1
|
Alcover S, Ramos-Regalado L, Girón G, Muñoz-García N, Vilahur G. HDL-Cholesterol and Triglycerides Dynamics: Essential Players in Metabolic Syndrome. Antioxidants (Basel) 2025; 14:434. [PMID: 40298782 PMCID: PMC12024175 DOI: 10.3390/antiox14040434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/27/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Metabolic syndrome (MetS) is a complex cluster of interrelated metabolic disorders that significantly elevate the risk of cardiovascular disease, making it a pressing public health concern worldwide. Among the key features of MetS, dyslipidemia-characterized by altered levels of high-density lipoprotein cholesterol (HDL-C) and triglycerides (TG)-plays a crucial role in the disorder's progression. This review aims to elucidate the intricate interplay between HDL-C and TG within the context of lipid metabolism and cardiovascular health, while also addressing the detrimental impact of various cardiovascular risk factors and associated comorbidities. The dynamics of HDL-C and TG are explored, highlighting their reciprocal relationship and respective contributions to the pathophysiology of MetS. Elevated levels of TGs are consistently associated with reduced concentrations of HDL-C, resulting in a lipid profile that promotes the development of vascular disease. Specifically, as TG levels rise, the protective cardiovascular effects of HDL-C are diminished, leading to the increased accumulation of pro-atherogenic TG-rich lipoproteins and low-density lipoprotein particles within the vascular wall, contributing to the progression of atheromas, which can ultimately result in significant ischemic cardiovascular events. Ultimately, this paper underscores the significance of HDL and TG as essential targets for therapeutic intervention, emphasizing their potential in effectively managing MetS and reducing cardiovascular risk.
Collapse
Affiliation(s)
- Sebastià Alcover
- Research Institute Sant Pau (IR SANT PAU), 08041 Barcelona, Spain; (S.A.); (L.R.-R.); (G.G.); (N.M.-G.)
- Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Lisaidy Ramos-Regalado
- Research Institute Sant Pau (IR SANT PAU), 08041 Barcelona, Spain; (S.A.); (L.R.-R.); (G.G.); (N.M.-G.)
- Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Gabriela Girón
- Research Institute Sant Pau (IR SANT PAU), 08041 Barcelona, Spain; (S.A.); (L.R.-R.); (G.G.); (N.M.-G.)
- Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Natàlia Muñoz-García
- Research Institute Sant Pau (IR SANT PAU), 08041 Barcelona, Spain; (S.A.); (L.R.-R.); (G.G.); (N.M.-G.)
- Facultat de Biologia, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Gemma Vilahur
- Research Institute Sant Pau (IR SANT PAU), 08041 Barcelona, Spain; (S.A.); (L.R.-R.); (G.G.); (N.M.-G.)
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
2
|
Stadler JT, Mangge H, Rani A, Curcic P, Herrmann M, Prüller F, Marsche G. Low HDL Cholesterol Efflux Capacity Indicates a Fatal Course of COVID-19. Antioxidants (Basel) 2022; 11:1858. [PMID: 36290581 PMCID: PMC9598682 DOI: 10.3390/antiox11101858] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/02/2022] Open
Abstract
Plasma membrane cholesterol is required for proper trafficking and localization of receptors that facilitate severe acute respiratory syndrome coronavirus 2 infection. High-density lipoproteins (HDL) mobilize plasma membrane cholesterol, and HDL-cholesterol levels are associated with the severity of COVID-19 disease and mortality. However, HDL-cholesterol levels poorly reflect the function of this complex family of particles, and a detailed assessment of COVID-19-associated changes in HDL functionality and its prognostic value is lacking. In the present study, we assessed HDL cholesterol efflux capacity, HDL anti-inflammatory and antioxidant properties, and changes in HDL composition and metabolism in COVID-19 (n = 48) and non-COVID pneumonia patients (n = 32). COVID-19 infection markedly reduced the activity of lecithin-cholesteryl-acyltransferase and functional parameters of HDL, such as the cholesterol efflux capacity, arylesterase activity of paraoxonase 1, and anti-oxidative capacity of apoB-depleted serum when compared to non-COVID pneumonia at baseline, paralleled by markedly reduced levels of HDL-cholesterol. Of particular interest, low HDL cholesterol efflux capacity was associated with increased mortality risk in COVID-19 patients, independent of HDL-C levels. Our results highlight profound effects of COVID-19 infection on HDL function, metabolism, and composition. Low HDL cholesterol efflux capacity indicates a fatal course of COVID-19, independent of HDL-cholesterol levels.
Collapse
Affiliation(s)
- Julia T. Stadler
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Harald Mangge
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Alankrita Rani
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| | - Pero Curcic
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Markus Herrmann
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Florian Prüller
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center for Vascular Biology, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria
| |
Collapse
|
3
|
Bonacina F, Pirillo A, Catapano AL, Norata GD. HDL in Immune-Inflammatory Responses: Implications beyond Cardiovascular Diseases. Cells 2021; 10:cells10051061. [PMID: 33947039 PMCID: PMC8146776 DOI: 10.3390/cells10051061] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/15/2022] Open
Abstract
High density lipoproteins (HDL) are heterogeneous particles composed by a vast array of proteins and lipids, mostly recognized for their cardiovascular (CV) protective effects. However, evidences from basic to clinical research have contributed to depict a role of HDL in the modulation of immune-inflammatory response thus paving the road to investigate their involvement in other diseases beyond those related to the CV system. HDL-C levels and HDL composition are indeed altered in patients with autoimmune diseases and usually associated to disease severity. At molecular levels, HDL have been shown to modulate the anti-inflammatory potential of endothelial cells and, by controlling the amount of cellular cholesterol, to interfere with the signaling through plasma membrane lipid rafts in immune cells. These findings, coupled to observations acquired from subjects carrying mutations in genes related to HDL system, have helped to elucidate the contribution of HDL beyond cholesterol efflux thus posing HDL-based therapies as a compelling interventional approach to limit the inflammatory burden of immune-inflammatory diseases.
Collapse
Affiliation(s)
- Fabrizia Bonacina
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy;
| | - Angela Pirillo
- Center for the Study of Atherosclerosis, E. Bassini Hospital, Cinisello Balsamo, 20092 Milan, Italy;
- IRCCS MultiMedica, Sesto S. Giovanni, 20099 Milan, Italy
| | - Alberico L. Catapano
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy;
- IRCCS MultiMedica, Sesto S. Giovanni, 20099 Milan, Italy
- Correspondence: (A.L.C.); (G.D.N.)
| | - Giuseppe D. Norata
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20133 Milan, Italy;
- Center for the Study of Atherosclerosis, E. Bassini Hospital, Cinisello Balsamo, 20092 Milan, Italy;
- Correspondence: (A.L.C.); (G.D.N.)
| |
Collapse
|
4
|
Pirillo A, Svecla M, Catapano AL, Holleboom AG, Norata GD. Impact of protein glycosylation on lipoprotein metabolism and atherosclerosis. Cardiovasc Res 2020; 117:1033-1045. [PMID: 32886765 DOI: 10.1093/cvr/cvaa252] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/23/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023] Open
Abstract
Protein glycosylation is a post-translational modification consisting in the enzymatic attachment of carbohydrate chains to specific residues of the protein sequence. Several types of glycosylation have been described, with N-glycosylation and O-glycosylation being the most common types impacting on crucial biological processes, such as protein synthesis, trafficking, localization, and function. Genetic defects in genes involved in protein glycosylation may result in altered production and activity of several proteins, with a broad range of clinical manifestations, including dyslipidaemia and atherosclerosis. A large number of apolipoproteins, lipoprotein receptors, and other proteins involved in lipoprotein metabolism are glycosylated, and alterations in their glycosylation profile are associated with changes in their expression and/or function. Rare genetic diseases and population genetics have provided additional information linking protein glycosylation to the regulation of lipoprotein metabolism.
Collapse
Affiliation(s)
- Angela Pirillo
- Center for the Study of Atherosclerosis, E. Bassini Hospital, via M. Gorki 50, 20092 Cinisello Balsamo, Milan, Italy.,IRCCS MultiMedica, via Milanese 300, 20099 Sesto S. Giovanni, Milan, Italy
| | - Monika Svecla
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, Milan 20133, Italy
| | - Alberico Luigi Catapano
- IRCCS MultiMedica, via Milanese 300, 20099 Sesto S. Giovanni, Milan, Italy.,Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, Milan 20133, Italy
| | - Adriaan G Holleboom
- Department of Vascular Medicine, Amsterdam University Medical Centers, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Giuseppe Danilo Norata
- Center for the Study of Atherosclerosis, E. Bassini Hospital, via M. Gorki 50, 20092 Cinisello Balsamo, Milan, Italy.,Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, Milan 20133, Italy
| |
Collapse
|
5
|
Soh H, Im JP, Han K, Park S, Hong SW, Moon JM, Kang EA, Chun J, Lee HJ, Kim JS. Crohn's disease and ulcerative colitis are associated with different lipid profile disorders: a nationwide population-based study. Aliment Pharmacol Ther 2020; 51:446-456. [PMID: 31691306 DOI: 10.1111/apt.15562] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/25/2019] [Accepted: 10/06/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND The relationships between lipid profiles and IBD remain elusive. AIM To determine the association of IBD with serum lipid profiles. METHODS A nationwide population-based study was performed using claims data from the Korean National Healthcare Insurance service. A total of 9 706 026 subjects undergoing medical check-ups in 2009 were enrolled and followed up until 2016. Individuals who developed Crohn's disease (CD) or ulcerative colitis (UC) were identified during follow-up. Adjusted hazard ratio (aHR) by age, sex, body mass index, cigarette smoking, alcohol drinking, exercise, income and underlying comorbidities was calculated to define the impact of serum lipid profiles on developing IBD. RESULTS During a median follow-up of 7.3 years, IBD was detected in 7,058 (0.07%) individuals. Compared with the highest quartile of serum total cholesterol (TC) levels, lower TC levels were associated with higher incidence of CD (aHR: Q1, 2.52; Q2, 1.52; Q3, 1.27), but not UC. Lower serum LDL-C levels were associated with higher incidence of CD (aHR: Q1, 1.92; Q2, 1.47; Q3, 1.22), but not UC. Moreover, lower serum HDL-C levels were associated with higher incidence of CD (aHR: Q1, 2.49; Q2, 1.90; Q3, 1.43), but not UC. In contrast, lower serum triglyceride levels were associated with higher incidence of UC (aHR: Q1, 1.22; Q2, 1.19; Q3, 1.19), but not CD. CONCLUSIONS Low serum TC, LDL-C and HDL-C levels were associated with CD. Low serum triglyceride levels were related to UC.
Collapse
Affiliation(s)
- Hosim Soh
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jong Pil Im
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Kyungdo Han
- Department of Medical Statistics, The Catholic University of Korea College of Medicine, Seoul, Korea
| | - Seona Park
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Seung Wook Hong
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jeong Min Moon
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Eun Ae Kang
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jaeyoung Chun
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea.,Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Jung Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Joo Sung Kim
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Bonacina F, Pirillo A, Catapano AL, Norata GD. Cholesterol membrane content has a ubiquitous evolutionary function in immune cell activation: the role of HDL. Curr Opin Lipidol 2019; 30:462-469. [PMID: 31577612 DOI: 10.1097/mol.0000000000000642] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Cellular cholesterol content influences the structure and function of lipid rafts, plasma membrane microdomains essential for cell signaling and activation. HDL modulate cellular cholesterol efflux, thus limiting cholesterol accumulation and controlling immune cell activation. Aim of this review is to discuss the link between HDL and cellular cholesterol metabolism in immune cells and the therapeutic potential of targeting cholesterol removal from cell membranes. RECENT FINDINGS The inverse relationship between HDL-cholesterol (HDL-C) levels and the risk of cardiovascular disease has been recently challenged by observations linking elevated levels of HDL-C with increased risk of all-cause mortality, infections and autoimmune diseases, paralleled by the failure of clinical trials with HDL-C-raising therapies. These findings suggest that improving HDL function might be more important than merely raising HDL-C levels. New approaches aimed at increasing the ability of HDL to remove cellular cholesterol have been assessed for their effect on immune cells, and the results have suggested that this could be a new effective approach. SUMMARY Cholesterol removal from plasma membrane by different means affects the activity of immune cells, suggesting that approaches aimed at increasing the ability of HDL to mobilize cholesterol from cells would represent the next step in HDL biology.
Collapse
Affiliation(s)
- Fabrizia Bonacina
- Department of Pharmacological and Biomolecular Sciences, University of Milan
| | - Angela Pirillo
- Center for the Study of Atherosclerosis, E. Bassini Hospital
- IRCCS MultiMedica, Milan, Italy
| | - Alberico L Catapano
- Department of Pharmacological and Biomolecular Sciences, University of Milan
- IRCCS MultiMedica, Milan, Italy
| | - Giuseppe D Norata
- Department of Pharmacological and Biomolecular Sciences, University of Milan
- Center for the Study of Atherosclerosis, E. Bassini Hospital
| |
Collapse
|
7
|
Pirillo A, Catapano AL, Norata GD. Biological Consequences of Dysfunctional HDL. Curr Med Chem 2019; 26:1644-1664. [PMID: 29848265 DOI: 10.2174/0929867325666180530110543] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/25/2017] [Accepted: 12/27/2017] [Indexed: 12/31/2022]
Abstract
Epidemiological studies have suggested an inverse correlation between high-density lipoprotein (HDL) cholesterol levels and the risk of cardiovascular disease. HDLs promote reverse cholesterol transport (RCT) and possess several putative atheroprotective functions, associated to the anti-inflammatory, anti-thrombotic and anti-oxidant properties as well as to the ability to support endothelial physiology. The assumption that increasing HDL-C levels would be beneficial on cardiovascular disease (CVD), however, has been questioned as, in most clinical trials, HDL-C-raising therapies did not result in improved cardiovascular outcomes. These findings, together with the observations from Mendelian randomization studies showing that polymorphisms mainly or solely associated with increased HDL-C levels did not decrease the risk of myocardial infarction, shift the focus from HDL-C levels toward HDL functional properties. Indeed, HDL from atherosclerotic patients not only exhibit impaired atheroprotective functions but also acquire pro-atherogenic properties and are referred to as "dysfunctional" HDL; this occurs even in the presence of normal or elevated HDL-C levels. Pharmacological approaches aimed at restoring HDL functions may therefore impact more significantly on CVD outcome than drugs used so far to increase HDL-C levels. The aim of this review is to discuss the pathological conditions leading to the formation of dysfunctional HDL and their role in atherosclerosis and beyond.
Collapse
Affiliation(s)
- Angela Pirillo
- Center for the Study of Atherosclerosis, Bassini Hospital, Cinisello Balsamo, Italy.,IRCCS Multimedica, Milan, Italy
| | - Alberico Luigi Catapano
- IRCCS Multimedica, Milan, Italy.,Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Giuseppe Danilo Norata
- Center for the Study of Atherosclerosis, Bassini Hospital, Cinisello Balsamo, Italy.,Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy.,School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia
| |
Collapse
|
8
|
The Role of Monocytes and Macrophages in Human Atherosclerosis, Plaque Neoangiogenesis, and Atherothrombosis. Mediators Inflamm 2019; 2019:7434376. [PMID: 31089324 PMCID: PMC6476044 DOI: 10.1155/2019/7434376] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/17/2019] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis is one of the leading causes of death and disability worldwide. It is a complex disease characterized by lipid accumulation within the arterial wall, inflammation, local neoangiogenesis, and apoptosis. Innate immune effectors, in particular monocytes and macrophages, play a pivotal role in atherosclerosis initiation and progression. Although most of available evidence on the role of monocytes and macrophages in atherosclerosis is derived from animal studies, a growing body of evidence elucidating the role of these mononuclear cell subtypes in human atherosclerosis is currently accumulating. A novel pathogenic role of monocytes and macrophages in terms of atherosclerosis initiation and progression, in particular concerning the role of these cell subsets in neovascularization, has been discovered. The aim of the present article is to review currently available evidence on the role of monocytes and macrophages in human atherosclerosis and in relation to plaque characteristics, such as plaque neoangiogenesis, and patients' prognosis and their potential role as biomarkers.
Collapse
|
9
|
Wang DS, Yin RX, Li KG, Lu L, Su Y, Yan RQ. Association between the MVK rs2287218 SNP and the risk of coronary heart disease and ischemic stroke: A case-control study. Biosci Trends 2018; 12:403-411. [PMID: 30101835 DOI: 10.5582/bst.2018.01146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Duo-Shun Wang
- Department of Cardiology, Institute of Cardiovascular Diseases, the First Affiliated Hospital, Guangxi Medical University
| | - Rui-Xing Yin
- Department of Cardiology, Institute of Cardiovascular Diseases, the First Affiliated Hospital, Guangxi Medical University
| | - Kai-Guang Li
- Department of Cardiology, Institute of Cardiovascular Diseases, the First Affiliated Hospital, Guangxi Medical University
| | - Li Lu
- Department of Cardiology, Institute of Cardiovascular Diseases, the First Affiliated Hospital, Guangxi Medical University
| | - Yuan Su
- Department of Cardiology, Institute of Cardiovascular Diseases, the First Affiliated Hospital, Guangxi Medical University
| | - Rong-Qin Yan
- Department of Cardiology, Institute of Cardiovascular Diseases, the First Affiliated Hospital, Guangxi Medical University
| |
Collapse
|
10
|
Pirillo A, Bonacina F, Norata GD, Catapano AL. The Interplay of Lipids, Lipoproteins, and Immunity in Atherosclerosis. Curr Atheroscler Rep 2018; 20:12. [PMID: 29445885 DOI: 10.1007/s11883-018-0715-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Atherosclerosis is an inflammatory disorder of the arterial wall, in which several players contribute to the onset and progression of the disease. Besides the well-established role of lipids, specifically cholesterol, and immune cell activation, new insights on the molecular mechanisms underlying the atherogenic process have emerged. RECENT FINDINGS Meta-inflammation, a condition of low-grade immune response caused by metabolic dysregulation, immunological memory of innate immune cells (referred to as "trained immunity"), cholesterol homeostasis in dendritic cells, and immunometabolism, i.e., the interplay between immunological and metabolic processes, have all emerged as new actors during atherogenesis. These observations reinforced the interest in directly targeting inflammation to reduce cardiovascular disease. The novel acquisitions in pathophysiology of atherosclerosis reinforce the tight link between lipids, inflammation, and immune response, and support the benefit of targeting LDL-C as well as inflammation to decrease the CVD burden. How this will translate into the clinic will depend on the balance between costs (monoclonal antibodies either to PCSK9 or to IL-1ß), side effects (increased incidence of death due to infections for anti-IL-1ß antibody), and the benefits for patients at high CVD risk.
Collapse
Affiliation(s)
- Angela Pirillo
- Center for the Study of Atherosclerosis, Bassini Hospital, Cinisello Balsamo, Milan, Italy.,IRCCS Multimedica, Milan, Italy
| | - Fabrizia Bonacina
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy.,School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Alberico Luigi Catapano
- IRCCS Multimedica, Milan, Italy. .,Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy. .,Department of Pharmacological and Biomolecular Sciences, University of Milan and IRCCS Multimedica, Via Balzaretti, 9, 20133, Milan, Italy.
| |
Collapse
|
11
|
A past and present overview of macrophage metabolism and functional outcomes. Clin Sci (Lond) 2017; 131:1329-1342. [PMID: 28592702 DOI: 10.1042/cs20170220] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 03/16/2017] [Accepted: 03/22/2017] [Indexed: 12/11/2022]
Abstract
In 1986 and 1987, Philip Newsholme et al. reported macrophages utilize glutamine, as well as glucose, at high rates. These authors measured key enzyme activities and consumption and production levels of metabolites in incubated or cultured macrophages isolated from the mouse or rat intraperitoneal cavity. Metabolic pathways essential for macrophage function were then determined. Macrophages utilize glucose to generate (i) ATP in the pathways of glycolysis and mitochondrial oxidative phosphorylation, (ii) glycerol 3-phosphate for the synthesis of phospholipids and triacylglycerols, (iii) NADPH for the production of reactive oxygen species (ROS) and (iv) ribose for the synthesis of RNA and subsequently production and secretion of protein mediators (e.g. cytokines). Glutamine plays an essential role in macrophage metabolism and function, as it is required for energy production but also provides nitrogen for synthesis of purines, pyrimidines and thus RNA. Macrophages also utilize fatty acids for both energy production in the mitochondria and lipid synthesis essential to plasma membrane turnover and lipid meditator production. Recent studies utilizing metabolomic approaches, transcriptional and metabolite tracking technologies have detailed mitochondrial release of tricarboxylic acid (TCA) intermediates (e.g. citrate and succinate) to the cytosol, which then regulate pro-inflammatory responses. Macrophages can reprogramme their metabolism and function according to environmental conditions and stimuli in order to polarize phenotype so generating pro- or anti-inflammatory cells. Changes in macrophage metabolism result in modified function/phenotype and vice versa. The plasticity of macrophage metabolism allows the cell to quickly respond to changes in environmental conditions such as those induced by hormones and/or inflammation. A past and present overview of macrophage metabolism and impact of endocrine regulation and the relevance to human disease are described in this review.
Collapse
|
12
|
Lipid testing in infectious diseases: possible role in diagnosis and prognosis. Infection 2017; 45:575-588. [PMID: 28484991 DOI: 10.1007/s15010-017-1022-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 05/04/2017] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Acute infections lead to significant alterations in metabolic regulation including lipids and lipoproteins, which play a central role in the host immune response. In this regard, several studies have investigated the role of lipid levels as a marker of infection severity and prognosis. SCOPE OF REVIEW We review here the role of lipids in immune response and the potential mechanisms underneath. Moreover, we summarize studies on lipid and lipoprotein alterations in acute bacterial, viral and parasitic infections as well as their diagnostic and prognostic significance. Chronic infections (HIV, HBV, HCV) are also considered. RESULTS All lipid parameters have been found to be significantly dearranged during acute infection. Common lipid alterations in this setting include a decrease of total cholesterol levels and an increase in the concentration of triglyceride-rich lipoproteins, mainly very low-density lipoproteins. Also, low-density lipoprotein cholesterol, apolipoprotein A1, low-density lipoprotein cholesterol and apolipoprotein-B levels decrease. These lipid alterations may have prognostic and diagnostic role in certain infections. CONCLUSION Lipid testing may be of help to assess response to treatment in septic patients and those with various acute infections (such as pneumonia, leptospirosis and others). Diagnostically, new onset of altered lipid levels should prompt the clinician to test for underlying infection (such as leishmaniasis).
Collapse
|
13
|
Wang Z, Luo G, Feng Y, Zheng L, Liu H, Liang Y, Liu Z, Shao P, Berggren-Söderlund M, Zhang X, Xu N. Decreased Splenic CD4(+) T-Lymphocytes in Apolipoprotein M Gene Deficient Mice. BIOMED RESEARCH INTERNATIONAL 2015; 2015:293512. [PMID: 26543853 PMCID: PMC4620415 DOI: 10.1155/2015/293512] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 09/23/2015] [Accepted: 09/28/2015] [Indexed: 11/18/2022]
Abstract
Spleen T-lymphocytes, especially CD4(+) T-cells, have been demonstrated to be involved in broad immunomodulation and host-defense activity in vivo. Apolipoprotein M gene (apoM) may have an important role in the regulation of immunoprocess and inflammation, which could be hypothesized to the apoM containing sphingosine-1-phosphate (S1P). In the present study we demonstrate that the splenic CD4(+) T-lymphocytes were obviously decreased in the apoM gene deficient (apoM(-/-)) mice compared to the wild type (apoM(+/+)). Moreover, these mice were treated with lipopolysaccharide (LPS) and it was found that even more pronounced decreasing CD4(+) T-lymphocytes occurred in the spleen compared to the apoM(+/+) mice. The similar phenomena were found in the ratio of CD4(+)/CD8(+) T-lymphocytes. After administration of LPS, the hepatic mRNA levels of tumor necrosis factor-α (TNF-α) and monocyte chemotactic protein-1 (MCP-1) were markedly increased; however, there were no statistical differences observed between apoM(+/+) mice and apoM(-/-) mice. The present study demonstrated that apoM might facilitate the maintenance of CD4(+) T-lymphocytes or could modify the T-lymphocytes subgroups in murine spleen, which may further explore the importance of apoM in the regulation of the host immunomodulation, although the detailed mechanism needs continuing investigation.
Collapse
Affiliation(s)
- Zhigang Wang
- Department of Cardiothoracic Surgery, Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Guanghua Luo
- Comprehensive Laboratory, Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Yuehua Feng
- Comprehensive Laboratory, Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Lu Zheng
- Comprehensive Laboratory, Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Hongyao Liu
- Department of Cardiothoracic Surgery, Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Yun Liang
- Department of Cardiothoracic Surgery, Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Zhonghua Liu
- Department of Cardiothoracic Surgery, Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Peng Shao
- Department of Cardiothoracic Surgery, Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Maria Berggren-Söderlund
- Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lund University, 221 85 Lund, Sweden
| | - Xiaoying Zhang
- Department of Cardiothoracic Surgery, Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Ning Xu
- Division of Clinical Chemistry and Pharmacology, Department of Laboratory Medicine, Lund University, 221 85 Lund, Sweden
| |
Collapse
|
14
|
Velsko IM, Chukkapalli SS, Rivera-Kweh MF, Chen H, Zheng D, Bhattacharyya I, Gangula PR, Lucas AR, Kesavalu L. Fusobacterium nucleatum Alters Atherosclerosis Risk Factors and Enhances Inflammatory Markers with an Atheroprotective Immune Response in ApoE(null) Mice. PLoS One 2015; 10:e0129795. [PMID: 26079509 PMCID: PMC4469693 DOI: 10.1371/journal.pone.0129795] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 05/13/2015] [Indexed: 12/20/2022] Open
Abstract
The American Heart Association supports an association between periodontal disease (PD) and atherosclerotic vascular disease (ASVD) but does not as of yet support a causal relationship. Recently, we have shown that major periodontal pathogens Porphyromonas gingivalis and Treponema denticola are causally associated with acceleration of aortic atherosclerosis in ApoEnull hyperlipidemic mice. The aim of this study was to determine if oral infection with another significant periodontal pathogen Fusobacterium nucleatum can accelerate aortic inflammation and atherosclerosis in the aortic artery of ApoEnull mice. ApoEnull mice (n = 23) were orally infected with F. nucleatum ATCC 49256 and euthanized at 12 and 24 weeks. Periodontal disease assessments including F. nucleatum oral colonization, gingival inflammation, immune response, intrabony defects, and alveolar bone resorption were evaluated. Systemic organs were evaluated for infection, aortic sections were examined for atherosclerosis, and inflammatory markers were measured. Chronic oral infection established F. nucleatum colonization in the oral cavity, induced significant humoral IgG (P=0.0001) and IgM (P=0.001) antibody response (12 and 24 weeks), and resulted in significant (P=0.0001) alveolar bone resorption and intrabony defects. F. nucleatum genomic DNA was detected in systemic organs (heart, aorta, liver, kidney, lung) indicating bacteremia. Aortic atherosclerotic plaque area was measured and showed a local inflammatory infiltrate revealed the presence of F4/80+ macrophages and CD3+ T cells. Vascular inflammation was detected by enhanced systemic cytokines (CD30L, IL-4, IL-12), oxidized LDL and serum amyloid A, as well as altered serum lipid profile (cholesterol, triglycerides, chylomicrons, VLDL, LDL, HDL), in infected mice and altered aortic gene expression in infected mice. Despite evidence for systemic infection in several organs and modulation of known atherosclerosis risk factors, aortic atherosclerotic lesions were significantly reduced after F. nucleatum infection suggesting a potential protective function for this member of the oral microbiota.
Collapse
Affiliation(s)
- Irina M. Velsko
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Sasanka S. Chukkapalli
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Mercedes. F. Rivera-Kweh
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Hao Chen
- Cardiovascular Medicine and Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Donghang Zheng
- Cardiovascular Medicine and Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Indraneel Bhattacharyya
- Oral Diagnostic Sciences, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Pandu R. Gangula
- Department of Oral Biology and Research, CWHR Meharry Medical College, Nashville, Tennessee, United States of America
- Department of Physiology, CWHR Meharry Medical College, Nashville, Tennessee, United States of America
| | - Alexandra R. Lucas
- Cardiovascular Medicine and Molecular Genetics & Microbiology, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Lakshmyya Kesavalu
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
15
|
Ikura K, Hanai K, Shinjyo T, Uchigata Y. HDL cholesterol as a predictor for the incidence of lower extremity amputation and wound-related death in patients with diabetic foot ulcers. Atherosclerosis 2015; 239:465-9. [PMID: 25697577 DOI: 10.1016/j.atherosclerosis.2015.02.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/25/2015] [Accepted: 02/02/2015] [Indexed: 11/18/2022]
Abstract
OBJECTIVE We examined whether HDL cholesterol levels are a predictor for an incidence of lower-extremity amputation (LEA) and wound-related death in patients with diabetic foot ulcers (DFUs). RESEARCH DESIGN AND METHODS This was a single-center, observational, longitudinal historical cohort study of 163 Japanese ambulatory patients with DFUs, 45 woman and 118 men, with a mean (standard deviation) age of 62 (14) years. The primary composite endpoint was defined as the worst of the following outcomes for each individual; (1) minor amputation, defined as amputation below the ankle, (2) major amputation, defined as amputation above the ankle, and (3) wound-related death. RESULTS During the median follow-up period of 5.1 months, 67 patients (41.1%) reached the endpoint (43 minor amputations, 16 major amputations, and 8 wound-related deaths). In the univariate Cox proportional hazard model analysis, lower HDL cholesterol levels (mmol/L) were significantly associated with the incidence of the primary composite endpoint (hazard ratio 0.16 [95% CI 0.08-0.32], p < 0.001). In the multivariate Cox proportional hazard model analysis using a stepwise variable-selecting procedure, HDL cholesterol levels in addition to the presence of ankle brachial index <0.9 or ≥1.4 and serum albumin levels were selected as independent risk factors for the incidence of the endpoint (hazard ratio 0.30 [95% CI 0.14-0.63], p = 0.002). Similar results were obtained when HDL cholesterol levels were treated as a categorical variable (≥1.03 mmol/L or less). CONCLUSIONS HDL cholesterol levels might be a novel clinical predictor for the incidence of LEA and wound-related death in patients with DFUs.
Collapse
Affiliation(s)
- Kazuki Ikura
- Diabetes Center, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Ko Hanai
- Diabetes Center, Tokyo Women's Medical University School of Medicine, Tokyo, Japan.
| | - Takamichi Shinjyo
- Diabetes Center, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Yasuko Uchigata
- Diabetes Center, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| |
Collapse
|
16
|
Beltrán LM, Rubio-Navarro A, Amaro-Villalobos JM, Egido J, García-Puig J, Moreno JA. Influence of immune activation and inflammatory response on cardiovascular risk associated with the human immunodeficiency virus. Vasc Health Risk Manag 2015; 11:35-48. [PMID: 25609975 PMCID: PMC4293933 DOI: 10.2147/vhrm.s65885] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Patients infected with the human immunodeficiency virus (HIV) have an increased cardiovascular risk. Although initially this increased risk was attributed to metabolic alterations associated with antiretroviral treatment, in recent years, the attention has been focused on the HIV disease itself. Inflammation, immune system activation, and endothelial dysfunction facilitated by HIV infection have been identified as key factors in the development and progression of atherosclerosis. In this review, we describe the epidemiology and pathogenesis of cardiovascular disease in patients with HIV infection and summarize the latest knowledge on the relationship between traditional and novel inflammatory, immune activation, and endothelial dysfunction biomarkers on the cardiovascular risk associated with HIV infection.
Collapse
Affiliation(s)
- Luis M Beltrán
- Metabolic-Vascular Unit, Fundación IdiPAZ-Hospital Universitario La Paz, Madrid, Spain
| | - Alfonso Rubio-Navarro
- Vascular, Renal, and Diabetes Research Lab, IIS-Fundación Jiménez Díaz, Madrid, Spain
| | | | - Jesús Egido
- Vascular, Renal, and Diabetes Research Lab, IIS-Fundación Jiménez Díaz, Madrid, Spain ; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain ; Fundación Renal Iñigo Alvarez de Toledo-Instituto Reina Sofía de Investigaciones Nefrológicas (FRIAT-IRSIN), Madrid, Spain
| | - Juan García-Puig
- Metabolic-Vascular Unit, Fundación IdiPAZ-Hospital Universitario La Paz, Madrid, Spain
| | - Juan Antonio Moreno
- Vascular, Renal, and Diabetes Research Lab, IIS-Fundación Jiménez Díaz, Madrid, Spain
| |
Collapse
|
17
|
Abstract
During infection significant alterations in lipid metabolism and lipoprotein composition occur. Triglyceride and VLDL cholesterol levels increase, while reduced HDL cholesterol (HDL-C) and LDL cholesterol (LDL-C) levels are observed. More importantly, endotoxemia modulates HDL composition and size: phospholipids are reduced as well as apolipoprotein (apo) A-I, while serum amyloid A (SAA) and secretory phospholipase A2 (sPLA2) dramatically increase, and, although the total HDL particle number does not change, a significant decrease in the number of small- and medium-size particles is observed. Low HDL-C levels inversely correlate with the severity of septic disease and associate with an exaggerated systemic inflammatory response. HDL, as well as other plasma lipoproteins, can bind and neutralize Gram-negative bacterial lipopolysaccharide (LPS) and Gram-positive bacterial lipoteichoic acid (LTA), thus favoring the clearance of these products. HDLs are emerging also as a relevant player during parasitic infections, and a specific component of HDL, namely, apoL-1, confers innate immunity against trypanosome by favoring lysosomal swelling which kills the parasite. During virus infections, proteins associated with the modulation of cholesterol bioavailability in the lipid rafts such as ABCA1 and SR-BI have been shown to favor virus entry into the cells. Pharmacological studies support the benefit of recombinant HDL or apoA-I mimetics during bacterial infection, while apoL-1-nanobody complexes were tested for trypanosome infection. Finally, SR-BI antagonism represents a novel and forefront approach interfering with hepatitis C virus entry which is currently tested in clinical studies. From the coming years, we have to expect new and compelling observations further linking HDL to innate immunity and infections.
Collapse
|
18
|
Larbi A, Fortin C, Dupuis G, Berrougui H, Khalil A, Fulop T. Immunomodulatory role of high-density lipoproteins: impact on immunosenescence. AGE (DORDRECHT, NETHERLANDS) 2014; 36:9712. [PMID: 25216565 PMCID: PMC4162887 DOI: 10.1007/s11357-014-9712-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 09/02/2014] [Indexed: 06/03/2023]
Abstract
Natural aging is accompanied by a dysregulation of the host immune response that has well-known clinical consequences but poorly defined underlying causes. It has previously been reported that advancing age is associated with an increase in membrane cholesterol level in T cells. The aim of this study was to investigate whether high-density lipoprotein (HDL) can modulate the age-related accumulation of membrane cholesterol in T cells and impact on their subsequent responsiveness. Our data reveal that cholesterol metabolism, influx, and efflux are altered in T cells with aging, which may in part explain the increase in membrane cholesterol level observed in T cells in elderly individuals. HDL was unable to promote reverse cholesterol transport in T cells from elderly subjects with the same efficiency as was observed in T cells from young subjects besides unchanged ABCA-1 and SR-BI expressions. HDL exhibited a short-acting co-stimulatory effect by enhancing T cell production of interleukin-2 (IL-2). Moreover, HDL from healthy normolipemic individuals exerted differential effects on T cell proliferation that depended on the age of the HDL donor. Finally, HDL modulated TCR/CD28 activation by inducing sustained signaling through pLck, pERK, and pAkt. These data suggest that HDL has immunomodulatory effects on T cells that are influenced by age.
Collapse
Affiliation(s)
- Anis Larbi
- />Singapore Immunology Network (SIgN), Biopolis, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Carl Fortin
- />Research Center on Aging, University of Sherbrooke, Sherbrooke, Canada
| | - Gilles Dupuis
- />Clinical Research Center, Faculty of Medicine, University of Sherbrooke, Sherbrooke, Canada
| | - Hicham Berrougui
- />Research Center on Aging, University of Sherbrooke, Sherbrooke, Canada
| | - Abdelouahed Khalil
- />Research Center on Aging, University of Sherbrooke, Sherbrooke, Canada
| | - Tamas Fulop
- />Research Center on Aging, University of Sherbrooke, Sherbrooke, Canada
| |
Collapse
|
19
|
Abstract
High-density lipoproteins (HDL) are a target for drug development because of their proposed anti-atherogenic properties. In this review, we will briefly discuss the currently established drugs for increasing HDL-C, namely niacin and fibrates, and some of their limitations. Next, we will focus on novel alternative therapies that are currently being developed for raising HDL-C, such as CETP inhibitors. Finally, we will conclude with a review of novel drugs that are being developed for modulating the function of HDL based on HDL mimetics. Gaps in our knowledge and the challenges that will have to be overcome for these new HDL based therapies will also be discussed.
Collapse
Affiliation(s)
- Alan T Remaley
- National Heart, Lung and Blood Institute, NIH, 10 Center Drive, Bldg. 10, Rm. 2C-433, Bethesda, MD, USA
| | - Giuseppe D Norata
- Department of Pharmacological Sciences, Università degli Studi di Milano, Milano, Italy Center for the Study of Atherosclerosis, Società Italiana Studio Aterosclerosi, Ospedale Bassini, Cinisello Balsamo, Italy The Blizard Institute, Centre for Diabetes, Barts and The London School of Medicine & Dentistry, Queen Mary University, London, UK
| | - Alberico L Catapano
- Department of Pharmacological Sciences, Università degli Studi di Milano, Milano, Italy IRCCS Multimedica, Milan, Italy
| |
Collapse
|
20
|
Abstract
During infections or acute conditions high-density lipoproteins cholesterol (HDL-C) levels decrease very rapidly and HDL particles undergo profound changes in their composition and function. These changes are associated with poor prognosis following endotoxemia or sepsis and data from genetically modified animal models support a protective role for HDL. The same is true for some parasitic infections, where the key player appears to be a specific and minor component of HDL, namely apoL-1. The ability of HDL to influence cholesterol availability in lipid rafts in immune cells results in the modulation of toll-like receptors, MHC-II complex, as well as B- and T-cell receptors, while specific molecules shuttled by HDL such as sphingosine-1-phosphate (S1P) contribute to immune cells trafficking. Animal models with defects associated with HDL metabolism and/or influencing cell cholesterol efflux present features related to immune disorders. All these functions point to HDL as a platform integrating innate and adaptive immunity. The aim of this review is to provide an overview of the connection between HDL and immunity in atherosclerosis and beyond.
Collapse
Affiliation(s)
- Alberico Luigi Catapano
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, via Balzaretti 9, Milan 20133, Italy IRCCS Multimedica, Milan, Italy
| | - Angela Pirillo
- IRCCS Multimedica, Milan, Italy Center for the Study of Atherosclerosis, Ospedale Bassini, Cinisello Balsamo, Italy
| | - Fabrizia Bonacina
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, via Balzaretti 9, Milan 20133, Italy
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, via Balzaretti 9, Milan 20133, Italy Center for the Study of Atherosclerosis, Ospedale Bassini, Cinisello Balsamo, Italy The Blizard Institute, Centre for Diabetes, Barts and The London School of Medicine & Dentistry, Queen Mary University, London, UK
| |
Collapse
|
21
|
|
22
|
The Missing Link Between High-Density Lipoprotein Cholesterol and Inflammatory Response in Cardiovascular Disease. J Am Coll Cardiol 2014; 63:2747-8. [DOI: 10.1016/j.jacc.2013.12.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 12/17/2013] [Indexed: 11/18/2022]
|
23
|
Ananth S, Gnana-Prakasam JP, Bhutia YD, Veeranan-Karmegam R, Martin PM, Smith SB, Ganapathy V. Regulation of the cholesterol efflux transporters ABCA1 and ABCG1 in retina in hemochromatosis and by the endogenous siderophore 2,5-dihydroxybenzoic acid. Biochim Biophys Acta Mol Basis Dis 2014; 1842:603-12. [PMID: 24462739 DOI: 10.1016/j.bbadis.2014.01.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 01/08/2014] [Accepted: 01/13/2014] [Indexed: 01/19/2023]
Abstract
Hypercholesterolemia and polymorphisms in the cholesterol exporter ABCA1 are linked to age-related macular degeneration (AMD). Excessive iron in retina also has a link to AMD pathogenesis. Whether these findings mean a biological/molecular connection between iron and cholesterol is not known. Here we examined the relationship between retinal iron and cholesterol using a mouse model (Hfe(-/-)) of hemochromatosis, a genetic disorder of iron overload. We compared the expression of the cholesterol efflux transporters ABCA1 and ABCG1 and cholesterol content in wild type and Hfe(-/-) mouse retinas. We also investigated the expression of Bdh2, the rate-limiting enzyme in the synthesis of the endogenous siderophore 2,5-dihydroxybenzoic acid (2,5-DHBA) in wild type and Hfe(-/-) mouse retinas, and the influence of this siderophore on ABCA1/ABCG1 expression in retinal pigment epithelium. We found that ABCA1 and ABCG1 were expressed in all retinal cell types, and that their expression was decreased in Hfe(-/-) retina. This was accompanied with an increase in retinal cholesterol content. Bdh2 was also expressed in all retinal cell types, and its expression was decreased in hemochromatosis. In ARPE-19 cells, 2,5-DHBA increased ABCA1/ABCG1 expression and decreased cholesterol content. This was not due to depletion of free iron because 2,5-DHBA (a siderophore) and deferiprone (an iron chelator) had opposite effects on transferrin receptor expression and ferritin levels. We conclude that iron is a regulator of cholesterol homeostasis in retina and that removal of cholesterol from retinal cells is impaired in hemochromatosis. Since excessive cholesterol is pro-inflammatory, hemochromatosis might promote retinal inflammation via cholesterol in AMD.
Collapse
Affiliation(s)
- Sudha Ananth
- Department of Biochemistry and Molecular Biology, Georgia Regents University, Augusta, GA 30912, USA
| | - Jaya P Gnana-Prakasam
- Department of Biochemistry and Molecular Biology, Georgia Regents University, Augusta, GA 30912, USA
| | - Yangzom D Bhutia
- Department of Biochemistry and Molecular Biology, Georgia Regents University, Augusta, GA 30912, USA
| | | | - Pamela M Martin
- Department of Biochemistry and Molecular Biology, Georgia Regents University, Augusta, GA 30912, USA
| | - Sylvia B Smith
- Department of Cellular Biology and Anatomy, Georgia Regents University, Augusta, GA 30912, USA
| | - Vadivel Ganapathy
- Department of Biochemistry and Molecular Biology, Georgia Regents University, Augusta, GA 30912, USA.
| |
Collapse
|
24
|
Sala F, Cutuli L, Grigore L, Pirillo A, Chiesa G, Catapano AL, Norata GD. Prevalence of classical CD14++/CD16− but not of intermediate CD14++/CD16+ monocytes in hypoalphalipoproteinemia. Int J Cardiol 2013; 168:2886-9. [DOI: 10.1016/j.ijcard.2013.03.103] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 03/29/2013] [Indexed: 11/28/2022]
|
25
|
Blazek A, Rutsky J, Osei K, Maiseyeu A, Rajagopalan S. Exercise-mediated changes in high-density lipoprotein: impact on form and function. Am Heart J 2013; 166:392-400. [PMID: 24016485 DOI: 10.1016/j.ahj.2013.05.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 05/27/2013] [Indexed: 11/17/2022]
Abstract
The goal of this systematic review was to assess the current understanding of the effects of exercise intervention on high-density lipoprotein (HDL) cholesterol (HDL-C) and changes in HDL function as well as modification of these effects by genomic factors. The reviewed studies demonstrate that exercise has modest effects on HDL-C with limited data suggesting an effect on HDL function. Genetic polymorphisms in proteins associated with HDL metabolism play a role in modifying the HDL-C response to exercise and possibly its function. Exercise as an intervention for patients at risk for cardiovascular events can lead to small improvements in HDL-C and potential changes in HDL function. There is an important modifier effect of genetics in determining these changes.
Collapse
Affiliation(s)
- Alisa Blazek
- Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH
| | | | | | | | | |
Collapse
|
26
|
FOXP3 demethylation as a means of identifying quantitative defects in regulatory T cells in acute coronary syndrome. Atherosclerosis 2013; 229:263-70. [PMID: 23735638 DOI: 10.1016/j.atherosclerosis.2013.05.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 11/23/2022]
Abstract
OBJECTIVE The contribution of regulatory T cells (Tregs) to the pathogenesis of acute coronary syndrome (ACS) remains poorly understood. One core obstacle is the lack of Treg-specific markers. A highly conserved CpG enriched element in forkhead box P3 intron 1 (FOXP3 i l) is unmethylated only in Tregs, and measuring the unmethylation of FOXP3 i l can be used to identify the role of Tregs in clinical diseases. This study investigated whether analyzing the demethylation status of FOXP3 i 1 is a more reliable means than using Treg-specific surface markers in ACS. METHODS AND RESULTS We evaluated circulating Tregs percentages on different levels including cell frequencies (CD4(+)CD25(hi)FOXP3(+)Tregs and CD4(+)CD25(hi)CD45(+)naïve Tregs) or FOXP3 mRNA, FOXP3 i 1 demethylation status and related cytokine secretion in 89 patients with ACS and 35 controls. FOXP3 i 1 demethylation assay showed that the amount of Tregs in ACS patients was significantly reduced than that in controls (p = 0.0005). However, flow cytometry analysis did not identify any reduction of CD4(+)CD25(hi)FOXP3(+)Tregs in ACS patients. Notably, younger patients had higher percentage of CD4(+)CD25(hi)FOXP3(+)Tregs but decreased percentage of CD4(+)CD25(hi)CD45(+)naïve Tregs than either controls or older patients. Furthermore, a DNA hypomethylation agent increased the amount of CD4(+)CD25(hi)FOXP3(+)Tregs and Tregs related cytokine IL-10 and suppressed the production of pro-inflammatory cytokine interferon-γ by inducing FOXP3 i 1 demethylation in vitro. CONCLUSIONS A quantitative defect of Tregs, suggestive of decreased peripheral tolerance, could be a potential hallmark of ACS disease. Targeting FOXP3 i l demethylation might elevate the inhibitory activity of Tregs in ACS.
Collapse
|
27
|
Long pentraxin 3: experimental and clinical relevance in cardiovascular diseases. Mediators Inflamm 2013; 2013:725102. [PMID: 23690668 PMCID: PMC3649691 DOI: 10.1155/2013/725102] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 02/27/2013] [Indexed: 01/21/2023] Open
Abstract
Pentraxin 3 (PTX3) is an essential component of the humoral arm of innate immunity and belongs, together with the C-reactive protein (CRP) and other acute phase proteins, to the pentraxins' superfamily: soluble, multifunctional, pattern recognition proteins. Pentraxins share a common C-terminal pentraxin domain, which in the case of PTX3 is coupled to an unrelated long N-terminal domain. PTX3 in humans, like CRP, correlates with surrogate markers of atherosclerosis and is independently associated with the risk of developing vascular events. Studies addressing the potential physiopathological role of CRP in the cardiovascular system were so far inconclusive and have been limited by the fact that the sequence and regulation have not been conserved during evolution between mouse and man. On the contrary, the conservation of sequence, gene organization, and regulation of PTX3 supports the translation of animal model findings in humans. While PTX3 deficiency is associated with increased inflammation, cardiac damage, and atherosclerosis, the overexpression limits carotid restenosis after angioplasty. These observations point to a cardiovascular protective effect of PTX3 potentially associated with the ability of tuning inflammation and favor the hypothesis that the increased levels of PTX3 in subjects with cardiovascular diseases may reflect a protective physiological mechanism, which correlates with the immunoinflammatory response observed in several cardiovascular disorders.
Collapse
|
28
|
High-density lipoproteins and the immune system. J Lipids 2013; 2013:684903. [PMID: 23431458 PMCID: PMC3572698 DOI: 10.1155/2013/684903] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 12/28/2012] [Accepted: 12/31/2012] [Indexed: 12/16/2022] Open
Abstract
High-density lipoprotein (HDL) plays a major role in vasodilation and in the reduction of low-density lipoprotein (LDL) oxidation, inflammation, apoptosis, thrombosis, and infection; however, HDL is now less functional in these roles under certain conditions. This paper focuses on HDL, its anti-inflammation behavior, and the mechanisms by which HDL interacts with components of the innate and adaptive immune systems. Genome-wide association studies (GWAS) and proteomic studies have elucidated important molecules involved in the interaction between HDL and the immune system. An understanding of these mechanisms is expected to be useful for the prevention and treatment of chronic inflammation due to metabolic syndrome, atherosclerosis, or various autoimmune diseases.
Collapse
|
29
|
High density lipoproteins and atherosclerosis: emerging aspects. J Geriatr Cardiol 2013; 9:401-7. [PMID: 23341845 PMCID: PMC3545258 DOI: 10.3724/sp.j.1263.2011.12282] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 06/04/2012] [Accepted: 10/22/2012] [Indexed: 12/27/2022] Open
Abstract
High density lipoproteins (HDL) promote the efflux of excess cholesterol from peripheral tissues to the liver for excretion. This ability is responsible for the most relevant anti-atherogenic effect of HDL. The ability of HDL to promote cholesterol efflux results also in the modulation of a series of responses in the immune cells involved in atherosclerosis, including monocyte-macrophages, B and T lymphocytes. Furthermore, during inflammation, the composition of this class of lipoproteins varies to a large extent, thus promoting the formation of dysfunctional HDL. The aim of this review is to discuss the emerging role of HDL in modulating the activity of immune cells and immune-inflammatory mediators during atherogenesis.
Collapse
|
30
|
Verdugo RA, Zeller T, Rotival M, Wild PS, Münzel T, Lackner KJ, Weidmann H, Ninio E, Trégouët DA, Cambien F, Blankenberg S, Tiret L. Graphical modeling of gene expression in monocytes suggests molecular mechanisms explaining increased atherosclerosis in smokers. PLoS One 2013; 8:e50888. [PMID: 23372645 PMCID: PMC3553098 DOI: 10.1371/journal.pone.0050888] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 10/24/2012] [Indexed: 01/07/2023] Open
Abstract
Smoking is a risk factor for atherosclerosis with reported widespread effects on gene expression in circulating blood cells. We hypothesized that a molecular signature mediating the relation between smoking and atherosclerosis may be found in the transcriptome of circulating monocytes. Genome-wide expression profiles and counts of atherosclerotic plaques in carotid arteries were collected in 248 smokers and 688 non-smokers from the general population. Patterns of co-expressed genes were identified by Independent Component Analysis (ICA) and network structure of the pattern-specific gene modules was inferred by the PC-algorithm. A likelihood-based causality test was implemented to select patterns that fit models containing a path “smoking→gene expression→plaques”. Robustness of the causal inference was assessed by bootstrapping. At a FDR ≤0.10, 3,368 genes were associated to smoking or plaques, of which 93% were associated to smoking only. SASH1 showed the strongest association to smoking and PPARG the strongest association to plaques. Twenty-nine gene patterns were identified by ICA. Modules containing SASH1 and PPARG did not show evidence for the “smoking→gene expression→plaques” causality model. Conversely, three modules had good support for causal effects and exhibited a network topology consistent with gene expression mediating the relation between smoking and plaques. The network with the strongest support for causal effects was connected to plaques through SLC39A8, a gene with known association to HDL-cholesterol and cellular uptake of cadmium from tobacco, while smoking was directly connected to GAS6, a gene reported to have anti-inflammatory effects in atherosclerosis and to be up-regulated in the placenta of women smoking during pregnancy. Our analysis of the transcriptome of monocytes recovered genes relevant for association to smoking and atherosclerosis, and connected genes that before, were only studied in separate contexts. Inspection of correlation structure revealed candidates that would be missed by expression-phenotype association analysis alone.
Collapse
Affiliation(s)
| | - Tanja Zeller
- University Heart Center Hamburg, Department of General and Interventional Cardiology, Hamburg, Germany
| | - Maxime Rotival
- INSERM UMR_S 937, Pierre and Marie Curie University, Paris, France
| | - Philipp S. Wild
- Department of Medicine II, University Medical Center Mainz, Mainz, Germany
- Clinical Epidemiology, Center for Thrombosis and Haemostasis, University Medical Center Mainz, Mainz, Germany
| | - Thomas Münzel
- Department of Medicine II, University Medical Center Mainz, Mainz, Germany
| | - Karl J. Lackner
- Institute for Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Mainz, Germany
| | - Henri Weidmann
- INSERM UMR_S 937, Pierre and Marie Curie University, Paris, France
| | - Ewa Ninio
- INSERM UMR_S 937, Pierre and Marie Curie University, Paris, France
| | | | - François Cambien
- INSERM UMR_S 937, Pierre and Marie Curie University, Paris, France
| | - Stefan Blankenberg
- University Heart Center Hamburg, Department of General and Interventional Cardiology, Hamburg, Germany
| | - Laurence Tiret
- INSERM UMR_S 937, Pierre and Marie Curie University, Paris, France
- * E-mail:
| |
Collapse
|
31
|
Norata GD, Sala F, Catapano AL, Fernández-Hernando C. MicroRNAs and lipoproteins: a connection beyond atherosclerosis? Atherosclerosis 2012; 227:209-15. [PMID: 23260873 DOI: 10.1016/j.atherosclerosis.2012.11.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 11/13/2012] [Accepted: 11/20/2012] [Indexed: 11/29/2022]
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs involved in the regulation of gene expression at the post-transcriptional level that have been involved in the pathogenesis of a number of cardiovascular diseases. Several miRNAs have been described to finely regulate lipid metabolism and the progression and regression of atherosclerosis including, miR-33, miR-122. Of note miR-33a and -33b, represent one of the most interesting and attractive targets for metabolic-related disorders and anti-miR-33 approaches are under intensive investigation. More recently miRNAs were shown to exert their activities in a paracrine manner and also systemically. The latter is possible because lipid-carriers, including lipoproteins, transport and protect miRNAs from degradation in the circulation. This review will present the complex mechanism by which miRNAs regulate lipid metabolism, illustrate how their therapeutical modulation may lead to new treatments for cardiometabolic diseases, and discuss how lipoproteins and other lipid-carriers transport miRNAs in the circulation. The emerging strong connection between miRNAs, lipoproteins and lipid metabolism indicates the existence of a reciprocal modulation that might go beyond atherosclerosis.
Collapse
Affiliation(s)
- Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy.
| | | | | | | |
Collapse
|
32
|
Abstract
PURPOSE OF REVIEW Apolipoprotein (apo) E is a multifunctional protein that has long been recognized for its ability to safeguard against atherosclerosis. Among its pleiotropic roles known to suppress atherosclerosis, mechanisms by which apoE regulates cells of the immune system have remained elusive. Because atherosclerosis is a chronic inflammatory disease that remains on the rise, understanding in more detail how apoE controls immune cell activation and function is of much interest. RECENT FINDINGS Literature reported in the past year introduces apoE as a regulator of monocyte and macrophage plasticity. Through signals delivered by its interaction with cell surface receptors, apoE has been shown to influence the polarity and inflammatory phenotypes of the macrophage. By promoting cellular cholesterol efflux in a cell autonomous manner and through its ability to enhance HDL function in hyperlipidemic plasma, apoE is now known to suppress atherosclerosis by controlling myeloid cell proliferation, monocyte activation and their capacity to infiltrate the vascular wall. Lastly, the structural basis for apoE isoform-specific effects in macrophage dysfunction and atherosclerosis susceptibility is beginning to emerge. SUMMARY Collectively, these findings introduce a new dimension to our understanding of how apoE links lipoprotein biology to monocyte and macrophage function in atherosclerosis susceptibility.
Collapse
Affiliation(s)
- Robert L Raffai
- Department of Surgery, University of California San Francisco, and Veterans Affairs Medical Center, San Francisco, California 94121, USA.
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW This review highlights the diverse roles of the high-affinity HDL receptor scavenger receptor class B, type I (SR-BI) in the modulation of global cholesterol homeostasis and vascular cell function, and the potential implications of these processes in atherosclerosis. RECENT FINDINGS SR-BI in the liver plays a critical role in reverse cholesterol transport and it dramatically impacts the characteristics of the HDL particle, and through reverse cholesterol transport it promotes an antiatherogenic lipid environment in the vascular wall. SR-BI in macrophages may influence their inflammatory phenotype. In endothelial cells, SR-BI mediates HDL-induced endothelial nitric oxide synthase activation and proliferation and migration, and in platelets SR-BI may be prothrombotic in the setting of dyslipidemia. Several polymorphisms of SR-BI have been reported in humans that influence receptor expression or function. SUMMARY In addition to regulating global lipid metabolism, SR-BI influences the functions of a variety of vascular cells relevant to atherosclerosis. Studies of SR-BI genetics in humans partially support the conclusions drawn from experimental models. However, because of the multiple functions of SR-BI, the diversity of cell types in which it is expressed, and the influence of the receptor on the characteristics of its own ligand, our understanding of the biology of the receptor is just emerging.
Collapse
Affiliation(s)
- Chieko Mineo
- Division of Pulmonary and Vascular Biology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9063, USA.
| | | |
Collapse
|
34
|
Norata GD. Established and emerging approaches for the management of dyslipidaemia. SCIENTIFICA 2012; 2012:482423. [PMID: 24278703 PMCID: PMC3820450 DOI: 10.6064/2012/482423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 08/26/2012] [Indexed: 06/02/2023]
Abstract
The key role of dyslipidaemia in determining cardiovascular disease (CVD) has been proved beyond reasonable doubt, and therefore several dietary and pharmacological approaches have been developed. The discovery of statins has provided a very effective approach in reducing cardiovascular risk as documented by the results obtained in clinical trials and in clinical practice. The current efficacy of statins or other drugs, however, comes short of providing the benefit that could derive from a further reduction of LDL cholesterol (LDL-C) in high-risk and very high risk patients. Furthermore, experimental data clearly suggest that other lipoprotein classes beyond LDL play important roles in determining cardiovascular risk. For these reasons a number of new potential drugs are under development in this area. Aim of this review is to discuss the available and the future pharmacological strategies for the management of dyslipidemia.
Collapse
Affiliation(s)
- Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano 20122 Milan, Italy
- Center for the Study of Atherosclerosis, Società Italiana Studio Aterosclerosi, Ospedale Bassini, 20092 Cinisello Balsamo, Italy
- Centre for Diabetes, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University, London E12AT, UK
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW HDL cholesterol concentration is inversely correlated with cardiovascular disease and has a wide range of functions involved in many systems. The purpose of this review is to summarize HDL functionality, its relevance to atherosclerosis and factors affecting HDL functions. RECENT FINDINGS The contribution of HDL to reverse cholesterol transport may not be as great as first envisaged. However, it still plays an important role in cholesterol efflux from peripheral tissues. The capacity of HDL to promote cellular cholesterol efflux in an ex-vivo model has been reported to correlate more closely with carotid intima-media thickness than HDL cholesterol concentration. Recently, a variety of other functions of HDL have been described including antimicrobial, antioxidant, antiglycation, anti-inflammatory, nitric oxide--inducing, antithrombotic and antiatherogenic activity and immune modulation as well as a potential role in glucose homeostasis, diabetes pathophysiology and complications. SUMMARY HDL has a wide range of functions some of which are independent of its cholesterol content. Its cargo of apolipoproteins, various proteins and phospholipids contributes most to its various functions. These functions are affected by a number of genetic, physiological and pathological factors.
Collapse
Affiliation(s)
- Handrean Soran
- University Department of Medicine, Central Manchester and Manchester Children University Hospital NHS Foundation Trust, School of Biomedicine, University of Manchester, Manchester, UK
| | | | | | | |
Collapse
|
36
|
Yu BL, Wu CL, Zhao SP. Plasma apolipoprotein O level increased in the patients with acute coronary syndrome. J Lipid Res 2012; 53:1952-7. [PMID: 22693255 PMCID: PMC3413234 DOI: 10.1194/jlr.p023028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Apolipoprotein (apo) O is a novel apolipoprotein that is present predominantly in
high density lipoprotein (HDL). However, overexpression of apoO does not impact on
plasma HDL levels or functionality in human apoA-I transgenic mice. Thus, the
physiological function of apoO is not yet known. In the present study, we
investigated relationships between plasma apoO levels and high-sensitive C-reactive
protein (hs-CRP) levels, as well as other lipid parameters in healthy subjects (n
= 111) and patients with established acute coronary syndrome (ACS) (n =
50). ApoO was measured by the sandwich dot-blot technique with recombinant apoO as a
protein standard. Mean apoO level in healthy subjects was 2.21 ± 0.83
µg/ml whereas it was 4.94 ± 1.59 µg/ml in ACS patients. There were
significant differences in plasma level of apoO between two groups
(P < 0.001). In univariate analysis, apoO correlated
significantly with lg(hsCRP) (r = 0.48, P
< 0.001) in ACS patients. Notably, no significant correlation between apoO and
other lipid parameters was observed. Logistic regression analysis showed that plasma
apoO level was an independent predictor of ACS (OR = 5.61, 95% CI
2.16–14.60, P < 0.001). In conclusion, apoO increased in
ACS patients, and may be regarded as an independent inflammatory predictor of ACS
patients.
Collapse
Affiliation(s)
- Bi-lian Yu
- Department of Cardiology, Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China
| | | | | |
Collapse
|