1
|
Shao X, Le Fur S, Cheung W, Belot MP, Perge K, Bouhours-Nouet N, Bensignor C, Levaillant L, Ge B, Kwan T, Lathrop M, Pastinen T, Bougnères P. CpG methylation changes associated with hyperglycemia in type 1 diabetes occur at angiogenic glomerular and retinal gene loci. Sci Rep 2025; 15:15999. [PMID: 40341532 PMCID: PMC12062505 DOI: 10.1038/s41598-024-82698-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 12/09/2024] [Indexed: 05/10/2025] Open
Abstract
Chronic hyperglycemia is a major risk factor for glomerular or retinal microangiopathy and cardiovascular complications of type 1 diabetes (T1D). At the interface of genetics and environment, dynamic epigenetic changes associated with hyperglycemia may unravel some of the mechanisms contributing to these T1D complications. In this study, blood samples were collected from 112 young patients at T1D diagnosis and 3 years later in average. Whole genome-wide bisulfite sequencing was used to measure blood DNA methylation changes of about 28 million CpGs at single base resolution over this time. Chronic hyperglycemia was estimated every 3-4 months by HbA1c measurement. Linear regressions with adjustment to age, sex, treatment duration, blood proportions and batch effects were employed to characterize the relationships between the dynamic changes of DNA methylation and average HbA1c levels. We identified that longitudinal DNA methylation changes at 815 CpGs (with suggestive p-value threshold of 1e-4) were associated with average HbA1c. Most of them (> 98%) were located outside of the promoter regions and were enriched in CpG island shores and multiple immune cell type specific accessible chromatin regions. Among the 36 more strongly associated loci (p-value < 5e-6), 16 were harbouring genes or non-coding sequences involved in angiogenesis regulation, glomerular and retinal vascularization or development, or coronary disease. Our findings support the identification of new genomic sites where CpG methylation associated with hyperglycemia may contribute to long-term complications of T1D, shedding light on potential mechanisms for further exploration.
Collapse
Affiliation(s)
- Xiaojian Shao
- Digital Technologies Research Center, National Research Council Canada, Ottawa, ON, K1A 0R6, Canada.
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| | - Sophie Le Fur
- Groupe d'Études Diabète-Obésité-Croissance, Assoc1901, Chaville, 92370, France
| | - Warren Cheung
- Genomic Medicine Center, Children's Mercy - Kansas City and Children's Mercy Research Institute, Kansas City, MO, 64108, USA
| | - Marie-Pierre Belot
- Groupe d'Études Diabète-Obésité-Croissance, Assoc1901, Chaville, 92370, France
| | - Kevin Perge
- Endocrinologie Pédiatrique, Hôpital Mère Enfant, 69677, Lyon, Bron, France
| | - Natacha Bouhours-Nouet
- Endocrinologie et diabétologie pédiatriques , Hôpital universitaire, Angers Cedex 9, 49933, France
| | | | - Lucie Levaillant
- Endocrinologie et diabétologie pédiatriques , Hôpital universitaire, Angers Cedex 9, 49933, France
| | - Bing Ge
- Department of Human Genetics, McGill University and McGill Genome Center, Montreal, QC, H3A 0G1, Canada
| | - Tony Kwan
- Department of Human Genetics, McGill University and McGill Genome Center, Montreal, QC, H3A 0G1, Canada
| | - Mark Lathrop
- Department of Human Genetics, McGill University and McGill Genome Center, Montreal, QC, H3A 0G1, Canada
| | - Tomi Pastinen
- Genomic Medicine Center, Children's Mercy - Kansas City and Children's Mercy Research Institute, Kansas City, MO, 64108, USA
| | - Pierre Bougnères
- Groupe d'Études Diabète-Obésité-Croissance, Assoc1901, Chaville, 92370, France.
| |
Collapse
|
2
|
Ahmadi M, Ghafouri-Fard S, Najari-Hanjani P, Morshedzadeh F, Malakoutian T, Abbasi M, Akbari H, Amoli MM, Saffarzadeh N. "Hyperglycemic Memory": Observational Evidence to Experimental Inference. Curr Diabetes Rev 2025; 21:64-78. [PMID: 38369731 DOI: 10.2174/0115733998279869231227091944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/01/2023] [Accepted: 11/29/2023] [Indexed: 02/20/2024]
Abstract
Several epidemiological studies have appreciated the impact of "duration" and "level" of hyperglycemia on the initiation and development of chronic complications of diabetes. However, glycemic profiles could not fully explain the presence/absence and severity of diabetic complications. Genetic issues and concepts of "hyperglycemic memory" have been introduced as additional influential factors involved in the pathobiology of late complications of diabetes. In the extended phase of significant diabetes randomized, controlled clinical trials, including DCCT/EDIC and UKPDS, studies have concluded that the quality of glycemic or metabolic control at the early time around the diabetes onset could maintain its protective or detrimental impact throughout the following diabetes course. There is no reliable indication of the mechanism by which the transient exposure to a given glucose concentration level could evoke a consistent cellular response at target tissues at the molecular levels. Some biological phenomena, such as the production and the concentration of advanced glycation end products (AGEs), reactive oxygen species (ROS) and protein kinase C (PKC) pathway activations, epigenetic changes, and finally, the miRNAs-mediated pathways, may be accountable for the development of hyperglycemic memory. This work summarizes evidence from previous experiments that may substantiate the hyperglycemic memory soundness by its justification in molecular terms.
Collapse
Affiliation(s)
- Mohsen Ahmadi
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Najari-Hanjani
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Firouzeh Morshedzadeh
- Department of Genetics, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Tahereh Malakoutian
- Department of Nephrology, Hasheminejad Kidney Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Abbasi
- Department of Emergency Medicine, Iran University of Medical Sciences, Tehran, Iran
- Hasheminejad Kidney Centre, Iran University of Medical Sciences, Anesthesiology Section, Tehran, Iran
| | - Hounaz Akbari
- Department of Nephrology, Hasheminejad Kidney Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Mohammad Amoli
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Negin Saffarzadeh
- Department of Nephrology, Hasheminejad Kidney Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Almohtasib Y, Fancher AJ, Sawalha K. Emerging Trends in Atherosclerosis: Time to Address Atherosclerosis From a Younger Age. Cureus 2024; 16:e56635. [PMID: 38646335 PMCID: PMC11032087 DOI: 10.7759/cureus.56635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 04/23/2024] Open
Abstract
Over the past two decades, research efforts into cardiovascular disease (CVD) have uncovered findings that fundamentally challenge our understanding of CVD, particularly atherosclerosis. Atherosclerosis was primarily attributed to the well-described abnormal lipid accumulation theory, involving plaque growth with subsequent plaque hemorrhage resulting in acute vessel thrombosis that may or may not rupture. This perspective has now evolved to encompass more complex pathways, wherein the accumulation of abnormal products of oxidation and inflammation is the most likely factor mediating atherosclerotic plaque growth. Furthermore, atherosclerosis was traditionally thought of as a disease in patients aged 40 and older. However, mounting evidence has demonstrated that significant atherosclerosis and CVD events are more prevalent in younger patients than previously realized and accelerating in incidence. With this alarming trend among younger individuals, our review sought to explore why this trend may be happening and what can be done about this developing problem.
Collapse
Affiliation(s)
- Yazan Almohtasib
- Internal Medicine, University of Missouri Kansas City School of Medicine, Kansas City, USA
| | - Andrew J Fancher
- Internal Medicine, University of Kansas School of Medicine-Wichita, Wichita, USA
| | - Khalid Sawalha
- Cardiometabolic Medicine, University of Missouri Kansas City School of Medicine, Kansas City, USA
| |
Collapse
|
4
|
Huang J, Yang F, Liu Y, Wang Y. N6-methyladenosine RNA methylation in diabetic kidney disease. Biomed Pharmacother 2024; 171:116185. [PMID: 38237350 DOI: 10.1016/j.biopha.2024.116185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/13/2024] [Accepted: 01/16/2024] [Indexed: 02/08/2024] Open
Abstract
Diabetic kidney disease (DKD) is a major microvascular complication of diabetes, and hyperglycemic memory associated with diabetes carries the risk of disease occurrence, even after the termination of blood glucose injury. The existence of hyperglycemic memory supports the concept of an epigenetic mechanism involving n6-methyladenosine (m6A) modification. Several studies have shown that m6A plays a key role in the pathogenesis of DKD. This review addresses the role and mechanism of m6A RNA modification in the progression of DKD, including the regulatory role of m6A modification in pathological processes, such as inflammation, oxidative stress, fibrosis, and non-coding (nc) RNA. This reveals the importance of m6A in the occurrence and development of DKD, suggesting that m6A may play a role in hyperglycemic memory phenomenon. This review also discusses how some gray areas, such as m6A modified multiple enzymes, interact to affect the development of DKD and provides countermeasures. In conclusion, this review enhances our understanding of DKD from the perspective of m6A modifications and provides new targets for future therapeutic strategies. In addition, the insights discussed here support the existence of hyperglycemic memory effects in DKD, which may have far-reaching implications for the development of novel treatments. We hypothesize that m6A RNA modification, as a key factor regulating the development of DKD, provides a new perspective for the in-depth exploration of DKD and provides a novel option for the clinical management of patients with DKD.
Collapse
Affiliation(s)
- Jiaan Huang
- Hebei Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Liver and Kidney Diseases, Shijiazhuang 05000, China; Hebei University of Traditional Chinese Medicine, NO.326, Xinshi South Road, Qiaoxi District, Shijiazhuang 05000, China
| | - Fan Yang
- Hebei Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Liver and Kidney Diseases, Shijiazhuang 05000, China; Hebei University of Traditional Chinese Medicine, NO.326, Xinshi South Road, Qiaoxi District, Shijiazhuang 05000, China
| | - Yan Liu
- Hebei Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Liver and Kidney Diseases, Shijiazhuang 05000, China; Hebei University of Traditional Chinese Medicine, NO.326, Xinshi South Road, Qiaoxi District, Shijiazhuang 05000, China
| | - Yuehua Wang
- Hebei Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Liver and Kidney Diseases, Shijiazhuang 05000, China; Hebei University of Traditional Chinese Medicine, NO.326, Xinshi South Road, Qiaoxi District, Shijiazhuang 05000, China.
| |
Collapse
|
5
|
Sawalha K, Norgard N, López-Candales A. Epigenetic Regulation and its Effects on Aging and Cardiovascular Disease. Cureus 2023; 15:e39395. [PMID: 37362531 PMCID: PMC10286850 DOI: 10.7759/cureus.39395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Cardiovascular disease (CVD), specifically coronary atherosclerosis, is regulated by an interplay between genetic and lifestyle factors. Most recently, a factor getting much attention is the role epigenetics play in atherosclerosis; particularly the development of coronary artery disease. Furthermore, it is important to understand the intricate interaction between the environment and each individual genetic material and how this interaction affects gene expression and consequently influences the development of atherosclerosis. Our main goal is to discuss epigenetic regulations; particularly, the factors contributing to coronary atherosclerosis and their role in aging and longevity. We reviewed the current literature and provided a simplified yet structured and reasonable appraisal of this topic. This role has also been recently linked to longevity and aging. Epigenetic regulations (modifications) whether through histone modifications or DNA or RNA methylation have been shown to be regulated by environmental factors such as social stress, smoking, chemical contaminants, and diet. These sensitive interactions are further aggravated by racial health disparities that ultimately impact cardiovascular disease outcomes through epigenetic interactions. Certainly, limiting our exposure to such causative events at younger ages seems our "golden opportunity" to tackle the incidence of coronary atherosclerosis and probably the answer to longevity.
Collapse
Affiliation(s)
- Khalid Sawalha
- Cardiometabolic Diseases, Truman Medical Centers - University of Missouri Kansas City, Kansas City, USA
| | - Nicholas Norgard
- Pharmacology and Therapeutics, Truman Medical Centers - University of Missouri Kansas City, Kansas City, USA
| | | |
Collapse
|
6
|
Bharmal SH, Cho J, Ko J, Petrov MS. Glucose variability during the early course of acute pancreatitis predicts two‐year probability of new‐onset diabetes: A prospective longitudinal cohort study. United European Gastroenterol J 2022; 10:179-189. [PMID: 35188346 PMCID: PMC8911543 DOI: 10.1002/ueg2.12190] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022] Open
Abstract
Background Acute pancreatitis (AP) is the largest contributor to diabetes of the exocrine pancreas. However, there is no accurate predictor at the time of hospitalisation for AP to identify individuals at high risk for new‐onset diabetes. Objective To investigate the accuracy of indices of glucose variability (GV) during the early course of AP in predicting the glycated haemoglobin (HbA1c) trajectories during follow‐up. Methods This was a prospective longitudinal cohort study of patients without diabetes at the time of hospitalisation for AP. Fasting blood glucose was regularly measured over the first 72 h of hospital admission. The study endpoint was the HbA1c trajectories ‐ high‐increasing, moderate‐stable, normal‐stable ‐ over two years of follow‐up. Multinomial logistic regression analyses were conducted to investigate the associations between several common GV indices and the HbA1c trajectories, adjusting for covariates (age, sex, and body mass index). A sensitivity analysis constrained to patients with non‐necrotising AP was conducted. Results A total of 120 consecutive patients were studied. All patients in the high‐increasing HbA1c trajectory group had new‐onset diabetes at 18 and 24 months of follow‐up. Glycaemic lability index had the strongest significant direct association (adjusted odds ratio = 13.69; p = 0.040) with the high‐increasing HbA1c trajectory. High admission blood glucose, standard deviation of blood glucose, and average real variability significantly increased the patients' odds of taking the high‐increasing HbA1c trajectory by at least two‐times. Admission blood glucose, but not the other GV indices, had a significant direct association (adjusted odds ratio = 1.46; p = 0.034) with the moderate‐stable HbA1c trajectory. The above findings did not change materially in patients with non‐necrotising AP alone. Conclusions High GV during the early course of AP gives a prescient warning of worsening HbA1c pattern and new‐onset diabetes after hospital discharge. Determining GV during hospitalisation could be a relatively straightforward approach to early identification of individuals at high risk for new‐onset diabetes after AP.
Collapse
Affiliation(s)
| | - Jaelim Cho
- School of Medicine University of Auckland Auckland New Zealand
| | - Juyeon Ko
- School of Medicine University of Auckland Auckland New Zealand
| | - Maxim S. Petrov
- School of Medicine University of Auckland Auckland New Zealand
| |
Collapse
|
7
|
Sharma R, Sharma S, Thakur A, Singh A, Singh J, Nepali K, Liou JP. The Role of Epigenetic Mechanisms in Autoimmune, Neurodegenerative, Cardiovascular, and Imprinting Disorders. Mini Rev Med Chem 2022; 22:1977-2011. [PMID: 35176978 DOI: 10.2174/1389557522666220217103441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/01/2021] [Accepted: 11/11/2021] [Indexed: 11/22/2022]
Abstract
Epigenetic mutations like aberrant DNA methylation, histone modifications, or RNA silencing are found in a number of human diseases. This review article discusses the epigenetic mechanisms involved in neurodegenerative disorders, cardiovascular disorders, auto-immune disorder, and genomic imprinting disorders. In addition, emerging epigenetic therapeutic strategies for the treatment of such disorders are presented. Medicinal chemistry campaigns highlighting the efforts of the chemists invested towards the rational design of small molecule inhibitors have also been included. Pleasingly, several classes of epigenetic inhibitors, DNMT, HDAC, BET, HAT, and HMT inhibitors along with RNA based therapies have exhibited the potential to emerge as therapeutics in the longer run. It is quite hopeful that epigenetic modulator-based therapies will advance to clinical stage investigations by leaps and bounds.
Collapse
Affiliation(s)
- Ram Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Sachin Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Arshdeep Singh
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Jagjeet Singh
- School of Pharmacy, University of Queensland, Brisbane, QLD, Australia.,Department of Pharmacy, Rayat-Bahara Group of Institutes, Hoshiarpur, India
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Jing Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
8
|
Abstract
Diabetic nephropathy (DN), which is a common microvascular complication with a high incidence in diabetic patients, greatly increases the mortality of patients. With further study on DN, it is found that epigenetics plays a crucial role in the pathophysiological process of DN. Epigenetics has an important impact on the development of DN through a variety of mechanisms, and promotes the generation and maintenance of metabolic memory, thus ultimately leading to a poor prognosis. In this review we discuss the methylation of DNA, modification of histone, and regulation of non-coding RNA involved in the progress of cell dysfunction, inflammation and fibrosis in the kidney, which ultimately lead to the deterioration of DN.
Collapse
|
9
|
Mossel DM, Moganti K, Riabov V, Weiss C, Kopf S, Cordero J, Dobreva G, Rots MG, Klüter H, Harmsen MC, Kzhyshkowska J. Epigenetic Regulation of S100A9 and S100A12 Expression in Monocyte-Macrophage System in Hyperglycemic Conditions. Front Immunol 2020; 11:1071. [PMID: 32582175 PMCID: PMC7280556 DOI: 10.3389/fimmu.2020.01071] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
The number of diabetic patients in Europe and world-wide is growing. Diabetes confers a 2-fold higher risk for vascular disease. Lack of insulin production (Type 1 diabetes, T1D) or lack of insulin responsiveness (Type 2 diabetes, T2D) causes systemic metabolic changes such as hyperglycemia (HG) which contribute to the pathology of diabetes. Monocytes and macrophages are key innate immune cells that control inflammatory reactions associated with diabetic vascular complications. Inflammatory programming of macrophages is regulated and maintained by epigenetic mechanisms, in particular histone modifications. The aim of our study was to identify the epigenetic mechanisms involved in the hyperglycemia-mediated macrophage activation. Using Affymetrix microarray profiling and RT-qPCR we identified that hyperglycemia increased the expression of S100A9 and S100A12 in primary human macrophages. Expression of S100A12 was sustained after glucose levels were normalized. Glucose augmented the response of macrophages to Toll-like receptor (TLR)-ligands Palmatic acid (PA) and Lipopolysaccharide (LPS) i.e., pro-inflammatory stimulation. The abundance of activating histone Histone 3 Lysine 4 methylation marks (H3K4me1, H3K4me3) and general acetylation on histone 3 (AceH3) with the promoters of these genes was analyzed by chromatin immunoprecipitation. Hyperglycemia increased acetylation of histones bound to the promoters of S100A9 and S100A12 in M1 macrophages. In contrast, hyperglycemia caused a reduction in total H3 which correlated with the increased expression of both S100 genes. The inhibition of histone methyltransferases SET domain-containing protein (SET)7/9 and SET and MYND domain-containing protein (SMYD)3 showed that these specifically regulated S100A12 expression. We conclude that hyperglycemia upregulates expression of S100A9, S100A12 via epigenetic regulation and induces an activating histone code on the respective gene promoters in M1 macrophages. Mechanistically, this regulation relies on action of histone methyltransferases SMYD3 and SET7/9. The results define an important role for epigenetic regulation in macrophage mediated inflammation in diabetic conditions.
Collapse
Affiliation(s)
- Dieuwertje M Mossel
- Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Heidelberg University, Mannheim, Germany
| | - Kondaiah Moganti
- Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Heidelberg University, Mannheim, Germany.,Department of Dermatology, University of Münster, Münster, Germany
| | - Vladimir Riabov
- Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Heidelberg University, Mannheim, Germany
| | - Christel Weiss
- Department of Medical Statistics, Biomathematics and Information Processing, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stefan Kopf
- Department of Medicine I: Endocrinology and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
| | - Julio Cordero
- Anatomy and Developmental Biology, CBTM, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Gergana Dobreva
- Anatomy and Developmental Biology, CBTM, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Marianne G Rots
- Department Pathology and Medical Biology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Harald Klüter
- Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Heidelberg University, Mannheim, Germany.,German Red Cross Blood Service Baden-Württemberg - Hessen, Mannheim, Germany
| | - Martin C Harmsen
- Department Pathology and Medical Biology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Julia Kzhyshkowska
- Medical Faculty Mannheim, Institute of Transfusion Medicine and Immunology, Heidelberg University, Mannheim, Germany.,German Red Cross Blood Service Baden-Württemberg - Hessen, Mannheim, Germany
| |
Collapse
|
10
|
Christ A, Lauterbach M, Latz E. Western Diet and the Immune System: An Inflammatory Connection. Immunity 2020; 51:794-811. [PMID: 31747581 DOI: 10.1016/j.immuni.2019.09.020] [Citation(s) in RCA: 506] [Impact Index Per Article: 101.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/24/2019] [Accepted: 09/24/2019] [Indexed: 02/06/2023]
Abstract
The consumption of Western-type calorically rich diets combined with chronic overnutrition and a sedentary lifestyle in Western societies evokes a state of chronic metabolic inflammation, termed metaflammation. Metaflammation contributes to the development of many prevalent non-communicable diseases (NCDs), and these lifestyle-associated pathologies represent a rising public health problem with global epidemic dimensions. A better understanding of how modern lifestyle and Western diet (WD) activate immune cells is essential for the development of efficient preventive and therapeutic strategies for common NCDs. Here, we review the current mechanistic understanding of how the Western lifestyle can induce metaflammation, and we discuss how this knowledge can be translated to protect the public from the health burden associated with their selected lifestyle.
Collapse
Affiliation(s)
- Anette Christ
- Institute of Innate Immunity, University Hospital Bonn, University of Bonn, Bonn 53127, Germany; Department of Infectious Diseases & Immunology, UMass Medical School, Worcester, MA 01605, USA
| | - Mario Lauterbach
- Institute of Innate Immunity, University Hospital Bonn, University of Bonn, Bonn 53127, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital Bonn, University of Bonn, Bonn 53127, Germany; Department of Infectious Diseases & Immunology, UMass Medical School, Worcester, MA 01605, USA; Center of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim 7491, Norway; German Center for Neurodegenerative Diseases (DZNE), Bonn 53127, Germany.
| |
Collapse
|
11
|
Reactive oxygen species (ROS) in macrophage activation and function in diabetes. Immunobiology 2018; 224:242-253. [PMID: 30739804 DOI: 10.1016/j.imbio.2018.11.010] [Citation(s) in RCA: 374] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 12/14/2022]
Abstract
In a diabetic milieu high levels of reactive oxygen species (ROS) are induced. This contributes to the vascular complications of diabetes. Recent studies have shown that ROS formation is exacerbated in diabetic monocytes and macrophages due to a glycolytic metabolic shift. Macrophages are important players in the progression of diabetes and promote inflammation through the release of pro-inflammatory cytokines and proteases. Because ROS is an important mediator for the activation of pro-inflammatory signaling pathways, obesity and hyperglycemia-induced ROS production may favor induction of M1-like pro-inflammatory macrophages during diabetes onset and progression. ROS induces MAPK, STAT1, STAT6 and NFκB signaling, and interferes with macrophage differentiation via epigenetic (re)programming. Therefore, a comprehensive understanding of the impact of ROS on macrophage phenotype and function is needed in order to improve treatment of diabetes and its vascular complications. In the current comprehensive review, we dissect the role of ROS in macrophage polarization, and analyze how ROS production links metabolism and inflammation in diabetes and its complications. Finally, we discuss the contribution of ROS to the crosstalk between macrophages and endothelial cells in diabetic complications.
Collapse
|
12
|
Abstract
Obesity is a complex disease which has reached epidemic dimensions. Thus, prevention of excessive weight gain and associated metabolic and cardiovascular diseases has to start as early in life as possible. The impact of epigenetic mechanisms on the regulation of genes involved in obesity is increasingly recognized. On the other hand, it is well known that socioeconomic factors influence the risk for obesity. These factors can also have an impact on epigenetic gene regulation. There is increasing body of evidence that several factors and interventions addressing extragenetic causes of obesity may not only improve individual health, but also the health of future generations by epigenetic alterations. Our current understanding of epigenetic changes has shown that many of them are potentially reversible, i.e. by physical exercise, by pharmacological treatment, by environmental factors or nutrition, or even by influencing socioeconomic factors, which might have impact on improving health in future generations by avoiding epigenetic dysregulation. In this review we present the current state of the art with regard to the interplay between social determinants, weight status and epigenetic alterations.
Collapse
Affiliation(s)
- Susann Weihrauch-Blüher
- Department of Pediatrics I, University Hospital of the Martin Luther University Halle-Wittenberg, Germany; Leipzig University Medical Center, IFB Adiposity Diseases, University of Leipzig, Germany.
| | - Matthias Richter
- Institute of Medical Sociology, Martin Luther University Halle-Wittenberg, Germany
| | - Martin S Staege
- Department of Pediatrics I, University Hospital of the Martin Luther University Halle-Wittenberg, Germany
| |
Collapse
|
13
|
Perrino C, Barabási AL, Condorelli G, Davidson SM, De Windt L, Dimmeler S, Engel FB, Hausenloy DJ, Hill JA, Van Laake LW, Lecour S, Leor J, Madonna R, Mayr M, Prunier F, Sluijter JPG, Schulz R, Thum T, Ytrehus K, Ferdinandy P. Epigenomic and transcriptomic approaches in the post-genomic era: path to novel targets for diagnosis and therapy of the ischaemic heart? Position Paper of the European Society of Cardiology Working Group on Cellular Biology of the Heart. Cardiovasc Res 2018; 113:725-736. [PMID: 28460026 PMCID: PMC5437366 DOI: 10.1093/cvr/cvx070] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 04/27/2017] [Indexed: 01/19/2023] Open
Abstract
Despite advances in myocardial reperfusion therapies, acute myocardial ischaemia/reperfusion injury and consequent ischaemic heart failure represent the number one cause of morbidity and mortality in industrialized societies. Although different therapeutic interventions have been shown beneficial in preclinical settings, an effective cardioprotective or regenerative therapy has yet to be successfully introduced in the clinical arena. Given the complex pathophysiology of the ischaemic heart, large scale, unbiased, global approaches capable of identifying multiple branches of the signalling networks activated in the ischaemic/reperfused heart might be more successful in the search for novel diagnostic or therapeutic targets. High-throughput techniques allow high-resolution, genome-wide investigation of genetic variants, epigenetic modifications, and associated gene expression profiles. Platforms such as proteomics and metabolomics (not described here in detail) also offer simultaneous readouts of hundreds of proteins and metabolites. Isolated omics analyses usually provide Big Data requiring large data storage, advanced computational resources and complex bioinformatics tools. The possibility of integrating different omics approaches gives new hope to better understand the molecular circuitry activated by myocardial ischaemia, putting it in the context of the human ‘diseasome’. Since modifications of cardiac gene expression have been consistently linked to pathophysiology of the ischaemic heart, the integration of epigenomic and transcriptomic data seems a promising approach to identify crucial disease networks. Thus, the scope of this Position Paper will be to highlight potentials and limitations of these approaches, and to provide recommendations to optimize the search for novel diagnostic or therapeutic targets for acute ischaemia/reperfusion injury and ischaemic heart failure in the post-genomic era.
Collapse
Affiliation(s)
- Cinzia Perrino
- Department of Advanced Biomedical Sciences, Federico II University, Via Pansini 5, 80131 Naples, Italy
| | - Albert-Laszló Barabási
- Center for Complex Networks Research and Department of Physics, Northeastern University, Boston, MA, USA.,Center for Cancer Systems Biology (CCSB) and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Center for Network Science, Central European University, Budapest, Hungary.,Department of Medicine, and Division of Network Medicine, Brigham and Womens Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Gianluigi Condorelli
- Department of Cardiovascular Medicine, Humanitas Research Hospital and Humanitas University, Rozzano, Italy.,Institute of Genetic and Biomedical Research, National Research Council of Italy, Rozzano, Milan, Italy
| | - Sean Michael Davidson
- The Hatter Cardiovascular Institute, Institute of Cardiovascular Science, University College London, London, UK
| | - Leon De Windt
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Stefanie Dimmeler
- Institute for Cardiovascular Regeneration, University Frankfurt, Frankfurt, Germany.,German Center for Cardiovascular Research (DZHK), RheinMain, Germany
| | - Felix Benedikt Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Derek John Hausenloy
- The Hatter Cardiovascular Institute, University College London, London, UK.,The National Institute of Health Research University College London Hospitals Biomedical Research Centre, London, UK.,Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore, Singapore.,National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore.,Yong Loo Lin School of Medicine, National University Singapore, Singapore.,Barts Heart Centre, St Bartholomew's Hospital, London, UK
| | - Joseph Addison Hill
- Departments of Medicine (Cardiology) and Molecular Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Linda Wilhelmina Van Laake
- Division of Heart and Lungs, Hubrecht Institute, University Medical Center Utrecht, Utrecht, The Netherlands.,UMC Utrecht Regenerative Medicine Center and Hubrecht Institute, Utrecht, The Netherlands
| | - Sandrine Lecour
- Hatter Cardiovascular Research Institute, University of Cape Town, Cape Town, South Africa
| | - Jonathan Leor
- Neufeld Cardiac Research Institute, Tel-Aviv University, Tel-Aviv, Israel.,Tamman Cardiovascular Research Institute, Sheba Medical Center; Sheba Center for Regenerative Medicine, Stem Cell, and Tissue Engineering, Tel Hashomer, Israel
| | - Rosalinda Madonna
- Center of Aging Sciences and Translational Medicine - CESI-MeT, "G. d'Annunzio" University, Chieti, Italy; Institute of Cardiology, Department of Neurosciences, Imaging, and Clinical Sciences, "G. d'Annunzio" University, Chieti, Italy.,The Texas Heart Institute and Center for Cardiovascular Biology and Atherosclerosis Research, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Manuel Mayr
- King's British Heart Foundation Centre, King's College London, London, UK
| | - Fabrice Prunier
- Department of Cardiology, Institut MITOVASC, University of Angers, University Hospital of Angers, Angers, France
| | - Joost Petrus Geradus Sluijter
- Cardiology and UMC Utrecht Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rainer Schulz
- Institute of Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany
| | - Kirsti Ytrehus
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary.,Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Szeged, Hungary.,Pharmahungary Group, Szeged, Hungary
| |
Collapse
|
14
|
Spallotta F, Cencioni C, Atlante S, Garella D, Cocco M, Mori M, Mastrocola R, Kuenne C, Guenther S, Nanni S, Azzimato V, Zukunft S, Kornberger A, Sürün D, Schnütgen F, von Melchner H, Di Stilo A, Aragno M, Braspenning M, van Criekinge W, De Blasio MJ, Ritchie RH, Zaccagnini G, Martelli F, Farsetti A, Fleming I, Braun T, Beiras-Fernandez A, Botta B, Collino M, Bertinaria M, Zeiher AM, Gaetano C. Stable Oxidative Cytosine Modifications Accumulate in Cardiac Mesenchymal Cells From Type2 Diabetes Patients. Circ Res 2018; 122:31-46. [DOI: 10.1161/circresaha.117.311300] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 11/10/2017] [Accepted: 11/16/2017] [Indexed: 12/17/2022]
Abstract
Rationale:
Human cardiac mesenchymal cells (CMSCs) are a therapeutically relevant primary cell population. Diabetes mellitus compromises CMSC function as consequence of metabolic alterations and incorporation of stable epigenetic changes.
Objective:
To investigate the role of α-ketoglutarate (αKG) in the epimetabolic control of DNA demethylation in CMSCs.
Methods and Results:
Quantitative global analysis, methylated and hydroxymethylated DNA sequencing, and gene-specific GC methylation detection revealed an accumulation of 5-methylcytosine, 5-hydroxymethylcytosine, and 5-formylcytosine in the genomic DNA of human CMSCs isolated from diabetic donors. Whole heart genomic DNA analysis revealed iterative oxidative cytosine modification accumulation in mice exposed to high-fat diet (HFD), injected with streptozotocin, or both in combination (streptozotocin/HFD). In this context, untargeted and targeted metabolomics indicated an intracellular reduction of αKG synthesis in diabetic CMSCs and in the whole heart of HFD mice. This observation was paralleled by a compromised TDG (thymine DNA glycosylase) and TET1 (ten–eleven translocation protein 1) association and function with TET1 relocating out of the nucleus. Molecular dynamics and mutational analyses showed that αKG binds TDG on Arg275 providing an enzymatic allosteric activation. As a consequence, the enzyme significantly increased its capacity to remove G/T nucleotide mismatches or 5-formylcytosine. Accordingly, an exogenous source of αKG restored the DNA demethylation cycle by promoting TDG function, TET1 nuclear localization, and TET/TDG association. TDG inactivation by CRISPR/Cas9 knockout or TET/TDG siRNA knockdown induced 5-formylcytosine accumulation, thus partially mimicking the diabetic epigenetic landscape in cells of nondiabetic origin. The novel compound (S)-2-[(2,6-dichlorobenzoyl)amino]succinic acid (AA6), identified as an inhibitor of αKG dehydrogenase, increased the αKG level in diabetic CMSCs and in the heart of HFD and streptozotocin mice eliciting, in HFD, DNA demethylation, glucose uptake, and insulin response.
Conclusions:
Restoring the epimetabolic control of DNA demethylation cycle promises beneficial effects on cells compromised by environmental metabolic changes.
Collapse
Affiliation(s)
- Francesco Spallotta
- From the Goethe University, Frankfurt am Main, Germany (F. Spallotta, C.C., S.A., S.Z., D.S., F. Schnütgen, H.v.M., A.F., I.F., A.M.Z., C.G.); University of Turin, Torino, Italy (D.G., M. Cocco, R.M., A.D.S., M.A., M. Collino, M. Bertinaria); Istituto Italiano di Tecnologia CLNS@Sapienza Rome, Italy (M.M.); Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (C.K., S.G., T.B.); Università Cattolica del Sacro Cuore, Rome, Italy (S.N.); Karolinska Institutet, Huddinge, Sweden (V.A
| | - Chiara Cencioni
- From the Goethe University, Frankfurt am Main, Germany (F. Spallotta, C.C., S.A., S.Z., D.S., F. Schnütgen, H.v.M., A.F., I.F., A.M.Z., C.G.); University of Turin, Torino, Italy (D.G., M. Cocco, R.M., A.D.S., M.A., M. Collino, M. Bertinaria); Istituto Italiano di Tecnologia CLNS@Sapienza Rome, Italy (M.M.); Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (C.K., S.G., T.B.); Università Cattolica del Sacro Cuore, Rome, Italy (S.N.); Karolinska Institutet, Huddinge, Sweden (V.A
| | - Sandra Atlante
- From the Goethe University, Frankfurt am Main, Germany (F. Spallotta, C.C., S.A., S.Z., D.S., F. Schnütgen, H.v.M., A.F., I.F., A.M.Z., C.G.); University of Turin, Torino, Italy (D.G., M. Cocco, R.M., A.D.S., M.A., M. Collino, M. Bertinaria); Istituto Italiano di Tecnologia CLNS@Sapienza Rome, Italy (M.M.); Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (C.K., S.G., T.B.); Università Cattolica del Sacro Cuore, Rome, Italy (S.N.); Karolinska Institutet, Huddinge, Sweden (V.A
| | - Davide Garella
- From the Goethe University, Frankfurt am Main, Germany (F. Spallotta, C.C., S.A., S.Z., D.S., F. Schnütgen, H.v.M., A.F., I.F., A.M.Z., C.G.); University of Turin, Torino, Italy (D.G., M. Cocco, R.M., A.D.S., M.A., M. Collino, M. Bertinaria); Istituto Italiano di Tecnologia CLNS@Sapienza Rome, Italy (M.M.); Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (C.K., S.G., T.B.); Università Cattolica del Sacro Cuore, Rome, Italy (S.N.); Karolinska Institutet, Huddinge, Sweden (V.A
| | - Mattia Cocco
- From the Goethe University, Frankfurt am Main, Germany (F. Spallotta, C.C., S.A., S.Z., D.S., F. Schnütgen, H.v.M., A.F., I.F., A.M.Z., C.G.); University of Turin, Torino, Italy (D.G., M. Cocco, R.M., A.D.S., M.A., M. Collino, M. Bertinaria); Istituto Italiano di Tecnologia CLNS@Sapienza Rome, Italy (M.M.); Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (C.K., S.G., T.B.); Università Cattolica del Sacro Cuore, Rome, Italy (S.N.); Karolinska Institutet, Huddinge, Sweden (V.A
| | - Mattia Mori
- From the Goethe University, Frankfurt am Main, Germany (F. Spallotta, C.C., S.A., S.Z., D.S., F. Schnütgen, H.v.M., A.F., I.F., A.M.Z., C.G.); University of Turin, Torino, Italy (D.G., M. Cocco, R.M., A.D.S., M.A., M. Collino, M. Bertinaria); Istituto Italiano di Tecnologia CLNS@Sapienza Rome, Italy (M.M.); Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (C.K., S.G., T.B.); Università Cattolica del Sacro Cuore, Rome, Italy (S.N.); Karolinska Institutet, Huddinge, Sweden (V.A
| | - Raffaella Mastrocola
- From the Goethe University, Frankfurt am Main, Germany (F. Spallotta, C.C., S.A., S.Z., D.S., F. Schnütgen, H.v.M., A.F., I.F., A.M.Z., C.G.); University of Turin, Torino, Italy (D.G., M. Cocco, R.M., A.D.S., M.A., M. Collino, M. Bertinaria); Istituto Italiano di Tecnologia CLNS@Sapienza Rome, Italy (M.M.); Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (C.K., S.G., T.B.); Università Cattolica del Sacro Cuore, Rome, Italy (S.N.); Karolinska Institutet, Huddinge, Sweden (V.A
| | - Carsten Kuenne
- From the Goethe University, Frankfurt am Main, Germany (F. Spallotta, C.C., S.A., S.Z., D.S., F. Schnütgen, H.v.M., A.F., I.F., A.M.Z., C.G.); University of Turin, Torino, Italy (D.G., M. Cocco, R.M., A.D.S., M.A., M. Collino, M. Bertinaria); Istituto Italiano di Tecnologia CLNS@Sapienza Rome, Italy (M.M.); Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (C.K., S.G., T.B.); Università Cattolica del Sacro Cuore, Rome, Italy (S.N.); Karolinska Institutet, Huddinge, Sweden (V.A
| | - Stefan Guenther
- From the Goethe University, Frankfurt am Main, Germany (F. Spallotta, C.C., S.A., S.Z., D.S., F. Schnütgen, H.v.M., A.F., I.F., A.M.Z., C.G.); University of Turin, Torino, Italy (D.G., M. Cocco, R.M., A.D.S., M.A., M. Collino, M. Bertinaria); Istituto Italiano di Tecnologia CLNS@Sapienza Rome, Italy (M.M.); Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (C.K., S.G., T.B.); Università Cattolica del Sacro Cuore, Rome, Italy (S.N.); Karolinska Institutet, Huddinge, Sweden (V.A
| | - Simona Nanni
- From the Goethe University, Frankfurt am Main, Germany (F. Spallotta, C.C., S.A., S.Z., D.S., F. Schnütgen, H.v.M., A.F., I.F., A.M.Z., C.G.); University of Turin, Torino, Italy (D.G., M. Cocco, R.M., A.D.S., M.A., M. Collino, M. Bertinaria); Istituto Italiano di Tecnologia CLNS@Sapienza Rome, Italy (M.M.); Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (C.K., S.G., T.B.); Università Cattolica del Sacro Cuore, Rome, Italy (S.N.); Karolinska Institutet, Huddinge, Sweden (V.A
| | - Valerio Azzimato
- From the Goethe University, Frankfurt am Main, Germany (F. Spallotta, C.C., S.A., S.Z., D.S., F. Schnütgen, H.v.M., A.F., I.F., A.M.Z., C.G.); University of Turin, Torino, Italy (D.G., M. Cocco, R.M., A.D.S., M.A., M. Collino, M. Bertinaria); Istituto Italiano di Tecnologia CLNS@Sapienza Rome, Italy (M.M.); Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (C.K., S.G., T.B.); Università Cattolica del Sacro Cuore, Rome, Italy (S.N.); Karolinska Institutet, Huddinge, Sweden (V.A
| | - Sven Zukunft
- From the Goethe University, Frankfurt am Main, Germany (F. Spallotta, C.C., S.A., S.Z., D.S., F. Schnütgen, H.v.M., A.F., I.F., A.M.Z., C.G.); University of Turin, Torino, Italy (D.G., M. Cocco, R.M., A.D.S., M.A., M. Collino, M. Bertinaria); Istituto Italiano di Tecnologia CLNS@Sapienza Rome, Italy (M.M.); Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (C.K., S.G., T.B.); Università Cattolica del Sacro Cuore, Rome, Italy (S.N.); Karolinska Institutet, Huddinge, Sweden (V.A
| | - Angela Kornberger
- From the Goethe University, Frankfurt am Main, Germany (F. Spallotta, C.C., S.A., S.Z., D.S., F. Schnütgen, H.v.M., A.F., I.F., A.M.Z., C.G.); University of Turin, Torino, Italy (D.G., M. Cocco, R.M., A.D.S., M.A., M. Collino, M. Bertinaria); Istituto Italiano di Tecnologia CLNS@Sapienza Rome, Italy (M.M.); Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (C.K., S.G., T.B.); Università Cattolica del Sacro Cuore, Rome, Italy (S.N.); Karolinska Institutet, Huddinge, Sweden (V.A
| | - Duran Sürün
- From the Goethe University, Frankfurt am Main, Germany (F. Spallotta, C.C., S.A., S.Z., D.S., F. Schnütgen, H.v.M., A.F., I.F., A.M.Z., C.G.); University of Turin, Torino, Italy (D.G., M. Cocco, R.M., A.D.S., M.A., M. Collino, M. Bertinaria); Istituto Italiano di Tecnologia CLNS@Sapienza Rome, Italy (M.M.); Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (C.K., S.G., T.B.); Università Cattolica del Sacro Cuore, Rome, Italy (S.N.); Karolinska Institutet, Huddinge, Sweden (V.A
| | - Frank Schnütgen
- From the Goethe University, Frankfurt am Main, Germany (F. Spallotta, C.C., S.A., S.Z., D.S., F. Schnütgen, H.v.M., A.F., I.F., A.M.Z., C.G.); University of Turin, Torino, Italy (D.G., M. Cocco, R.M., A.D.S., M.A., M. Collino, M. Bertinaria); Istituto Italiano di Tecnologia CLNS@Sapienza Rome, Italy (M.M.); Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (C.K., S.G., T.B.); Università Cattolica del Sacro Cuore, Rome, Italy (S.N.); Karolinska Institutet, Huddinge, Sweden (V.A
| | - Harald von Melchner
- From the Goethe University, Frankfurt am Main, Germany (F. Spallotta, C.C., S.A., S.Z., D.S., F. Schnütgen, H.v.M., A.F., I.F., A.M.Z., C.G.); University of Turin, Torino, Italy (D.G., M. Cocco, R.M., A.D.S., M.A., M. Collino, M. Bertinaria); Istituto Italiano di Tecnologia CLNS@Sapienza Rome, Italy (M.M.); Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (C.K., S.G., T.B.); Università Cattolica del Sacro Cuore, Rome, Italy (S.N.); Karolinska Institutet, Huddinge, Sweden (V.A
| | - Antonella Di Stilo
- From the Goethe University, Frankfurt am Main, Germany (F. Spallotta, C.C., S.A., S.Z., D.S., F. Schnütgen, H.v.M., A.F., I.F., A.M.Z., C.G.); University of Turin, Torino, Italy (D.G., M. Cocco, R.M., A.D.S., M.A., M. Collino, M. Bertinaria); Istituto Italiano di Tecnologia CLNS@Sapienza Rome, Italy (M.M.); Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (C.K., S.G., T.B.); Università Cattolica del Sacro Cuore, Rome, Italy (S.N.); Karolinska Institutet, Huddinge, Sweden (V.A
| | - Manuela Aragno
- From the Goethe University, Frankfurt am Main, Germany (F. Spallotta, C.C., S.A., S.Z., D.S., F. Schnütgen, H.v.M., A.F., I.F., A.M.Z., C.G.); University of Turin, Torino, Italy (D.G., M. Cocco, R.M., A.D.S., M.A., M. Collino, M. Bertinaria); Istituto Italiano di Tecnologia CLNS@Sapienza Rome, Italy (M.M.); Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (C.K., S.G., T.B.); Università Cattolica del Sacro Cuore, Rome, Italy (S.N.); Karolinska Institutet, Huddinge, Sweden (V.A
| | - Maarten Braspenning
- From the Goethe University, Frankfurt am Main, Germany (F. Spallotta, C.C., S.A., S.Z., D.S., F. Schnütgen, H.v.M., A.F., I.F., A.M.Z., C.G.); University of Turin, Torino, Italy (D.G., M. Cocco, R.M., A.D.S., M.A., M. Collino, M. Bertinaria); Istituto Italiano di Tecnologia CLNS@Sapienza Rome, Italy (M.M.); Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (C.K., S.G., T.B.); Università Cattolica del Sacro Cuore, Rome, Italy (S.N.); Karolinska Institutet, Huddinge, Sweden (V.A
| | - Wim van Criekinge
- From the Goethe University, Frankfurt am Main, Germany (F. Spallotta, C.C., S.A., S.Z., D.S., F. Schnütgen, H.v.M., A.F., I.F., A.M.Z., C.G.); University of Turin, Torino, Italy (D.G., M. Cocco, R.M., A.D.S., M.A., M. Collino, M. Bertinaria); Istituto Italiano di Tecnologia CLNS@Sapienza Rome, Italy (M.M.); Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (C.K., S.G., T.B.); Università Cattolica del Sacro Cuore, Rome, Italy (S.N.); Karolinska Institutet, Huddinge, Sweden (V.A
| | - Miles J. De Blasio
- From the Goethe University, Frankfurt am Main, Germany (F. Spallotta, C.C., S.A., S.Z., D.S., F. Schnütgen, H.v.M., A.F., I.F., A.M.Z., C.G.); University of Turin, Torino, Italy (D.G., M. Cocco, R.M., A.D.S., M.A., M. Collino, M. Bertinaria); Istituto Italiano di Tecnologia CLNS@Sapienza Rome, Italy (M.M.); Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (C.K., S.G., T.B.); Università Cattolica del Sacro Cuore, Rome, Italy (S.N.); Karolinska Institutet, Huddinge, Sweden (V.A
| | - Rebecca H. Ritchie
- From the Goethe University, Frankfurt am Main, Germany (F. Spallotta, C.C., S.A., S.Z., D.S., F. Schnütgen, H.v.M., A.F., I.F., A.M.Z., C.G.); University of Turin, Torino, Italy (D.G., M. Cocco, R.M., A.D.S., M.A., M. Collino, M. Bertinaria); Istituto Italiano di Tecnologia CLNS@Sapienza Rome, Italy (M.M.); Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (C.K., S.G., T.B.); Università Cattolica del Sacro Cuore, Rome, Italy (S.N.); Karolinska Institutet, Huddinge, Sweden (V.A
| | - Germana Zaccagnini
- From the Goethe University, Frankfurt am Main, Germany (F. Spallotta, C.C., S.A., S.Z., D.S., F. Schnütgen, H.v.M., A.F., I.F., A.M.Z., C.G.); University of Turin, Torino, Italy (D.G., M. Cocco, R.M., A.D.S., M.A., M. Collino, M. Bertinaria); Istituto Italiano di Tecnologia CLNS@Sapienza Rome, Italy (M.M.); Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (C.K., S.G., T.B.); Università Cattolica del Sacro Cuore, Rome, Italy (S.N.); Karolinska Institutet, Huddinge, Sweden (V.A
| | - Fabio Martelli
- From the Goethe University, Frankfurt am Main, Germany (F. Spallotta, C.C., S.A., S.Z., D.S., F. Schnütgen, H.v.M., A.F., I.F., A.M.Z., C.G.); University of Turin, Torino, Italy (D.G., M. Cocco, R.M., A.D.S., M.A., M. Collino, M. Bertinaria); Istituto Italiano di Tecnologia CLNS@Sapienza Rome, Italy (M.M.); Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (C.K., S.G., T.B.); Università Cattolica del Sacro Cuore, Rome, Italy (S.N.); Karolinska Institutet, Huddinge, Sweden (V.A
| | - Antonella Farsetti
- From the Goethe University, Frankfurt am Main, Germany (F. Spallotta, C.C., S.A., S.Z., D.S., F. Schnütgen, H.v.M., A.F., I.F., A.M.Z., C.G.); University of Turin, Torino, Italy (D.G., M. Cocco, R.M., A.D.S., M.A., M. Collino, M. Bertinaria); Istituto Italiano di Tecnologia CLNS@Sapienza Rome, Italy (M.M.); Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (C.K., S.G., T.B.); Università Cattolica del Sacro Cuore, Rome, Italy (S.N.); Karolinska Institutet, Huddinge, Sweden (V.A
| | - Ingrid Fleming
- From the Goethe University, Frankfurt am Main, Germany (F. Spallotta, C.C., S.A., S.Z., D.S., F. Schnütgen, H.v.M., A.F., I.F., A.M.Z., C.G.); University of Turin, Torino, Italy (D.G., M. Cocco, R.M., A.D.S., M.A., M. Collino, M. Bertinaria); Istituto Italiano di Tecnologia CLNS@Sapienza Rome, Italy (M.M.); Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (C.K., S.G., T.B.); Università Cattolica del Sacro Cuore, Rome, Italy (S.N.); Karolinska Institutet, Huddinge, Sweden (V.A
| | - Thomas Braun
- From the Goethe University, Frankfurt am Main, Germany (F. Spallotta, C.C., S.A., S.Z., D.S., F. Schnütgen, H.v.M., A.F., I.F., A.M.Z., C.G.); University of Turin, Torino, Italy (D.G., M. Cocco, R.M., A.D.S., M.A., M. Collino, M. Bertinaria); Istituto Italiano di Tecnologia CLNS@Sapienza Rome, Italy (M.M.); Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (C.K., S.G., T.B.); Università Cattolica del Sacro Cuore, Rome, Italy (S.N.); Karolinska Institutet, Huddinge, Sweden (V.A
| | - Andres Beiras-Fernandez
- From the Goethe University, Frankfurt am Main, Germany (F. Spallotta, C.C., S.A., S.Z., D.S., F. Schnütgen, H.v.M., A.F., I.F., A.M.Z., C.G.); University of Turin, Torino, Italy (D.G., M. Cocco, R.M., A.D.S., M.A., M. Collino, M. Bertinaria); Istituto Italiano di Tecnologia CLNS@Sapienza Rome, Italy (M.M.); Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (C.K., S.G., T.B.); Università Cattolica del Sacro Cuore, Rome, Italy (S.N.); Karolinska Institutet, Huddinge, Sweden (V.A
| | - Bruno Botta
- From the Goethe University, Frankfurt am Main, Germany (F. Spallotta, C.C., S.A., S.Z., D.S., F. Schnütgen, H.v.M., A.F., I.F., A.M.Z., C.G.); University of Turin, Torino, Italy (D.G., M. Cocco, R.M., A.D.S., M.A., M. Collino, M. Bertinaria); Istituto Italiano di Tecnologia CLNS@Sapienza Rome, Italy (M.M.); Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (C.K., S.G., T.B.); Università Cattolica del Sacro Cuore, Rome, Italy (S.N.); Karolinska Institutet, Huddinge, Sweden (V.A
| | - Massimo Collino
- From the Goethe University, Frankfurt am Main, Germany (F. Spallotta, C.C., S.A., S.Z., D.S., F. Schnütgen, H.v.M., A.F., I.F., A.M.Z., C.G.); University of Turin, Torino, Italy (D.G., M. Cocco, R.M., A.D.S., M.A., M. Collino, M. Bertinaria); Istituto Italiano di Tecnologia CLNS@Sapienza Rome, Italy (M.M.); Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (C.K., S.G., T.B.); Università Cattolica del Sacro Cuore, Rome, Italy (S.N.); Karolinska Institutet, Huddinge, Sweden (V.A
| | - Massimo Bertinaria
- From the Goethe University, Frankfurt am Main, Germany (F. Spallotta, C.C., S.A., S.Z., D.S., F. Schnütgen, H.v.M., A.F., I.F., A.M.Z., C.G.); University of Turin, Torino, Italy (D.G., M. Cocco, R.M., A.D.S., M.A., M. Collino, M. Bertinaria); Istituto Italiano di Tecnologia CLNS@Sapienza Rome, Italy (M.M.); Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (C.K., S.G., T.B.); Università Cattolica del Sacro Cuore, Rome, Italy (S.N.); Karolinska Institutet, Huddinge, Sweden (V.A
| | - Andreas M. Zeiher
- From the Goethe University, Frankfurt am Main, Germany (F. Spallotta, C.C., S.A., S.Z., D.S., F. Schnütgen, H.v.M., A.F., I.F., A.M.Z., C.G.); University of Turin, Torino, Italy (D.G., M. Cocco, R.M., A.D.S., M.A., M. Collino, M. Bertinaria); Istituto Italiano di Tecnologia CLNS@Sapienza Rome, Italy (M.M.); Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (C.K., S.G., T.B.); Università Cattolica del Sacro Cuore, Rome, Italy (S.N.); Karolinska Institutet, Huddinge, Sweden (V.A
| | - Carlo Gaetano
- From the Goethe University, Frankfurt am Main, Germany (F. Spallotta, C.C., S.A., S.Z., D.S., F. Schnütgen, H.v.M., A.F., I.F., A.M.Z., C.G.); University of Turin, Torino, Italy (D.G., M. Cocco, R.M., A.D.S., M.A., M. Collino, M. Bertinaria); Istituto Italiano di Tecnologia CLNS@Sapienza Rome, Italy (M.M.); Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (C.K., S.G., T.B.); Università Cattolica del Sacro Cuore, Rome, Italy (S.N.); Karolinska Institutet, Huddinge, Sweden (V.A
| |
Collapse
|
15
|
Cappetta D, Rossi F, Piegari E, Quaini F, Berrino L, Urbanek K, De Angelis A. Doxorubicin targets multiple players: A new view of an old problem. Pharmacol Res 2018; 127:4-14. [DOI: 10.1016/j.phrs.2017.03.016] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 03/16/2017] [Accepted: 03/16/2017] [Indexed: 01/22/2023]
|
16
|
Barbati SA, Colussi C, Bacci L, Aiello A, Re A, Stigliano E, Isidori AM, Grassi C, Pontecorvi A, Farsetti A, Gaetano C, Nanni S. Transcription Factor CREM Mediates High Glucose Response in Cardiomyocytes and in a Male Mouse Model of Prolonged Hyperglycemia. Endocrinology 2017; 158:2391-2405. [PMID: 28368536 DOI: 10.1210/en.2016-1960] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/16/2017] [Indexed: 01/31/2023]
Abstract
This study aims at investigating the epigenetic landscape of cardiomyocytes exposed to elevated glucose levels. High glucose (30 mM) for 72 hours determined some epigenetic changes in mouse HL-1 and rat differentiated H9C2 cardiomyocytes including upregulation of class I and III histone deacetylase protein levels and activity, inhibition of histone acetylase p300 activity, increase in histone H3 lysine 27 trimethylation, and reduction in H3 lysine 9 acetylation. Gene expression analysis focused on cardiotoxicity revealed that high glucose induced markers associated with tissue damage, fibrosis, and cardiac remodeling such as Nexilin (NEXN), versican, cyclic adenosine 5'-monophosphate-responsive element modulator (CREM), and adrenoceptor α2A (ADRA2). Notably, the transcription factor CREM was found to be important in the regulation of cardiotoxicity-associated genes as assessed by specific small interfering RNA and chromatin immunoprecipitation experiments. In CD1 mice, made hyperglycemic by streptozotoicin (STZ) injection, cardiac structural alterations were evident at 6 months after STZ treatment and were associated with a significant increase of H3 lysine 27 trimethylation and reduction of H3 lysine 9 acetylation. Consistently, NEXN, CREM, and ADRA2 expression was significantly induced at the RNA and protein levels. Confocal microscopy analysis of NEXN localization showed this protein irregularly distributed along the sarcomeres in the heart of hyperglycemic mice. This evidence suggested a structural alteration of cardiac Z-disk with potential consequences on contractility. In conclusion, high glucose may alter the epigenetic landscape of cardiac cells. Sildenafil, restoring guanosine 3', 5'-cyclic monophosphate levels, counteracted the increase of CREM and NEXN, providing a protective effect in the presence of hyperglycemia.
Collapse
Affiliation(s)
- Saviana A Barbati
- Institute of Human Physiology, Università Cattolica di Roma, 00168 Rome, Italy
- Institute of Medical Pathology, Università Cattolica di Roma, 00168 Rome, Italy
| | - Claudia Colussi
- Institute of Medical Pathology, Università Cattolica di Roma, 00168 Rome, Italy
- Institute of Cell Biology and Neurobiology, National Research Council, 00143 Rome, Italy
| | - Lorenza Bacci
- Institute of Medical Pathology, Università Cattolica di Roma, 00168 Rome, Italy
| | - Aurora Aiello
- Institute of Medical Pathology, Università Cattolica di Roma, 00168 Rome, Italy
- Institute of Cell Biology and Neurobiology, National Research Council, 00143 Rome, Italy
| | - Agnese Re
- Institute of Cell Biology and Neurobiology, National Research Council, 00143 Rome, Italy
| | - Egidio Stigliano
- Department of Histopathology, Università Cattolica di Roma, 00168 Rome, Italy
| | - Andrea M Isidori
- Department of Experimental Medicine, "Sapienza" University, 00161 Rome, Italy
| | - Claudio Grassi
- Institute of Human Physiology, Università Cattolica di Roma, 00168 Rome, Italy
| | - Alfredo Pontecorvi
- Institute of Medical Pathology, Università Cattolica di Roma, 00168 Rome, Italy
| | - Antonella Farsetti
- Institute of Cell Biology and Neurobiology, National Research Council, 00143 Rome, Italy
- Medicine Clinic III, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Carlo Gaetano
- Medicine Clinic III, Division of Cardiovascular Epigenetics, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Simona Nanni
- Institute of Medical Pathology, Università Cattolica di Roma, 00168 Rome, Italy
| |
Collapse
|
17
|
Jivanji CJ, Asrani VM, Windsor JA, Petrov MS. New-Onset Diabetes After Acute and Critical Illness: A Systematic Review. Mayo Clin Proc 2017; 92:762-773. [PMID: 28302323 DOI: 10.1016/j.mayocp.2016.12.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/13/2016] [Accepted: 12/28/2016] [Indexed: 02/08/2023]
Abstract
Hyperglycemia is commonly observed during acute and critical illness. Recent studies have investigated the risk of developing diabetes after acute and critical illness, but the relationship between degree of in-hospital hyperglycemia and new-onset diabetes has not been investigated. This study examines the evidence for the relationship between in-hospital hyperglycemia and prevalence of new-onset diabetes after acute and critical illness. A literature search was performed of the MEDLINE, EMBASE, and Scopus databases for relevant studies published from January 1, 2000, through August 4, 2016. Patients with no history of diabetes before hospital discharge were included in the systematic review. In-hospital glucose concentration was classified as normoglycemia, mild hyperglycemia, or severe hyperglycemia for the meta-analysis. Twenty-three studies were included in the systematic review, and 18 of these (111,078 patients) met the eligibility criteria for the meta-analysis. The prevalence of new-onset diabetes was significantly related to in-hospital glucose concentration and was 4% (95% CI, 2%-7%), 12% (95% CI, 9%-15%), and 28% (95% CI, 18%-39%) for patients with normoglycemia, mild hyperglycemia, and severe hyperglycemia, respectively. The prevalence of new-onset diabetes was not influenced by disease setting, follow-up duration, or study design. In summary, this study found stepwise growth in the prevalence of new-onset diabetes with increasing in-hospital glucose concentration. Patients with severe hyperglycemia are at the highest risk, with 28% developing diabetes after hospital discharge.
Collapse
Affiliation(s)
- Chirag J Jivanji
- Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Varsha M Asrani
- Department of Surgery, University of Auckland, Auckland, New Zealand
| | - John A Windsor
- Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Maxim S Petrov
- Department of Surgery, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
18
|
Ruan XZ, Guan Y, Liu ZH, Eckardt KU, Unwin R. Summary of ISN Forefronts Symposium 2015: ‘Immunomodulation of Cardio-Renal Function’. Kidney Int Rep 2016. [PMCID: PMC5678622 DOI: 10.1016/j.ekir.2016.06.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The International Society of Nephrology Forefronts Symposium Immunomodulation of Cardio-Renal Function took place October 22 to 25, 2015, in Shenzhen, China. The program covered basic and clinical aspects of cardio-renal pathophysiology and immunity. Leading scientists from different and related disciplines of clinical and basic research described and reviewed recent discoveries, and discussed emerging topics under the headings “Immunity and Renal Pathophysiology”; “Autoimmunity and the Inflammasome”; “Immunity and the Gut Microbiome”; “Immuno-Metabolism”; “Immunogenetics, Transcriptomics and Epigenetics; “Immunity and Hypertension”; and “Immunity, Fibrosis, and Kidney Disease.”
Collapse
|
19
|
Christ A, Bekkering S, Latz E, Riksen NP. Long-term activation of the innate immune system in atherosclerosis. Semin Immunol 2016; 28:384-93. [PMID: 27113267 DOI: 10.1016/j.smim.2016.04.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 04/12/2016] [Indexed: 01/05/2023]
Abstract
Efforts to reverse the pathologic consequences of vulnerable plaques are often stymied by the complex treatment resistant pro-inflammatory environment within the plaque. This suggests that pro-atherogenic stimuli, such as LDL cholesterol and high fat diets may impart longer lived signals on (innate) immune cells that persist even after reversing the pro-atherogenic stimuli. Recently, a series of studies challenged the traditional immunological paradigm that innate immune cells cannot display memory characteristics. Epigenetic reprogramming in these myeloid cell subsets, after exposure to certain stimuli, has been shown to alter the expression of genes upon re-exposure. This phenomenon has been termed trained innate immunity or innate immune memory. The changed responses of 'trained' innate immune cells can confer nonspecific protection against secondary infections, suggesting that innate immune memory has likely evolved as an ancient mechanism to protect against pathogens. However, dysregulated processes of immunological imprinting mediated by trained innate immunity may also be detrimental under certain conditions as the resulting exaggerated immune responses could contribute to autoimmune and inflammatory diseases, such as atherosclerosis. Pro-atherogenic stimuli most likely cause epigenetic modifications that persist for prolonged time periods even after the initial stimulus has been removed. In this review we discuss the concept of trained innate immunity in the context of a hyperlipidemic environment and atherosclerosis. According to this idea the epigenome of myeloid (progenitor) cells is presumably modified for prolonged periods of time, which, in turn, could evoke a condition of continuous immune cell over-activation.
Collapse
Affiliation(s)
- Anette Christ
- Institute of Innate Immunity, University Hospitals Bonn, University of Bonn, Bonn, Germany; Department of Infectious Diseases and Immunology, UMass Medical School, Worcester, MA, USA
| | - Siroon Bekkering
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eicke Latz
- Institute of Innate Immunity, University Hospitals Bonn, University of Bonn, Bonn, Germany; Department of Infectious Diseases and Immunology, UMass Medical School, Worcester, MA, USA; German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| | - Niels P Riksen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
20
|
Wende AR. Post-translational modifications of the cardiac proteome in diabetes and heart failure. Proteomics Clin Appl 2015; 10:25-38. [PMID: 26140508 PMCID: PMC4698356 DOI: 10.1002/prca.201500052] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/03/2015] [Accepted: 06/29/2015] [Indexed: 12/19/2022]
Abstract
Cardiovascular complications are the leading cause of death in diabetic patients. Decades of research has focused on altered gene expression, altered cellular signaling, and altered metabolism. This work has led to better understanding of disease progression and treatments aimed at reversing or stopping this deadly process. However, one of the pieces needed to complete the puzzle and bridge the gap between altered gene expression and changes in signaling/metabolism is the proteome and its host of modifications. Defining the mechanisms of regulation includes examining protein levels, localization, and activity of the functional component of cellular machinery. Excess or misutilization of nutrients in obesity and diabetes may lead to PTMs contributing to cardiovascular disease progression. PTMs link regulation of metabolic changes in the healthy and diseased heart with regulation of gene expression itself (e.g. epigenetics), protein enzymatic activity (e.g. mitochondrial oxidative capacity), and function (e.g. contractile machinery). Although a number of PTMs are involved in each of these pathways, we will highlight the role of the serine and threonine O‐linked addition of β‐N‐acetyl‐glucosamine or O‐GlcNAcylation. This nexus of nutrient supply, utilization, and storage allows for the modification and translation of mitochondrial function to many other aspects of the cell.
Collapse
Affiliation(s)
- Adam R Wende
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
21
|
Caramori ML, Kim Y, Natarajan R, Moore JH, Rich SS, Mychaleckyj JC, Kuriyama R, Kirkpatrick D, Mauer M. Differential Response to High Glucose in Skin Fibroblasts of Monozygotic Twins Discordant for Type 1 Diabetes. J Clin Endocrinol Metab 2015; 100:E883-9. [PMID: 25901990 PMCID: PMC5393515 DOI: 10.1210/jc.2014-4467] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
CONTEXT Most epigenetic studies in diabetes compare normal cells in "high glucose" (HG) to cells in "normal glucose" (NG) and cells returned from HG to NG. Here we challenge this approach. OBJECTIVE The objective was to determine whether there were differences in gene expression in skin fibroblasts of monozygotic twins (MZT) discordant for type 1 diabetes (T1D). DESIGN Skin fibroblasts were grown in NG (5.5 mmol/L) and HG (25 mmol/L) for multiple passages. SETTING This study was conducted at the University of Minnesota. PATIENTS Patients were nine MZT pairs discordant for T1D. MAIN OUTCOME MEASURE(S) Gene expression was assessed by mRNA-Seq, using the Illumina HiSeq 2000 instrument. Pathway analysis tested directionally consistent group differences within the Kyoto Encyclopedia of Genes and Genomes pathways. RESULTS A total of 3308 genes were differentially expressed between NG and HG in T1D MZT vs 889 in non-T1D twins. DNA replication, proteasome, cell cycle, base excision repair, homologous recombination, pyrimidine metabolism, and spliceosome pathways had overrepresented genes with increased expression in T1D twins with P values ranging from 7.21 × 10(-10) to 1.39 × 10(-4). In a companion article, we demonstrate that these pathway changes are related to diabetic nephropathy risk. There were no pathways statistically significant differently expressed in nondiabetic twins in HG vs NG. CONCLUSIONS In vivo exposure to diabetes alters cells in a manner that markedly changes their in vitro responses to HG. These results highlight the importance of using cells directly derived from diabetic patients for studies examining the effects of HG in diabetes.
Collapse
Affiliation(s)
- M Luiza Caramori
- Departments of Medicine and Pediatrics (M.L.C., M.M.) and Pediatrics and Laboratory Medicine and Pathology (Y.K.), University of Minnesota, Minneapolis, Minnesota 55455; Department of Diabetes Complications, Obesity and Metabolism (R.N.), Beckman Research Institute, City of Hope, Duarte, California 91010; Department of Genetics (J.H.M.), Dartmouth College, Hanover, New Hampshire 03755; Departments of Public Health Sciences (S.S.R.) and Bioinformatics and Genetics (J.C.M.), University of Virginia, Charlottesville, Virginia 22908; and Department of Genetics, Cell Biology and Development (R.K., D.K.), University of Minnesota, Minneapolis, Minnesota 55455
| | - Youngki Kim
- Departments of Medicine and Pediatrics (M.L.C., M.M.) and Pediatrics and Laboratory Medicine and Pathology (Y.K.), University of Minnesota, Minneapolis, Minnesota 55455; Department of Diabetes Complications, Obesity and Metabolism (R.N.), Beckman Research Institute, City of Hope, Duarte, California 91010; Department of Genetics (J.H.M.), Dartmouth College, Hanover, New Hampshire 03755; Departments of Public Health Sciences (S.S.R.) and Bioinformatics and Genetics (J.C.M.), University of Virginia, Charlottesville, Virginia 22908; and Department of Genetics, Cell Biology and Development (R.K., D.K.), University of Minnesota, Minneapolis, Minnesota 55455
| | - Rama Natarajan
- Departments of Medicine and Pediatrics (M.L.C., M.M.) and Pediatrics and Laboratory Medicine and Pathology (Y.K.), University of Minnesota, Minneapolis, Minnesota 55455; Department of Diabetes Complications, Obesity and Metabolism (R.N.), Beckman Research Institute, City of Hope, Duarte, California 91010; Department of Genetics (J.H.M.), Dartmouth College, Hanover, New Hampshire 03755; Departments of Public Health Sciences (S.S.R.) and Bioinformatics and Genetics (J.C.M.), University of Virginia, Charlottesville, Virginia 22908; and Department of Genetics, Cell Biology and Development (R.K., D.K.), University of Minnesota, Minneapolis, Minnesota 55455
| | - Jason H Moore
- Departments of Medicine and Pediatrics (M.L.C., M.M.) and Pediatrics and Laboratory Medicine and Pathology (Y.K.), University of Minnesota, Minneapolis, Minnesota 55455; Department of Diabetes Complications, Obesity and Metabolism (R.N.), Beckman Research Institute, City of Hope, Duarte, California 91010; Department of Genetics (J.H.M.), Dartmouth College, Hanover, New Hampshire 03755; Departments of Public Health Sciences (S.S.R.) and Bioinformatics and Genetics (J.C.M.), University of Virginia, Charlottesville, Virginia 22908; and Department of Genetics, Cell Biology and Development (R.K., D.K.), University of Minnesota, Minneapolis, Minnesota 55455
| | - Stephen S Rich
- Departments of Medicine and Pediatrics (M.L.C., M.M.) and Pediatrics and Laboratory Medicine and Pathology (Y.K.), University of Minnesota, Minneapolis, Minnesota 55455; Department of Diabetes Complications, Obesity and Metabolism (R.N.), Beckman Research Institute, City of Hope, Duarte, California 91010; Department of Genetics (J.H.M.), Dartmouth College, Hanover, New Hampshire 03755; Departments of Public Health Sciences (S.S.R.) and Bioinformatics and Genetics (J.C.M.), University of Virginia, Charlottesville, Virginia 22908; and Department of Genetics, Cell Biology and Development (R.K., D.K.), University of Minnesota, Minneapolis, Minnesota 55455
| | - Josyf C Mychaleckyj
- Departments of Medicine and Pediatrics (M.L.C., M.M.) and Pediatrics and Laboratory Medicine and Pathology (Y.K.), University of Minnesota, Minneapolis, Minnesota 55455; Department of Diabetes Complications, Obesity and Metabolism (R.N.), Beckman Research Institute, City of Hope, Duarte, California 91010; Department of Genetics (J.H.M.), Dartmouth College, Hanover, New Hampshire 03755; Departments of Public Health Sciences (S.S.R.) and Bioinformatics and Genetics (J.C.M.), University of Virginia, Charlottesville, Virginia 22908; and Department of Genetics, Cell Biology and Development (R.K., D.K.), University of Minnesota, Minneapolis, Minnesota 55455
| | - Ryoko Kuriyama
- Departments of Medicine and Pediatrics (M.L.C., M.M.) and Pediatrics and Laboratory Medicine and Pathology (Y.K.), University of Minnesota, Minneapolis, Minnesota 55455; Department of Diabetes Complications, Obesity and Metabolism (R.N.), Beckman Research Institute, City of Hope, Duarte, California 91010; Department of Genetics (J.H.M.), Dartmouth College, Hanover, New Hampshire 03755; Departments of Public Health Sciences (S.S.R.) and Bioinformatics and Genetics (J.C.M.), University of Virginia, Charlottesville, Virginia 22908; and Department of Genetics, Cell Biology and Development (R.K., D.K.), University of Minnesota, Minneapolis, Minnesota 55455
| | - David Kirkpatrick
- Departments of Medicine and Pediatrics (M.L.C., M.M.) and Pediatrics and Laboratory Medicine and Pathology (Y.K.), University of Minnesota, Minneapolis, Minnesota 55455; Department of Diabetes Complications, Obesity and Metabolism (R.N.), Beckman Research Institute, City of Hope, Duarte, California 91010; Department of Genetics (J.H.M.), Dartmouth College, Hanover, New Hampshire 03755; Departments of Public Health Sciences (S.S.R.) and Bioinformatics and Genetics (J.C.M.), University of Virginia, Charlottesville, Virginia 22908; and Department of Genetics, Cell Biology and Development (R.K., D.K.), University of Minnesota, Minneapolis, Minnesota 55455
| | - Michael Mauer
- Departments of Medicine and Pediatrics (M.L.C., M.M.) and Pediatrics and Laboratory Medicine and Pathology (Y.K.), University of Minnesota, Minneapolis, Minnesota 55455; Department of Diabetes Complications, Obesity and Metabolism (R.N.), Beckman Research Institute, City of Hope, Duarte, California 91010; Department of Genetics (J.H.M.), Dartmouth College, Hanover, New Hampshire 03755; Departments of Public Health Sciences (S.S.R.) and Bioinformatics and Genetics (J.C.M.), University of Virginia, Charlottesville, Virginia 22908; and Department of Genetics, Cell Biology and Development (R.K., D.K.), University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
22
|
Togliatto G, Trombetta A, Dentelli P, Gallo S, Rosso A, Cotogni P, Granata R, Falcioni R, Delale T, Ghigo E, Brizzi MF. Unacylated ghrelin induces oxidative stress resistance in a glucose intolerance and peripheral artery disease mouse model by restoring endothelial cell miR-126 expression. Diabetes 2015; 64:1370-82. [PMID: 25368096 DOI: 10.2337/db14-0991] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Reactive oxygen species (ROS) are crucial in long-term diabetes complications, including peripheral artery disease (PAD). In this study, we have investigated the potential clinical impact of unacylated ghrelin (UnAG) in a glucose intolerance and PAD mouse model. We demonstrate that UnAG is able to protect skeletal muscle and endothelial cells (ECs) from ROS imbalance in hind limb ischemia-subjected ob/ob mice. This effect translates into reductions in hind limb functional impairment. We show that UnAG rescues sirtuin 1 (SIRT1) activity and superoxide dismutase-2 (SOD-2) expression in ECs. This leads to SIRT1-mediated p53 and histone 3 lysate 56 deacetylation and results in reduced EC senescence in vivo. We demonstrate, using small interfering RNA technology, that SIRT1 is also crucial for SOD-2 expression. UnAG also renews micro-RNA (miR)-126 expression, resulting in the posttranscriptional regulation of vascular cell adhesion molecule 1 expression and a reduced number of infiltrating inflammatory cells in vivo. Loss-of-function experiments that target miR-126 demonstrate that miR-126 also controls SIRT1 and SOD-2 expression, thus confirming its role in driving UnAG-mediated EC protection against ROS imbalance. These results indicate that UnAG protects vessels from ROS imbalance in ob/ob mice by rescuing miR-126 expression, thus emphasizing its potential clinical impact in avoiding limb loss in PAD.
Collapse
Affiliation(s)
| | | | | | - Sara Gallo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Arturo Rosso
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Paolo Cotogni
- Department of Anesthesiology and Intensive Care, University of Turin, Turin, Italy
| | - Riccarda Granata
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Rita Falcioni
- Department of Experimental Oncology, Regina Elena National Cancer Institute, Rome, Italy
| | | | - Ezio Ghigo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | |
Collapse
|
23
|
Gui J, Rohrbach A, Borns K, Hillemanns P, Feng L, Hubel CA, von Versen-Höynck F. Vitamin D rescues dysfunction of fetal endothelial colony forming cells from individuals with gestational diabetes. Placenta 2015; 36:410-8. [PMID: 25684656 DOI: 10.1016/j.placenta.2015.01.195] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/20/2015] [Accepted: 01/24/2015] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Gestational diabetes (GDM) is associated with long-term cardiovascular and metabolic diseases in offspring. However, the mechanisms are not well understood. We explored whether fetal exposure to a diabetic environment is associated with fetal endothelial progenitor cell dysfunction, and whether vitamin D can reverse the impairment. METHODS Nineteen women with uncomplicated pregnancies and 18 women with GDM were recruited before delivery. Time to first appearance of endothelial colony forming cell (ECFC) colonies and number of ECFC colonies formed from culture of cord peripheral blood mononuclear cells were determined. Angiogenesis-related functions of ECFCs in vitro were tested in the presence or absence of vitamin D. RESULTS Fetal ECFCs from GDM pregnancies formed fewer colonies in culture (P = 0.04) and displayed reduced proliferation (P = 0.02), migration (P = 0.04) and tubule formation (P = 0.03) compared to uncomplicated pregnancies. Fetal ECFCs exposed to hyperglycemia in vitro exhibited less migration (P < 0.05) and less tubule formation (P < 0.05) than normoglycemic control. Vitamin D significantly improved the dysfunction of fetal ECFCs from pregnancies complicated by GDM or after exposure of healthy ECFCs to hyperglycemia. DISCUSSION Fetal ECFCs from GDM pregnancies or ECFCs exposed to hyperglycemia in vitro exhibit reduced quantity and impaired angiogenesis-related functions. Vitamin D significantly rescues these functions. These findings may have implications for vascular function of infants exposed to a diabetic intrauterine environment.
Collapse
Affiliation(s)
- J Gui
- Department of Obstetrics and Gynecology, Hannover Medical School, Hannover, Germany; Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - A Rohrbach
- Department of Obstetrics and Gynecology, Hannover Medical School, Hannover, Germany.
| | - K Borns
- Department of Obstetrics and Gynecology, Hannover Medical School, Hannover, Germany.
| | - P Hillemanns
- Department of Obstetrics and Gynecology, Hannover Medical School, Hannover, Germany.
| | - L Feng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - C A Hubel
- Magee-Womens Research Institute and Department of Obstetrics, Gynecology & Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
| | - F von Versen-Höynck
- Department of Obstetrics and Gynecology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
24
|
Schlegel A, Gut P. Metabolic insights from zebrafish genetics, physiology, and chemical biology. Cell Mol Life Sci 2015; 72:2249-60. [PMID: 25556679 PMCID: PMC4439526 DOI: 10.1007/s00018-014-1816-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 12/15/2014] [Accepted: 12/19/2014] [Indexed: 01/01/2023]
Abstract
Metabolic diseases—atherosclerotic cardiovascular disease, type 2 diabetes mellitus, obesity, and non-alcoholic fatty liver disease––have reached pandemic proportions. Across gene, cell, organ, organism, and social-environmental scales, fundamental discoveries of the derangements that occur in these diseases are required to develop effective new treatments. Here we will review genetic, physiological, pathological and chemical biological discoveries in the emerging zebrafish model for studying metabolism and metabolic diseases. We present a synthesis of recent studies using forward and reverse genetic tools to make new contributions to our understanding of lipid trafficking, diabetes pathogenesis and complications, and to β-cell biology. The technical and physiological advantages and the pharmacological potential of this organism for discovery and validation of metabolic disease targets are stressed by our summary of recent findings. We conclude by arguing that metabolic research using zebrafish will benefit from adoption of conventional blood and tissue metabolite measurements, employment of modern imaging techniques, and development of more rigorous metabolic flux methods.
Collapse
Affiliation(s)
- Amnon Schlegel
- University of Utah Molecular Medicine Program, School of Medicine, University of Utah, 15 North 2030 East, Room 3240B, Salt Lake City, UT, 84112, USA,
| | | |
Collapse
|
25
|
Paneni F, Costantino S, Cosentino F. Insulin resistance, diabetes, and cardiovascular risk. Curr Atheroscler Rep 2015; 16:419. [PMID: 24781596 DOI: 10.1007/s11883-014-0419-z] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Obesity and type 2 diabetes mellitus (T2DM) are major drivers of cardiovascular disease (CVD). The link between environmental factors, obesity, and dysglycemia indicates that progression to diabetes with time occurs along a "continuum", not necessarily linear, which involves different cellular mechanisms including alterations of insulin signaling, changes in glucose transport, pancreatic beta cell dysfunction, as well as the deregulation of key genes involved in oxidative stress and inflammation. The present review critically addresses key pathophysiological aspects including (i) hyperglycemia and insulin resistance as predictors of CV outcome, (ii) molecular mechanisms underpinning the progression of diabetic vascular complications despite intensive glycemic control, and (iii) stratification of CV risk, with particular emphasis on emerging biomarkers. Taken together, these important aspects may contribute to the development of promising diagnostic approaches as well as mechanism-based therapeutic strategies to reduce CVD burden in obese and diabetic subjects.
Collapse
Affiliation(s)
- Francesco Paneni
- Cardiology Unit, Department of Medicine, Karolinska University Hospital, Solna, 171 76, Stockholm, Sweden
| | | | | |
Collapse
|
26
|
Rajasekar P, O'Neill CL, Eeles L, Stitt AW, Medina RJ. Epigenetic Changes in Endothelial Progenitors as a Possible Cellular Basis for Glycemic Memory in Diabetic Vascular Complications. J Diabetes Res 2015; 2015:436879. [PMID: 26106624 PMCID: PMC4464584 DOI: 10.1155/2015/436879] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 04/23/2015] [Accepted: 04/27/2015] [Indexed: 12/11/2022] Open
Abstract
The vascular complications of diabetes significantly impact the quality of life and mortality in diabetic patients. Extensive evidence from various human clinical trials has clearly established that a period of poor glycemic control early in the disease process carries negative consequences, such as an increase in the development and progression of vascular complications that becomes evident many years later. Importantly, intensive glycemic control established later in the disease process cannot reverse or slow down the onset or progression of diabetic vasculopathy. This has been named the glycemic memory phenomenon. Scientists have successfully modelled glycemic memory using various in vitro and in vivo systems. This review emphasizes that oxidative stress and accumulation of advanced glycation end products are key factors driving glycemic memory in endothelial cells. Furthermore, various epigenetic marks have been proposed to closely associate with vascular glycemic memory. In addition, we comment on the importance of endothelial progenitors and their role as endogenous vasoreparative cells that are negatively impacted by the diabetic milieu and may constitute a "carrier" of glycemic memory. Considering the potential of endothelial progenitor-based cytotherapies, future studies on their glycemic memory are warranted to develop epigenetics-based therapeutics targeting diabetic vascular complications.
Collapse
Affiliation(s)
- Poojitha Rajasekar
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast BT12 6BA, UK
| | - Christina L. O'Neill
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast BT12 6BA, UK
| | - Lydia Eeles
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast BT12 6BA, UK
| | - Alan W. Stitt
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast BT12 6BA, UK
| | - Reinhold J. Medina
- Centre for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Science, Queen's University Belfast, Belfast BT12 6BA, UK
- *Reinhold J. Medina:
| |
Collapse
|
27
|
Tros F, Meirhaeghe A, Hadjadj S, Amouyel P, Bougnères P, Fradin D. Hypomethylation of the promoter of the catalytic subunit of protein phosphatase 2A in response to hyperglycemia. Physiol Rep 2014; 2:2/7/e12076. [PMID: 25347859 PMCID: PMC4187575 DOI: 10.14814/phy2.12076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
In order to identify epigenetic mechanisms through which hyperglycemia can affect gene expression durably in β cells, we screened DNA methylation changes induced by high glucose concentrations (25 mmol/L) in the BTC3 murine cell line, using an epigenome‐wide approach. Exposure of BTC3 cells to high glucose modified the expression of 1612 transcripts while inducing significant methylation changes in 173 regions. Among these 173 glucose‐sensitive differentially methylated regions (DMRs), 14 were associated with changes in gene expression, suggesting an epigenetic effect of high glucose on gene transcription at these loci. Among these 14 DMRs, we selected for further study Pp2ac, a gene previously suspected to play a role in β‐cell physiology and type 2 diabetes. Using RT‐qPCR and bisulfite pyrosequencing, we confirmed our previous observations in BTC3 cells and found that this gene was significantly demethylated in the whole blood cells (WBCs) of type 2 diabetic patients compared to controls. In order to identify epigenetic mechanisms through which hyperglycemia can affect gene expression durably in β cells, we screened DNA methylation changes induced by high glucose concentration in the BTC3 murine cell line. We identified one interesting gene, PP2AC, and confirmed it in type 2 diabetic patients.
Collapse
Affiliation(s)
- Fabiola Tros
- INSERM U986, Bicêtre Hospital, Paris Sud University, Le Kremlin-Bicêtre, France UMR1002, Paris, France
| | - Aline Meirhaeghe
- INSERM, U744, Lille, France Institut Pasteur de Lille, Université Lille Nord de France, Lille, France UDSL, Lille, France
| | - Samy Hadjadj
- Department of Diabetology, Poitiers Hospital, INSERM U927, INSERM CIC 802, Université de Poitiers, UFR Médecine Pharmacie, Poitiers, France
| | - Philippe Amouyel
- INSERM, U744, Lille, France Institut Pasteur de Lille, Université Lille Nord de France, Lille, France UDSL, Lille, France
| | - Pierre Bougnères
- INSERM U986, Bicêtre Hospital, Paris Sud University, Le Kremlin-Bicêtre, France Department of Pediatric Endocrinology, Bicêtre Hospital, Paris Sud University, Le Kremlin-Bicêtre, France
| | - Delphine Fradin
- INSERM U986, Bicêtre Hospital, Paris Sud University, Le Kremlin-Bicêtre, France
| |
Collapse
|
28
|
Abstract
There is a worldwide epidemic of cardiovascular diseases causing not only a public health issue but also accounting for trillions of dollars of healthcare expenditure. Studies pertaining to epidemiology, pathophysiology, molecular biology, gene identification and genetic linkage maps have been able to lay a strong foundation for both the diagnosis and treatment of cardiovascular medicine. Although the concept of 'epigenetics' is not recent, the term in current usage is extended from the initial concept of 'controlling developmental gene expression and signaling pathways in undifferentiated zygotes' to include heritable changes to gene expression that are not from differences in the genetic code. The impact of epigenetics in cardiovascular disease is now emerging as an important regulatory key player at different levels from pathophysiology to therapeutics. This review focuses on the emerging role of epigenetics in major cardiovascular medicine specialties such as coronary artery disease, heart failure, cardiac hypertrophy and diabetes.
Collapse
Affiliation(s)
- Charbel Abi Khalil
- Department of Genetic Medicine and Department of Medicine, Weill Cornell Medical College - Qatar, PO Box 24144, Doha, Qatar
| |
Collapse
|
29
|
Ambra R, Manca S, Palumbo MC, Leoni G, Natarelli L, De Marco A, Consoli A, Pandolfi A, Virgili F. Transcriptome analysis of human primary endothelial cells (HUVEC) from umbilical cords of gestational diabetic mothers reveals candidate sites for an epigenetic modulation of specific gene expression. Genomics 2014; 103:337-48. [PMID: 24667242 DOI: 10.1016/j.ygeno.2014.03.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 01/30/2014] [Accepted: 03/05/2014] [Indexed: 12/20/2022]
Abstract
Within the complex pathological picture associated to diabetes, high glucose (HG) has "per se" effects on cells and tissues that involve epigenetic reprogramming of gene expression. In fetal tissues, epigenetic changes occur genome-wide and are believed to induce specific long term effects. Human umbilical vein endothelial cells (HUVEC) obtained at delivery from gestational diabetic women were used to study the transcriptomic effects of chronic hyperglycemia in fetal vascular cells using Affymetrix microarrays. In spite of the small number of samples analyzed (n=6), genes related to insulin sensing and extracellular matrix reorganization were found significantly affected by HG. Quantitative PCR analysis of gene promoters identified a significant differential DNA methylation in TGFB2. Use of Ea.hy926 endothelial cells confirms data on HUVEC. Our study corroborates recent evidences suggesting that epigenetic reprogramming of gene expression occurs with persistent HG and provides a background for future investigations addressing genomic consequences of chronic HG.
Collapse
Affiliation(s)
- R Ambra
- Food and Nutrition Center of the Agricultural Research Council - CRA-NUT, via Ardeatina 546, 00178 Rome, Italy.
| | - S Manca
- Food and Nutrition Center of the Agricultural Research Council - CRA-NUT, via Ardeatina 546, 00178 Rome, Italy
| | - M C Palumbo
- Food and Nutrition Center of the Agricultural Research Council - CRA-NUT, via Ardeatina 546, 00178 Rome, Italy; Institute for Computing Applications M. Picone, National Research Council of Italy (CNR), via dei Taurini 19, 00185 Rome, Italy
| | - G Leoni
- Food and Nutrition Center of the Agricultural Research Council - CRA-NUT, via Ardeatina 546, 00178 Rome, Italy
| | - L Natarelli
- Food and Nutrition Center of the Agricultural Research Council - CRA-NUT, via Ardeatina 546, 00178 Rome, Italy
| | - A De Marco
- Department of Medicine and Aging Sciences, University G. d'Annunzio, Aging Research Center, Center of Excellence for Aging, G. d'Annunzio University Foundation, Chieti-Pescara, Italy
| | - A Consoli
- Department of Medicine and Aging Sciences, University G. d'Annunzio, Aging Research Center, Center of Excellence for Aging, G. d'Annunzio University Foundation, Chieti-Pescara, Italy
| | - A Pandolfi
- Department of Experimental and Clinical Sciences, University G. d'Annunzio, Aging Research Center, Center of Excellence for Aging, G. d'Annunzio University Foundation, Chieti-Pescara, Italy
| | - F Virgili
- Food and Nutrition Center of the Agricultural Research Council - CRA-NUT, via Ardeatina 546, 00178 Rome, Italy
| |
Collapse
|
30
|
Gut P, Verdin E. The nexus of chromatin regulation and intermediary metabolism. Nature 2013; 502:489-98. [PMID: 24153302 DOI: 10.1038/nature12752] [Citation(s) in RCA: 290] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 08/16/2013] [Indexed: 12/14/2022]
Abstract
Living organisms and individual cells continuously adapt to changes in their environment. Those changes are particularly sensitive to fluctuations in the availability of energy substrates. The cellular transcriptional machinery and its chromatin-associated proteins integrate environmental inputs to mediate homeostatic responses through gene regulation. Numerous connections between products of intermediary metabolism and chromatin proteins have recently been identified. Chromatin modifications that occur in response to metabolic signals are dynamic or stable and might even be inherited transgenerationally. These emerging concepts have biological relevance to tissue homeostasis, disease and ageing.
Collapse
Affiliation(s)
- Philipp Gut
- Gladstone Institutes, University of California, San Francisco, California 94941, USA
| | | |
Collapse
|
31
|
Abstract
A strong case for the deregulation of epigenetic chromatin modifications in the development and progression of various chronic complications of diabetes has emerged from recent experimental observations. Clinical trials of type 1 and type 2 diabetes patients highlight the importance of early and intensive treatment and the prolonged damage of hyperglycemia on organs such as the kidney. The functional relationship between the regulation of chromatin architecture and persistent gene expression changes conferred by prior hyperglycemia represents an important avenue of investigation for explaining diabetic nephropathy. While several studies implicate epigenetic changes at the chromatin template in the deregulated gene expression associated with diabetic nephropathy, the molecular determinants of metabolic memory in renal cells remain poorly understood. There is now strong evidence from experimental animals and cell culture of persistent glucose-driven changes in vascular endothelial gene expression that may also have relevance for the microvasculature of the kidney. Exploration of epigenetic mechanisms underlying the hyperglycemic cue mediating persistent transcriptional changes in renal cells holds novel therapeutic potential for diabetic nephropathy.
Collapse
Affiliation(s)
- Samuel T Keating
- Epigenetics in Human Health and Disease Laboratory, Baker IDI Heart and Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria, 3004, Australia
| | | |
Collapse
|
32
|
Epigenetic signatures and vascular risk in type 2 diabetes: a clinical perspective. Atherosclerosis 2013; 230:191-7. [PMID: 24075743 DOI: 10.1016/j.atherosclerosis.2013.07.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 07/07/2013] [Indexed: 12/15/2022]
Abstract
Risk of diabetic complications continues to escalate overtime despite a multifactorial intervention with glucose-lowering drugs, anti-hypertensive agents and statins. In this perspective, a mechanisms-based therapeutic approach to vascular disease in diabetes represents a major challenge. Epigenetic signatures are emerging as important determinants of vascular disease in this setting. Methylation and acetylation of DNA and histones is a reversible process leading to dysregulation of oxidant and inflammatory genes such as mitochondrial adaptor p66(Shc) and transcription factor NF-kB p65. Epigenetic modifications associated with diabetes may contribute to the early identification of high risk individuals. Ongoing epigenomic analyses will be instrumental in identifying the epigenetic variations that are specifically associated with cardiovascular disease in patients with diabetes. Here, we describe a complex scenario of epigenetic changes and their putative link with diabetic vascular disease. Pharmacological reprogramming of diabetes-induced epigenetic signatures may be a promising option to dampen oxidative stress and inflammation, and thus prevent cardiovascular complications in this setting.
Collapse
|
33
|
Wang SCM, Muscat GEO. Nuclear receptors and epigenetic signaling: novel regulators of glycogen metabolism in skeletal muscle. IUBMB Life 2013; 65:657-64. [PMID: 23846999 DOI: 10.1002/iub.1181] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 04/18/2013] [Indexed: 02/04/2023]
Abstract
Glycogen is an energy storage depot for the mammalian species. This review focuses on recent developments that have identified the role of nuclear hormone receptor (NR) signaling and epigenomic control in the regulation of important genes that modulate glycogen metabolism. Specifically, new studies have revealed that the NR4A subgroup (of the NR superfamily) are strikingly sensitive to beta-adrenergic stimulation in skeletal muscle, and transgenic studies in mice have revealed the expression of these NRs affects endurance and glycogen levels in muscle. Furthermore, other studies have demonstrated that one of the NR coregulator class of enzymes that mediate chromatin remodeling, the histone methyltransferases (for example, protein arginine methyltransferase 4) regulates the expression of several genes involved in glycogen metabolism and glycogen storage diseases in skeletal muscle. Importantly, NRs and histone methyltransferases, have the potential to be pharmacologically exploited and may provide novel targets in the quest to treat disorders of glycogen storage.
Collapse
Affiliation(s)
- Shu-Ching Mary Wang
- The University of Queensland, Institute for Molecular Bioscience, Obesity Research Centre, Australia
| | | |
Collapse
|
34
|
Paneni F, Volpe M, Lüscher TF, Cosentino F. SIRT1, p66(Shc), and Set7/9 in vascular hyperglycemic memory: bringing all the strands together. Diabetes 2013; 62:1800-7. [PMID: 23704521 PMCID: PMC3661615 DOI: 10.2337/db12-1648] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Francesco Paneni
- Cardiology and Cardiovascular Research, University of Zürich, Zürich, Switzerland
- IRCCS Neuromed, Pozzilli, Italy
| | - Massimo Volpe
- IRCCS Neuromed, Pozzilli, Italy
- Cardiology, Department of Clinical and Molecular Medicine, University of Rome “La Sapienza,” Rome, Italy
| | - Thomas Felix Lüscher
- Cardiology and Cardiovascular Research, University of Zürich, Zürich, Switzerland
- Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland
| | - Francesco Cosentino
- Cardiology and Cardiovascular Research, University of Zürich, Zürich, Switzerland
- Cardiology, Department of Clinical and Molecular Medicine, University of Rome “La Sapienza,” Rome, Italy
- Center for Integrative Human Physiology, University of Zürich, Zürich, Switzerland
- Corresponding author: Francesco Cosentino,
| |
Collapse
|
35
|
Abstract
In this article, we review the current knowledge of and recent insights into the role of epigenetic factors in the development of insulin resistance (IR), with emphasis on peroxisome proliferator-activated receptor gamma coactivator 1α (PPARGC1A or PGC1α) methylation on fetal programming and liver modulation of glucose-related phenotypes. We discuss the pathogenesis of IR beyond the integrity of β-cell function and illustrate the novel concept of mitochondrial epigenetics to explain the pathobiology of metabolic-syndrome-related phenotypes. Moreover, we discuss whether epigenetic marks in genes of the circadian rhythm system are able to modulate insulin/glucose-related metabolic functions and place hypoxia inducible factor 1 α (HIF1α) as a part of the master CLOCK gene/protein interaction network that might modulate IR. Finally, we highlight relevant information about epigenetic marks and IR so that clinicians practicing in the community may envision future areas of medical intervention and predict putative biomarkers for early disease detection.
Collapse
Affiliation(s)
- Silvia Sookoian
- Department of Clinical and Molecular Hepatology, Institute of Medical Research A Lanari-IDIM, University of Buenos Aires-National Council of Scientific and Technological Research (CONICET), Ciudad Autónoma de Buenos Aires, Argentina.
| | | |
Collapse
|
36
|
Keating ST, El-Osta A. Epigenetic changes in diabetes. Clin Genet 2013; 84:1-10. [PMID: 23398084 DOI: 10.1111/cge.12121] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 02/05/2013] [Accepted: 02/05/2013] [Indexed: 12/14/2022]
Abstract
Diabetes is a multifactorial disease with numerous pathways influencing its progression and recent observations suggest that the complexity of the disease cannot be entirely accounted for by genetic predisposition. A compelling argument for an epigenetic component is rapidly emerging. Epigenetic processes at the chromatin template significantly sensitize transcriptional and phenotypic outcomes to environmental signaling information including metabolic state, nutritional requirements and history. Epigenetic mechanisms impact gene expression that could predispose individuals to the diabetic phenotype during intrauterine and early postnatal development, as well as throughout adult life. Furthermore, epigenetic changes could account for the accelerated rates of chronic and persistent microvascular and macrovascular complications associated with diabetes. Epidemiological and experimental animal studies identified poor glycemic control as a major contributor to the development of diabetic complications and highlight the requirement for early intervention. Early exposure to hyperglycemia can drive the development of complications that manifest late in the progression of the disease and persist despite improved glycemic control, indicating a memory of the metabolic insult. Understanding the molecular events that underlie these transcriptional changes will significantly contribute to novel therapeutic interventions to prevent, reverse or retard the deleterious effects of the diabetic milieu.
Collapse
Affiliation(s)
- S T Keating
- Epigenetics in Human Health and Disease Laboratory, Baker IDI Heart & Diabetes Institute, The Alfred Medical Research and Education Precinct, Melbourne, Victoria 3004, Australia
| | | |
Collapse
|
37
|
Malmgren S, Spégel P, Danielsson APH, Nagorny CL, Andersson LE, Nitert MD, Ridderstråle M, Mulder H, Ling C. Coordinate changes in histone modifications, mRNA levels, and metabolite profiles in clonal INS-1 832/13 β-cells accompany functional adaptations to lipotoxicity. J Biol Chem 2013; 288:11973-87. [PMID: 23476019 DOI: 10.1074/jbc.m112.422527] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Lipotoxicity is a presumed pathogenetic process whereby elevated circulating and stored lipids in type 2 diabetes cause pancreatic β-cell failure. To resolve the underlying molecular mechanisms, we exposed clonal INS-1 832/13 β-cells to palmitate for 48 h. We observed elevated basal insulin secretion but impaired glucose-stimulated insulin secretion in palmitate-exposed cells. Glucose utilization was unchanged, palmitate oxidation was increased, and oxygen consumption was impaired. Halting exposure of the clonal INS-1 832/13 β-cells to palmitate largely recovered all of the lipid-induced functional changes. Metabolite profiling revealed profound but reversible increases in cellular lipids. Glucose-induced increases in tricarboxylic acid cycle intermediates were attenuated by exposure to palmitate. Analysis of gene expression by microarray showed increased expression of 982 genes and decreased expression of 1032 genes after exposure to palmitate. Increases were seen in pathways for steroid biosynthesis, cell cycle, fatty acid metabolism, DNA replication, and biosynthesis of unsaturated fatty acids; decreases occurred in the aminoacyl-tRNA synthesis pathway. The activity of histone-modifying enzymes and histone modifications of differentially expressed genes were reversibly altered upon exposure to palmitate. Thus, Insig1, Lss, Peci, Idi1, Hmgcs1, and Casr were subject to epigenetic regulation. Our analyses demonstrate that coordinate changes in histone modifications, mRNA levels, and metabolite profiles accompanied functional adaptations of clonal β-cells to lipotoxicity. It is highly likely that these changes are pathogenetic, accounting for loss of glucose responsiveness and perturbed insulin secretion.
Collapse
Affiliation(s)
- Siri Malmgren
- Department of Clinical Sciences, Units of Molecular Metabolism, Scania University Hospital, 205 02 Malmö, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Chromatin modifications associated with diabetes. J Cardiovasc Transl Res 2012; 5:399-412. [PMID: 22639343 DOI: 10.1007/s12265-012-9380-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 05/16/2012] [Indexed: 01/04/2023]
Abstract
Accelerated rates of vascular complications are associated with diabetes mellitus. Environmental factors including hyperglycaemia contribute to the progression of diabetic complications. Epidemiological and experimental animal studies identified poor glycaemic control as a major contributor to the development of complications. These studies suggest that early exposure to hyperglycaemia can instigate the development of complications that present later in the progression of the disease, despite improved glycaemic control. Recent experiments reveal a striking commonality associated with gene-activating hyperglycaemic events and chromatin modification. The best characterised to date are associated with the chemical changes of amino-terminal tails of histone H3. Enzymes that write specified histone tail modifications are not well understood in models of hyperglycaemia and metabolic memory as well as human diabetes. The best-characterised enzyme is the lysine specific Set7 methyltransferase. The contribution of Set7 to the aetiology of diabetic complications may extend to other transcriptional events through methylation of non-histone substrates.
Collapse
|