1
|
Koskeridis F, Fancy N, Tan PF, Meena D, Evangelou E, Elliott P, Wang D, Matthews PM, Dehghan A, Tzoulaki I. Multi-trait association analysis reveals shared genetic loci between Alzheimer's disease and cardiovascular traits. Nat Commun 2024; 15:9827. [PMID: 39537608 PMCID: PMC11561119 DOI: 10.1038/s41467-024-53452-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Abstract
Several cardiovascular traits and diseases co-occur with Alzheimer's disease. We mapped their shared genetic architecture using multi-trait genome-wide association studies. Subsequent fine-mapping and colocalisation highlighted 16 genetic loci associated with both Alzheimer's and cardiovascular diseases. We prioritised rs11786896, which colocalised with Alzheimer's disease, atrial fibrillation and expression of PLEC in the heart left ventricle, and rs7529220, which colocalised with Alzheimer's disease, atrial fibrillation and expression of C1Q family genes. Single-cell RNA-sequencing data, co-expression network and protein-protein interaction analyses provided evidence for different mechanisms of PLEC, which is upregulated in left ventricular endothelium and cardiomyocytes with heart failure and in brain astrocytes with Alzheimer's disease. Similar common mechanisms are implicated for C1Q in heart macrophages with heart failure and in brain microglia with Alzheimer's disease. These findings highlight inflammatory and pleomorphic risk determinants for the co-occurrence of Alzheimer's and cardiovascular diseases and suggest PLEC, C1Q and their interacting proteins as potential therapeutic targets.
Collapse
Affiliation(s)
- Fotios Koskeridis
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK.
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece.
- UK Dementia Research Institute, Imperial College London, London, UK.
| | - Nurun Fancy
- UK Dementia Research Institute, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Pei Fang Tan
- Institute for Human Development and Potential, Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Devendra Meena
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Evangelos Evangelou
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- UK Dementia Research Institute, Imperial College London, London, UK
| | - Dennis Wang
- Institute for Human Development and Potential, Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Paul M Matthews
- UK Dementia Research Institute, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Abbas Dehghan
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- UK Dementia Research Institute, Imperial College London, London, UK
| | - Ioanna Tzoulaki
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- UK Dementia Research Institute, Imperial College London, London, UK
- Systems Biology, Biomedical Research Institute of the Academy of Athens, Athens, Greece
| |
Collapse
|
2
|
Stepanov A, Shishkova D, Markova V, Markova Y, Frolov A, Lazebnaya A, Oshchepkova K, Perepletchikova D, Smirnova D, Basovich L, Repkin E, Kutikhin A. Proteomic Profiling of Endothelial Cell Secretomes After Exposure to Calciprotein Particles Reveals Downregulation of Basement Membrane Assembly and Increased Release of Soluble CD59. Int J Mol Sci 2024; 25:11382. [PMID: 39518935 PMCID: PMC11546392 DOI: 10.3390/ijms252111382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Calciprotein particles (CPPs) are essential circulating scavengers of excessive Ca2+ and PO43- ions, representing a vehicle that removes them from the human body and precludes extraskeletal calcification. Having been internalised by endothelial cells (ECs), CPPs induce their dysfunction, which is accompanied by a remarkable molecular reconfiguration, although little is known about this process's extracellular signatures. Here, we applied ultra-high performance liquid chromatography-tandem mass spectrometry to perform a secretome-wide profiling of the cell culture supernatant from primary human coronary artery ECs (HCAECs) and internal thoracic artery ECs (HITAECs) treated with primary CPPs (CPP-P), secondary CPPs (CPP-S), magnesiprotein particles (MPPs), or Ca2+/Mg2+-free Dulbecco's phosphate-buffered saline (DPBS) for 24 h. Incubation with CPP-P/CPP-S significantly altered the profiles of secreted proteins, delineating physiological and pathological endothelial secretomes. Neither pathway enrichment analysis nor the interrogation of protein-protein interactions detected extracellular matrix- and basement membrane-related molecular terms in the protein datasets from CPP-P/CPP-S-treated ECs. Both proteomic profiling and enzyme-linked immunosorbent assay identified an increased level of protectin (CD59) and reduced levels of osteonectin (SPARC), perlecan (HSPG2), and fibronectin (FN1) in the cell culture supernatant upon CPP-P/CPP-S treatment. Elevated soluble CD59 and decreased release of basement membrane components might be considered as potential signs of dysfunctional endothelium.
Collapse
Affiliation(s)
- Alexander Stepanov
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Barbarash Boulevard, 650002 Kemerovo, Russia; (A.S.); (D.S.); (V.M.); (Y.M.); (A.F.); (A.L.); (K.O.)
| | - Daria Shishkova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Barbarash Boulevard, 650002 Kemerovo, Russia; (A.S.); (D.S.); (V.M.); (Y.M.); (A.F.); (A.L.); (K.O.)
| | - Victoria Markova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Barbarash Boulevard, 650002 Kemerovo, Russia; (A.S.); (D.S.); (V.M.); (Y.M.); (A.F.); (A.L.); (K.O.)
| | - Yulia Markova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Barbarash Boulevard, 650002 Kemerovo, Russia; (A.S.); (D.S.); (V.M.); (Y.M.); (A.F.); (A.L.); (K.O.)
| | - Alexey Frolov
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Barbarash Boulevard, 650002 Kemerovo, Russia; (A.S.); (D.S.); (V.M.); (Y.M.); (A.F.); (A.L.); (K.O.)
| | - Anastasia Lazebnaya
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Barbarash Boulevard, 650002 Kemerovo, Russia; (A.S.); (D.S.); (V.M.); (Y.M.); (A.F.); (A.L.); (K.O.)
| | - Karina Oshchepkova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Barbarash Boulevard, 650002 Kemerovo, Russia; (A.S.); (D.S.); (V.M.); (Y.M.); (A.F.); (A.L.); (K.O.)
| | - Daria Perepletchikova
- Laboratory of Regenerative Biomedicine, Institute of Cytology of the RAS, 4 Tikhoretskiy Prospekt, 194064 St. Petersburg, Russia; (D.P.); (D.S.); (L.B.)
| | - Daria Smirnova
- Laboratory of Regenerative Biomedicine, Institute of Cytology of the RAS, 4 Tikhoretskiy Prospekt, 194064 St. Petersburg, Russia; (D.P.); (D.S.); (L.B.)
| | - Liubov Basovich
- Laboratory of Regenerative Biomedicine, Institute of Cytology of the RAS, 4 Tikhoretskiy Prospekt, 194064 St. Petersburg, Russia; (D.P.); (D.S.); (L.B.)
| | - Egor Repkin
- Resource Centre for Molecular and Cell Technologies, St. Petersburg State University, Universitetskaya Embankment, 7/9, 199034 St. Petersburg, Russia;
| | - Anton Kutikhin
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Barbarash Boulevard, 650002 Kemerovo, Russia; (A.S.); (D.S.); (V.M.); (Y.M.); (A.F.); (A.L.); (K.O.)
| |
Collapse
|
3
|
Sheng Y, Hu W, Chen S, Zhu X. Efferocytosis by macrophages in physiological and pathological conditions: regulatory pathways and molecular mechanisms. Front Immunol 2024; 15:1275203. [PMID: 38779685 PMCID: PMC11109379 DOI: 10.3389/fimmu.2024.1275203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Efferocytosis is defined as the highly effective phagocytic removal of apoptotic cells (ACs) by professional or non-professional phagocytes. Tissue-resident professional phagocytes ("efferocytes"), such as macrophages, have high phagocytic capacity and are crucial to resolve inflammation and aid in homeostasis. Recently, numerous exciting discoveries have revealed divergent (and even diametrically opposite) findings regarding metabolic immune reprogramming associated with efferocytosis by macrophages. In this review, we highlight the key metabolites involved in the three phases of efferocytosis and immune reprogramming of macrophages under physiological and pathological conditions. The next decade is expected to yield further breakthroughs in the regulatory pathways and molecular mechanisms connecting immunological outcomes to metabolic cues as well as avenues for "personalized" therapeutic intervention.
Collapse
Affiliation(s)
- Yan−Ran Sheng
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Wen−Ting Hu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Siman Chen
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
| | - Xiao−Yong Zhu
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Wang Y, Zheng J, Li Q, Ma Y, Liu C, Deng J, Gao D. The relationship between complement C1q and coronary plaque vulnerability based on optical coherence tomography analysis. Sci Rep 2024; 14:9477. [PMID: 38658599 PMCID: PMC11043360 DOI: 10.1038/s41598-024-60128-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 04/19/2024] [Indexed: 04/26/2024] Open
Abstract
To determine the association between complement C1q and vulnerable plaque morphology among coronary artery disease (CAD) patients. We conducted a retrospective observational study of 221 CAD patients admitted to The Second Affiliated Hospital of Xi'an Jiaotong University. Intravascular optical coherence tomography was utilized to describe the culprit plaques' morphology. Using logistic regression analysis to explore the correlation between C1q and vulnerable plaques, and receiver operator characteristic (ROC) analysis assess the predictive accuracy. As reported, the complement C1q level was lower in ACS patients than CCS patients (18.25 ± 3.88 vs. 19.18 ± 4.25, P = 0.045). The low complement-C1q-level group was more prone to develop vulnerable plaques. In lipid-rich plaques, the complement C1q level was positively correlated with the thickness of fibrous cap (r = 0.480, P = 0.041). Univariate and multivariate logistic regression analyses suggested that complement C1q could be an independent contributor to plaques' vulnerability. For plaque rupture, erosion, thrombus, and cholesterol crystals, the areas under the ROC curve of complement C1q level were 0.873, 0.816, 0.785, and 0.837, respectively (P < 0.05 for all). In CAD patients, the complement C1q could be a valuable indicator of plaque vulnerability.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, No. 157, Xiwu Road, Xi'an, 710000, Shaanxi, People's Republic of China
| | - Jiawei Zheng
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, No. 157, Xiwu Road, Xi'an, 710000, Shaanxi, People's Republic of China
| | - Qing Li
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, No. 157, Xiwu Road, Xi'an, 710000, Shaanxi, People's Republic of China
| | - Yao Ma
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, No. 157, Xiwu Road, Xi'an, 710000, Shaanxi, People's Republic of China
| | - Chang Liu
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, No. 157, Xiwu Road, Xi'an, 710000, Shaanxi, People's Republic of China
| | - Jie Deng
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, No. 157, Xiwu Road, Xi'an, 710000, Shaanxi, People's Republic of China
| | - Dengfeng Gao
- Department of Cardiology, The Second Affiliated Hospital, Xi'an Jiaotong University, No. 157, Xiwu Road, Xi'an, 710000, Shaanxi, People's Republic of China.
| |
Collapse
|
5
|
Zhang T, Pang C, Xu M, Zhao Q, Hu Z, Jiang X, Guo M. The role of immune system in atherosclerosis: Molecular mechanisms, controversies, and future possibilities. Hum Immunol 2024; 85:110765. [PMID: 38369442 DOI: 10.1016/j.humimm.2024.110765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
Numerous cardiovascular disorders have atherosclerosis as their pathological underpinning. Numerous studies have demonstrated that, with the aid of pattern recognition receptors, cytokines, and immunoglobulins, innate immunity, represented by monocytes/macrophages, and adaptive immunity, primarily T/B cells, play a critical role in controlling inflammation and abnormal lipid metabolism in atherosclerosis. Additionally, the finding of numerous complement components in atherosclerotic plaques suggests yet again how heavily the immune system controls atherosclerosis. Therefore, it is essential to have a thorough grasp of how the immune system contributes to atherosclerosis. The specific molecular mechanisms involved in the activation of immune cells and immune molecules in atherosclerosis, the controversy surrounding some immune cells in atherosclerosis, and the limitations of extrapolating from relevant animal models to humans were all carefully reviewed in this review from the three perspectives of innate immunity, adaptive immunity, and complement system. This could provide fresh possibilities for atherosclerosis research and treatment in the future.
Collapse
Affiliation(s)
- Tianle Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Chenxu Pang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Mengxin Xu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Qianqian Zhao
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Zhijie Hu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| | - Maojuan Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China.
| |
Collapse
|
6
|
Sauter M, Langer HF. Targeting Cell-Specific Molecular Mechanisms of Innate Immunity in Atherosclerosis. Front Physiol 2022; 13:802990. [PMID: 35432000 PMCID: PMC9010538 DOI: 10.3389/fphys.2022.802990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Mechanisms of innate immunity contribute to inflammation, one of the major underlying causes of atherogenesis and progression of atherosclerotic vessel disease. How immune cells exactly contribute to atherosclerosis and interact with molecules of cholesterol homeostasis is still a matter of intense research. Recent evidence has proposed a potential role of previously underappreciated cell types in this chronic disease including platelets and dendritic cells (DCs). The pathophysiology of atherosclerosis is studied in models with dysfunctional lipid homeostasis and several druggable molecular targets are derived from these models. Specific therapeutic approaches focussing on these immune mechanisms, however, have not been successfully introduced into everyday clinical practice, yet. This review highlights molecular insights into immune processes related to atherosclerosis and potential future translational approaches targeting these molecular mechanisms.
Collapse
Affiliation(s)
- M. Sauter
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
| | - H. F. Langer
- Cardioimmunology Group, Medical Clinic II, University Heart Center Lübeck, Lübeck, Germany
- Department of Cardiology, University Heart Center Luebeck, University Hospital, Luebeck, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Lübeck/Kiel, Lübeck, Germany
- *Correspondence: H. F. Langer,
| |
Collapse
|
7
|
Pandey SS, Hartley A, Caga-Anan M, Ammari T, Khan AHA, Nguyen BAV, Kojima C, Anderson J, Lynham S, Johns M, Haskard DO, Khamis RY. A Novel Immunoassay for Malondialdehyde-Conjugated Low-Density Lipoprotein Measures Dynamic Changes in the Blood of Patients Undergoing Coronary Artery Bypass Graft Surgery. Antioxidants (Basel) 2021; 10:antiox10081298. [PMID: 34439546 PMCID: PMC8389242 DOI: 10.3390/antiox10081298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 01/08/2023] Open
Abstract
Oxidized low-density lipoproteins play an important role in tissue pathology. In this study, we report a sensitive novel enzyme-linked immunosorbent assay for the detection of malondialdehyde-modified low-density lipoprotein (MDA-LDL), a key component of oxidized LDL. The assay is capable of measuring a variable presence of MDA-LDL within human plasma and serum. We demonstrate the robust nature of the assay on samples stored for over 20 months, as well as high inter-operator reproducibility (r = 0.74, p < 0.0001). The assay was capable of detecting dynamic changes in patient blood samples after coronary artery bypass graft surgery, indicating synthesis or release of MDA-LDL with the oxidative stress of surgery, followed by homeostatic clearance. This robust, sensitive and specific assay for circulating MDA-LDL will serve as a valuable translational tool for the improved detection of oxidative forms of LDL in response to a range of physiological or pathological stimuli, with potential clinical applicability.
Collapse
Affiliation(s)
- Samata S. Pandey
- Vascular Sciences Section, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London W12 0NN, UK; (S.S.P.); (A.H.); (M.C.-A.); (T.A.); (A.H.A.K.); (B.A.V.N.); (C.K.); (M.J.); (D.O.H.)
| | - Adam Hartley
- Vascular Sciences Section, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London W12 0NN, UK; (S.S.P.); (A.H.); (M.C.-A.); (T.A.); (A.H.A.K.); (B.A.V.N.); (C.K.); (M.J.); (D.O.H.)
| | - Mikhail Caga-Anan
- Vascular Sciences Section, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London W12 0NN, UK; (S.S.P.); (A.H.); (M.C.-A.); (T.A.); (A.H.A.K.); (B.A.V.N.); (C.K.); (M.J.); (D.O.H.)
| | - Tareq Ammari
- Vascular Sciences Section, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London W12 0NN, UK; (S.S.P.); (A.H.); (M.C.-A.); (T.A.); (A.H.A.K.); (B.A.V.N.); (C.K.); (M.J.); (D.O.H.)
| | - Ameer Hamid Ahmed Khan
- Vascular Sciences Section, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London W12 0NN, UK; (S.S.P.); (A.H.); (M.C.-A.); (T.A.); (A.H.A.K.); (B.A.V.N.); (C.K.); (M.J.); (D.O.H.)
| | - Bao Anh Vu Nguyen
- Vascular Sciences Section, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London W12 0NN, UK; (S.S.P.); (A.H.); (M.C.-A.); (T.A.); (A.H.A.K.); (B.A.V.N.); (C.K.); (M.J.); (D.O.H.)
| | - Chiari Kojima
- Vascular Sciences Section, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London W12 0NN, UK; (S.S.P.); (A.H.); (M.C.-A.); (T.A.); (A.H.A.K.); (B.A.V.N.); (C.K.); (M.J.); (D.O.H.)
| | - Jon Anderson
- Department of Cardiothoracic Surgery, Hammersmith Hospital, Imperial College Healthcare NHS Trust, London W12 0HS, UK;
| | - Steven Lynham
- Centre of Excellence for Mass Spectrometry, Proteomics Facility, Denmark Hill Campus, Kings College London, London SE5 9NU, UK;
| | - Michael Johns
- Vascular Sciences Section, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London W12 0NN, UK; (S.S.P.); (A.H.); (M.C.-A.); (T.A.); (A.H.A.K.); (B.A.V.N.); (C.K.); (M.J.); (D.O.H.)
| | - Dorian O. Haskard
- Vascular Sciences Section, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London W12 0NN, UK; (S.S.P.); (A.H.); (M.C.-A.); (T.A.); (A.H.A.K.); (B.A.V.N.); (C.K.); (M.J.); (D.O.H.)
| | - Ramzi Y. Khamis
- Vascular Sciences Section, National Heart and Lung Institute, Imperial Centre for Translational and Experimental Medicine, Imperial College London, London W12 0NN, UK; (S.S.P.); (A.H.); (M.C.-A.); (T.A.); (A.H.A.K.); (B.A.V.N.); (C.K.); (M.J.); (D.O.H.)
- Correspondence: ; Tel.: +44-(020)-7594-6842
| |
Collapse
|
8
|
Circulating Extracellular Vesicle Proteins and MicroRNA Profiles in Subcortical and Cortical-Subcortical Ischaemic Stroke. Biomedicines 2021; 9:biomedicines9070786. [PMID: 34356850 PMCID: PMC8301391 DOI: 10.3390/biomedicines9070786] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/28/2021] [Accepted: 07/05/2021] [Indexed: 12/21/2022] Open
Abstract
In order to investigate the role of circulating extracellular vesicles (EVs), proteins, and microRNAs as damage and repair markers in ischaemic stroke depending on its topography, subcortical (SC), and cortical-subcortical (CSC) involvement, we quantified the total amount of EVs using an enzyme-linked immunosorbent assay technique and analysed their global protein content using proteomics. We also employed a polymerase chain reaction to evaluate the circulating microRNA profile. The study included 81 patients with ischaemic stroke (26 SC and 55 CSC) and 22 healthy controls (HCs). No differences were found in circulating EV levels between the SC, CSC, and HC groups. We detected the specific expression of C1QA and Casp14 in the EVs of patients with CSC ischaemic stroke and the specific expression of ANXA2 in the EVs of patients with SC involvement. Patients with CSC ischaemic stroke showed a lower expression of miR-15a, miR-424, miR-100, and miR-339 compared with those with SC ischaemic stroke, and the levels of miR-339, miR-100, miR-199a, miR-369a, miR-424, and miR-15a were lower than those of the HCs. Circulating EV proteins and microRNAs from patients with CSC ischaemic stroke could be considered markers of neurite outgrowth, neurogenesis, inflammation process, and atherosclerosis. On the other hand, EV proteins and microRNAs from patients with SC ischaemic stroke might be markers of an anti-inflammatory process and blood–brain barrier disruption reduction.
Collapse
|
9
|
Guo S, Mao X, Li X, Ouyang H, Gao Y, Ming L. Serum Complement C1q Activity Is Associated With Obstructive Coronary Artery Disease. Front Cardiovasc Med 2021; 8:618173. [PMID: 33996933 PMCID: PMC8116493 DOI: 10.3389/fcvm.2021.618173] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 03/08/2021] [Indexed: 12/29/2022] Open
Abstract
Background: Complement C1q plays a dual role in the atherosclerosis. Previous studies showed inconsistent results about the association of serum C1q levels and coronary artery disease (CAD). Here, we explored the associations of serum C1q activity with CAD, coronary stenosis severity, cardiovascular biomarkers, and 1-year restenosis after coronary artery revascularization. Methods: We enrolled 956 CAD patients and 677 controls to evaluate the associations of serum complement C1q activity to the presence and severity of obstructive CAD and non-obstructive CAD. Serum C1q activity and the concentrations of laboratory markers were measured in all subjects. All the data were analyzed using SPSS22.0 software. Results: Serum C1q activity in Obstructive CAD and Non-Obstructive CAD groups was significantly higher than the control group (195.52 ± 48.31 kU/L and 195.42 ± 51.25 kU/L vs. 183.44 ± 31.75 kU/L, P < 0.05). Greater C1q activity was significantly correlated with higher total cholesterol (TC) and triglyceride (TG) levels. C1q activity was associated with an increased Odds Ratio (OR) of CAD (OR = 1.322, 95% CI 1.168–1.496, P < 0.05) and 1-year restenosis after revascularization (the highest OR = 3.544, 95% CI 1.089–12.702, P < 0.05). Complement C1q activity was not correlated with Gensini score in the Obstructive CAD group after adjustment for confounders. C1q activity has low value in predicting the incidence of CAD. Conclusion: Serum complement C1q activity is associated with obstructive CAD.
Collapse
Affiliation(s)
- Shuren Guo
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaohuan Mao
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaohua Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Huan Ouyang
- Department of Clinical Laboratory, ShenQiu People's Hospital, ShenQiu, Henan, China
| | - Yuhua Gao
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Liang Ming
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
10
|
Sun R, Qiao Y, Yan G, Wang D, Zuo W, Ji Z, Zhang X, Yao Y, Ma G, Tang C. Association between serum adipsin and plaque vulnerability determined by optical coherence tomography in patients with coronary artery disease. J Thorac Dis 2021; 13:2414-2425. [PMID: 34012589 PMCID: PMC8107545 DOI: 10.21037/jtd-21-259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background Early identification of vulnerable plaques is important for patients with coronary artery disease (CAD) to reduce acute coronary events and improve their prognosis. We sought to examine the relationship between adipsin, an adipokine secreted from adipocytes, and plaque vulnerability in CAD patients. Methods A total of 103 plaques from 99 consecutive patients who underwent coronary angiography were assessed by optical coherence tomography. The serum level of adipsin was measured using enzyme-linked immunosorbent assay (ELISA). The accuracy of adipsin for detecting thin-cap fibroatheroma (TCFA) was determined by the area under the receiver operating characteristic curve (AUC). Results Of the 99 patients, 49 were classified into the low adipsin group and 50 into the high adipsin group according to the median level of serum adipsin (2.43 µg/mL). The plaques from the high adipsin group exhibited a greater lipid index (2,700.0 vs. 1,975.9° × mm, P=0.015) and an increased proportion of TCFAs (41.2% vs. 21.2%, P=0.028) compared with the low adipsin group. Serum adipsin was found to be negatively correlated with fibrous cap thickness (ρ=−0.322, P=0.002), while it was positively correlated with average lipid arc (ρ=0.253, P=0.015), maximum lipid arc (ρ=0.211, P=0.044), lipid core length (ρ=0.241, P=0.021), lipid index (ρ=0.335, P=0.001), and vulnerability score (ρ=0.254, P=0.014). Furthermore, adipsin had a significant association with TCFAs (OR: 1.290, 95% CI: 1.048–1.589, P=0.016) in the multivariate analysis, while having a moderate diagnostic accuracy for TCFAs (AUC: 0.710, 95% CI: 0.602–0.817, P<0.001). Conclusions Our findings suggest that serum adipsin is significantly and positively correlated with the incidence of TCFAs. The application of adipsin as a biomarker may offer improvement in the diagnosis of vulnerable plaques and clinical benefits for CAD patients.
Collapse
Affiliation(s)
- Renhua Sun
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.,Department of Cardiology, Yancheng No.1 People's Hospital, Yancheng, China
| | - Yong Qiao
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Gaoliang Yan
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Dong Wang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Wenjie Zuo
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhenjun Ji
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xiaoguo Zhang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yuyu Yao
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Genshan Ma
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Chengchun Tang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
11
|
Kamesaki T, Nishimura JI, Wada H, Yu E, Tsao E, Morales J, Kanakura Y. Demographic characteristics, thromboembolism risk, and treatment patterns for patients with cold agglutinin disease in Japan. Int J Hematol 2020; 112:307-315. [DOI: 10.1007/s12185-020-02899-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/30/2020] [Accepted: 05/29/2020] [Indexed: 12/30/2022]
|
12
|
Amirfakhryan H. Vaccination against atherosclerosis: An overview. Hellenic J Cardiol 2020; 61:78-91. [DOI: 10.1016/j.hjc.2019.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 02/07/2023] Open
|
13
|
Espericueta V, Manughian-Peter AO, Bally I, Thielens NM, Fraser DA. Recombinant C1q variants modulate macrophage responses but do not activate the classical complement pathway. Mol Immunol 2019; 117:65-72. [PMID: 31739194 DOI: 10.1016/j.molimm.2019.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/03/2019] [Accepted: 10/08/2019] [Indexed: 11/25/2022]
Abstract
Complement protein C1q plays a dual role in a number of inflammatory diseases such as atherosclerosis. While in later stages classical complement pathway activation by C1q exacerbates disease progression, C1q also plays a beneficial role in early disease. Independent of its role in complement activation, we and others have identified a number of potentially beneficial interactions of C1q with phagocytes in vitro, including triggering phagocytosis of cellular and molecular debris and polarizing macrophages toward an anti-inflammatory phenotype. These interactions may also be important in preventing autoimmunity. Here, we characterize variants of recombinant human C1q (rC1q) which no longer initiate complement activation, through mutation of the C1r2C1s2 interaction site. For insight into the structural location of the site of C1q that is important for interaction with phagocytes, we investigated the effect of these mutations on phagocytosis and macrophage inflammatory polarization, as compared to wild-type C1q. Phagocytosis of antibody coated sheep erythrocytes and oxidized LDL was measured in human monocytes and monocyte-derived macrophages (HMDM) respectively that had interacted with rC1q wild-type or variants. Secreted levels of cytokines were also measured in C1q stimulated HMDM. All variants of C1q increased phagocytosis in HMDM compared to controls, similar to native or wild-type rC1q. In addition, levels of certain pro-inflammatory cytokines and chemokines secreted by HMDM were modulated in cells that interacted with C1q variants, similar to wild-type rC1q and native C1q. This includes downregulation of IL-1α, IL-1β, TNFα, MIP-1α, and IL-12p40 by native and rC1q in both resting and M1-polarized HMDM. This suggests that the site responsible for C1q interaction with phagocytes is independent of the C1r2C1s2 interaction site. Further studies with these classical pathway-null variants of C1q should provide greater understanding of the complement-independent role of C1q, and allow for potential therapeutic exploitation.
Collapse
Affiliation(s)
- Victoria Espericueta
- Department of Biological Sciences, California State University Long Beach, CA, USA
| | | | - Isabelle Bally
- Univ. Grenoble Alpes, CEA, CNRS, IBS, F-38000, Grenoble, France
| | | | - Deborah A Fraser
- Department of Biological Sciences, California State University Long Beach, CA, USA.
| |
Collapse
|
14
|
Cavusoglu E, Kassotis JT, Anwar A, Marmur JD, Hussain SW, Yanamadala S, Hegde S, Parpas A, Eng C, Zhang M. Usefulness of Complement C1q to Predict 10-Year Mortality in Men With Diabetes Mellitus Referred for Coronary Angiography. Am J Cardiol 2018; 122:33-38. [PMID: 29703440 DOI: 10.1016/j.amjcard.2018.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 02/25/2018] [Accepted: 03/01/2018] [Indexed: 02/01/2023]
Abstract
The complement system consists of a family of proteins that play a critical role in the innate immune system. Complement activation has been implicated in many chronic inflammatory diseases, including atherosclerosis. However, a number of experimental studies have highlighted a beneficial role of component C1q in early atherosclerosis and in diabetes mellitus (DM). Despite these data, there have been no studies that have specifically examined the utility of plasma complement C1q as a clinical biomarker in patients with known or suspected coronary artery disease. In this study, baseline plasma complement C1q levels were measured in 159 men with DM who were referred for coronary angiography and who were followed up prospectively for the development of all-cause mortality for 10 years. After adjustment for baseline clinical, angiographic, and laboratory parameters, reduced plasma complement C1q levels were an independent predictor of all-cause mortality at 10 years (hazard ratio 0.66, 95% confidence interval 0.52 to 0.84, p = 0.0006). In additional multivariate models that adjusted for a variety of biomarkers with established prognostic efficacy, complement C1q remained an independent predictor of all-cause mortality at 10 years. In conclusion, reduced levels of complement C1q are associated with an increased risk of all-cause mortality at 10 years in patients with DM referred for coronary angiography. Furthermore, this association is independent of a variety of clinical, angiographic, laboratory variables, including biomarkers with established prognostic efficacy in the prediction of adverse cardiovascular outcomes.
Collapse
Affiliation(s)
- Erdal Cavusoglu
- Division of Cardiology, Department of Medicine, Bronx Veterans Affairs Medical Center, Bronx, New York; Division of Cardiology, Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, New York.
| | - John T Kassotis
- Division of Cardiology, Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, New York
| | - Ayesha Anwar
- Division of Cardiology, Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, New York
| | - Jonathan D Marmur
- Division of Cardiology, Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, New York
| | - Syed Wasif Hussain
- Division of Cardiology, Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, New York
| | - Sunitha Yanamadala
- Division of Cardiology, Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, New York
| | - Sudhanva Hegde
- Division of Cardiology, Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, New York
| | - Alexander Parpas
- Division of Cardiology, Department of Medicine, State University of New York Downstate Medical Center, Brooklyn, New York
| | - Calvin Eng
- Division of Cardiology, Department of Medicine, Bronx Veterans Affairs Medical Center, Bronx, New York
| | - Ming Zhang
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York; Department of Anesthesiology, State University of New York Downstate Medical Center, Brooklyn, New York
| |
Collapse
|
15
|
An G, Li B, Liu X, Zhang M, Gao F, Zhao Y, An F, Zhang Y, Zhang C. Overexpression of complement component C5a accelerates the development of atherosclerosis in ApoE-knockout mice. Oncotarget 2018; 7:56060-56070. [PMID: 27517153 PMCID: PMC5302896 DOI: 10.18632/oncotarget.11180] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 07/06/2016] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND In this study, we investigated the direct effect of C5a overexpression on atherosclerosis. METHODS AND RESULTS A recombinant adenovirus expressing mouse C5a (Ad-C5a) was constructed and injected intravenously into ApoE-/- mice. After 12 weeks of a high-fat diet, Ad-C5a injection produced more extensive lesions than control adenovirus, and its proathrosclerotic role was significantly blocked by C5a receptor antagonist. Immunohistochemical analysis showed enhanced macrophage infiltration in atherosclerotic regions with C5a overexpression. Trans-well assay revealed C5a receptor-dependent chemotaxis of C5a to macrophages. Furthermore, Ad-C5a overexpression promoted foam cell formation and lipid deposition but reduced collagen content. In addition, with Ad-C5a overexpression, the serum levels of interleukin 6 and tumor necrosis factor α were upregulated. CONCLUSIONS C5a overexpression could accelerate the development of atherosclerosis in ApoE-/- mice by promoting macrophage recruitment, foam cell formation and inflammatory activation. Furthermore, its proatherogetic role is mediated by the C5a receptor.
Collapse
Affiliation(s)
- Guipeng An
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong, China.,Department of Cardiology, Shandong University Qilu Hospital, Jinan, Shandong, China
| | - Bo Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong, China.,Department of Cardiology, Shandong University Qilu Hospital, Jinan, Shandong, China
| | - Xiaoman Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong, China.,Department of Cardiology, Shandong University Qilu Hospital, Jinan, Shandong, China
| | - Mingxiang Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong, China.,Department of Cardiology, Shandong University Qilu Hospital, Jinan, Shandong, China
| | - Fei Gao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong, China.,Department of Cardiology, Shandong University Qilu Hospital, Jinan, Shandong, China
| | - Yuxia Zhao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong, China.,Department of Cardiology, Shandong University Qilu Hospital, Jinan, Shandong, China
| | - Fengshuang An
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong, China.,Department of Cardiology, Shandong University Qilu Hospital, Jinan, Shandong, China
| | - Yun Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong, China.,Department of Cardiology, Shandong University Qilu Hospital, Jinan, Shandong, China
| | - Cheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong, China.,Department of Cardiology, Shandong University Qilu Hospital, Jinan, Shandong, China
| |
Collapse
|
16
|
Gómez-Abril SÁ, Morillas-Ariño C, Ponce-Marco JL, Torres-Sánchez T, Delgado-Gomis F, Hernández-Mijares A, Rocha M. Short- and Long-Term Effects of Weight Loss on the Complement Component C3 After Laparoscopic Gastric Bypass in Obese Patients. Obes Surg 2017; 26:2756-2763. [PMID: 27143095 DOI: 10.1007/s11695-016-2195-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND The C3 complement component (C3c) is increasingly recognized as a cardiometabolic risk factor, but how it is affected after weight loss through gastric bypass is a question yet to be answered. METHODS A total of 66 obese patients underwent laparoscopic gastric bypass. Anthropometric parameters, total cholesterol (TC), triglycerides, high-density lipoprotein cholesterol (HDLc), low-density lipoprotein cholesterol (LDLc), glucose, insulin, HOMA-IR, liver enzymes, high-sensitivity C-reactive protein (hsCRP), and C3c levels were evaluated at baseline and at 1 and 5 years post-surgery. RESULTS All anthropometric and biochemical parameters improved significantly after surgery, although a deterioration was detected with respect to the percentage of excess of weight loss, insulin, TC, LDLc, and lactate dehydrogenase 5 years post-surgery. Despite this, a remission rate of 84 % was observed in the presence of metabolic syndrome after 5 years follow-up. hsCRP and C3c were reduced significantly after surgery and maintained throughout the experimental period. In addition, C3c was correlated with BMI and insulin at all time points. The multivariate regression model, in which C3c was a dependent variable, revealed that aspartate aminotransferase and BMI were independent variables at baseline, alkaline phosphatase and insulin were independent at 1 year post-surgery, and insulin, BMI, and TC were independent at 5 years post-surgery. CONCLUSIONS C3c may be a marker of the chronic inflammatory process underlying insulin resistance. Its association with BMI and liver enzymes supports a major role in metabolic activity, although future research is needed to clarify the nature of the molecular mechanisms involved and the physiological significance of these findings.
Collapse
Affiliation(s)
- Segundo Á Gómez-Abril
- Department of General and Digestive Surgery, University Hospital Doctor Peset-FISABIO, Valencia, Spain
| | - Carlos Morillas-Ariño
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset-FISABIO, Av. Gaspar, Aguilar 90, 46017, Valencia, Spain
| | - Jose L Ponce-Marco
- Department of General and Digestive Surgery, University Hospital La Fe, Valencia, Spain
| | - Teresa Torres-Sánchez
- Department of General and Digestive Surgery, University Hospital Doctor Peset-FISABIO, Valencia, Spain
| | - Fernando Delgado-Gomis
- Department of General and Digestive Surgery, University Hospital Doctor Peset-FISABIO, Valencia, Spain
| | - Antonio Hernández-Mijares
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset-FISABIO, Av. Gaspar, Aguilar 90, 46017, Valencia, Spain. .,Institute of Health Research INCLIVA, University of Valencia, Valencia, Spain. .,Department of Medicine, University of Valencia, Valencia, Spain.
| | - Milagros Rocha
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset-FISABIO, Av. Gaspar, Aguilar 90, 46017, Valencia, Spain. .,Institute of Health Research INCLIVA, University of Valencia, Valencia, Spain. .,CIBER CB06/04/0071 Research Group, CIBER Hepatic and Digestive Diseases, University of Valencia, Av Blasco Ibáñez 15, 46010, Valencia, Spain.
| |
Collapse
|
17
|
Fumagalli S, De Simoni MG. Lectin Complement Pathway and Its Bloody Interactions in Brain Ischemia. Stroke 2016; 47:3067-3073. [PMID: 27811336 DOI: 10.1161/strokeaha.116.012407] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Stefano Fumagalli
- From the Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Maria-Grazia De Simoni
- From the Department of Neuroscience, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy.
| |
Collapse
|
18
|
Biros E, Gäbel G, Moran CS, Schreurs C, Lindeman JHN, Walker PJ, Nataatmadja M, West M, Holdt LM, Hinterseher I, Pilarsky C, Golledge J. Differential gene expression in human abdominal aortic aneurysm and aortic occlusive disease. Oncotarget 2016; 6:12984-96. [PMID: 25944698 PMCID: PMC4536993 DOI: 10.18632/oncotarget.3848] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 03/21/2015] [Indexed: 11/25/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) and aortic occlusive disease (AOD) represent common causes of morbidity and mortality in elderly populations which were previously believed to have common aetiologies. The aim of this study was to assess the gene expression in human AAA and AOD. We performed microarrays using aortic specimen obtained from 20 patients with small AAAs (≤ 55mm), 29 patients with large AAAs (> 55mm), 9 AOD patients, and 10 control aortic specimens obtained from organ donors. Some differentially expressed genes were validated by quantitative-PCR (qRT-PCR)/immunohistochemistry. We identified 840 and 1,014 differentially expressed genes in small and large AAAs, respectively. Immune-related pathways including cytokine-cytokine receptor interaction and T-cell-receptor signalling were upregulated in both small and large AAAs. Examples of validated genes included CTLA4 (2.01-fold upregulated in small AAA, P = 0.002), NKTR (2.37-and 2.66-fold upregulated in small and large AAA with P = 0.041 and P = 0.015, respectively), and CD8A (2.57-fold upregulated in large AAA, P = 0.004). 1,765 differentially expressed genes were identified in AOD. Pathways upregulated in AOD included metabolic and oxidative phosphorylation categories. The UCP2 gene was downregulated in AOD (3.73-fold downregulated, validated P = 0.017). In conclusion, the AAA and AOD transcriptomes were very different suggesting that AAA and AOD have distinct pathogenic mechanisms.
Collapse
Affiliation(s)
- Erik Biros
- The Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia
| | - Gabor Gäbel
- Department of Vascular and Endovascular Surgery, Ludwig-Maximillian University, Munich, Germany
| | - Corey S Moran
- The Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia
| | - Charlotte Schreurs
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan H N Lindeman
- Department of Vascular Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Philip J Walker
- Royal Brisbane Clinical School, The University of Queensland, Queensland, Australia
| | - Maria Nataatmadja
- The Cardiovascular Research Group, Department of Medicine, The University of Queensland, Queensland, Australia
| | - Malcolm West
- The Cardiovascular Research Group, Department of Medicine, The University of Queensland, Queensland, Australia
| | - Lesca M Holdt
- Institute of Laboratory Medicine, Ludwig Maximilians University Munich, Munich, Germany
| | - Irene Hinterseher
- Department of General, Visceral, Vascular and Thoracic Surgery, Charité Universitätsmedizin Berlin, Charité Campus Mitte, Berlin, Germany
| | - Christian Pilarsky
- Department of Vascular, Thoracic and Visceral Surgery, TU-Dresden, Dresden, Germany
| | - Jonathan Golledge
- The Queensland Research Centre for Peripheral Vascular Disease, College of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia.,Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, Queensland, Australia
| |
Collapse
|
19
|
Hovland A, Jonasson L, Garred P, Yndestad A, Aukrust P, Lappegård KT, Espevik T, Mollnes TE. The complement system and toll-like receptors as integrated players in the pathophysiology of atherosclerosis. Atherosclerosis 2015; 241:480-94. [PMID: 26086357 DOI: 10.1016/j.atherosclerosis.2015.05.038] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 05/08/2015] [Accepted: 05/29/2015] [Indexed: 02/08/2023]
Abstract
Despite recent medical advances, atherosclerosis is a global burden accounting for numerous deaths and hospital admissions. Immune-mediated inflammation is a major component of the atherosclerotic process, but earlier research focus on adaptive immunity has gradually switched towards the role of innate immunity. The complement system and toll-like receptors (TLRs), and the crosstalk between them, may be of particular interest both with respect to pathogenesis and as therapeutic targets in atherosclerosis. Animal studies indicate that inhibition of C3a and C5a reduces atherosclerosis. In humans modified LDL-cholesterol activate complement and TLRs leading to downstream inflammation, and histopathological studies indicate that the innate immune system is present in atherosclerotic lesions. Moreover, clinical studies have demonstrated that both complement and TLRs are upregulated in atherosclerotic diseases, although interventional trials have this far been disappointing. However, based on recent research showing an intimate interplay between complement and TLRs we propose a model in which combined inhibition of both complement and TLRs may represent a potent anti-inflammatory therapeutic approach to reduce atherosclerosis.
Collapse
Affiliation(s)
- Anders Hovland
- Coronary Care Unit, Division of Internal Medicine, Nordland Hospital, 8092 Bodø, Norway; Institute of Clinical Medicine, University of Tromsø, 9019 Tromsø, Norway.
| | - Lena Jonasson
- Department of Medical and Health Sciences, Linköping University, 581 83 Linköping, Sweden
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631 Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Arne Yndestad
- Research Institute of Internal Medicine and Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway; K.G. Jebsen Inflammation Research Centre, University of Oslo, 0318 Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine and Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, 0372 Oslo, Norway; K.G. Jebsen Inflammation Research Centre, University of Oslo, 0318 Oslo, Norway
| | - Knut T Lappegård
- Coronary Care Unit, Division of Internal Medicine, Nordland Hospital, 8092 Bodø, Norway; Institute of Clinical Medicine, University of Tromsø, 9019 Tromsø, Norway
| | - Terje Espevik
- Norwegian University of Science and Technology, Centre of Molecular Inflammation Research, and Department of Cancer Research and Molecular Medicine, 7491 Trondheim, Norway
| | - Tom E Mollnes
- Institute of Clinical Medicine, University of Tromsø, 9019 Tromsø, Norway; K.G. Jebsen Inflammation Research Centre, University of Oslo, 0318 Oslo, Norway; Norwegian University of Science and Technology, Centre of Molecular Inflammation Research, and Department of Cancer Research and Molecular Medicine, 7491 Trondheim, Norway; Research Laboratory, Nordland Hospital, 8092 Bodø, Norway; Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, 0372 Oslo, Norway; K.G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, 9019 Tromsø, Norway
| |
Collapse
|
20
|
Ghosh P, Sahoo R, Vaidya A, Chorev M, Halperin JA. Role of complement and complement regulatory proteins in the complications of diabetes. Endocr Rev 2015; 36:272-88. [PMID: 25859860 PMCID: PMC4446516 DOI: 10.1210/er.2014-1099] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
It is well established that the organ damage that complicates human diabetes is caused by prolonged hyperglycemia, but the cellular and molecular mechanisms by which high levels of glucose cause tissue damage in humans are still not fully understood. The prevalent hypothesis explaining the mechanisms that may underlie the pathogenesis of diabetes complications includes overproduction of reactive oxygen species, increased flux through the polyol pathway, overactivity of the hexosamine pathway causing intracellular formation of advanced glycation end products, and activation of protein kinase C isoforms. In addition, experimental and clinical evidence reported in past decades supports a strong link between the complement system, complement regulatory proteins, and the pathogenesis of diabetes complications. In this article, we summarize the body of evidence that supports a role for the complement system and complement regulatory proteins in the pathogenesis of diabetic vascular complications, with specific emphasis on the role of the membrane attack complex (MAC) and of CD59, an extracellular cell membrane-anchored inhibitor of MAC formation that is inactivated by nonenzymatic glycation. We discuss a pathogenic model of human diabetic complications in which a combination of CD59 inactivation by glycation and hyperglycemia-induced complement activation increases MAC deposition, activates pathways of intracellular signaling, and induces the release of proinflammatory, prothrombotic cytokines and growth factors. Combined, complement-dependent and complement-independent mechanisms induced by high glucose promote inflammation, proliferation, and thrombosis as characteristically seen in the target organs of diabetes complications.
Collapse
Affiliation(s)
- Pamela Ghosh
- Division of Hematology, Department of Medicine (P.G., R.S., M.C., J.A.H.), and Division of Endocrinology, Diabetes, and Hypertension (A.V.), Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Rupam Sahoo
- Division of Hematology, Department of Medicine (P.G., R.S., M.C., J.A.H.), and Division of Endocrinology, Diabetes, and Hypertension (A.V.), Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Anand Vaidya
- Division of Hematology, Department of Medicine (P.G., R.S., M.C., J.A.H.), and Division of Endocrinology, Diabetes, and Hypertension (A.V.), Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Michael Chorev
- Division of Hematology, Department of Medicine (P.G., R.S., M.C., J.A.H.), and Division of Endocrinology, Diabetes, and Hypertension (A.V.), Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Jose A Halperin
- Division of Hematology, Department of Medicine (P.G., R.S., M.C., J.A.H.), and Division of Endocrinology, Diabetes, and Hypertension (A.V.), Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
21
|
Parra S, Castro A, Masana L. The pleiotropic role of HDL in autoimmune diseases. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2014; 27:97-106. [PMID: 25444650 DOI: 10.1016/j.arteri.2014.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 01/11/2023]
Abstract
As is widely known, the classic function of HDL is reverse cholesterol transport (RCT), thus removing cholesterol from peripheral tissues. Early epidemiological studies, such as Framingham's, stated that increased HDL levels were associated with a significant decrease in relative risk for cardiovascular disease (CVD) mortality. However, those with heightened expectations in recent years for the development of therapeutic targets to increase HDL levels have been disappointed, because efforts have demonstrated the opposite effect on cardiovascular and global mortality. However, in contrast, studies have highlighted the complexity and the intriguing role of HDL in different pathological conditions, such as infections, neoplasms, and autoimmune diseases. In this review an attempt is made to summarize some biological pathways that link HDL function with the immune system, and its possible clinical repercussions in autoimmune diseases.
Collapse
Affiliation(s)
- Sandra Parra
- Internal Medicine, Sant Joan University Hospital, Reus, Spain.
| | - Antoni Castro
- Internal Medicine, Sant Joan University Hospital, Reus, Spain
| | - Luis Masana
- Internal Medicine, Sant Joan University Hospital, Reus, Spain
| |
Collapse
|
22
|
Kim YM, Chaemsaithong P, Romero R, Shaman M, Kim CJ, Kim JS, Qureshi F, Jacques SM, Ahmed AI, Chaiworapongsa T, Hassan SS, Yeo L, Korzeniewski SJ. Placental lesions associated with acute atherosis. J Matern Fetal Neonatal Med 2014; 28:1554-62. [PMID: 25183023 DOI: 10.3109/14767058.2014.960835] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Acute atherosis is a lesion of the spiral arteries characterized by fibrinoid necrosis of the vessel wall, an accumulation of fat-containing macrophages, and a mononuclear perivascular infiltrate, which can be found in patients with preeclampsia, fetal death, small-for-gestational age, spontaneous preterm labor/premature prelabor rupture of membrane, and spontaneous mid-trimester abortion. This lesion is thought to decrease blood flow to the intervillous space which may lead to other vascular lesions of the placenta. The objective of this study was to test whether there is an association between acute atherosis and placental lesions that are consistent with maternal vascular underperfusion (MVU), amniotic fluid infection (AFI), fetal vascular thrombo-occlusive disease (FVTOD) or chronic inflammation. MATERIAL AND METHODS A retrospective cohort study of pregnant women who delivered between July 1998 and July 2014 at Hutzel Women's Hospital/Detroit Medical Center was conducted examine 16 457 placentas. The frequency of placenta lesions (diagnosed using the criteria of the Perinatal Section of the Society for Pediatric Pathology) was compared between pregnancies with and without acute atherosis. RESULTS Among 16 457 women who were enrolled, 10.2% (1671/16 457) were excluded, leaving 14 786 women who contributed data for analysis. Among them, the prevalence of acute atherosis was 2.2% (326/14 786). Women with acute atherosis were more than six times as likely as those without to have placental lesions consistent with maternal underperfusion (adjusted odds ratio - aOR: 6.7; 95% CI 5.2-8.6). To a lesser degree, acute atherosis was also associated with greater risks of having either lesions consistent with FVTOD (aOR 1.7; 95% CI 1.2-2.3) or chronic chorioamnionitis (aOR 1.9; 95% CI 1.3-3), but not with other chronic inflammatory lesions, after adjusting for gestational age at delivery. In contrast, women with acute atherosis were 60% less likely to have lesions consistent with AFI, adjusting for gestational age at delivery (aOR 0.4; 95% CI 0.3-0.5). CONCLUSIONS Acute atherosis is associated with increased risks of having placental lesions consistent with MVU, and to a lesser extent, chronic chorioamnionitis and those consistent with FVTOD.
Collapse
Affiliation(s)
- Yeon Mee Kim
- a Department of Pathology , Haeundae Paik Hospital, Inje University College of Medicine , Busan , Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Wezel A, de Vries MR, Lagraauw HM, Foks AC, Kuiper J, Quax PHA, Bot I. Complement factor C5a induces atherosclerotic plaque disruptions. J Cell Mol Med 2014; 18:2020-30. [PMID: 25124749 PMCID: PMC4244017 DOI: 10.1111/jcmm.12357] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 05/23/2014] [Indexed: 01/09/2023] Open
Abstract
Complement factor C5a and its receptor C5aR are expressed in vulnerable atherosclerotic plaques; however, a causal relation between C5a and plaque rupture has not been established yet. Accelerated atherosclerosis was induced by placing vein grafts in male apoE(-/-) mice. After 24 days, when advanced plaques had developed, C5a or PBS was applied locally at the lesion site in a pluronic gel. Three days later mice were killed to examine the acute effect of C5a on late stage atherosclerosis. A significant increase in C5aR in the plaque was detectable in mice treated with C5a. Lesion size and plaque morphology did not differ between treatment groups, but interestingly, local treatment with C5a resulted in a striking increase in the amount of plaque disruptions with concomitant intraplaque haemorrhage. To identify the potential underlying mechanisms, smooth muscle cells and endothelial cells were treated in vitro with C5a. Both cell types revealed a marked increase in apoptosis after stimulation with C5a, which may contribute to lesion instability in vivo. Indeed, apoptosis within the plaque was seen to be significantly increased after C5a treatment. We here demonstrate a causal role for C5a in atherosclerotic plaque disruptions, probably by inducing apoptosis. Therefore, intervention in complement factor C5a signalling may be a promising target in the prevention of acute atherosclerotic complications.
Collapse
Affiliation(s)
- Anouk Wezel
- Division of Biopharmaceutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands; Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
24
|
Role of C5a-C5aR axis in the development of atherosclerosis. SCIENCE CHINA-LIFE SCIENCES 2014; 57:790-4. [DOI: 10.1007/s11427-014-4711-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 07/08/2014] [Indexed: 12/29/2022]
|
25
|
Spivia W, Magno PS, Le P, Fraser DA. Complement protein C1q promotes macrophage anti-inflammatory M2-like polarization during the clearance of atherogenic lipoproteins. Inflamm Res 2014; 63:885-93. [PMID: 25091012 DOI: 10.1007/s00011-014-0762-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 07/23/2014] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Innate immune protein C1q plays a dual role in the chronic inflammatory disease of atherosclerosis. Complement activation via C1q exacerbates pathology in the atherosclerotic lesion in later stages of the disease. However, in early stages of disease C1q is protective. We hypothesize that complement-independent activities of C1q are involved in reprogramming macrophage inflammatory polarization. METHODS The influence of C1q on macrophage inflammatory responses during clearance of oxLDL was examined. Changes in cytokines at the gene and protein level were measured by quantitative PCR and ELISA assay. RESULTS C1q modulated cytokine expression in Raw264.7 macrophages during ingestion of oxLDL. Levels of pro-inflammatory cytokines IL-1β and IL-6 were downregulated by C1q, whereas levels of the anti-inflammatory cytokine IL-10 were increased. In addition, data from an NFκB-luciferase gene reporter assay suggest that C1q suppresses activation of NFκB during lipoprotein clearance in macrophages, providing one mechanism by which C1q downregulates pro-inflammatory cytokine production. CONCLUSIONS C1q-polarization of macrophages toward an anti-inflammatory (M2-like) phenotype may be important in dampening inflammation in the early atherosclerotic lesion. Further investigation of molecular pathways targeted by C1q may provide novel therapeutic targets for this disease.
Collapse
Affiliation(s)
- Weston Spivia
- Department of Biological Sciences, California State University Long Beach, 1250 Bellflower Blvd, Long Beach, CA, 90840, USA
| | | | | | | |
Collapse
|
26
|
Abstract
The development of atherosclerosis is the major etiological factor causing cardiovascular disease and constitutes a lipid-induced, chronic inflammatory and autoimmune disease of the large arteries. A long-standing view of the protective role of B cells in atherosclerosis has been challenged by recent studies using B cell depletion in animal models. Whereas complete B cell deficiency increases atherosclerosis, depletion of B2 but not B1 cells reduces atherosclerosis. This has led to a re-evaluation of the multiple potential pathways by which B cells can regulate atherosclerosis, and the apparent opposing roles of B1 and B2 cells. B cells, in addition to having the unique ability to produce antibodies, are now recognized to play a number of important roles in the immune system, including cytokine production and direct regulation of T cell responses. This review summarizes current knowledge on B cell subsets and functions, and how these could distinctly influence atherosclerosis development.
Collapse
Affiliation(s)
- Andrew P Sage
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge , Cambridge , UK
| | | |
Collapse
|
27
|
A vital role for complement in heart disease. Mol Immunol 2014; 61:126-34. [PMID: 25037633 DOI: 10.1016/j.molimm.2014.06.036] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 06/14/2014] [Accepted: 06/25/2014] [Indexed: 12/19/2022]
Abstract
Heart diseases are common and significant contributors to worldwide mortality and morbidity. During recent years complement mediated inflammation has been shown to be an important player in a variety of heart diseases. Despite some negative results from clinical trials using complement inhibitors, emerging evidence points to an association between the complement system and heart diseases. Thus, complement seems to be important in coronary heart disease as well as in heart failure, where several studies underscore the prognostic importance of complement activation. Furthermore, patients with atrial fibrillation often share risk factors both with coronary heart disease and heart failure, and there is some evidence implicating complement activation in atrial fibrillation. Moreover, Chagas heart disease, a protozoal infection, is an important cause of heart failure in Latin America, and the complement system is crucial for the protozoa-host interaction. Thus, complement activation appears to be involved in the pathophysiology of a diverse range of cardiac conditions. Determination of the exact role of complement in the various heart diseases will hopefully help to identify patients that might benefit from therapeutic complement intervention.
Collapse
|
28
|
The complement system in human cardiometabolic disease. Mol Immunol 2014; 61:135-48. [PMID: 25017306 DOI: 10.1016/j.molimm.2014.06.031] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 06/18/2014] [Accepted: 06/23/2014] [Indexed: 02/07/2023]
Abstract
The complement system has been implicated in obesity, fatty liver, diabetes and cardiovascular disease (CVD). Complement factors are produced in adipose tissue and appear to be involved in adipose tissue metabolism and local inflammation. Thereby complement links adipose tissue inflammation to systemic metabolic derangements, such as low-grade inflammation, insulin resistance and dyslipidaemia. Furthermore, complement has been implicated in pathophysiological mechanisms of diet- and alcohol induced liver damage, hyperglycaemia, endothelial dysfunction, atherosclerosis and fibrinolysis. In this review, we summarize current evidence on the role of the complement system in several processes of human cardiometabolic disease. C3 is the central component in complement activation, and has most widely been studied in humans. C3 concentrations are associated with insulin resistance, liver dysfunction, risk of the metabolic syndrome, type 2 diabetes and CVD. C3 can be activated by the classical, the lectin and the alternative pathway of complement activation; and downstream activation of C3 activates the terminal pathway. Complement may also be activated via extrinsic proteases of the coagulation, fibrinolysis and the kinin systems. Studies on the different complement activation pathways in human cardiometabolic disease are limited, but available evidence suggests that they may have distinct roles in processes underlying cardiometabolic disease. The lectin pathway appeared beneficial in some studies on type 2 diabetes and CVD, while factors of the classical and the alternative pathway were related to unfavourable cardiometabolic traits. The terminal complement pathway was also implicated in insulin resistance and liver disease, and appears to have a prominent role in acute and advanced CVD. The available human data suggest a complex and potentially causal role for the complement system in human cardiometabolic disease. Further, preferably longitudinal studies are needed to disentangle which aspects of the complement system and complement activation affect the different processes in human cardiometabolic disease.
Collapse
|
29
|
Nymo S, Niyonzima N, Espevik T, Mollnes TE. Cholesterol crystal-induced endothelial cell activation is complement-dependent and mediated by TNF. Immunobiology 2014; 219:786-92. [PMID: 25053140 DOI: 10.1016/j.imbio.2014.06.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 06/26/2014] [Indexed: 11/16/2022]
Abstract
Cholesterol crystals are known to be a hallmark of atherosclerosis with recent studies demonstrating deposition of these crystals in early fatty streak formation as well as penetrating the intima following plaque rupture. Inflammation has also become a central focus in atheroma development and endothelial cell activation is recognized as necessary for the recruitment of inflammatory cells to the plaque. However, the extent to which cholesterol crystals can induce inflammation and activate endothelial cells is not known. To investigate this, we developed a novel model activating human umbilical vein endothelial cells using lepirudin anticoagulated human whole blood. We found that cholesterol crystals caused a marked and dose-dependent increase in the adhesion molecules E-selectin and ICAM-1 on the surface of the endothelial cells after incubation with whole blood. There was no activation of the cells when the crystals were incubated in medium alone, or in human serum, despite substantial crystal-induced complement activation in serum. Complement inhibitors at the C3 and C5 levels reduced the whole blood induced endothelial cell activation by up to 89% (p<0.05) and abolished TNF release (p<0.01). Finally, the TNF inhibitor infliximab reduced endothelial activation to background levels (p<0.05). In conclusion, these data demonstrate that endothelial activation by cholesterol crystals is mediated by complement-dependent TNF release, and suggests that complement-inhibition might have a role in alleviating atherosclerosis-induced inflammation.
Collapse
Affiliation(s)
- Stig Nymo
- Department of Laboratory Medicine, Nordland Hospital, Bodø, Norway.
| | - Nathalie Niyonzima
- Institute of Clinical Medicine, University of Tromsø, Tromsø, Norway; Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Terje Espevik
- Institute of Clinical Medicine, University of Tromsø, Tromsø, Norway; Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tom Eirik Mollnes
- Department of Laboratory Medicine, Nordland Hospital, Bodø, Norway; Institute of Clinical Medicine, University of Tromsø, Tromsø, Norway; Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway; Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway; K.G. Jebsen IRC, University of Oslo, Oslo, Norway
| |
Collapse
|
30
|
Noris M, Remuzzi G. Cardiovascular complications in atypical haemolytic uraemic syndrome. Nat Rev Nephrol 2014; 10:174-80. [DOI: 10.1038/nrneph.2013.280] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
31
|
Haskard DO, Boyle JJ, Evans PC, Mason JC, Randi AM. Cytoprotective signaling and gene expression in endothelial cells and macrophages-lessons for atherosclerosis. Microcirculation 2013; 20:203-16. [PMID: 23121167 DOI: 10.1111/micc.12020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 10/18/2012] [Indexed: 12/13/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease of the medium and large arteries driven in large part by the accumulation of oxidized low-density lipoproteins and other debris at sites rendered susceptible because of the geometry of the arterial tree. As lesions develop, they acquire a pathologic microcirculation that perpetuates lesion progression, both by providing a means for further monocyte and T-lymphocyte recruitment into the arterial wall and by the physical and chemical stresses caused by micro-hemorrhage. This review summarizes work performed in our department investigating the roles of signaling pathways, alone and in combination, that lead to specific programs of gene expression in the atherosclerotic environment. Focusing particularly on cytoprotective responses that might be enhanced therapeutically, the work has encompassed the anti-inflammatory effects of arterial laminar shear stress, mechanisms of induction of membrane inhibitors that prevent complement-mediated injury, homeostatic macrophage responses to hemorrhage, and the transcriptional mechanisms that control the stability, survival, and quiescence of endothelial monolayers. Lastly, while the field has been dominated by investigation into the mechanisms of DNA transcription, we consider the importance of parallel post-transcriptional regulatory mechanisms for fine-tuning functional gene expression repertoires.
Collapse
Affiliation(s)
- Dorian O Haskard
- Vascular Science Section, National Heart and Lung Institute, Imperial College, Hammersmith Hospital, London W12 ONN, UK.
| | | | | | | | | |
Collapse
|
32
|
Stokowska A, Olsson S, Holmegaard L, Jood K, Blomstrand C, Jern C, Pekna M. Cardioembolic and small vessel disease stroke show differences in associations between systemic C3 levels and outcome. PLoS One 2013; 8:e72133. [PMID: 23977229 PMCID: PMC3748011 DOI: 10.1371/journal.pone.0072133] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 07/05/2013] [Indexed: 01/24/2023] Open
Abstract
Background Activation of the complement system has been proposed to play a role in the pathophysiology of stroke. As the specific involvement of the complement proteins may be influenced by stroke etiology, we compared plasma C3 and C3a levels in patients with cardioembolic (CE) and small vessel disease (SVD) subtypes of ischemic stroke and control subjects and evaluated their association to outcome at three months and two years. Methodology/Principal Findings Plasma C3 and C3a levels in 79 CE and 79 SVD stroke patients, sampled within 10 days and at three months after stroke, and age- and sex-matched control subjects from The Sahlgrenska Academy Study on Ischemic Stroke were measured by ELISA. Functional outcome was assesed with modified Rankin Scale. In the CE group, plasma C3 levels were elevated only in the acute phase, whereas C3a was elevated at both time points. The follow-up phase plasma C3 levels in the upper third were associated with an increased risk of unfavorable outcome at three months (OR 7.12, CI 1.72–29.46, P = 0.007) as well as after two years (OR 8.25, CI 1.61–42.28, P = 0.011) after stroke. These associations withstand adjustment for age and sex. Conversely, three-month follow-up plasma C3a/C3 level ratios in the middle third were associated with favorable outcome after two years both in the univariate analysis (OR 0.19, CI 0.05–0.82, P = 0.026) and after adjustment for age and sex (OR 0.19, CI 0.04–0.88, P = 0.033). In the SVD group, plasma C3 and C3a levels were elevated at both time points but showed no significant associations with outcome. Conclusions Plasma C3 and C3a levels are elevated after CE and SVD stroke but show associations with outcome only in CE stroke.
Collapse
Affiliation(s)
- Anna Stokowska
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience and Rehabilitation, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| | - Sandra Olsson
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience and Rehabilitation, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Lukas Holmegaard
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience and Rehabilitation, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Katarina Jood
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience and Rehabilitation, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Christian Blomstrand
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience and Rehabilitation, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Christina Jern
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience and Rehabilitation, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Marcela Pekna
- Institute of Neuroscience and Physiology, Department of Clinical Neuroscience and Rehabilitation, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
33
|
Hirata A, Kishida K, Nakatsuji H, Kobayashi H, Funahashi T, Shimomura I. High serum C1q-adiponectin/total adiponectin ratio correlates with coronary artery disease in Japanese type 2 diabetics. Metabolism 2013; 62:578-85. [PMID: 23174407 DOI: 10.1016/j.metabol.2012.10.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 10/18/2012] [Accepted: 10/18/2012] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Adiponectin, an adipocyte-derived protein, has potential antiatherogenic properties. Low levels of serum total-adiponectin (Total-APN) correlate with diabetes and coronary artery disease (CAD). Adiponectin and C1q form a protein complex in blood, and serum C1q-binding adiponectin (C1q-APN) can be measured. We investigated the correlation between C1q-APN and CAD in patients with type 2 diabetes mellitus (T2DM). METHODS The study subjects were 107 outpatients with T2DM who underwent evaluation for CAD. Blood C1q, Total-APN, high-molecular weight-adiponectin (HMW-APN) and C1q-APN were measured by enzyme-linked immunosorbent assays. RESULTS Serum levels of C1q-APN/Total-APN ratio were higher in patients diagnosed with CAD (10.47±0.59, mean±SEM, n=54) than those without CAD (8.88±0.60, n=53, p=0.0482). Age- and sex-adjusted logistic regression analysis identified serum C1q-APN/Total-APN ratio and hypertension as significant and independent determinants of CAD. A high serum C1q-APN/Total-APN ratio was associated with 3.965-fold increase in CAD prevalence. CONCLUSIONS High serum C1q-APN/Total-APN ratio correlates with CAD in T2DM.
Collapse
Affiliation(s)
- Ayumu Hirata
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Hirata A, Kishida K, Kobayashi H, Nakatsuji H, Funahashi T, Shimomura I. Correlation between serum C1q-adiponectin/total adiponectin ratio and polyvascular lesions detected by vascular ultrasonography in Japanese type 2 diabetics. Metabolism 2013; 62:376-85. [PMID: 23058931 DOI: 10.1016/j.metabol.2012.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 07/30/2012] [Accepted: 08/15/2012] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Atherosclerosis is a disease of blood vessels. Adiponectin is a biomarker of atherosclerosis. Adiponectin and C1q form a protein complex in human blood, and serum C1q-binding adiponectin (C1q-APN) can be measured. We investigated the relationship between various serum adiponectin parameters and polyvascular atherosclerosis score assessed by vascular ultrasonography, in subjects with type 2 diabetes mellitus (T2DM). METHODS The study subjects were 108 outpatients with T2DM who underwent evaluation for atherosclerosis by vascular ultrasonography. Polyvascular atherosclerosis score represented the sum of atherosclerotic abnormalities in the aorta, carotid, renal and common iliac arteries. Blood C1q, total-adiponectin (Total-APN), high molecular weight-adiponectin (HMW-APN) and C1q-APN were measured by enzyme-linked immunosorbent assays. The estimated visceral fat area (eVFA) was measured by bioelectrical impedance. RESULTS Polyvascular atherosclerosis score correlated only with the C1q-APN/Total-APN ratio (p=0.018 for trend). There were no significant relationships between various adiponectin parameters and carotid maximum intima-media thickness and ankle-brachial index. Age-, sex-, eVFA-adjusted multiple logistic regression analysis that included the above variables identified serum C1q-APN/Total-APN ratio as the only significant and independent determinant of polyvascular atherosclerosis score. CONCLUSIONS Serum C1q-APN/Total-APN ratio correlates with atherosclerosis detected by polyvascular vascular ultrasonography, independent of gender and visceral adiposity, in T2DM.
Collapse
Affiliation(s)
- Ayumu Hirata
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Garner BC, Kuroki K, Stoker AM, Cook CR, Cook JL. Expression of proteins in serum, synovial fluid, synovial membrane, and articular cartilage samples obtained from dogs with stifle joint osteoarthritis secondary to cranial cruciate ligament disease and dogs without stifle joint arthritis. Am J Vet Res 2013; 74:386-94. [DOI: 10.2460/ajvr.74.3.386] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Keilhauer CN, Fritsche LG, Guthoff R, Haubitz I, Weber BH. Age-related macular degeneration and coronary heart disease: Evaluation of genetic and environmental associations. Eur J Med Genet 2013; 56:72-9. [DOI: 10.1016/j.ejmg.2012.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 10/13/2012] [Indexed: 11/25/2022]
|
37
|
Abstract
Objective Genetics plays a large role in atherosclerosis susceptibility in humans and mice. We attempted to confirm previously determined mouse atherosclerosis‐associated loci and use bioinformatics and transcriptomics to create a catalog of candidate atherosclerosis modifier genes at these loci. Methods and Results A strain intercross was performed between AKR and DBA/2 mice on the apoE−/− background generating 166 F2 progeny. Using the phenotype log10 of the aortic root lesion area, we identified 3 suggestive atherosclerosis quantitative trait loci (Ath QTLs). When combined with our prior strain intercross, we confirmed 3 significant Ath QTLs on chromosomes 2, 15, and 17, with combined logarithm of odds scores of 5.9, 5.3, and 5.6, respectively, which each met the genome‐wide 5% false discovery rate threshold. We identified all of the protein coding differences between these 2 mouse strains within the Ath QTL intervals. Microarray gene expression profiling was performed on macrophages and endothelial cells from this intercross to identify expression QTLs (eQTLs), the loci that are associated with variation in the expression levels of specific transcripts. Cross tissue eQTLs and macrophage eQTLs that replicated from a prior strain intercross were identified. These bioinformatic and eQTL analyses produced a comprehensive list of candidate genes that may be responsible for the Ath QTLs. Conclusions Replication studies for clinical traits as well as gene expression traits are worthwhile in identifying true versus false genetic associations. We have replicated 3 loci on mouse chromosomes 2, 15, and 17 that are associated with atherosclerosis. We have also identified protein coding differences and multiple replicated eQTLs, which may be useful in the identification of atherosclerosis modifier genes.
Collapse
Affiliation(s)
- Jeffrey Hsu
- Department of Molecular Medicine, Cleveland Clinic, Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | | |
Collapse
|
38
|
Lewis MJ, Malik TH, Fossati-Jimack L, Carassiti D, Cook HT, Haskard DO, Botto M. Distinct roles for complement in glomerulonephritis and atherosclerosis revealed in mice with a combination of lupus and hyperlipidemia. ACTA ACUST UNITED AC 2012; 64:2707-18. [PMID: 22392450 PMCID: PMC3607248 DOI: 10.1002/art.34451] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Although the accelerating effect of systemic lupus erythematosus (SLE) on atherosclerosis is well established, the underlying mechanisms are unknown. The aim of this study was to explore the hypothesis that lupus autoimmunity modulates the effect of hypercholesterolemia in driving arterial pathologic development. METHODS Low-density lipoprotein receptor-deficient (Ldlr(-/-) ) mice were crossed with B6.129-Sle16 (Sle16)-congenic autoimmune mice to obtain Sle16. Ldlr(-/-) mice, which were compared with Ldlr(-/-) and Sle16 control mice. All mice were fed either a low-fat or high-fat diet. Groups of mice were compared, by strain and by diet group, for features of accelerated atherosclerosis and autoimmunity. RESULTS Presence of the Sle16 locus significantly increased the extent of atherosclerosis in Ldlr(-/-) mice. Circulating C3 levels were significantly reduced in Sle16.Ldlr(-/-) mice compared to Ldlr(-/-) control mice and this was paralleled by a marked reduction in arterial lesion C3 deposition despite similar levels of IgG deposition between the groups. Increased numbers of apoptotic cells in plaques were observed in the high-fat-fed Sle16.Ldlr(-/-) mice, consistent with the observed defective clearance of cellular debris. After receiving the high-fat diet, Sle16.Ldlr(-/-) mice developed glomerulonephritis and displayed enhanced glomerular C3 deposition. CONCLUSION These results indicate that accelerated atherosclerosis and renal inflammation in SLE are closely linked via immune complex formation and systemic complement depletion. However, whereas hyperlipidemia will enhance renal immune complex-mediated complement activation and the development of nephritis, accelerated atherosclerosis is, instead, related to complement depletion and a reduction in the uptake of apoptotic/necrotic debris. These results suggest that aggressive treatment of hyperlipidemia in patients with SLE may reduce the occurrence of lupus nephritis, as well as diminish the risk of accelerated atherosclerosis.
Collapse
|
39
|
Complement system and small HDL particles are associated with subclinical atherosclerosis in SLE patients. Atherosclerosis 2012; 225:224-30. [DOI: 10.1016/j.atherosclerosis.2012.08.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 08/09/2012] [Accepted: 08/23/2012] [Indexed: 01/11/2023]
|
40
|
Chang SH, Johns M, Boyle JJ, McConnell E, Kirkham PA, Bicknell C, Zahoor-ul-Hassan Dogar M, Edwards RJ, Gale-Grant O, Khamis R, Ramkhelawon KVV, Haskard DO. Model IgG monoclonal autoantibody-anti-idiotype pair for dissecting the humoral immune response to oxidized low density lipoprotein. Hybridoma (Larchmt) 2012; 31:87-98. [PMID: 22509912 DOI: 10.1089/hyb.2011.0058] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Increasing evidence implicates IgG autoantibodies against oxidized forms of low density lipoprotein (oxLDL) in the pathophysiology of atherosclerotic arterial disease. However, insufficient knowledge of their structure and function is a key gap. Using an elderly LDL receptor-deficient atherosclerotic mouse, we isolated a novel IgG3k against oxLDL (designated MAb LO1). LO1 reacts with copper-oxidized LDL, but minimally with native LDL. Further analysis showed that MAb LO1 also reacts in vitro with malondialdehyde-conjugated LDL (MDA-LDL), a known key epitope in copper-oxidized LDL preparations. By screening a phage library expressing single chain variable region antibodies (scFv), we selected an anti-idiotype scFv (designated H3) that neutralizes MAb LO1 binding to MDA-LDL. Amino acid substitutions between H3 and an irrelevant control scFv C12 showed that residues in the H3 CDRH2, CDRH3, and CDRL2 are all critical for MAb LO1 binding, consistent with a conformational epitope on H3 involving both heavy and light chains. Comparison of amino acids in H3 CDRH2 and CDRL2 with apoB, the major LDL protein, showed homologous sequences, suggesting H3 has structural similarities to the MAb LO1 binding site on MDA-LDL. Immunocytochemical staining showed that MAb LO1 binds epitopes in mouse and human atherosclerotic lesions. The MAb LO1-H3 combination therefore provides a very promising model for analyzing the structure and function of an individual IgG autoantibody in relation to atherosclerosis.
Collapse
Affiliation(s)
- Shang-Hung Chang
- Vascular Sciences Section, Department of Medicine, Imperial College, Hammersmith Hospital, London, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Lu X, Xia M, Endresz V, Faludi I, Mundkur L, Gonczol E, Chen D, Kakkar VV. Immunization With a Combination of 2 Peptides Derived From the C5a Receptor Significantly Reduces Early Atherosclerotic Lesion in
Ldlr
tm1Her
Apob
tm2Sgy
J Mice. Arterioscler Thromb Vasc Biol 2012; 32:2358-71. [DOI: 10.1161/atvbaha.112.253179] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Objective—
The goal of this study was to assess whether immunization of
Ldlr
tm1Her
Apob
tm2Sgy
J mice with 2 peptides located at the N-terminus of the C5a receptor (C5aR), either alone or in combination, is effective in reducing atherosclerotic lesions.
Methods and Results—
Five- to 6-week-old female
Ldlr
tm1Her
Apob
tm2Sgy
J mice were immunized using a repetitive immunization multiple sites strategy with keyhole limpet hemocyanin-conjugated peptides derived from the C5aR, either alone (designated as C5aR-P1 [aa 1–21] and C5aR-P2 [aa 19–31]) or in combination (designated as C5aR-P1+C5aR-P2). Mice were fed a high-fat diet for 10 weeks. Lesions were evaluated histologically; local and systemic immune responses were analyzed by immunohistochemistry of aorta samples and cytokine measurements in plasma samples and splenocyte supernatants. Immunization of
Ldlr
tm1Her
Apob
tm2Sgy
J mice with these peptides elicited high concentrations of antibodies against each peptide. Immunization with the single peptide inhibited plaque development. Combined inoculation with C5aR-P1+C5aR-P2 had an additive effect on reducing the lesion in the aorta sinus and descending aortas when compared with controls. This effect correlated with cellular infiltration and cytokine/chemokine secretion in the serum or in stimulated spleen cells as well as specific cellular immune responses when compared with controls.
Conclusion—
Immunization of mice with C5aR-P1 and C5aR-P2, either alone or in combination, was effective in reducing early atherosclerotic lesion development. The combined peptide is more potential than either epitope alone to reduce atherosclerotic lesion formation through the induction of a specific Treg cell response as well as blockage of monocyte differentiation into macrophages.
Collapse
Affiliation(s)
- Xinjie Lu
- From the Mary and Garry Weston Molecular Immunology Laboratory, Thrombosis Research Institute, London, UK (X.L., M.X., D.C., V.V.K.); Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary (V.E., I.F.); Virology, National Center for Epidemiology, Budapest, Hungary (E.G.); MRC Centre for Transplantation, King’s College London, London, UK (D.C.); and the Thrombosis Research Institute, Bangalore, India (L.M., V.V.K.)
| | - Min Xia
- From the Mary and Garry Weston Molecular Immunology Laboratory, Thrombosis Research Institute, London, UK (X.L., M.X., D.C., V.V.K.); Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary (V.E., I.F.); Virology, National Center for Epidemiology, Budapest, Hungary (E.G.); MRC Centre for Transplantation, King’s College London, London, UK (D.C.); and the Thrombosis Research Institute, Bangalore, India (L.M., V.V.K.)
| | - Valeria Endresz
- From the Mary and Garry Weston Molecular Immunology Laboratory, Thrombosis Research Institute, London, UK (X.L., M.X., D.C., V.V.K.); Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary (V.E., I.F.); Virology, National Center for Epidemiology, Budapest, Hungary (E.G.); MRC Centre for Transplantation, King’s College London, London, UK (D.C.); and the Thrombosis Research Institute, Bangalore, India (L.M., V.V.K.)
| | - Ildiko Faludi
- From the Mary and Garry Weston Molecular Immunology Laboratory, Thrombosis Research Institute, London, UK (X.L., M.X., D.C., V.V.K.); Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary (V.E., I.F.); Virology, National Center for Epidemiology, Budapest, Hungary (E.G.); MRC Centre for Transplantation, King’s College London, London, UK (D.C.); and the Thrombosis Research Institute, Bangalore, India (L.M., V.V.K.)
| | - Lakshmi Mundkur
- From the Mary and Garry Weston Molecular Immunology Laboratory, Thrombosis Research Institute, London, UK (X.L., M.X., D.C., V.V.K.); Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary (V.E., I.F.); Virology, National Center for Epidemiology, Budapest, Hungary (E.G.); MRC Centre for Transplantation, King’s College London, London, UK (D.C.); and the Thrombosis Research Institute, Bangalore, India (L.M., V.V.K.)
| | - Eva Gonczol
- From the Mary and Garry Weston Molecular Immunology Laboratory, Thrombosis Research Institute, London, UK (X.L., M.X., D.C., V.V.K.); Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary (V.E., I.F.); Virology, National Center for Epidemiology, Budapest, Hungary (E.G.); MRC Centre for Transplantation, King’s College London, London, UK (D.C.); and the Thrombosis Research Institute, Bangalore, India (L.M., V.V.K.)
| | - Daxin Chen
- From the Mary and Garry Weston Molecular Immunology Laboratory, Thrombosis Research Institute, London, UK (X.L., M.X., D.C., V.V.K.); Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary (V.E., I.F.); Virology, National Center for Epidemiology, Budapest, Hungary (E.G.); MRC Centre for Transplantation, King’s College London, London, UK (D.C.); and the Thrombosis Research Institute, Bangalore, India (L.M., V.V.K.)
| | - Vijay V. Kakkar
- From the Mary and Garry Weston Molecular Immunology Laboratory, Thrombosis Research Institute, London, UK (X.L., M.X., D.C., V.V.K.); Department of Medical Microbiology and Immunobiology, University of Szeged, Szeged, Hungary (V.E., I.F.); Virology, National Center for Epidemiology, Budapest, Hungary (E.G.); MRC Centre for Transplantation, King’s College London, London, UK (D.C.); and the Thrombosis Research Institute, Bangalore, India (L.M., V.V.K.)
| |
Collapse
|
42
|
Cymerys M, Bogdański P, Pupek-Musialik D, Jabłecka A, Łącki J, Korczowska I, Dytfeld J. Influence of hypertension, obesity and nicotine abuse on quantitative and qualitative changes in acute-phase proteins in patients with essential hypertension. Med Sci Monit 2012; 18:CR330-6. [PMID: 22534714 PMCID: PMC3560623 DOI: 10.12659/msm.882740] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background Hypertension is a powerful risk factor for cardiovascular disease and frequently occurs in conjunction with obesity. Accumulative evidence suggests a link between inflammation and hypertension. The aim of study was to evaluate whether blood pressure, obesity and smoking may influence acute-phase response. Material/Methods Ninety-two patients with essential hypertension and 75 healthy volunteers as a control group were studied. In all subjects assessment of hsCRP, α1-acid glycoprotein (AGP), α1-antichymotrypsin, transferrin, α1-antitrypsin, and C3 and C4 complement were performed. Evaluation of glycosylation profile and reactivity coefficient (RC) for AGP was done by means of affinity immunoelectrophoresis with concanavalin A as a ligand. Results When compared to the controls, hypertensive subjects presented significantly higher hsCRP concentrations and lower transferrin level. Hypertensive patients had elevated AGP-AC. The intensification of the inflammatory reaction was greater in the subgroup of hypertensive patients smoking cigarettes. In obese hypertensives, elevated serum C3 complement level was found. Conclusions We conclude that arterial hypertension may evoke the acute-phase response in humans. Markers of acute-phase response are particularly strongly expressed in smokers. Serum C 3 complement, but not other APPs, is elevated in hypertension coexisting with obesity.
Collapse
Affiliation(s)
- Maciej Cymerys
- Department of Internal Medicine, Metabolic Disorders and Hypertension, University of Medical Sciences, Poznan, Poland
| | | | | | | | | | | | | |
Collapse
|
43
|
Wei JN, Li HY, Sung FC, Lin CC, Chiang CC, Carter AM, Chuang LM. Obesity and clustering of cardiovascular disease risk factors are associated with elevated plasma complement C3 in children and adolescents. Pediatr Diabetes 2012; 13:476-83. [PMID: 22487122 DOI: 10.1111/j.1399-5448.2012.00864.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 02/22/2012] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVES To investigate the relationship among obesity, cardiovascular disease risk factors (CVDRFs), and plasma complement C3 concentration in children and adolescents. METHODS In a nationwide survey conducted between 1992 and 2000, all school children aged 6-18 yr with abnormal results in repeated urine samples, including hematuria, proteinuria, and glucosuria (n = 97 312; 36 557 boys and 60 755 girls), were investigated for their body mass index (BMI), blood pressure, fasting plasma glucose, total cholesterol, and plasma complement C3 concentrations. RESULTS Children in the higher percentile groups for BMI or having more CVDRFs, namely, hypertension, diabetes, and hypercholesterolemia, had higher plasma C3 concentrations independently (p for both trends <0.05, adjusted for age and gender). The odds ratios (ORs) for having one, two, or three CVDRFs in obese children were 4.74 [95% confidence interval (CI) = 4.47-5.03], 19.8 (95% CI = 17.8-22.0), and 139 (95% CI = 96.6-200), respectively, adjusted for age, gender, and family history of diabetes, which were substantially reduced after adjustment for plasma C3 concentrations. The ORs for children with plasma C3 concentrations in the highest quartile to have one, two, or three CVDRFs were 2.32 (95% CI = 2.21-2.44), 5.68 (95% CI = 4.83-6.67), and 58.6 (95% CI = 19.7-174), respectively, adjusted for age, gender, family history of diabetes, and BMI. CONCLUSION Obesity is associated with clustering of CVDRFs in children and adolescents. Obesity and clustering of CVDRFs are associated with elevated plasma complement C3. Children and adolescents with higher plasma C3 concentrations have higher risk of clustering of CVDRFs independent of obesity.
Collapse
Affiliation(s)
- Jung-Nan Wei
- Chia Nan University of Pharmacy and Science, Tainan, 717, Taiwan
| | | | | | | | | | | | | |
Collapse
|
44
|
Hovland A, Lappegård KT, Mollnes TE. LDL Apheresis and Inflammation - Implications for Atherosclerosis. Scand J Immunol 2012; 76:229-36. [DOI: 10.1111/j.1365-3083.2012.02734.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
45
|
Hovland A, Hardersen R, Nielsen EW, Enebakk T, Christiansen D, Ludviksen JK, Mollnes TE, Lappegård KT. Complement profile and activation mechanisms by different LDL apheresis systems. Acta Biomater 2012; 8:2288-96. [PMID: 22373816 DOI: 10.1016/j.actbio.2012.02.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 01/29/2012] [Accepted: 02/21/2012] [Indexed: 12/16/2022]
Abstract
Extracorporeal removal of low-density lipoprotein (LDL) cholesterol by means of selective LDL apheresis is indicated in otherwise uncontrolled familial hypercholesterolemia. During blood-biomaterial interaction other constituents than the LDL particles are affected, including the complement system. We set up an ex vivo model in which human whole blood was passed through an LDL apheresis system with one of three different apheresis columns: whole blood adsorption, plasma adsorption and plasma filtration. The concentrations of complement activation products revealed distinctly different patterns of activation and adsorption by the different systems. Evaluated as the final common terminal complement complex (TCC) the whole blood system was inert, in contrast to the plasma systems, which generated substantial and equal amounts of TCC. Initial classical pathway activation was revealed equally for both plasma systems as increases in the C1rs-C1inh complex and C4d. Alternative pathway activation (Bb) was most pronounced for the plasma adsorption system. Although the anaphylatoxins (C3a and C5a) were equally generated by the two plasma separation systems, they were efficiently adsorbed to the plasma adsorption column before the "outlet", whereas they were left free in the plasma in the filtration system. Consequently, during blood-biomaterial interaction in LDL apheresis the complement system is modulated in different manners depending on the device composition.
Collapse
|
46
|
Hernández-Mijares A, Bañuls C, Bellod L, Jover A, Solá E, Morillas C, Víctor VM, Rocha M. Effect of weight loss on C3 and C4 components of complement in obese patients. Eur J Clin Invest 2012; 42:503-9. [PMID: 21985442 DOI: 10.1111/j.1365-2362.2011.02606.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Circulating C3 levels are elevated in obese patients, but how this factor is affected after weight loss through diet is a question that is yet unanswered. Therefore, the aim of this study was to evaluate the effects of weight loss on lipid and hydrocarbonated metabolism parameters and on the levels of C3 and C4 components of complement in obese patients. DESIGN This is a longitudinal intervention study based on a 6-week very low-calorie diet (VLCD), a liquid formula of 603 kcal/day. A total of 131 middle-aged patients were distributed among grades II, III and IV of obesity. Anthropometric parameters, total cholesterol, triglycerides, high-density lipoprotein cholesterol, LDLc, apolipoproteins A-I and B-100, glucose, insulin, HOMA-IR and C3 and C4 levels were evaluated at baseline and after 6 weeks of intervention. RESULTS After VLCD, the moderate weight loss was accompanied by a significant reduction in C3 levels in grade III and grade IV patients (10.2% and 15.4%, respectively; P < 0.001). C4 levels were not altered. Adherence to the diet improved anthropometric parameters and was accompanied by a significant decrease in all lipid profile parameters (P < 0.001). In addition, weight loss was associated with an improvement in hydrocarbonated metabolism as shown by the decrease in glucose levels and HOMA-IR (P < 0.01). CONCLUSIONS Our findings show that in severely obese patients following a VLCD for 6 weeks produces reductions in factor C3, a biomarker of cardiovascular disease, and a significant improvement in some features of metabolic syndrome. In this way, the abovementioned diet may represent an effective strategy for treating obesity and related cardiovascular risk factors.
Collapse
|
47
|
Genes involved in systemic and arterial bed dependent atherosclerosis--Tampere Vascular study. PLoS One 2012; 7:e33787. [PMID: 22509262 PMCID: PMC3324479 DOI: 10.1371/journal.pone.0033787] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 02/19/2012] [Indexed: 12/23/2022] Open
Abstract
Background Atherosclerosis is a complex disease with hundreds of genes influencing its progression. In addition, the phenotype of the disease varies significantly depending on the arterial bed. Methodology/Principal Findings We characterized the genes generally involved in human advanced atherosclerotic (AHA type V–VI) plaques in carotid and femoral arteries as well as aortas from 24 subjects of Tampere Vascular study and compared the results to non-atherosclerotic internal thoracic arteries (n=6) using genome-wide expression array and QRT-PCR. In addition we determined genes that were typical for each arterial plaque studied. To gain a comprehensive insight into the pathologic processes in the plaques we also analyzed pathways and gene sets dysregulated in this disease using gene set enrichment analysis (GSEA). According to the selection criteria used (>3.0 fold change and p-value <0.05), 235 genes were up-regulated and 68 genes down-regulated in the carotid plaques, 242 genes up-regulated and 116 down-regulated in the femoral plaques and 256 genes up-regulated and 49 genes down-regulated in the aortic plaques. Nine genes were found to be specifically induced predominantly in aortic plaques, e.g., lactoferrin, and three genes in femoral plaques, e.g., chondroadherin, whereas no gene was found to be specific for carotid plaques. In pathway analysis, a total of 28 pathways or gene sets were found to be significantly dysregulated in atherosclerotic plaques (false discovery rate [FDR] <0.25). Conclusions This study describes comprehensively the gene expression changes that generally prevail in human atherosclerotic plaques. In addition, site specific genes induced only in femoral or aortic plaques were found, reflecting that atherosclerotic process has unique features in different vascular beds.
Collapse
|
48
|
Lewis RD, Perry MJ, Guschina IA, Jackson CL, Morgan BP, Hughes TR. CD55 deficiency protects against atherosclerosis in ApoE-deficient mice via C3a modulation of lipid metabolism. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:1601-7. [PMID: 21816131 PMCID: PMC3181373 DOI: 10.1016/j.ajpath.2011.06.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 05/12/2011] [Accepted: 06/03/2011] [Indexed: 12/14/2022]
Abstract
Atherosclerosis, the leading cause of death in the Western world, is driven by chronic inflammation within the artery wall. Elements of the complement cascade are implicated in the pathogenesis, because complement proteins and their activation products are found in the atherosclerotic plaque. We examined the role of CD55, a membrane inhibitor of the complement component 3 (C3) convertase, which converts C3 into C3a and C3b, in atherosclerosis. CD55-deficient (CD55−/−) mice were crossed onto the atherosclerosis-prone apolipoprotein E (apoE)-deficient (apoE−/−) background. High fat–fed male apoE−/−/CD55−/− mice were strongly protected from developing atherosclerosis compared with apoE−/− controls. Lipid profiling showed significantly lower levels of triglycerides, nonesterified fatty acids, and cholesterol in apoE−/−/CD55−/− mice than that in controls after high-fat feeding, whereas body fat in apoE−/−/CD55−/− mice content was increased. Plasma levels of C3 fell, whereas concentrations of C3adesArg (alias acylation stimulating protein; ASP), produced by serum carboxypeptidase N–mediated desargination of C3a, increased in nonfasted high fat–fed apoE−/−/CD55−/− mice, indicating complement activation. Thus, complement dysregulation in the absence of CD55 provoked increased C3adesArg production that, in turn, caused altered lipid handling, resulting in atheroprotection and increased adiposity. Interventions that target complement activation in adipose tissue should be explored as lipid-decreasing strategies.
Collapse
Affiliation(s)
- Ruth D Lewis
- Complement Biology Group, Department of Infection, Immunity and Biochemistry, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | | | | | | | | | |
Collapse
|
49
|
von Zychlinski A, Kleffmann T, Williams MJA, McCormick SP. Proteomics of Lipoprotein(a) identifies a protein complement associated with response to wounding. J Proteomics 2011; 74:2881-91. [PMID: 21802535 DOI: 10.1016/j.jprot.2011.07.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 07/06/2011] [Accepted: 07/11/2011] [Indexed: 10/18/2022]
Abstract
Lipoprotein(a) [Lp(a)] is a major independent risk factor for cardiovascular disease. Twenty percent of the general population exhibit levels above the risk threshold highlighting the importance for clinical and basic research. Comprehensive proteomics of human Lp(a) will provide significant insights into Lp(a) physiology and pathogenicity. Using liquid chromatography-coupled mass spectrometry, we established a high confidence Lp(a) proteome of 35 proteins from highly purified particles. Protein interaction network analysis and functional clustering revealed proteins assigned to the two major biological processes of lipid metabolism and response to wounding. The latter includes the processes of coagulation, complement activation and inflammatory response. Furthermore, absolute protein quantification of apoB-100, apo(a), apoA1, complement C3 and PON1 gave insights into the compositional stoichiometry of associated proteins per particle. Our proteomics study has identified Lp(a)-associated proteins that support a suggested role of Lp(a) in response to wounding which points to mechanisms of Lp(a) pathogenicity at sites of vascular injury and atherosclerotic lesions. This study has identified a high confidence Lp(a) proteome and provides an important basis for further comparative and quantitative analyses of Lp(a) isolated from greater numbers of plasma samples to investigate the significance of associated proteins and their dynamics for Lp(a) pathogenicity.
Collapse
|
50
|
Manthey HD, Thomas AC, Shiels IA, Zernecke A, Woodruff TM, Rolfe B, Taylor SM. Complement C5a inhibition reduces atherosclerosis in ApoE-/- mice. FASEB J 2011; 25:2447-55. [PMID: 21490292 DOI: 10.1096/fj.10-174284] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The complement C5a receptor, CD88, is present on many of the cells found within human atherosclerotic plaques, but little is known about the role of C5a in atherogenesis. Using real-time PCR, we determined that ApoE(-/-) mice fed a normal diet express more aortic CD88 mRNA compared with controls, and this increase coincides with atherosclerotic lesion development (P<0.001 for 3- vs. 25-wk-old animals). Conversely, mRNA expression of the alternative C5a receptor, C5L2, in aortas of ApoE(-/-) mice, was lower than controls at all time points. Using immunohistochemistry, we confirmed the presence of CD88 on macrophages, smooth muscle cells, and activated endothelial cells in plaques from brachiocephalic arteries. Treatment of ApoE(-/-) mice with a CD88 antagonist (PMX53; 3 mg/kg s.c. 3 ×/wk plus 1 mg/kg/d p.o.) for 25 wk reduced lesion size and lipid content in the plaque by ∼ 40% (P<0.05). Our study provides evidence for a proatherogenic role for C5a and identifies the CD88 antagonist PMX53 as a potential antiatherosclerotic drug.
Collapse
Affiliation(s)
- Helga D Manthey
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia.
| | | | | | | | | | | | | |
Collapse
|