine and allothreonine are the metabolites that significantly discriminate parkinsonian rats from sham counterparts. Upon analysis of the metabolic pathways with the aim of uncovering the main biological pathways involved in concentration patterns of cardiac metabolites, the biosynthesis of both phosphatidylethanolamine and phosphatidylcholine, the glucose-alanine cycle, glutathione metabolism and plasmalogen synthesis most adequately differentiated sham and parkinsonian rats. Our results reveal that both lipid and energy metabolism are particularly involved in changes in cardiac metabolism in PD. These results provide insight into cardiac metabolic signatures in PD and indicate potential targets for further investigation.
Collapse
Affiliation(s)
- Victor Silva da Fonsêca
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-032, Brazil; (V.S.d.F.); (V.d.C.G.); (F.A.S.)
| | - Valeria de Cassia Goncalves
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-032, Brazil; (V.S.d.F.); (V.d.C.G.); (F.A.S.)
| | - Mario Augusto Izidoro
- Laboratório de Espectrometria de Massas-Associação Beneficente de Coleta de Sangue (COLSAN), São Paulo 04038-000, Brazil;
| | - Antônio-Carlos Guimarães de Almeida
- Laboratório de Neurociências Experimental e Computacional, Departamento de Engenharia de Biossistemas, Universidade Federal de São João del-Rei (UFSJ), São João del Rei 36301-160, Brazil;
| | - Fernando Luiz Affonso Fonseca
- Laboratório de Análises Clínicas da Faculdade de Medicina do ABC, Santo André 09060-650, Brazil;
- Departamento de Ciências Farmacêuticas da Universidade Federal de Sao Paulo (UNIFESP), Diadema 09972-270, Brazil
| | - Fulvio Alexandre Scorza
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-032, Brazil; (V.S.d.F.); (V.d.C.G.); (F.A.S.)
| | | | - Carla Alessandra Scorza
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-032, Brazil; (V.S.d.F.); (V.d.C.G.); (F.A.S.)
| |
Collapse
|
5
|
Young ME, Latimer MN. Circadian rhythms in cardiac metabolic flexibility. Chronobiol Int 2023; 40:13-26. [PMID: 34162286 PMCID: PMC8695643 DOI: 10.1080/07420528.2021.1939366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/01/2021] [Indexed: 12/25/2022]
Abstract
Numerous aspects of cardiovascular physiology (e.g., heart rate, blood pressure) and pathology (e.g., myocardial infarction and sudden cardiac death) exhibit time-of-day-dependency. In association with day-night differences in energetic demand and substrate availability, the healthy heart displays remarkable metabolic flexibility through temporal partitioning of the metabolic fate of common substrates (glucose, lipid, amino acids). The purpose of this review is to highlight the contribution that circadian clocks provide toward 24-hr fluctuations in cardiac metabolism and to discuss whether attenuation and/or augmentation of these metabolic rhythms through adjustment of nutrient intake timing impacts cardiovascular disease development.
Collapse
Affiliation(s)
- Martin E Young
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama, Birmingham, Alabama, USA
| | - Mary N Latimer
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama, Birmingham, Alabama, USA
| |
Collapse
|
6
|
Chen H, Zhu J, Le Y, Pan J, Liu Y, Liu Z, Wang C, Dou X, Lu D. Salidroside inhibits doxorubicin-induced cardiomyopathy by modulating a ferroptosis-dependent pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:153964. [PMID: 35180677 DOI: 10.1016/j.phymed.2022.153964] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/09/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Doxorubicin-induced cardiotoxicity (DIC) limits the clinical application of the drug in treatment of cancers and imposes a severe health burden on the patients. Therefore, there is an urgent need to develop alternative therapeutic strategies or drugs to minimize DIC. Salidroside is a phenylpropanoid glycoside extracted from Rhodiola rosea with multiple biological effects such as anti-inflammation and antioxidant properties. However, its mechanism of action in DIC is still poorly understood. PURPOSE The present study was aimed to investigate the role of salidroside in DIC and associated mechanism of action for the described effects. METHODS Cardiac dysfunction was induced through treatment of mice with doxorubicin in vivo and in vitro. The mechanism of action of salidroside was investigated using western blot assay, qPCR, immunofluorescence, histochemistry, echocardiography, and high-content imaging system. RESULTS Results of the current study found that treatment of mice with salidroside significantly improved doxorubicin-induced cardiac dysfunction, ferroptosis-like cell damage, and fibrosis in vivo. Further, it was noted that salidroside inhibited ferroptosis in vivo and in vitro by limiting iron accumulation, restoring GPX4-dependent antioxidant capacity, and preventing lipid peroxidation at the cellular or mitochondrial levels. Mechanistically, salidroside inhibited DOX-induced mitochondrial ROS, Fe2+, and lipid peroxidation as well as restored mitochondrial membrane potential by promoting mitochondrial biogenesis, improving mitochondrial iron-sulfur clusters, and restoring mitochondrial OXPHOS complexes, thereby improving mitochondrial function. In addition, AMPK is a key protein that coordinates mitochondria, metabolism, and ferroptosis. Therefore, it was found that compound C (CC), an AMPK inhibitor, disrupted the regulation of cellular lipid metabolism and mitochondrial function of salidroside as well as led to failure of the protective effect of salidroside against ferroptotic cell death. CONCLUSIONS The present study evidently demonstrated the cardioprotective effects of salidroside against doxorubicin-induced cardiomyopathy. Further, salidroside markedly down-regulated ferroptotic cell death by activating AMPK-dependent signaling pathways including regulating abnormal fatty acid metabolism and maintaining mitochondrial function. Therefore, salidroside is can be exploited to develop a novel medication for clinical DIC and salidroside may represent a novel treatment that improves recovery from DIC by targeting ferroptosis.
Collapse
Affiliation(s)
- Hang Chen
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ji Zhu
- The Third Affiliated Hospital of Zhejiang Chinese Medical University (Zhongshan Hospital of Zhejiang Province), Hangzhou 330106, China
| | - Yifei Le
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jieli Pan
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ying Liu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhijun Liu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Cui Wang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaobing Dou
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Dezhao Lu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
7
|
Yan J, Zhao Z, Xia M, Chen S, Wan X, He A, Daniel Sheng G, Wang X, Qian Q, Wang H. Induction of lipid metabolism dysfunction, oxidative stress and inflammation response by tris(1-chloro-2-propyl)phosphate in larval/adult zebrafish. ENVIRONMENT INTERNATIONAL 2022; 160:107081. [PMID: 35021149 DOI: 10.1016/j.envint.2022.107081] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 06/14/2023]
Abstract
As an important organophosphate flame retardant, tris(1-chloro-2-propyl)phosphate (TCPP) is ubiquitous in the environment leading to inevitable human exposure. However, there is a paucity of information regarding its acute/chronic effects on obesity, lipid homeostasis, and hepatocellular carcinoma, especially regarding the underlying molecular mechanisms in humans. Herein, we investigated the effects of TCPP exposure (5-25 mg/L) on lipid homeostasis in larval and adult zebrafish (Danio rerio). TCPP exposure caused remarkable lipid-metabolism dysfunction, which was reflected in obesity and excessive lipid accumulation in zebrafish liver. Mechanistically, TCPP induced the over-expression of adipogenesis genes and suppressed the expression of fatty-acid β-oxidation genes. Consequently, excess lipid synthesis and deficient expenditure triggered oxidative damage and an inflammation response by disrupting the antioxidant system and over-expressing proinflammatory cytokine. Based on high-throughput transcriptome sequencing, we found that TCPP exposure led to enrichment of several pathways involved in lipid metabolism and inflammation, as well as several genes related to pathways of cancer. Notably, increasing expressions of Ki-67 and 53BP1 proteins, which are reliable biomarkers for recognition and risk prediction of cellular proliferation in cancer cells, were observed in liver tissues of adult zebrafish. These results imply that chronic TCPP exposure triggers a potential risk of hepatocellular carcinogenesis (HCC) progression. Collectively, these findings offer new insights into our mechanistic understanding for the health effects of organophosphorus flame retardants on humans.
Collapse
Affiliation(s)
- Jin Yan
- Suzhou University of Science and Technology, National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou 215009, China
| | - Zijia Zhao
- Suzhou University of Science and Technology, National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou 215009, China
| | - Min Xia
- Suzhou University of Science and Technology, National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou 215009, China
| | - Shuya Chen
- Suzhou University of Science and Technology, National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou 215009, China
| | - Xiancheng Wan
- Suzhou University of Science and Technology, National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou 215009, China
| | - Anfei He
- Suzhou University of Science and Technology, National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou 215009, China
| | - Guangyao Daniel Sheng
- Suzhou University of Science and Technology, National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou 215009, China
| | - Xuedong Wang
- Suzhou University of Science and Technology, National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou 215009, China
| | - Qiuhui Qian
- Suzhou University of Science and Technology, National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou 215009, China
| | - Huili Wang
- Suzhou University of Science and Technology, National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou 215009, China.
| |
Collapse
|
8
|
Marwick TH, Gimelli A, Plein S, Bax JJ, Charron P, Delgado V, Donal E, Lancellotti P, Levelt E, Maurovich-Horvat P, Neubauer S, Pontone G, Saraste A, Cosyns B, Edvardsen T, Popescu BA, Galderisi M, Derumeaux G, Bäck M, Bertrand PB, Dweck M, Keenan N, Magne J, Neglia D, Stankovic I. Multimodality imaging approach to left ventricular dysfunction in diabetes: an expert consensus document from the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 2022; 23:e62-e84. [PMID: 34739054 DOI: 10.1093/ehjci/jeab220] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 01/14/2023] Open
Abstract
Heart failure (HF) is among the most important and frequent complications of diabetes mellitus (DM). The detection of subclinical dysfunction is a marker of HF risk and presents a potential target for reducing incident HF in DM. Left ventricular (LV) dysfunction secondary to DM is heterogeneous, with phenotypes including predominantly systolic, predominantly diastolic, and mixed dysfunction. Indeed, the pathogenesis of HF in this setting is heterogeneous. Effective management of this problem will require detailed phenotyping of the contributions of fibrosis, microcirculatory disturbance, abnormal metabolism, and sympathetic innervation, among other mechanisms. For this reason, an imaging strategy for the detection of HF risk needs to not only detect subclinical LV dysfunction (LVD) but also characterize its pathogenesis. At present, it is possible to identify individuals with DM at increased risk HF, and there is evidence that cardioprotection may be of benefit. However, there is insufficient justification for HF screening, because we need stronger evidence of the links between the detection of LVD, treatment, and improved outcome. This review discusses the options for screening for LVD, the potential means of identifying the underlying mechanisms, and the pathways to treatment.
Collapse
Affiliation(s)
- Thomas H Marwick
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC 3004, Australia
| | - Alessia Gimelli
- Fondazione Toscana Gabriele Monasterio, Via Moruzzi, 1, 56124 Pisa, Italy
| | - Sven Plein
- Multidisciplinary Cardiovascular Research Center & Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, UK
| | - Jeroen J Bax
- Department of Cardiology, Leiden University Medical Centre (LUMC), Leiden, The Netherlands
| | - Phillippe Charron
- Sorbonne Université, INSERM UMRS 1166 and ICAN Institute, Paris, France
- APHP, Centre de référence pour les maladies cardiaques héréditaires ou rares, Hôpital Pitié-Salpêtrière, Paris, France
| | - Victoria Delgado
- Department of Cardiology, Leiden University Medical Centre, Albinusdreef 2, Leiden 2300RC, The Netherlands
| | - Erwan Donal
- Service de Cardiologie Et Maladies Vasculaires Et CIC-IT 1414, CHU Rennes, 35000 Rennes, France
- Université de Rennes 1, LTSI, 35000 Rennes, France
| | - Patrizio Lancellotti
- Department of Cardiology, University of Liège Hospital, GIGA Cardiovascular Sciences, CHU SartTilman, Liège, Belgium
- Gruppo Villa Maria Care and Research, Maria Cecilia Hospital, Cotignola, and Anthea Hospital, Bari, Italy
| | - Eylem Levelt
- Department of Cardiovascular Sciences, University of Leicester, Glenfield Hospital , Groby Road, Leicester LE3 9QF, UK
| | - Pal Maurovich-Horvat
- MTA-SE Cardiovascular Imaging Research Group, Medical Imaging Centre, Semmelweis University, 2 Koranyi u., 1083 Budapest, Hungary
| | - Stefan Neubauer
- Radcliffe Department of Medicine, University of Oxford Centre for Clinical Magnetic Resonance Research, University of Oxford, Headley Way, Oxford OX3 9DU, UK
| | - Gianluca Pontone
- Centro Cardiologico Monzino IRCCS, University of Milan, Cardiovascular Imaging, Milan, Italy
| | - Antti Saraste
- Turku PET Centre, University of Turku, Turku, Finland
- Heart Center, Turku University Hospital, Turku, Finland
| | - Bernard Cosyns
- Cardiology, CHVZ (Centrum voor Hart en Vaatziekten), ICMI (In Vivo Cellular and Molecular Imaging) Laboratory, Universitair ziekenhuis Brussel, 109 Laarbeeklaan, Brussels 1090, Belgium
| | - Thor Edvardsen
- Department of Cardiology, Oslo University Hospital, Rikshospitalet, Postbox 4950 Nydalen, Sognsvannsveien 20, NO-0424 Oslo, Norway
- Institute for clinical medicine, University of Oslo, Sognsvannsveien 20, NO-0424 Oslo, Norway
| | - Bogdan A Popescu
- Department of Cardiology, University of Medicine and Pharmacy "Carol Davila", Euroecolab, Emergency Institute for Cardiovascular Diseases "Prof. Dr. C. C. Iliescu", Bucharest, Romania
| | - Maurizio Galderisi
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Genevieve Derumeaux
- IMRB - Inserm U955 Senescence, metabolism and cardiovascular diseases 8, rue du Général Sarrail, 94010 Créteil, France
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Rong Z, Chen H, Zhang Z, Zhang Y, Ge L, Lv Z, Zou Y, Lv J, He Y, Li W, Chen L. Identification of cardiomyopathy-related core genes through human metabolic networks and expression data. BMC Genomics 2022; 23:47. [PMID: 35016605 PMCID: PMC8753885 DOI: 10.1186/s12864-021-08271-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 12/15/2021] [Indexed: 12/27/2022] Open
Abstract
Abstract
Background
Cardiomyopathy is a complex type of myocardial disease, and its incidence has increased significantly in recent years. Dilated cardiomyopathy (DCM) and ischemic cardiomyopathy (ICM) are two common and indistinguishable types of cardiomyopathy.
Results
Here, a systematic multi-omics integration approach was proposed to identify cardiomyopathy-related core genes that could distinguish normal, DCM and ICM samples using cardiomyopathy expression profile data based on a human metabolic network. First, according to the differentially expressed genes between different states (DCM/ICM and normal, or DCM and ICM) of samples, three sets of initial modules were obtained from the human metabolic network. Two permutation tests were used to evaluate the significance of the Pearson correlation coefficient difference score of the initial modules, and three candidate modules were screened out. Then, a cardiomyopathy risk module that was significantly related to DCM and ICM was determined according to the significance of the module score based on Markov random field. Finally, based on the shortest path between cardiomyopathy known genes, 13 core genes related to cardiomyopathy were identified. These core genes were enriched in pathways and functions significantly related to cardiomyopathy and could distinguish between samples of different states.
Conclusion
The identified core genes might serve as potential biomarkers of cardiomyopathy. This research will contribute to identifying potential biomarkers of cardiomyopathy and to distinguishing different types of cardiomyopathy.
Collapse
|
10
|
Huang W, Gao F, Zhang Y, Chen T, Xu C. Lipid Droplet-Associated Proteins in Cardiomyopathy. ANNALS OF NUTRITION AND METABOLISM 2021; 78:1-13. [PMID: 34856540 DOI: 10.1159/000520122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/08/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND The heart requires a high rate of fatty-acid oxidation (FAO) to meet its energy needs. Neutral lipids are the main source of energy for the heart and are stored in lipid droplets (LDs), which are cytosolic organelles that primarily serve to store neutral lipids and regulate cellular lipid metabolism. LD-associated proteins (LDAPs) are proteins either located on the surface of the LDs or reside in the cytosol and contribute to lipid metabolism. Therefore, abnormal cardiac lipid accumulation or FAO can alter the redox state of the heart, resulting in cardiomyopathy, a group of diseases that negatively affect the myocardial function, thereby leading to heart failure and even cardiac death. SUMMARY LDs, along with LDAPs, are pivotal for modulating heart lipid homeostasis. The proper cardiac development and the maintenance of its normal function depend largely on lipid homeostasis regulated by LDs and LDAPs. Overexpression or deletion of specific LDAPs can trigger myocardial dysfunction and may contribute to the development of cardiomyopathy. Extensive connections and interactions may also exist between LDAPs. Key Message: In this review, the various mechanisms involved in LDAP-mediated regulation of lipid metabolism, the association between cardiac development and lipid metabolism, as well as the role of LDAPs in cardiomyopathy progression are discussed.
Collapse
Affiliation(s)
- Weiwei Huang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China.,Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Fei Gao
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yuting Zhang
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Tianhui Chen
- Department of Ophthalmology and Vision Science, Eye and ENT Hospital of Fudan University, Shanghai, China.,Key Laboratory of Myopia of State Health Ministry, and Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Chen Xu
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Shu H, Peng Y, Hang W, Nie J, Zhou N, Wang DW. The role of CD36 in cardiovascular disease. Cardiovasc Res 2020; 118:115-129. [PMID: 33210138 PMCID: PMC8752351 DOI: 10.1093/cvr/cvaa319] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022] Open
Abstract
CD36, also known as the scavenger receptor B2, is a multifunctional receptor widely expressed in various organs. CD36 plays a crucial role in the uptake of long-chain fatty acids, the main metabolic substrate in myocardial tissue. The maturation and transportation of CD36 is regulated by post-translational modifications, including phosphorylation, ubiquitination, glycosylation, and palmitoylation. CD36 is decreased in pathological cardiac hypertrophy caused by ischaemia-reperfusion and pressure overload, and increased in diabetic cardiomyopathy and atherosclerosis. Deficiency of CD36 alleviates diabetic cardiomyopathy and atherosclerosis, while overexpression of CD36 eliminates ischaemia-reperfusion damage, together suggesting that CD36 is closely associated with the progression of cardiovascular diseases and may be a new therapeutic target. This review summarizes the regulation and post-translational modifications of CD36 and evaluates its role in cardiovascular diseases and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Hongyang Shu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Yizhong Peng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Weijian Hang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Jiali Nie
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Ning Zhou
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.,Hubei Key Laboratory of Genetics and Molecular Mechanism of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan 430000, China
| |
Collapse
|
12
|
Kovilakath A, Cowart LA. Sphingolipid Mediators of Myocardial Pathology. J Lipid Atheroscler 2020; 9:23-49. [PMID: 32821720 PMCID: PMC7379069 DOI: 10.12997/jla.2020.9.1.23] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/25/2019] [Accepted: 10/09/2019] [Indexed: 12/15/2022] Open
Abstract
Cardiomyopathy is the leading cause of mortality worldwide. While the causes of cardiomyopathy continue to be elucidated, current evidence suggests that aberrant bioactive lipid signaling plays a crucial role as a component of cardiac pathophysiology. Sphingolipids have been implicated in the pathophysiology of cardiovascular disease, as they regulate numerous cellular processes that occur in primary and secondary cardiomyopathies. Experimental evidence gathered over the last few decades from both in vitro and in vivo model systems indicates that inhibitors of sphingolipid synthesis attenuate a variety of cardiomyopathic symptoms. In this review, we focus on various cardiomyopathies in which sphingolipids have been implicated and the potential therapeutic benefits that could be gained by targeting sphingolipid metabolism.
Collapse
Affiliation(s)
- Anna Kovilakath
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - L. Ashley Cowart
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
- Hunter Holmes McGuire Veteran's Affairs Medical Center, Richmond, VA, USA
| |
Collapse
|
13
|
Athithan L, Gulsin GS, McCann GP, Levelt E. Diabetic cardiomyopathy: Pathophysiology, theories and evidence to date. World J Diabetes 2019; 10:490-510. [PMID: 31641426 PMCID: PMC6801309 DOI: 10.4239/wjd.v10.i10.490] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/25/2019] [Accepted: 09/25/2019] [Indexed: 02/05/2023] Open
Abstract
The prevalence of type 2 diabetes (T2D) has increased worldwide and doubled over the last two decades. It features among the top 10 causes of mortality and morbidity in the world. Cardiovascular disease is the leading cause of complications in diabetes and within this, heart failure has been shown to be the leading cause of emergency admissions in the United Kingdom. There are many hypotheses and well-evidenced mechanisms by which diabetic cardiomyopathy as an entity develops. This review aims to give an overview of these mechanisms, with particular emphasis on metabolic inflexibility. T2D is associated with inefficient substrate utilisation, an inability to increase glucose metabolism and dependence on fatty acid oxidation within the diabetic heart resulting in mitochondrial uncoupling, glucotoxicity, lipotoxicity and initially subclinical cardiac dysfunction and finally in overt heart failure. The review also gives a concise update on developments within clinical imaging, specifically cardiac magnetic resonance studies to characterise and phenotype early cardiac dysfunction in T2D. A better understanding of the pathophysiology involved provides a platform for targeted therapy in diabetes to prevent the development of early heart failure with preserved ejection fraction.
Collapse
Affiliation(s)
- Lavanya Athithan
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Cardiovascular Biomedical Research Centre, Glenfield Hospital, Leicester LE3 9QP, United Kingdom
| | - Gaurav S Gulsin
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Cardiovascular Biomedical Research Centre, Glenfield Hospital, Leicester LE3 9QP, United Kingdom
| | - Gerald P McCann
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Cardiovascular Biomedical Research Centre, Glenfield Hospital, Leicester LE3 9QP, United Kingdom
| | - Eylem Levelt
- Multidisciplinary Cardiovascular Research Centre and Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds LF9 7TF, United Kingdom
| |
Collapse
|
14
|
Pinckard K, Baskin KK, Stanford KI. Effects of Exercise to Improve Cardiovascular Health. Front Cardiovasc Med 2019; 6:69. [PMID: 31214598 PMCID: PMC6557987 DOI: 10.3389/fcvm.2019.00069] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/07/2019] [Indexed: 12/18/2022] Open
Abstract
Obesity is a complex disease that affects whole body metabolism and is associated with an increased risk of cardiovascular disease (CVD) and Type 2 diabetes (T2D). Physical exercise results in numerous health benefits and is an important tool to combat obesity and its co-morbidities, including cardiovascular disease. Exercise prevents both the onset and development of cardiovascular disease and is an important therapeutic tool to improve outcomes for patients with cardiovascular disease. Some benefits of exercise include enhanced mitochondrial function, restoration and improvement of vasculature, and the release of myokines from skeletal muscle that preserve or augment cardiovascular function. In this review we will discuss the mechanisms through which exercise promotes cardiovascular health.
Collapse
Affiliation(s)
| | | | - Kristin I. Stanford
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
15
|
Lushnikova EL, Semenov DE, Nikityuk DB, Koldysheva EV, Klinnikova MG. Intracellular Reorganization of Cardiomyocytes in Dyslipidemic Cardiomyopathies. Bull Exp Biol Med 2018; 164:508-513. [DOI: 10.1007/s10517-018-4022-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Indexed: 01/18/2023]
|
16
|
Ueno M, Suzuki J, Hirose M, Sato S, Imagawa M, Zenimaru Y, Takahashi S, Ikuyama S, Koizumi T, Konoshita T, Kraemer FB, Ishizuka T. Cardiac overexpression of perilipin 2 induces dynamic steatosis: prevention by hormone-sensitive lipase. Am J Physiol Endocrinol Metab 2017; 313:E699-E709. [PMID: 28851734 PMCID: PMC6415650 DOI: 10.1152/ajpendo.00098.2017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 08/24/2017] [Accepted: 08/24/2017] [Indexed: 11/22/2022]
Abstract
Cardiac intracellular lipid accumulation (steatosis) is a pathophysiological phenomenon observed in starvation and diabetes mellitus. Perilipin 2 (PLIN2) is a lipid droplet (LD)-associated protein expressed in nonadipose tissues, including the heart. To explore the pathophysiological function of myocardial PLIN2, we generated transgenic (Tg) mice by cardiac-specific overexpression of PLIN2. Tg hearts showed accumulation of numerous small LDs associated with mitochondrial chains and high cardiac triacylglycerol (TAG) content [8-fold greater than wild-type (WT) mice]. Despite massive steatosis, cardiac uptake of glucose, fatty acids and VLDL, systolic function, and expression of metabolic genes were comparable in the two genotypes, and no morphological changes were observed by electron microscopy in the Tg hearts. Twenty-four hours of fasting markedly reduced steatosis in Tg hearts, whereas WT mice showed accumulation of LDs. Although activity of adipose triglyceride lipase in heart homogenate was comparable between WT and Tg mice, activity of hormone-sensitive lipase (HSL) was 40-50% less in Tg than WT mice under both feeding and fasting conditions, suggesting interference of PLIN2 with HSL. Mice generated through crossing of PLIN2-Tg mice and HSL-Tg mice showed cardiac-specific HSL overexpression and complete lack of steatosis. The results suggest that cardiac PLIN2 plays an important pathophysiological role in the development of dynamic steatosis and that the latter was prevented by upregulation of intracellular lipases, including HSL.
Collapse
Affiliation(s)
- Masami Ueno
- Third Department of Internal Medicine, University of Fukui, Faculty of Medical Sciences, Fukui, Japan
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California; and
- Division of Endocrinology, Stanford University, Stanford, California
| | - Jinya Suzuki
- Third Department of Internal Medicine, University of Fukui, Faculty of Medical Sciences, Fukui, Japan;
| | | | - Satsuki Sato
- Third Department of Internal Medicine, University of Fukui, Faculty of Medical Sciences, Fukui, Japan
| | - Michiko Imagawa
- Third Department of Internal Medicine, University of Fukui, Faculty of Medical Sciences, Fukui, Japan
| | - Yasuo Zenimaru
- Third Department of Internal Medicine, University of Fukui, Faculty of Medical Sciences, Fukui, Japan
| | - Sadao Takahashi
- Division of Diabetes Medicine, Ageo Central General Hospital, Saitama, Japan
| | - Shoichiro Ikuyama
- Division of Endocrinology and Metabolism, Oita San-ai Medical Center, Oita, Japan
| | - Tsutomu Koizumi
- Research and Education Program for Life Science, University of Fukui, Faculty of Medical Sciences, Fukui, Japan
| | - Tadashi Konoshita
- Third Department of Internal Medicine, University of Fukui, Faculty of Medical Sciences, Fukui, Japan
| | - Fredric B Kraemer
- Veterans Affairs Palo Alto Health Care System, Palo Alto, California; and
- Division of Endocrinology, Stanford University, Stanford, California
| | - Tamotsu Ishizuka
- Third Department of Internal Medicine, University of Fukui, Faculty of Medical Sciences, Fukui, Japan
| |
Collapse
|
17
|
Gluchowski NL, Chitraju C, Picoraro JA, Mejhert N, Pinto S, Xin W, Kamin DS, Winter HS, Chung WK, Walther TC, Farese RV. Identification and characterization of a novel DGAT1 missense mutation associated with congenital diarrhea. J Lipid Res 2017; 58:1230-1237. [PMID: 28373485 PMCID: PMC5454518 DOI: 10.1194/jlr.p075119] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/13/2017] [Indexed: 01/11/2023] Open
Abstract
Acyl-CoA:diacylglycerol acyltransferase (DGAT)1 and DGAT2 catalyze triglyceride (TG) biosynthesis in humans. Biallelic loss-of-function mutations in human DGAT1 result in severe congenital diarrhea and protein-losing enteropathy. Additionally, pharmacologic inhibition of DGAT1 led to dose-related diarrhea in human clinical trials. Here we identify a previously unknown DGAT1 mutation in identical twins of South Asian descent. These male patients developed watery diarrhea shortly after birth, with protein-losing enteropathy and failure to thrive. Exome sequencing revealed a homozygous recessive mutation in DGAT1, c.314T>C, p.L105P. We show here that the p.L105P DGAT1 enzyme produced from the mutant allele is less abundant, resulting in partial loss of TG synthesis activity and decreased formation of lipid droplets in patient-derived primary dermal fibroblasts. Thus, in contrast with complete loss-of-function alleles of DGAT1, the p.L105P missense allele partially reduces TG synthesis activity and causes a less severe clinical phenotype. Our findings add to the growing recognition of DGAT1 deficiency as a cause of congenital diarrhea with protein-losing enteropathy and indicate that DGAT1 mutations result in a spectrum of diseases.
Collapse
Affiliation(s)
- Nina L Gluchowski
- Division of Gastroenterology and Nutrition, Boston Children's Hospital, Boston, MA 02115.,Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115.,Harvard Medical School, Boston, MA 02115
| | - Chandramohan Chitraju
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115.,Harvard Medical School, Boston, MA 02115
| | - Joseph A Picoraro
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Columbia University Medical Center, New York, NY 10027
| | - Niklas Mejhert
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115.,Harvard Medical School, Boston, MA 02115
| | | | - Winnie Xin
- Harvard Medical School, Boston, MA 02115.,Department of Neurology, Massachusetts General Hospital, Boston, MA 02114
| | - Daniel S Kamin
- Division of Gastroenterology and Nutrition, Boston Children's Hospital, Boston, MA 02115.,Harvard Medical School, Boston, MA 02115
| | - Harland S Winter
- Harvard Medical School, Boston, MA 02115.,Division of Gastroenterology, MassGeneral Hospital for Children, Boston, MA 02114
| | - Wendy K Chung
- Departments of Pediatrics and Medicine, Columbia University Medical Center, New York, NY 10027
| | - Tobias C Walther
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115 .,Harvard Medical School, Boston, MA 02115.,Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142.,Howard Hughes Medical Institute, Boston, MA 02115
| | - Robert V Farese
- Harvard Medical School, Boston, MA 02115 .,Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142
| |
Collapse
|
18
|
Fabbri E, Yang A, Simonsick EM, Chia CW, Zoli M, Haughey NJ, Mielke MM, Ferrucci L, Coen PM. Circulating ceramides are inversely associated with cardiorespiratory fitness in participants aged 54-96 years from the Baltimore Longitudinal Study of Aging. Aging Cell 2016; 15:825-31. [PMID: 27135629 PMCID: PMC5013023 DOI: 10.1111/acel.12491] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2016] [Indexed: 01/25/2023] Open
Abstract
Cardiorespiratory fitness (VO2 peak) declines with age and is an independent risk factor for morbidity and mortality in older adults. Identifying biomarkers of low fitness may provide insight for why some individuals experience an accelerated decline of aerobic capacity and may serve as clinically valuable prognostic indicators of cardiovascular health. We investigated the relationship between circulating ceramides and VO2 peak in 443 men and women (mean age of 69) enrolled in the Baltimore Longitudinal Study of Aging (BLSA). Individual species of ceramide were quantified by HPLC–tandem mass spectrometry. VO2 peak was measured by a graded treadmill test. We applied multiple regression models to test the associations between ceramide species and VO2 peak, while adjusting for age, sex, blood pressure, serum LDL, HDL, triglycerides, and other covariates. We found that higher levels of circulating C18:0, C20:0, C24:1 ceramides and C20:0 dihydroceramides were strongly associated with lower aerobic capacity (P < 0.001, P < 0.001, P = 0.018, and P < 0.001, respectively). The associations held true for both sexes (with men having a stronger association than women, P value for sex interaction <0.05) and were unchanged after adjusting for confounders and multiple comparison correction. Interestingly, no significant association was found for C16:0, C22:0, C24:0, C26:0, and C22:1 ceramide species, C24:0 dihydroceramide, or total ceramides. Our analysis reveals that specific long‐chain ceramides strongly associate with low cardiovascular fitness in older adults and may be implicated in the pathogenesis of low fitness with aging. Longitudinal studies are needed to further validate these associations and investigate the relationship between ceramides and health outcomes.
Collapse
Affiliation(s)
- Elisa Fabbri
- Longitudinal Studies Section Translational Gerontology Branch National Institute on Aging National Institutes of Health Baltimore MD 21224 USA
- Department of Medical and Surgical Sciences University of Bologna Bologna Italy
| | - An Yang
- Laboratory of Behavioral Neuroscience, Intramural Research Program National Institute on Aging National Institutes of Health Baltimore MD 21224 USA
| | - Eleanor M. Simonsick
- Longitudinal Studies Section Translational Gerontology Branch National Institute on Aging National Institutes of Health Baltimore MD 21224 USA
| | - Chee W. Chia
- Longitudinal Studies Section Translational Gerontology Branch National Institute on Aging National Institutes of Health Baltimore MD 21224 USA
| | - Marco Zoli
- Department of Medical and Surgical Sciences University of Bologna Bologna Italy
| | - Norman J. Haughey
- Department of Neurology Johns Hopkins University School of Medicine Baltimore MD 21224 USA
| | - Michelle M. Mielke
- Department of Health Science Research and Neurology Mayo Clinic Rochester MN 55905 USA
| | - Luigi Ferrucci
- Longitudinal Studies Section Translational Gerontology Branch National Institute on Aging National Institutes of Health Baltimore MD 21224 USA
| | - Paul M. Coen
- Translational Research Institute for Metabolism and Diabetes Florida Hospital Orlando FL 32804 USA
| |
Collapse
|
19
|
Cardioprotection Resulting from Glucagon-Like Peptide-1 Administration Involves Shifting Metabolic Substrate Utilization to Increase Energy Efficiency in the Rat Heart. PLoS One 2015; 10:e0130894. [PMID: 26098939 PMCID: PMC4476748 DOI: 10.1371/journal.pone.0130894] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/25/2015] [Indexed: 01/26/2023] Open
Abstract
Previous studies have shown that glucagon-like peptide-1 (GLP-1) provides cardiovascular benefits independent of its role on peripheral glycemic control. However, the precise mechanism(s) by which GLP-1 treatment renders cardioprotection during myocardial ischemia remain unresolved. Here we examined the role for GLP-1 treatment on glucose and fatty acid metabolism in normal and ischemic rat hearts following a 30 min ischemia and 24 h reperfusion injury, and in isolated cardiomyocytes (CM). Relative carbohydrate and fat oxidation levels were measured in both normal and ischemic hearts using a 1-13C glucose clamp coupled with NMR-based isotopomer analysis, as well as in adult rat CMs by monitoring pH and O2 consumption in the presence of glucose or palmitate. In normal heart, GLP-1 increased glucose uptake (↑64%, p<0.05) without affecting glycogen levels. In ischemic hearts, GLP-1 induced metabolic substrate switching by increasing the ratio of carbohydrate versus fat oxidation (↑14%, p<0.01) in the LV area not at risk, without affecting cAMP levels. Interestingly, no substrate switching occurred in the LV area at risk, despite an increase in cAMP (↑106%, p<0.05) and lactate (↑121%, p<0.01) levels. Furthermore, in isolated CMs GLP-1 treatment increased glucose utilization (↑14%, p<0.05) and decreased fatty acid oxidation (↓15%, p<0.05) consistent with in vivo finding. Our results show that this benefit may derive from distinct and complementary roles of GLP-1 treatment on metabolism in myocardial sub-regions in response to this injury. In particular, a switch to anaerobic glycolysis in the ischemic area provides a compensatory substrate switch to overcome the energetic deficit in this region in the face of reduced tissue oxygenation, whereas a switch to more energetically favorable carbohydrate oxidation in more highly oxygenated remote regions supports maintaining cardiac contractility in a complementary manner.
Collapse
|
20
|
Xie P, Kadegowda AKG, Ma Y, Guo F, Han X, Wang M, Groban L, Xue B, Shi H, Li H, Yu L. Muscle-specific deletion of comparative gene identification-58 (CGI-58) causes muscle steatosis but improves insulin sensitivity in male mice. Endocrinology 2015; 156:1648-58. [PMID: 25751639 PMCID: PMC4398773 DOI: 10.1210/en.2014-1892] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Intramyocellular accumulation of lipids is often associated with insulin resistance. Deficiency of comparative gene identification-58 (CGI-58) causes cytosolic deposition of triglyceride (TG)-rich lipid droplets in most cell types, including muscle due to defective TG hydrolysis. It was unclear, however, whether CGI-58 deficiency-induced lipid accumulation in muscle influences insulin sensitivity. Here we show that muscle-specific CGI-58 knockout mice relative to their controls have increased glucose tolerance and insulin sensitivity on a Western-type high-fat diet, despite TG accumulation in both heart and oxidative skeletal muscle and cholesterol deposition in heart. Although the intracardiomyocellular lipid deposition results in cardiac ventricular fibrosis and systolic dysfunction, muscle-specific CGI-58 knockout mice show increased glucose uptake in heart and soleus muscle, improved insulin signaling in insulin-sensitive tissues, and reduced plasma concentrations of glucose, insulin, and cholesterol. Hepatic contents of TG and cholesterol are also decreased in these animals. Cardiac steatosis is attributable, at least in part, to decreases in cardiac TG hydrolase activity and peroxisome proliferator-activated receptor-α/peroxisome proliferator-activated receptor-γ coactivator-1-dependent mitochondrial fatty acid oxidation. In conclusion, muscle CGI-58 deficiency causes cardiac dysfunction and fat deposition in oxidative muscles but induces a series of favorable metabolic changes in mice fed a high-fat diet.
Collapse
Affiliation(s)
- Ping Xie
- Departments of Biochemistry (P.X., Y.M., F.G., L.Y.) and Anesthesiology (L.G.), Wake Forest School of Medicine, Winston-Salem, North Carolina 27157; Department of Animal and Avian Sciences (A.K.G.G., Y.M., L.Y.), University of Maryland, College Park, Maryland 20742; Diabetes and Obesity Research Center (X.H., M.W.), Sanford-Burnham Medical Research Institute, Orlando, Florida 32827; Department of Biology (B.X., H.S.), Georgia State University, Atlanta, Georgia 30303; and The Key Laboratory of Remodeling-Related Cardiovascular Diseases (H.L.), Capital Medical University, Ministry of Education, Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital Affiliated the Capital Medical University, Beijing 100029, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Bosma M, Dapito DH, Drosatos-Tampakaki Z, Huiping-Son N, Huang LS, Kersten S, Drosatos K, Goldberg IJ. Sequestration of fatty acids in triglycerides prevents endoplasmic reticulum stress in an in vitro model of cardiomyocyte lipotoxicity. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1841:1648-55. [PMID: 25251292 DOI: 10.1016/j.bbalip.2014.09.012] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 08/31/2014] [Accepted: 09/15/2014] [Indexed: 12/14/2022]
Abstract
We used human cardiomyocyte-derived cells to create an in vitro model to study lipid metabolism and explored the effects of PPARγ; ACSL1 and ATGL on fatty acid-induced ER stress. Compared to oleate, palmitate treatment resulted in less intracellular accumulation of lipid droplets and more ER stress, as measured by upregulation of CHOP, ATF6 and GRP78 gene expression and phosphorylation of eukaryotic initiation factor 2a (EIF2a). Both ACSL1 and PPARγ adenovirus-mediated expression augmented neutral lipid accumulation and reduced palmitate-induced upregulation of ER stress markers to levels similar to those in the oleate and control treatment groups. This suggests that increased channeling of non-esterified free fatty acids (NEFA) towards storage in the form of neutral lipids in lipid droplets protects against palmitate-induced ER stress. Overexpression of ATGL in cells incubated with oleate-containing medium increased NEFA release and stimulated expression of ER stress markers. Thus, inefficient creation of lipid droplets as well greater release of stored lipids induces ER stress.
Collapse
|
22
|
Lee SA, Jiang H, Trent CM, Yuen JJ, Narayanasamy S, Curley RW, Harrison EH, Goldberg IJ, Maurer MS, Blaner WS. Cardiac dysfunction in β-carotene-15,15'-dioxygenase-deficient mice is associated with altered retinoid and lipid metabolism. Am J Physiol Heart Circ Physiol 2014; 307:H1675-84. [PMID: 25260612 DOI: 10.1152/ajpheart.00548.2014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dietary carotenoids like β-carotene are converted within the body either to retinoid, via β-carotene-15,15'-dioxygenase (BCO1), or to β-apo-carotenoids, via β-carotene-9',10'-oxygenase 2. Some β-apo-carotenoids are potent antagonists of retinoic acid receptor (RAR)-mediated transcriptional regulation, which is required to ensure normal heart development and functions. We established liquid chromatography tandem mass spectrometery methods for measuring concentrations of 10 β-apo-carotenoids in mouse plasma, liver, and heart and assessed how these are influenced by Bco1 deficiency and β-carotene intake. Surprisingly, Bco1(-/-) mice had an increase in heart levels of retinol, nonesterified fatty acids, and ceramides and a decrease in heart triglycerides. These lipid changes were accompanied by elevations in levels of genes important to retinoid metabolism, specifically retinol dehydrogenase 10 and retinol-binding protein 4, as well as genes involved in lipid metabolism, including peroxisome proliferator-activated receptor-γ, lipoprotein lipase, Cd36, stearoyl-CoA desaturase 1, and fatty acid synthase. We also obtained evidence of compromised heart function, as assessed by two-dimensional echocardiography, in Bco1(-/-) mice. However, the total absence of Bco1 did not substantially affect β-apo-carotenoid concentrations in the heart. β-Carotene administration to matched Bco1(-/-) and wild-type mice elevated total β-apo-carotenal levels in the heart, liver, and plasma and total β-apo-carotenoic acid levels in the liver. Thus, BCO1 modulates heart metabolism and function, possibly by altering levels of cofactors required for the actions of nuclear hormone receptors.
Collapse
Affiliation(s)
- Seung-Ah Lee
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Hongfeng Jiang
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Chad M Trent
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Jason J Yuen
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Sureshbabu Narayanasamy
- College of Pharmacy, The Ohio State University, Columbus, Ohio; and Department of Human Nutrition, The Ohio State University, Columbus, Ohio
| | - Robert W Curley
- College of Pharmacy, The Ohio State University, Columbus, Ohio; and
| | - Earl H Harrison
- Department of Human Nutrition, The Ohio State University, Columbus, Ohio
| | - Ira J Goldberg
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Mathew S Maurer
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York
| | - William S Blaner
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, New York;
| |
Collapse
|
23
|
Kersten S. Physiological regulation of lipoprotein lipase. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:919-33. [PMID: 24721265 DOI: 10.1016/j.bbalip.2014.03.013] [Citation(s) in RCA: 363] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/27/2014] [Accepted: 03/30/2014] [Indexed: 01/01/2023]
Abstract
The enzyme lipoprotein lipase (LPL), originally identified as the clearing factor lipase, hydrolyzes triglycerides present in the triglyceride-rich lipoproteins VLDL and chylomicrons. LPL is primarily expressed in tissues that oxidize or store fatty acids in large quantities such as the heart, skeletal muscle, brown adipose tissue and white adipose tissue. Upon production by the underlying parenchymal cells, LPL is transported and attached to the capillary endothelium by the protein GPIHBP1. Because LPL is rate limiting for plasma triglyceride clearance and tissue uptake of fatty acids, the activity of LPL is carefully controlled to adjust fatty acid uptake to the requirements of the underlying tissue via multiple mechanisms at the transcriptional and post-translational level. Although various stimuli influence LPL gene transcription, it is now evident that most of the physiological variation in LPL activity, such as during fasting and exercise, appears to be driven via post-translational mechanisms by extracellular proteins. These proteins can be divided into two main groups: the liver-derived apolipoproteins APOC1, APOC2, APOC3, APOA5, and APOE, and the angiopoietin-like proteins ANGPTL3, ANGPTL4 and ANGPTL8, which have a broader expression profile. This review will summarize the available literature on the regulation of LPL activity in various tissues, with an emphasis on the response to diverse physiological stimuli.
Collapse
Affiliation(s)
- Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, Bomenweg 2, 6703HD Wageningen, The Netherlands
| |
Collapse
|
24
|
Wu H, Zhu Q, Cai M, Tong X, Liu D, Huang J, Yang G, Jiang Y. Effect of Inhibiting Malonyl-CoA Decarboxylase on Cardiac Remodeling after Myocardial Infarction in Rats. Cardiology 2014; 127:236-44. [DOI: 10.1159/000356471] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 10/09/2013] [Indexed: 11/19/2022]
|
25
|
Nirala NK, Rahman M, Walls SM, Singh A, Zhu LJ, Bamba T, Fukusaki E, Srideshikan SM, Harris GL, Ip YT, Bodmer R, Acharya UR. Survival response to increased ceramide involves metabolic adaptation through novel regulators of glycolysis and lipolysis. PLoS Genet 2013; 9:e1003556. [PMID: 23818862 PMCID: PMC3688504 DOI: 10.1371/journal.pgen.1003556] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 04/23/2013] [Indexed: 01/06/2023] Open
Abstract
The sphingolipid ceramide elicits several stress responses, however, organisms survive despite increased ceramide but how they do so is poorly understood. We demonstrate here that the AKT/FOXO pathway regulates survival in increased ceramide environment by metabolic adaptation involving changes in glycolysis and lipolysis through novel downstream targets. We show that ceramide kinase mutants accumulate ceramide and this leads to reduction in energy levels due to compromised oxidative phosphorylation. Mutants show increased activation of Akt and a consequent decrease in FOXO levels. These changes lead to enhanced glycolysis by upregulating the activity of phosphoglyceromutase, enolase, pyruvate kinase, and lactate dehydrogenase to provide energy. A second major consequence of AKT/FOXO reprogramming in the mutants is the increased mobilization of lipid from the gut through novel lipase targets, CG8093 and CG6277 for energy contribution. Ubiquitous reduction of these targets by knockdown experiments results in semi or total lethality of the mutants, demonstrating the importance of activating them. The efficiency of these adaptive mechanisms decreases with age and leads to reduction in adult life span of the mutants. In particular, mutants develop cardiac dysfunction with age, likely reflecting the high energy requirement of a well-functioning heart. The lipases also regulate physiological triacylglycerol homeostasis and are important for energy metabolism since midgut specific reduction of them in wild type flies results in increased sensitivity to starvation and accumulation of triglycerides leading to cardiac defects. The central findings of increased AKT activation, decreased FOXO level and activation of phosphoglyceromutase and pyruvate kinase are also observed in mice heterozygous for ceramide transfer protein suggesting a conserved role of this pathway in mammals. These data reveal novel glycolytic and non-autonomous lipolytic pathways in response to increased ceramide for sustenance of high energy demanding organ functions like the heart.
Collapse
Affiliation(s)
- Niraj K Nirala
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ebong IA, Goff DC, Rodriguez CJ, Chen H, Sibley CT, Bertoni AG. Association of lipids with incident heart failure among adults with and without diabetes mellitus: Multiethnic Study of Atherosclerosis. Circ Heart Fail 2013; 6:371-8. [PMID: 23529112 PMCID: PMC3991930 DOI: 10.1161/circheartfailure.112.000093] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 03/15/2013] [Indexed: 11/16/2022]
Abstract
BACKGROUND Dyslipidemia is a known risk factor for coronary disease, but its role in heart failure (HF) development is less well-defined. METHODS AND RESULTS We included 5688 participants, aged 45 to 84 years, without clinical cardiovascular disease, and not receiving lipid-lowering medications at baseline, from the Multiethnic Study of Atherosclerosis. Cox-proportional hazards models were used to evaluate associations of triglyceride, total cholesterol/high-density lipoprotein-cholesterol (HDL-C) ratio, HDL-C, and non HDL-C with incident HF. We investigated for effect-modification by diabetes mellitus status and sex. During a median follow-up of 8.5 years, there were 152 incident HF cases. There were no interactions by sex. We observed significant interactions between triglyceride and diabetes mellitus (P(interaction)<0.05). We stratified our analyses by diabetes mellitus status. In participants with diabetes, the hazard ratios were 2.03 (0.97-4.27) and 1.68 (1.18-2.38) for high triglyceride and log of triglyceride, respectively, after adjusting for confounders, comorbidities, and diabetes mellitus severity/treatment. The association of high triglyceride with incident HF was attenuated by interim myocardial infarction. The hazard ratios were greatest in participants with diabetes who also had high triglyceride, low HDL-C, or high total cholesterol/HDL-C ratio (3.59 [2.03-6.33], 3.62 [2.06-6.36], and 3.54 [1.87-6.70], respectively). Lipid measures were not associated with incident HF in individuals without diabetes. CONCLUSIONS The risk of incident HF is greater in individuals with diabetes mellitus who also have high triglyceride, low HDL-C, or high total cholesterol/HDL-C ratio. The association of high triglyceride with incident HF is partly mediated by myocardial infarction.
Collapse
Affiliation(s)
- Imo A Ebong
- Department of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Cholesteryl esters accumulate in the heart in a porcine model of ischemia and reperfusion. PLoS One 2013; 8:e61942. [PMID: 23637933 PMCID: PMC3637450 DOI: 10.1371/journal.pone.0061942] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 03/14/2013] [Indexed: 11/19/2022] Open
Abstract
Myocardial ischemia is associated with intracellular accumulation of lipids and increased depots of myocardial lipids are linked to decreased heart function. Despite investigations in cell culture and animal models, there is little data available on where in the heart the lipids accumulate after myocardial ischemia and which lipid species that accumulate. The aim of this study was to investigate derangements of lipid metabolism that are associated with myocardial ischemia in a porcine model of ischemia and reperfusion. The large pig heart enables the separation of the infarct area with irreversible injury from the area at risk with reversible injury and the unaffected control area. The surviving myocardium bordering the infarct is exposed to mild ischemia and is stressed, but remains viable. We found that cholesteryl esters accumulated in the infarct area as well as in the bordering myocardium. In addition, we found that expression of the low density lipoprotein receptor (LDLr) and the low density lipoprotein receptor-related protein 1 (LRP1) was up-regulated, suggesting that choleteryl ester uptake is mediated via these receptors. Furthermore, we found increased ceramide accumulation, inflammation and endoplasmatic reticulum (ER) stress in the infarcted area of the pig heart. In addition, we found increased levels of inflammation and ER stress in the myocardium bordering the infarct area. Our results indicate that lipid accumulation in the heart is one of the metabolic derangements remaining after ischemia, even in the myocardium bordering the infarct area. Normalizing lipid levels in the myocardium after ischemia would likely improve myocardial function and should therefore be considered as a target for treatment.
Collapse
|
28
|
Beneficial cardiac effects of caloric restriction are lost with age in a murine model of obesity. J Cardiovasc Transl Res 2013; 6:436-45. [PMID: 23456569 DOI: 10.1007/s12265-013-9453-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 02/04/2013] [Indexed: 01/22/2023]
Abstract
Obesity is associated with increased diastolic stiffness and myocardial steatosis and dysfunction. The impact of aging on the protective effects of caloric restriction (CR) is not clear. We studied 2-month (younger) and 6-7-month (older)-old ob/ob mice and age-matched C57BL/6J controls (WT). Ob/ob mice were assigned to diet ad libitum or CR for 4 weeks. We performed echocardiograms, myocardial triglyceride assays, Oil Red O staining, and measured free fatty acids, superoxide, NOS activity, ceramide levels, and Western blots. In younger mice, CR restored diastolic function, reversed myocardial steatosis, and upregulated Akt phosphorylation. None of these changes was observed in the older mice; however, CR decreased oxidative stress and normalized NOS activity in these animals. Interestingly, myocardial steatosis was not associated with increased ceramide, but CR altered the composition of ceramides. In this model of obesity, aging attenuates the benefits of CR on myocardial structure and function.
Collapse
|
29
|
Wang H, Sreenivasan U, Gong DW, O'Connell KA, Dabkowski ER, Hecker PA, Ionica N, Konig M, Mahurkar A, Sun Y, Stanley WC, Sztalryd C. Cardiomyocyte-specific perilipin 5 overexpression leads to myocardial steatosis and modest cardiac dysfunction. J Lipid Res 2013; 54:953-65. [PMID: 23345411 DOI: 10.1194/jlr.m032466] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Presence of ectopic lipid droplets (LDs) in cardiac muscle is associated to lipotoxicity and tissue dysfunction. However, presence of LDs in heart is also observed in physiological conditions, such as when cellular energy needs and energy production from mitochondria fatty acid β-oxidation are high (fasting). This suggests that development of tissue lipotoxicity and dysfunction is not simply due to the presence of LDs in cardiac muscle but due at least in part to alterations in LD function. To examine the function of cardiac LDs, we obtained transgenic mice with heart-specific perilipin 5 (Plin5) overexpression (MHC-Plin5), a member of the perilipin protein family. Hearts from MHC-Plin5 mice expressed at least 4-fold higher levels of plin5 and exhibited a 3.5-fold increase in triglyceride content versus nontransgenic littermates. Chronic cardiac excess of LDs was found to result in mild heart dysfunction with decreased expression of peroxisome proliferator-activated receptor (PPAR)α target genes, decreased mitochondria function, and left ventricular concentric hypertrophia. Lack of more severe heart function complications may have been prevented by a strong increased expression of oxidative-induced genes via NF-E2-related factor 2 antioxidative pathway. Perilipin 5 regulates the formation and stabilization of cardiac LDs, and it promotes cardiac steatosis without major heart function impairment.
Collapse
Affiliation(s)
- Hong Wang
- Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Wojtovich AP, Smith CO, Haynes CM, Nehrke KW, Brookes PS. Physiological consequences of complex II inhibition for aging, disease, and the mKATP channel. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:598-611. [PMID: 23291191 DOI: 10.1016/j.bbabio.2012.12.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 12/14/2012] [Accepted: 12/17/2012] [Indexed: 12/21/2022]
Abstract
In recent years, it has become apparent that there exist several roles for respiratory complex II beyond metabolism. These include: (i) succinate signaling, (ii) reactive oxygen species (ROS) generation, (iii) ischemic preconditioning, (iv) various disease states and aging, and (v) a role in the function of the mitochondrial ATP-sensitive K(+) (mKATP) channel. This review will address the involvement of complex II in each of these areas, with a focus on how complex II regulates or may be involved in the assembly of the mKATP. This article is part of a Special Issue entitled: Respiratory complex II: Role in cellular physiology and disease.
Collapse
Affiliation(s)
- Andrew P Wojtovich
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | | | | | | | | |
Collapse
|
31
|
Abstract
Cellular energy homeostasis is a crucial function of oxidative tissues but becomes altered with obesity, a major health problem that is rising unabated and demands attention. Maintaining cardiac lipid homeostasis relies on complex processes and pathways that require concerted actions between lipid droplets (LDs) and mitochondria to prevent intracellular accumulation of bioactive or toxic lipids while providing an efficient supply of lipid for conversion into ATP. While cardiac mitochondria have been extensively studied, cardiac LDs and their role in heart function have not been fully characterized. The cardiac LD compartment is highly dynamic and individual LD is small, making their study challenging. Here, we describe a simple procedure to isolate cardiac LDs that provide sufficient amounts of highly enriched material to allow subsequent protein and lipid biochemical characterization. We also present a detailed protocol to image cardiac LDs by conventional transmission electronic microscopy to provide two-dimensional (2D) analyses of cardiac LDs and mitochondria. Finally, we discuss the potential advantages of dual ion beam and electron beam platform (FIB-SEM) technology to study the cardiac LDs and mitochondria by allowing 3D imaging analysis.
Collapse
Affiliation(s)
- Hong Wang
- Division of Endocrinology, Department of Medicine, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
32
|
Schilling JD, Machkovech HM, Kim AHJ, Schwendener R, Schwedwener R, Schaffer JE. Macrophages modulate cardiac function in lipotoxic cardiomyopathy. Am J Physiol Heart Circ Physiol 2012; 303:H1366-73. [PMID: 23042950 DOI: 10.1152/ajpheart.00111.2012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Diabetes is associated with myocardial lipid accumulation and an increased risk of heart failure. Although cardiac myocyte lipid overload is thought to contribute to the pathogenesis of cardiomyopathy in the setting of diabetes, the mechanism(s) through which this occurs is not well understood. Increasingly, inflammation has been recognized as a key pathogenic feature of lipid excess and diabetes. In this study, we sought to investigate the role of inflammatory activation in the pathogenesis of lipotoxic cardiomyopathy using the α-myosin heavy chain promoter-driven long-chain acylCoA synthetase 1 (MHC-ACS) transgenic mouse model. We found that several inflammatory cytokines were upregulated in the myocardium of MHC-ACS mice before the onset of cardiac dysfunction, and this was accompanied by macrophage infiltration. Depletion of macrophages with liposomal clodrolip reduced the cardiac inflammatory response and improved cardiac function. Thus, in this model of lipotoxic cardiac injury, early induction of inflammation and macrophage recruitment contribute to adverse cardiac remodeling. These findings have implications for our understanding of heart failure in the setting of obesity and diabetes.
Collapse
Affiliation(s)
- Joel D Schilling
- Diabetic Cardiovascular Disease Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
In the setting of obesity and type 2 diabetes mellitus, the ectopic disposition of lipids may be a cause of heart failure. Clinical studies have clearly shown a correlation between the accumulation of triglycerides and heart dysfunction. In this process, it is likely that there are also changes in the contents of sphingolipids. Sphingolipids are important structural and signaling molecules. One specific sphingolipid, ceramide, may cause cardiac dysfunction, whereas another, sphingosine 1-phosphate, is cardioprotective. In this review, the authors focus on the role of sphingolipids in the development and prevention of cardiac failure.
Collapse
Affiliation(s)
- Tae-Sik Park
- Department of Life Science, Gachon University, Bokjung-dong, Sujung-gu, Seongnam, Gyunggi-do, South Korea
| | | |
Collapse
|
34
|
Kok BPC, Brindley DN. Myocardial fatty acid metabolism and lipotoxicity in the setting of insulin resistance. Heart Fail Clin 2012; 8:643-61. [PMID: 22999246 DOI: 10.1016/j.hfc.2012.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Management of diabetes and insulin resistance in the setting of cardiovascular disease has become an important issue in an increasingly obese society. Besides the development of hypertension and buildup of atherosclerotic plaques, the derangement of fatty acid and lipid metabolism in the heart plays an important role in promoting cardiac dysfunction and oxidative stress. This review discusses the mechanisms by which metabolic inflexibility in the use of fatty acids as the preferred cardiac substrate in diabetes produces detrimental effects on mechanical efficiency, mitochondrial function, and recovery from ischemia. Lipid accumulation and the consequences of toxic lipid metabolites are also discussed.
Collapse
Affiliation(s)
- Bernard P C Kok
- Signal Transduction Research Group, Department of Biochemistry, School of Translational Medicine, University of Alberta, 11207 87th Avenue, Edmonton, Alberta, Canada
| | | |
Collapse
|
35
|
Abstract
The study of diabetic cardiomyopathy is an area of significant interest given the strong association between diabetes and the risk of heart failure. Many unanswered questions remain regarding the clinical definition and pathogenesis of this metabolic cardiomyopathy. This article reviews the current understanding of diabetic cardiomyopathy with a particular emphasis on the unresolved issues that have limited translation of scientific discovery to patient bedside.
Collapse
Affiliation(s)
- Joel D Schilling
- Diabetic Cardiovascular Disease Center, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA.
| | | |
Collapse
|
36
|
Wong AKF, Struthers AD, Choy AMJ, Lang CC. Insulin sensitization therapy and the heart: focus on metformin and thiazolidinediones. Heart Fail Clin 2012; 8:539-50. [PMID: 22999238 DOI: 10.1016/j.hfc.2012.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chronic heart failure (CHF) is an insulin-resistant (IR) state and the degree of IR is related to disease severity and poor clinical outcome in CHF. IR may be pathophysiologically linked with CHF. Therefore, IR may represent a new target for treatment in CHF. Metformin and thiazolidinediones (TZDs) are effective diabetic therapies that are insulin sensitizers. TZDs are contraindicated in CHF because their use is associated with increased incidence of CHF as a result of their effects on renal sodium reabsorption and vascular permeability. There is evidence to suggest that metformin may be both safe and useful in CHF.
Collapse
Affiliation(s)
- Aaron K F Wong
- Division of Cardiovascular and Diabetes Medicine, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | | | | | | |
Collapse
|
37
|
Liu L, Yu S, Khan RS, Homma S, Schulze PC, Blaner WS, Yin Y, Goldberg IJ. Diacylglycerol acyl transferase 1 overexpression detoxifies cardiac lipids in PPARγ transgenic mice. J Lipid Res 2012; 53:1482-92. [PMID: 22628613 DOI: 10.1194/jlr.m024208] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Accumulation of excess lipids is associated with heart failure. The effects of transgenic expression of diacylglycerol acyl transferase 1 (DGAT1) in cardiomyocytes is controversial. We explored whether mice expressing DGAT1 via the myosin heavy chain (MHC) promoter develop heart dysfunction with aging or after crossing with mice over expressing peroxisome proliferator-activated receptor γ (PPARγ) in the heart. MHC-DGAT1 transgenic mice had increased heart triglyceride but no evidence of heart dysfunction, even up to age 12 months. The MHC-DGAT1 transgene improved heart dysfunction and survival of MHC-PPARγ-expressing transgenic mice. Both diacylglycerol and ceramide levels in the heart were reduced by this cross, as were the levels of several mRNAs of genes involved in lipid metabolism. There were fewer large lipid droplets in MHC-DGAT1×MHC-PPARγ mice compared with MHC-PPARγ, but total lipid content was not changed. Therefore, overexpression of DGAT1 is not toxic to the heart but reduces levels of toxic lipids and improves lipotoxic cardiomyopathy. Moreover, the beneficial effects of DGAT1 illustrate the interrelationship of several lipid metabolic pathways and the difficulty of assigning benefit to an isolated change in one potentially toxic lipid species.
Collapse
Affiliation(s)
- Li Liu
- Division of Preventive Medicine and Nutrition, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
The recent implementation of genomic and lipidomic approaches has produced a large body of evidence implicating the sphingolipid ceramide in a diverse range of physiological processes and as a critical modulator of cellular stress. In this review, we discuss from a historical perspective the most important discoveries produced over the last decade supporting a role for ceramide and its metabolites in the pathogenesis of insulin resistance and other obesity-associated metabolic diseases. Moreover, we describe how a ceramide-centric view of insulin resistance might be reconciled in the context of other prominent models of nutrient-induced insulin resistance.
Collapse
Affiliation(s)
- Jose A Chavez
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27704, USA.
| | | |
Collapse
|
39
|
Georgiadi A, Boekschoten MV, Müller M, Kersten S. Detailed transcriptomics analysis of the effect of dietary fatty acids on gene expression in the heart. Physiol Genomics 2012; 44:352-61. [PMID: 22274564 DOI: 10.1152/physiolgenomics.00115.2011] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Fatty acids comprise the primary energy source for the heart and are mainly taken up via hydrolysis of circulating triglyceride-rich lipoproteins. While most of the fatty acids entering the cardiomyocyte are oxidized, a small portion is involved in altering gene transcription to modulate cardiometabolic functions. So far, no in vivo model has been developed enabling study of the transcriptional effects of specific fatty acids in the intact heart. In the present study, mice were given a single oral dose of synthetic triglycerides composed of one single fatty acid. Hearts were collected 6 h thereafter and used for whole genome gene expression profiling. Experiments were conducted in wild-type and peroxisome proliferator-activated receptor (PPAR)α-/- mice to allow exploration of the specific contribution of PPARα. It was found that: 1) C18:3 had the most pronounced effect on cardiac gene expression. 2) The largest similarity in gene regulation was observed between C18:2 and C18:3. Large similarity was also observed between PPARα agonist Wy14643 and C22:6. 3) Many genes were regulated by one particular treatment only. Genes regulated by one particular treatment showed large functional divergence. 4) The majority of genes responding to fatty acid treatment were regulated in a PPARα-dependent manner, emphasizing the importance of PPARα in mediating transcriptional regulation by fatty acids in the heart. 5) Several genes were robustly regulated by all or many of the fatty acids studied, mostly representing well-described targets of PPARs (e.g., Acot1, Angptl4, Ucp3) but also including Zbtb16/PLZF, a transcription factor crucial for natural killer T cell function. 6) Deletion and activation of PPARα had a major effect on expression of numerous genes involved in metabolism and immunity. Our analysis demonstrates the marked impact of dietary fatty acids on gene regulation in the heart via PPARα.
Collapse
Affiliation(s)
- Anastasia Georgiadi
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition, Wageningen University, the Netherlands
| | | | | | | |
Collapse
|
40
|
Nakamura H, Matoba S, Iwai-Kanai E, Kimata M, Hoshino A, Nakaoka M, Katamura M, Okawa Y, Ariyoshi M, Mita Y, Ikeda K, Okigaki M, Adachi S, Tanaka H, Takamatsu T, Matsubara H. p53 Promotes Cardiac Dysfunction in Diabetic Mellitus Caused by Excessive Mitochondrial Respiration-Mediated Reactive Oxygen Species Generation and Lipid Accumulation. Circ Heart Fail 2012; 5:106-15. [DOI: 10.1161/circheartfailure.111.961565] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background—
Diabetic cardiomyopathy is characterized by energetic dysregulation caused by glucotoxicity, lipotoxicity, and mitochondrial alterations. p53 and its downstream mitochondrial assembly protein, synthesis of cytochrome c oxidase 2 (SCO2), are important regulators of mitochondrial respiration, whereas the involvement in diabetic cardiomyopathy remains to be determined.
Methods and Results—
The role of p53 and SCO2 in energy metabolism was examined in both type I (streptozotocin [STZ] administration) and type II diabetic (
db/db
) mice. Cardiac expressions of p53 and SCO2 in 4-week STZ diabetic mice were upregulated (185% and 152% versus controls, respectively,
P
<0.01), with a marked decrease in cardiac performance. Mitochondrial oxygen consumption was increased (136% versus control,
P
<0.01) in parallel with augmentation of mitochondrial cytochrome c oxidase (complex IV) activity. Reactive oxygen species (ROS)-damaged myocytes and lipid accumulation were increased in association with membrane-localization of fatty acid translocase protein FAT/CD36. Antioxidant tempol reduced the increased expressions of p53 and SCO2 in STZ-diabetic hearts and normalized alterations in mitochondrial oxygen consumption, lipid accumulation, and cardiac dysfunction. Similar results were observed in
db/db
mice, whereas in p53-deficient or SCO2-deficient diabetic mice, the cardiac and metabolic abnormalities were prevented. Overexpression of SCO2 in cardiac myocytes increased mitochondrial ROS and fatty acid accumulation, whereas knockdown of SCO2 ameliorated them.
Conclusions—
Myocardial p53/SCO2 signal is activated by diabetes-mediated ROS generation to increase mitochondrial oxygen consumption, resulting in excessive generation of mitochondria-derived ROS and lipid accumulation in association with cardiac dysfunction.
Collapse
Affiliation(s)
- Hideo Nakamura
- From the Department of Cardiovascular Medicine, Kyoto Prefectural University School of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan (H.N., S.M., E.I.-K., M. Kimata, A.H., M. Katamura, Y.O., M.A., Y.M., K.I., M.O., H.M.); the Department of Cardiovascular Medicine, Meiji University of Integrative Medicine, Hiyoshi-cho, Nantan-shi, Kyoto, Japan (E.I.-K.); the Department of Pediatrics, Graduate School of Medicine, Kyoto University, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan (S.S.); and the
| | - Satoaki Matoba
- From the Department of Cardiovascular Medicine, Kyoto Prefectural University School of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan (H.N., S.M., E.I.-K., M. Kimata, A.H., M. Katamura, Y.O., M.A., Y.M., K.I., M.O., H.M.); the Department of Cardiovascular Medicine, Meiji University of Integrative Medicine, Hiyoshi-cho, Nantan-shi, Kyoto, Japan (E.I.-K.); the Department of Pediatrics, Graduate School of Medicine, Kyoto University, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan (S.S.); and the
| | - Eri Iwai-Kanai
- From the Department of Cardiovascular Medicine, Kyoto Prefectural University School of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan (H.N., S.M., E.I.-K., M. Kimata, A.H., M. Katamura, Y.O., M.A., Y.M., K.I., M.O., H.M.); the Department of Cardiovascular Medicine, Meiji University of Integrative Medicine, Hiyoshi-cho, Nantan-shi, Kyoto, Japan (E.I.-K.); the Department of Pediatrics, Graduate School of Medicine, Kyoto University, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan (S.S.); and the
| | - Masaki Kimata
- From the Department of Cardiovascular Medicine, Kyoto Prefectural University School of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan (H.N., S.M., E.I.-K., M. Kimata, A.H., M. Katamura, Y.O., M.A., Y.M., K.I., M.O., H.M.); the Department of Cardiovascular Medicine, Meiji University of Integrative Medicine, Hiyoshi-cho, Nantan-shi, Kyoto, Japan (E.I.-K.); the Department of Pediatrics, Graduate School of Medicine, Kyoto University, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan (S.S.); and the
| | - Atsushi Hoshino
- From the Department of Cardiovascular Medicine, Kyoto Prefectural University School of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan (H.N., S.M., E.I.-K., M. Kimata, A.H., M. Katamura, Y.O., M.A., Y.M., K.I., M.O., H.M.); the Department of Cardiovascular Medicine, Meiji University of Integrative Medicine, Hiyoshi-cho, Nantan-shi, Kyoto, Japan (E.I.-K.); the Department of Pediatrics, Graduate School of Medicine, Kyoto University, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan (S.S.); and the
| | - Mikihiko Nakaoka
- From the Department of Cardiovascular Medicine, Kyoto Prefectural University School of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan (H.N., S.M., E.I.-K., M. Kimata, A.H., M. Katamura, Y.O., M.A., Y.M., K.I., M.O., H.M.); the Department of Cardiovascular Medicine, Meiji University of Integrative Medicine, Hiyoshi-cho, Nantan-shi, Kyoto, Japan (E.I.-K.); the Department of Pediatrics, Graduate School of Medicine, Kyoto University, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan (S.S.); and the
| | - Maki Katamura
- From the Department of Cardiovascular Medicine, Kyoto Prefectural University School of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan (H.N., S.M., E.I.-K., M. Kimata, A.H., M. Katamura, Y.O., M.A., Y.M., K.I., M.O., H.M.); the Department of Cardiovascular Medicine, Meiji University of Integrative Medicine, Hiyoshi-cho, Nantan-shi, Kyoto, Japan (E.I.-K.); the Department of Pediatrics, Graduate School of Medicine, Kyoto University, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan (S.S.); and the
| | - Yoshifumi Okawa
- From the Department of Cardiovascular Medicine, Kyoto Prefectural University School of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan (H.N., S.M., E.I.-K., M. Kimata, A.H., M. Katamura, Y.O., M.A., Y.M., K.I., M.O., H.M.); the Department of Cardiovascular Medicine, Meiji University of Integrative Medicine, Hiyoshi-cho, Nantan-shi, Kyoto, Japan (E.I.-K.); the Department of Pediatrics, Graduate School of Medicine, Kyoto University, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan (S.S.); and the
| | - Makoto Ariyoshi
- From the Department of Cardiovascular Medicine, Kyoto Prefectural University School of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan (H.N., S.M., E.I.-K., M. Kimata, A.H., M. Katamura, Y.O., M.A., Y.M., K.I., M.O., H.M.); the Department of Cardiovascular Medicine, Meiji University of Integrative Medicine, Hiyoshi-cho, Nantan-shi, Kyoto, Japan (E.I.-K.); the Department of Pediatrics, Graduate School of Medicine, Kyoto University, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan (S.S.); and the
| | - Yuichiro Mita
- From the Department of Cardiovascular Medicine, Kyoto Prefectural University School of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan (H.N., S.M., E.I.-K., M. Kimata, A.H., M. Katamura, Y.O., M.A., Y.M., K.I., M.O., H.M.); the Department of Cardiovascular Medicine, Meiji University of Integrative Medicine, Hiyoshi-cho, Nantan-shi, Kyoto, Japan (E.I.-K.); the Department of Pediatrics, Graduate School of Medicine, Kyoto University, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan (S.S.); and the
| | - Koji Ikeda
- From the Department of Cardiovascular Medicine, Kyoto Prefectural University School of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan (H.N., S.M., E.I.-K., M. Kimata, A.H., M. Katamura, Y.O., M.A., Y.M., K.I., M.O., H.M.); the Department of Cardiovascular Medicine, Meiji University of Integrative Medicine, Hiyoshi-cho, Nantan-shi, Kyoto, Japan (E.I.-K.); the Department of Pediatrics, Graduate School of Medicine, Kyoto University, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan (S.S.); and the
| | - Mitsuhiko Okigaki
- From the Department of Cardiovascular Medicine, Kyoto Prefectural University School of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan (H.N., S.M., E.I.-K., M. Kimata, A.H., M. Katamura, Y.O., M.A., Y.M., K.I., M.O., H.M.); the Department of Cardiovascular Medicine, Meiji University of Integrative Medicine, Hiyoshi-cho, Nantan-shi, Kyoto, Japan (E.I.-K.); the Department of Pediatrics, Graduate School of Medicine, Kyoto University, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan (S.S.); and the
| | - Souichi Adachi
- From the Department of Cardiovascular Medicine, Kyoto Prefectural University School of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan (H.N., S.M., E.I.-K., M. Kimata, A.H., M. Katamura, Y.O., M.A., Y.M., K.I., M.O., H.M.); the Department of Cardiovascular Medicine, Meiji University of Integrative Medicine, Hiyoshi-cho, Nantan-shi, Kyoto, Japan (E.I.-K.); the Department of Pediatrics, Graduate School of Medicine, Kyoto University, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan (S.S.); and the
| | - Hideo Tanaka
- From the Department of Cardiovascular Medicine, Kyoto Prefectural University School of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan (H.N., S.M., E.I.-K., M. Kimata, A.H., M. Katamura, Y.O., M.A., Y.M., K.I., M.O., H.M.); the Department of Cardiovascular Medicine, Meiji University of Integrative Medicine, Hiyoshi-cho, Nantan-shi, Kyoto, Japan (E.I.-K.); the Department of Pediatrics, Graduate School of Medicine, Kyoto University, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan (S.S.); and the
| | - Tetsuro Takamatsu
- From the Department of Cardiovascular Medicine, Kyoto Prefectural University School of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan (H.N., S.M., E.I.-K., M. Kimata, A.H., M. Katamura, Y.O., M.A., Y.M., K.I., M.O., H.M.); the Department of Cardiovascular Medicine, Meiji University of Integrative Medicine, Hiyoshi-cho, Nantan-shi, Kyoto, Japan (E.I.-K.); the Department of Pediatrics, Graduate School of Medicine, Kyoto University, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan (S.S.); and the
| | - Hiroaki Matsubara
- From the Department of Cardiovascular Medicine, Kyoto Prefectural University School of Medicine, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, Japan (H.N., S.M., E.I.-K., M. Kimata, A.H., M. Katamura, Y.O., M.A., Y.M., K.I., M.O., H.M.); the Department of Cardiovascular Medicine, Meiji University of Integrative Medicine, Hiyoshi-cho, Nantan-shi, Kyoto, Japan (E.I.-K.); the Department of Pediatrics, Graduate School of Medicine, Kyoto University, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan (S.S.); and the
| |
Collapse
|
41
|
Collison KS, Zaidi MZ, Maqbool Z, Saleh SM, Inglis A, Makhoul NJ, Bakheet R, Shoukri M, Al-Mohanna FA. Sex-dimorphism in cardiac nutrigenomics: effect of trans fat and/or monosodium glutamate consumption. BMC Genomics 2011; 12:555. [PMID: 22078008 PMCID: PMC3238303 DOI: 10.1186/1471-2164-12-555] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 11/12/2011] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND A paucity of information on biological sex-specific differences in cardiac gene expression in response to diet has prompted this present nutrigenomics investigation. Sexual dimorphism exists in the physiological and transcriptional response to diet, particularly in response to high-fat feeding. Consumption of Trans-fatty acids (TFA) has been linked to substantially increased risk of heart disease, in which sexual dimorphism is apparent, with males suffering a higher disease rate. Impairment of the cardiovascular system has been noted in animals exposed to Monosodium Glutamate (MSG) during the neonatal period, and sexual dimorphism in the growth axis of MSG-treated animals has previously been noted. Processed foods may contain both TFA and MSG. METHODS We examined physiological differences and changes in gene expression in response to TFA and/or MSG consumption compared to a control diet, in male and female C57BL/6J mice. RESULTS Heart and % body weight increases were greater in TFA-fed mice, who also exhibited dyslipidemia (P < 0.05). Hearts from MSG-fed females weighed less than males (P < 0.05). 2-factor ANOVA indicated that the TFA diet induced over twice as many cardiac differentially expressed genes (DEGs) in males compared to females (P < 0.001); and 4 times as many male DEGs were downregulated including Gata4, Mef2d and Srebf2. Enrichment of functional Gene Ontology (GO) categories were related to transcription, phosphorylation and anatomic structure (P < 0.01). A number of genes were upregulated in males and downregulated in females, including pro-apoptotic histone deacetylase-2 (HDAC2). Sexual dimorphism was also observed in cardiac transcription from MSG-fed animals, with both sexes upregulating approximately 100 DEGs exhibiting sex-specific differences in GO categories. A comparison of cardiac gene expression between all diet combinations together identified a subset of 111 DEGs significant only in males, 64 DEGs significant in females only, and 74 transcripts identified as differentially expressed in response to dietary manipulation in both sexes. CONCLUSION Our model identified major changes in the cardiac transcriptional profile of TFA and/or MSG-fed mice compared to controls, which was reflected by significant differences in the physiological profile within the 4 diet groups. Identification of sexual dimorphism in cardiac transcription may provide the basis for sex-specific medicine in the future.
Collapse
Affiliation(s)
- Kate S Collison
- Cell Biology & Diabetes Research Unit, Department of Biological & Medical Research, King Faisal Specialist Hospital & Research Centre, PO BOX 3354, Riyadh 11211, Saudi Arabia.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Type 2 diabetes and obesity are associated with systemic inflammation, generalized enlargement of fat depots, and uncontrolled release of fatty acids (FA) into the circulation. These features support the occurrence of cardiac adiposity, which is characterized by an increase in intramyocardial triglyceride content and an enlargement of the volume of fat surrounding the heart and vessels. Both events may initially serve as protective mechanisms to portion energy, but their excessive expansion can lead to myocardial damage and heart disease. FA overload promotes FA oxidation and the accumulation of triglycerides and metabolic intermediates, which can impair calcium signaling, β-oxidation, and glucose utilization. This leads to damaged mitochondrial function and increased production of reactive oxygen species, pro-apoptotic, and inflammatory molecules, and finally to myocardial inflammation and dysfunction. Triglyceride accumulation is associated with left ventricular hypertrophy and dysfunction. The enlargement of epicardial fat in patients with metabolic disorders, and coronary artery disease, is associated with the release of proinflammatory and proatherogenic cytokines to the subtending tissues. In this review, we examine the evidence supporting a causal relationship linking FA overload and cardiac dysfunction. Also, we disentangle the separate roles of FA oxidation and triglyceride accumulation in causing cardiac damage. Finally, we focus on the mechanisms of inflammation development in the fatty heart, before summarizing the available evidence in humans. Current literature confirms the dual (protective and detrimental) role of cardiac fat, and suggests prospective studies to establish the pathogenetic (when and how) and possible prognostic value of this potential biomarker in humans.
Collapse
Affiliation(s)
- Maria A Guzzardi
- Institute of Clinical Physiology, National Research Council (CNR), Via Moruzzi 1, 56124 Pisa, Italy
| | | |
Collapse
|
43
|
Harchaoui KEL, Visser ME, Kastelein JJP, Stroes ES, Dallinga-Thie GM. Triglycerides and cardiovascular risk. Curr Cardiol Rev 2011; 5:216-22. [PMID: 20676280 PMCID: PMC2822144 DOI: 10.2174/157340309788970315] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 02/19/2009] [Accepted: 02/20/2009] [Indexed: 12/13/2022] Open
Abstract
In 1996 a meta-analysis was published showing that an increase in plasma triglyceride (TG) levels was associated with an increase in CHD risk, even after adjustment for high density lipoprotein cholesterol (HDL-C) levels. Very recently, two studies were published that further extent the early observation and showed the importance of nonfasting plasma triglyceride (TG) levels in the prediction of risk on coronary heart disease (CHD). In the current review we have summarized all available evidence obtained in clinical studies showing that treatment guidelines should reconsider to include nonfasting TG in their risk assessments as nonfasting TG levels may better predict CVD risk.
Collapse
Affiliation(s)
- K E L Harchaoui
- Department of Vascular Medicine, Academic Medical Center Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
44
|
Perman JC, Boström P, Lindbom M, Lidberg U, StÅhlman M, Hägg D, Lindskog H, Scharin Täng M, Omerovic E, Mattsson Hultén L, Jeppsson A, Petursson P, Herlitz J, Olivecrona G, Strickland DK, Ekroos K, Olofsson SO, Borén J. The VLDL receptor promotes lipotoxicity and increases mortality in mice following an acute myocardial infarction. J Clin Invest 2011; 121:2625-40. [PMID: 21670500 DOI: 10.1172/jci43068] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 04/20/2011] [Indexed: 12/18/2022] Open
Abstract
Impaired cardiac function is associated with myocardial triglyceride accumulation, but it is not clear how the lipids accumulate or whether this accumulation is detrimental. Here we show that hypoxia/ischemia-induced accumulation of lipids in HL-1 cardiomyocytes and mouse hearts is dependent on expression of the VLDL receptor (VLDLR). Hypoxia-induced VLDLR expression in HL-1 cells was dependent on HIF-1α through its interaction with a hypoxia-responsive element in the Vldlr promoter, and VLDLR promoted the endocytosis of lipoproteins. Furthermore, VLDLR expression was higher in ischemic compared with nonischemic left ventricles from human hearts and was correlated with the total lipid droplet area in the cardiomyocytes. Importantly, Vldlr-/- mice showed improved survival and decreased infarct area following an induced myocardial infarction. ER stress, which leads to apoptosis, is known to be involved in ischemic heart disease. We found that ischemia-induced ER stress and apoptosis in mouse hearts were reduced in Vldlr-/- mice and in mice treated with antibodies specific for VLDLR. These findings suggest that VLDLR-induced lipid accumulation in the ischemic heart worsens survival by increasing ER stress and apoptosis.
Collapse
Affiliation(s)
- Jeanna C Perman
- Sahlgrenska Center for Cardiovascular and Metabolic Research, Wallenberg Laboratory, Sahlgrenska University Hospital, Göteborg, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Baranowski M, Górski J. Heart sphingolipids in health and disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 721:41-56. [PMID: 21910081 DOI: 10.1007/978-1-4614-0650-1_3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In recent years, the role of sphingolipids in physiology and pathophysiology of the heart attracted much attention. Ceramide was found to be involved in the pathogenesis of cardiac dysfunction in animal models of ischemia/reperfusion injury, Type 2 diabetes and lipotoxic cardiomyopathy. On the other hand, another member of this lipid family, namely sphingosine-1-phosphate, has been shown to possess potent cardioprotective properties. This chapter provides a review of the role of ceramide and other bioactive sphingolipids in physiology and pathophysiology of the heart. We describe the role of PPARs and exercise in regulation of myocardial sphingolipid metabolism. We also summarize the present state of knowledge on the involvement of ceramide and sphingosine-1-phosphate in the development and prevention of ischemia/reperfusion injury of the heart. In the last section of this chapter we discuss the evidence for a role of ceramide in myocardial lipotoxicity.
Collapse
|
46
|
Georgiadi A, Lichtenstein L, Degenhardt T, Boekschoten MV, van Bilsen M, Desvergne B, Müller M, Kersten S. Induction of Cardiac Angptl4 by Dietary Fatty Acids Is Mediated by Peroxisome Proliferator-Activated Receptor β/δ and Protects Against Fatty Acid–Induced Oxidative Stress. Circ Res 2010; 106:1712-21. [DOI: 10.1161/circresaha.110.217380] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Rationale
:
Although dietary fatty acids are a major fuel for the heart, little is known about the direct effects of dietary fatty acids on gene regulation in the intact heart.
Objective
:
To study the effect of dietary fatty acids on cardiac gene expression and explore the functional consequences.
Methods and Results
:
Oral administration of synthetic triglycerides composed of one single fatty acid altered cardiac expression of numerous genes, many of which are involved in the oxidative stress response. The gene most significantly and consistently upregulated by dietary fatty acids encoded Angiopoietin-like protein (Angptl)4, a circulating inhibitor of lipoprotein lipase expressed by cardiomyocytes. Induction of Angptl4 by the fatty acid linolenic acid was specifically abolished in peroxisome proliferator-activated receptor (PPAR)β/δ
−/−
and not PPARα
−/−
mice and was blunted on siRNA-mediated PPARβ/δ knockdown in cultured cardiomyocytes. Consistent with these data, linolenic acid stimulated binding of PPARβ/δ but not PPARα to the Angptl4 gene. Upregulation of Angptl4 resulted in decreased cardiac uptake of plasma triglyceride-derived fatty acids and decreased fatty acid-induced oxidative stress and lipid peroxidation. In contrast, Angptl4 deletion led to enhanced oxidative stress in the heart, both after an acute oral fat load and after prolonged high fat feeding.
Conclusions
:
Stimulation of cardiac Angptl4 gene expression by dietary fatty acids and via PPARβ/δ is part of a feedback mechanism aimed at protecting the heart against lipid overload and consequently fatty acid–induced oxidative stress.
Collapse
Affiliation(s)
- Anastasia Georgiadi
- From the Nutrition, Metabolism and Genomics Group (A.G., L.L., M.V.B., M.M., S.K.), Division of Human Nutrition, Wageningen University. The Netherlands; Nutrigenomics Consortium (L.L., M.V.B., M.M., S.K.), TI Food and Nutrition, Wageningen, The Netherlands; Department of Biochemistry (T.D.), University of Kuopio, Finland; Department of Physiology (M.v.B.), Maastricht University, The Netherlands; and Centre Intégrative Génomique (B.D.), University of Lausanne, Switzerland
| | - Laeticia Lichtenstein
- From the Nutrition, Metabolism and Genomics Group (A.G., L.L., M.V.B., M.M., S.K.), Division of Human Nutrition, Wageningen University. The Netherlands; Nutrigenomics Consortium (L.L., M.V.B., M.M., S.K.), TI Food and Nutrition, Wageningen, The Netherlands; Department of Biochemistry (T.D.), University of Kuopio, Finland; Department of Physiology (M.v.B.), Maastricht University, The Netherlands; and Centre Intégrative Génomique (B.D.), University of Lausanne, Switzerland
| | - Tatjana Degenhardt
- From the Nutrition, Metabolism and Genomics Group (A.G., L.L., M.V.B., M.M., S.K.), Division of Human Nutrition, Wageningen University. The Netherlands; Nutrigenomics Consortium (L.L., M.V.B., M.M., S.K.), TI Food and Nutrition, Wageningen, The Netherlands; Department of Biochemistry (T.D.), University of Kuopio, Finland; Department of Physiology (M.v.B.), Maastricht University, The Netherlands; and Centre Intégrative Génomique (B.D.), University of Lausanne, Switzerland
| | - Mark V. Boekschoten
- From the Nutrition, Metabolism and Genomics Group (A.G., L.L., M.V.B., M.M., S.K.), Division of Human Nutrition, Wageningen University. The Netherlands; Nutrigenomics Consortium (L.L., M.V.B., M.M., S.K.), TI Food and Nutrition, Wageningen, The Netherlands; Department of Biochemistry (T.D.), University of Kuopio, Finland; Department of Physiology (M.v.B.), Maastricht University, The Netherlands; and Centre Intégrative Génomique (B.D.), University of Lausanne, Switzerland
| | - Marc van Bilsen
- From the Nutrition, Metabolism and Genomics Group (A.G., L.L., M.V.B., M.M., S.K.), Division of Human Nutrition, Wageningen University. The Netherlands; Nutrigenomics Consortium (L.L., M.V.B., M.M., S.K.), TI Food and Nutrition, Wageningen, The Netherlands; Department of Biochemistry (T.D.), University of Kuopio, Finland; Department of Physiology (M.v.B.), Maastricht University, The Netherlands; and Centre Intégrative Génomique (B.D.), University of Lausanne, Switzerland
| | - Beatrice Desvergne
- From the Nutrition, Metabolism and Genomics Group (A.G., L.L., M.V.B., M.M., S.K.), Division of Human Nutrition, Wageningen University. The Netherlands; Nutrigenomics Consortium (L.L., M.V.B., M.M., S.K.), TI Food and Nutrition, Wageningen, The Netherlands; Department of Biochemistry (T.D.), University of Kuopio, Finland; Department of Physiology (M.v.B.), Maastricht University, The Netherlands; and Centre Intégrative Génomique (B.D.), University of Lausanne, Switzerland
| | - Michael Müller
- From the Nutrition, Metabolism and Genomics Group (A.G., L.L., M.V.B., M.M., S.K.), Division of Human Nutrition, Wageningen University. The Netherlands; Nutrigenomics Consortium (L.L., M.V.B., M.M., S.K.), TI Food and Nutrition, Wageningen, The Netherlands; Department of Biochemistry (T.D.), University of Kuopio, Finland; Department of Physiology (M.v.B.), Maastricht University, The Netherlands; and Centre Intégrative Génomique (B.D.), University of Lausanne, Switzerland
| | - Sander Kersten
- From the Nutrition, Metabolism and Genomics Group (A.G., L.L., M.V.B., M.M., S.K.), Division of Human Nutrition, Wageningen University. The Netherlands; Nutrigenomics Consortium (L.L., M.V.B., M.M., S.K.), TI Food and Nutrition, Wageningen, The Netherlands; Department of Biochemistry (T.D.), University of Kuopio, Finland; Department of Physiology (M.v.B.), Maastricht University, The Netherlands; and Centre Intégrative Génomique (B.D.), University of Lausanne, Switzerland
| |
Collapse
|
47
|
Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. Pharmacol Ther 2010; 128:191-227. [PMID: 20438756 DOI: 10.1016/j.pharmthera.2010.04.005] [Citation(s) in RCA: 637] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cardiac hypertrophy can be defined as an increase in heart mass. Pathological cardiac hypertrophy (heart growth that occurs in settings of disease, e.g. hypertension) is a key risk factor for heart failure. Pathological hypertrophy is associated with increased interstitial fibrosis, cell death and cardiac dysfunction. In contrast, physiological cardiac hypertrophy (heart growth that occurs in response to chronic exercise training, i.e. the 'athlete's heart') is reversible and is characterized by normal cardiac morphology (i.e. no fibrosis or apoptosis) and normal or enhanced cardiac function. Given that there are clear functional, structural, metabolic and molecular differences between pathological and physiological hypertrophy, a key question in cardiovascular medicine is whether mechanisms responsible for enhancing function of the athlete's heart can be exploited to benefit patients with pathological hypertrophy and heart failure. This review summarizes key experimental findings that have contributed to our understanding of pathological and physiological heart growth. In particular, we focus on signaling pathways that play a causal role in the development of pathological and physiological hypertrophy. We discuss molecular mechanisms associated with features of cardiac hypertrophy, including protein synthesis, sarcomeric organization, fibrosis, cell death and energy metabolism and provide a summary of profiling studies that have examined genes, microRNAs and proteins that are differentially expressed in models of pathological and physiological hypertrophy. How gender and sex hormones affect cardiac hypertrophy is also discussed. Finally, we explore how knowledge of molecular mechanisms underlying pathological and physiological hypertrophy may influence therapeutic strategies for the treatment of cardiovascular disease and heart failure.
Collapse
|
48
|
Brindley DN, Kok BPC, Kienesberger PC, Lehner R, Dyck JRB. Shedding light on the enigma of myocardial lipotoxicity: the involvement of known and putative regulators of fatty acid storage and mobilization. Am J Physiol Endocrinol Metab 2010; 298:E897-908. [PMID: 20103741 DOI: 10.1152/ajpendo.00509.2009] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Excessive fatty acid (FA) uptake by cardiac myocytes is often associated with adverse changes in cardiac function. This is especially evident in diabetic individuals, where increased intramyocardial triacylglycerol (TG) resulting from the exposure to high levels of circulating FA has been proposed to be a major contributor to diabetic cardiomyopathy. At present, our knowledge of how the heart regulates FA storage in TG and the hydrolysis of this TG is limited. This review concentrates on what is known about TG turnover within the heart and how this is likely to be regulated by extrapolating results from other tissues. We also assess the evidence as to whether increased TG accumulation protects against FA-induced lipotoxicity through limiting the accumulations of ceramides and diacylglycerols versus whether it is a maladaptive response that contributes to cardiac dysfunction.
Collapse
Affiliation(s)
- David N Brindley
- Signal Transduction Research Group, Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.
| | | | | | | | | |
Collapse
|
49
|
Baranowski M, Blachnio-Zabielska A, Hirnle T, Harasiuk D, Matlak K, Knapp M, Zabielski P, Gorski J. Myocardium of type 2 diabetic and obese patients is characterized by alterations in sphingolipid metabolic enzymes but not by accumulation of ceramide. J Lipid Res 2010; 51:74-80. [PMID: 19617631 DOI: 10.1194/jlr.m900002-jlr200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Data from animal experiments strongly suggest that ceramide is an important mediator of lipotoxicity in the heart and that accumulation of ceramide contributes to cardiomyocyte apoptosis associated with type 2 diabetes and obesity. However, it remains unknown whether a similar relationship is present also in the human heart. Therefore, we aimed to examine whether myocardial apoptosis in obese and type 2 diabetic patients is associated with elevated ceramide level. The study included 11 lean and 26 overweight or moderately obese subjects without (n = 11, OWT) or with (n = 15, T2D-OWT) a history of type 2 diabetes. Samples of the right atrial appendage were obtained from patients at the time of coronary bypass surgery. Compared with lean subjects, the extent of DNA fragmentation (a marker of apoptosis) was significantly higher in the myocardium of OWT patients and increased further in T2D-OWT subjects. However, the content of ceramide and sphingoid bases remained stable. Interestingly, the mRNA level of enzymes involved in synthesis and degradation of ceramide including serine palmitoyltransferase, sphingosine kinase 1, neutral sphingomyelinase, and ceramidases was markedly higher in the myocardium of OWT and T2D-OWT patients compared with lean subjects. Our results indicate that in the human heart, or at least in the atrium, ceramide is not a major factor in cardiomyocyte apoptosis associated with obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Marcin Baranowski
- Departments of Physiology, Medical University of Bialystok, Mickiewicza 2c, 15-222 Bialystok, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Tomas E, Habener JF. Insulin-like actions of glucagon-like peptide-1: a dual receptor hypothesis. Trends Endocrinol Metab 2010; 21:59-67. [PMID: 20018525 PMCID: PMC4085161 DOI: 10.1016/j.tem.2009.11.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Revised: 11/22/2009] [Accepted: 11/23/2009] [Indexed: 12/17/2022]
Abstract
GLP-1 (9-36)amide is the cleavage product of GLP-1(7-36) amide, formed by the action of diaminopeptidyl peptidase-4 (Dpp4), and is the major circulating form in plasma. Whereas GLP-1(7-36)amide stimulates glucose-dependent insulin secretion, GLP-1(9-36)amide has only weak partial insulinotropic agonist activities on the GLP-1 receptor, but suppresses hepatic glucose production, exerts antioxidant cardioprotective actions and reduces oxidative stress in vasculature tissues. These insulin-like activities suggest a role for GLP-1 (9-36)amide in the modulation of mitochondrial functions by mechanisms independent of the GLP-1 receptor. In this paper, we discuss the current literature suggesting that GLP-1(9-36)amide is an active peptide with important insulin-like actions. These findings have implications in nutrient assimilation, energy homeostasis, obesity, and the use of Dpp4 inhibitors for the treatment of diabetes.
Collapse
Affiliation(s)
- Eva Tomas
- Laboratory of Molecular Endocrinology, Massachusetts General Hospital, Boston, MA 02114, USA
| | | |
Collapse
|