1
|
Branda F, Petrosillo N, Yon DK, Ciccozzi M, Scarpa F. Comprehensive Analysis of Influenza Viruses' Trends in Italy: Insights from a Nationwide and Regional Perspective. Infect Dis Rep 2025; 17:20. [PMID: 40126326 PMCID: PMC11932262 DOI: 10.3390/idr17020020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 03/25/2025] Open
Abstract
Background. Influenza remains a significant public health issue, with seasonal trends varying across regions. This study provides a comprehensive analysis of influenza virus trends in Italy, leveraging epidemiological and virological data from the Istituto Superiore di Sanità (ISS). The primary objective is to assess influenza activity at both national and regional levels, highlighting variations in incidence rates and viral subtype circulation during the 2023/2024 season. Methods. We conducted a systematic approach to data collection, processing, and visualization, utilizing influenza surveillance data from ISS. Incidence rates, subtype distribution, and co-circulating respiratory viruses were analyzed to identify key trends. Results. Our findings reveal a significant increase in influenza cases during the 2023/2024 season, with incidence rates surpassing pre-pandemic levels. Notably, changes in the circulation of influenza A(H3N2) and influenza B were observed, alongside the presence of other respiratory viruses such as RSV and rhinovirus. Conclusions. This study underscores the importance of real-time surveillance, transparent data sharing, and advanced visualization tools in guiding public health responses. By integrating lessons from COVID-19, we highlight the necessity of standardized surveillance frameworks to enhance preparedness for future seasonal outbreaks and potential pandemics.
Collapse
Affiliation(s)
- Francesco Branda
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
| | - Nicola Petrosillo
- Infection Prevention & Control/Infectious Disease Service, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Rome, Italy
| | - Dong Keon Yon
- Center for Digital Health, Medical Science Research Institute, Kyung Hee University College of Medicine, Seoul 02448, Republic of Korea;
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy;
| | - Fabio Scarpa
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy;
| |
Collapse
|
2
|
Kara Y, Kizil MC, Arslanoglu MO, Kacmaz E, Dalokay N, Pala E, Kiral E, Bozan G, Us T, Kiliç O, Dinleyici EC. Unexpected Severe Bocavirus Infections among Hospitalized Children during the COVID-19 Pandemic. J PEDIAT INF DIS-GER 2023. [DOI: 10.1055/s-0043-1767738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Abstract
Objective Acute respiratory tract infections are one of the leading causes of morbidity and mortality in children. Although human bocavirus (HBoV) infections are not as common as other seasonal respiratory viruses, children who are infected with HBoV are more likely to suffer from a variety of respiratory conditions, including the common cold, acute otitis media, asthma exacerbations, bronchiolitis pneumonia, some of the affected children require pediatric intensive care unit stay. Here, we aimed to evaluate pediatric bocavirus (HBoV) cases presenting with severe respiratory tract symptoms during the coronavirus disease 2019 (COVID-19) pandemic.
Methods This retrospective study evaluated the medical records of children diagnosed with respiratory infections, followed up at the Faculty of Medicine, Eskisehir Osmangazi University between September 2021 and March 2022. In this study, patients with HBoV identified using nasopharyngeal polymerase chain reaction (PCR) were considered positive. Cases were analyzed retrospectively for their clinical characteristics.
Results This study included 54 children (29 girls and 25 boys) with HBoV in nasopharyngeal PCR samples. The cases ranged in age from 1 month to 72 months (median 25 months). At the time of presentation, cough, fever, and respiratory distress were the most prevalent symptoms. Hyperinflation (48%), pneumonic consolidation (42%), and pneumothorax–pneumomediastinum (7%) were observed on the chest X-ray; 54% of the children required intensive care unit stay. The median length of hospitalization was 6 days. Bacterial coinfection was detected in 7 (17%) children, while HBoV and other viruses were present in 20 (37%) children; 57% of children received supplemental oxygen by mask, 24% high-flow nasal oxygen, 7% continuous positive airway pressure, and 9% invasive mechanical ventilation support. Antibiotics were given to 34 (63%) cases, and systemic steroid treatment was given to 41 (76%) cases. Chest tubes were inserted in three out of the four cases with pneumothorax–pneumomediastinum. All patients were recovered and were discharged from the hospital.
Conclusion The COVID-19 pandemic changed the epidemiology of seasonal respiratory viruses and the clinical course of the diseases. Although it usually causes mild symptoms, severe respiratory symptoms can lead to life-threatening illnesses requiring intensive care admission.
Collapse
Affiliation(s)
- Yalcin Kara
- Pediatric Infectious Disease Unit, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Türkiye
| | - Mahmut Can Kizil
- Pediatric Infectious Disease Unit, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Türkiye
| | - Mehmet Ozgur Arslanoglu
- Pediatric Intensive Care Unit, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Türkiye
| | - Ebru Kacmaz
- Pediatric Intensive Care Unit, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Türkiye
| | - Nidai Dalokay
- Department of Pediatrics, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Türkiye
| | - Ezgi Pala
- Department of Pediatrics, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Türkiye
| | - Eylem Kiral
- Pediatric Intensive Care Unit, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Türkiye
| | - Gürkan Bozan
- Pediatric Intensive Care Unit, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Türkiye
| | - Tercan Us
- Department of Microbiology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Türkiye
| | - Omer Kiliç
- Pediatric Infectious Disease Unit, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Türkiye
| | - Ener Cagri Dinleyici
- Pediatric Intensive Care Unit, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Türkiye
| |
Collapse
|
3
|
The small nonstructural protein NP1 of human bocavirus 1 directly interacts with Ku70 and RPA70 and facilitates viral DNA replication. PLoS Pathog 2022; 18:e1010578. [PMID: 35653410 PMCID: PMC9197078 DOI: 10.1371/journal.ppat.1010578] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/14/2022] [Accepted: 05/10/2022] [Indexed: 11/19/2022] Open
Abstract
Human bocavirus 1 (HBoV1), a member of the genus Bocaparvovirus of the family Parvoviridae, causes acute respiratory tract infections in young children. Well-differentiated pseudostratified human airway epithelium cultured at an air-liquid interface (HAE-ALI) is an ideal in vitro culture model to study HBoV1 infection. Unique to other parvoviruses, bocaparvoviruses express a small nonstructured protein NP1 of ~25 kDa from an open reading frame (ORF) in the center of the viral genome. NP1 plays an important role in viral DNA replication and pre-mRNA processing. In this study, we performed an affinity purification assay to identify HBoV1 NP1-inteacting proteins. We identified that Ku70 and RPA70 directly interact with the NP1 at a high binding affinity, characterized with an equilibrium dissociation constant (KD) of 95 nM and 122 nM, respectively. Furthermore, we mapped the key NP1-interacting domains of Ku70 at aa266-439 and of RPA70 at aa181-422. Following a dominant negative strategy, we revealed that the interactions of Ku70 and RPA70 with NP1 play a significant role in HBoV1 DNA replication not only in an in vitro viral DNA replication assay but also in HBoV1-infected HAE-ALI cultures. Collectively, our study revealed a novel mechanism by which HBoV1 NP1 enhances viral DNA replication through its direct interactions with Ku70 and RPA70.
Collapse
|
4
|
Shao L, Ning K, Wang J, Cheng F, Wang S, Qiu J. The Large Nonstructural Protein (NS1) of Human Bocavirus 1 Directly Interacts with Ku70, Which Plays an Important Role in Virus Replication in Human Airway Epithelia. J Virol 2022; 96:e0184021. [PMID: 34878919 PMCID: PMC8865542 DOI: 10.1128/jvi.01840-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 11/22/2021] [Indexed: 12/16/2022] Open
Abstract
Human bocavirus 1 (HBoV1), an autonomous human parvovirus, causes acute respiratory tract infections in young children. HBoV1 infects well-differentiated (polarized) human airway epithelium cultured at an air-liquid interface (HAE-ALI). HBoV1 expresses a large nonstructural protein, NS1, that is essential for viral DNA replication. HBoV1 infection of polarized human airway epithelial cells induces a DNA damage response (DDR) that is critical to viral DNA replication involving DNA repair with error-free Y-family DNA polymerases. HBoV1 NS1 or the isoform NS1-70 per se induces a DDR. In this study, using the second-generation proximity-dependent biotin identification (BioID2) approach, we identified that Ku70 is associated with the NS1-BioID2 pulldown complex through a direct interaction with NS1. Biolayer interferometry (BLI) assay determined a high binding affinity of NS1 with Ku70, which has an equilibrium dissociation constant (KD) value of 0.16 μM and processes the strongest interaction at the C-terminal domain. The association of Ku70 with NS1 was also revealed during HBoV1 infection of HAE-ALI. Knockdown of Ku70 and overexpression of the C-terminal domain of Ku70 significantly decreased HBoV1 replication in HAE-ALI. Thus, our study provides, for the first time, a direct interaction of parvovirus large nonstructural protein NS1 with Ku70. IMPORTANCE Parvovirus infection induces a DNA damage response (DDR) that plays a pivotal role in viral DNA replication. The DDR includes activation of ATM (ataxia telangiectasia mutated), ATR (ATM- and RAD3-related), and DNA-PKcs (DNA-dependent protein kinase catalytic subunit). The large nonstructural protein (NS1) often plays a role in the induction of DDR; however, how the DDR is induced during parvovirus infection or simply by the NS1 is not well studied. Activation of DNA-PKcs has been shown as one of the key DDR pathways in DNA replication of HBoV1. We identified that HBoV1 NS1 directly interacts with Ku70, but not Ku80, of the Ku70/Ku80 heterodimer at high affinity. This interaction is also important for HBoV1 replication in HAE-ALI. We propose that the interaction of NS1 with Ku70 recruits the Ku70/Ku80 complex to the viral DNA replication center, which activates DNA-PKcs and facilitates viral DNA replication.
Collapse
Affiliation(s)
- Liting Shao
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Kang Ning
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jianke Wang
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Fang Cheng
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Shengqi Wang
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
5
|
Hairpin transfer-independent Parvovirus DNA Replication Produces Infectious Virus. J Virol 2021; 95:e0110821. [PMID: 34346761 DOI: 10.1128/jvi.01108-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Parvoviruses package a linear single-stranded DNA genome with hairpin structures at both ends. It has been thought that terminal hairpin sequences are indispensable for viral DNA replication. Here, we provide evidence that the hairpin-deleted duplex genomes of human bocavirus 1 (HBoV1) replicate in human embryonic kidney (HEK) 293 cells. We propose an alternative model for HBoV1 DNA replication in which the leading strand can initiate strand-displacement without "hairpin-transfer." The transfection of the HBoV1 duplex genomes that retain a minimal replication origin at the right-end (OriR), but with extensive deletions in the right-end hairpin (REH), generated viruses in HEK293 cells at a level 10-20 times lower than the wild-type (WT) duplex genome. Importantly, these viruses that have a genome with various deletions after the OriR, but not the one retaining only the OriR, replicated in polarized human airway epithelia. We discovered that the 18-nt sequence (nt 5,403-5,420) beyond the OriR was sufficient to confer virus replication in polarized human airway epithelia, although its progeny virus production was ∼5 times lower than that of the WT virus. Thus, our study demonstrates that hairpin transfer-independent productive parvovirus DNA replication can occur. Importance Hairpin transfer-independent parvovirus replication was modeled with human bocavirus 1 (HBoV1) duplex genomes whose 5' hairpin structure was ablated by various deletions. In HEK293 cells, these duplex viral genomes with ablated 5'/hairpin sequence replicated efficiently and generated viruses that productively infected polarized human airway epithelium. Thus, for the first time, we reveal a previously unknown phenomenon that the productive parvovirus DNA replication does not depend on the hairpin sequence at REH to initiate "rolling hairpin" DNA replication. Notably, the intermediates of viral DNA replication, as revealed two-dimensional electrophoresis, from transfections of hairpin sequence-deleted duplex genome and full-length genome in HEK293 cells, as well as from virus infection of polarized human airway epithelia are similar. Thus, the establishment of the hairpin transfer-independent parvoviral DNA replication deepens our understanding in viral DNA replication and may have implications in development of parvovirus-based viral vectors with alternative properties.
Collapse
|
6
|
Ljubin-Sternak S, Meštrović T, Lukšić I, Mijač M, Vraneš J. Seasonal Coronaviruses and Other Neglected Respiratory Viruses: A Global Perspective and a Local Snapshot. Front Public Health 2021; 9:691163. [PMID: 34291031 PMCID: PMC8287126 DOI: 10.3389/fpubh.2021.691163] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/04/2021] [Indexed: 02/02/2023] Open
Abstract
Respiratory viral infections are the leading cause of morbidity and mortality in the world; however, there are several groups of viruses that are insufficiently routinely sought for, and can thus be considered neglected from a diagnostic and clinical standpoint. Timely detection of seasonality of certain respiratory viruses (e.g., enveloped viruses such as seasonal coronaviruses) in the local context can aid substantially in targeted and cost-effective utilization of viral diagnostic approaches. For the other, non-enveloped and year-round viruses (i.e., rhinovirus, adenovirus, and bocavirus), a continuous virological diagnosis needs to be implemented in clinical laboratories to more effectively address the aetiology of respiratory infections, and assess the overall impact of these viruses on disease burden. While the coronavirus disease 2019 (COVID-19) pandemic is still actively unfolding, we aimed to emphasize the persistent role of seasonal coronaviruses, rhinoviruses, adenoviruses and bocaviruses in the aetiology of respiratory infections. Consequently, this paper concentrates on the burden and epidemiological trends of aforementioned viral groups on a global level, but also provides a snapshot of their prevalence patterns in Croatia in order to underscore the potential implications of viral seasonality. An overall global prevalence in respiratory tract infections was found to be between 0.5 and 18.4% for seasonal coronaviruses, between 13 and 59% for rhinoviruses, between 1 and 36% for human adenoviruses, and between 1 and 56.8% for human bocaviruses. A Croatian dataset on patients with respiratory tract infection and younger than 18 years of age has revealed a fairly high prevalence of rhinoviruses (33.4%), with much lower prevalence of adenoviruses (15.6%), seasonal coronaviruses (7.1%), and bocaviruses (5.3%). These insights represent a relevant discussion point in the context of the COVID-19 pandemic where the testing of non-SARS-CoV-2 viruses has been limited in many settings, making the monitoring of disease burden associated with other respiratory viruses rather difficult.
Collapse
Affiliation(s)
- Sunčanica Ljubin-Sternak
- Clinical Microbiology Department, Andrija Štampar Teaching Institute of Public Health, Zagreb, Croatia.,Medical Microbiology Department, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Tomislav Meštrović
- Clinical Microbiology and Parasitology Unit, Zora Profozić Polyclinic, Zagreb, Croatia.,University Centre Varaždin, University North, Varaždin, Croatia
| | - Ivana Lukšić
- Clinical Microbiology Department, Andrija Štampar Teaching Institute of Public Health, Zagreb, Croatia
| | - Maja Mijač
- Clinical Microbiology Department, Andrija Štampar Teaching Institute of Public Health, Zagreb, Croatia.,Medical Microbiology Department, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Jasmina Vraneš
- Clinical Microbiology Department, Andrija Štampar Teaching Institute of Public Health, Zagreb, Croatia.,Medical Microbiology Department, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
7
|
Kenmoe S, Kengne-Nde C, Ebogo-Belobo JT, Mbaga DS, Fatawou Modiyinji A, Njouom R. Systematic review and meta-analysis of the prevalence of common respiratory viruses in children < 2 years with bronchiolitis in the pre-COVID-19 pandemic era. PLoS One 2020; 15:e0242302. [PMID: 33180855 PMCID: PMC7660462 DOI: 10.1371/journal.pone.0242302] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/01/2020] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION The advent of genome amplification assays has allowed description of new respiratory viruses and to reconsider the role played by certain respiratory viruses in bronchiolitis. This systematic review and meta-analysis was initiated to clarify the prevalence of respiratory viruses in children with bronchiolitis in the pre-COVID-19 pandemic era. METHODS We performed an electronic search through Pubmed and Global Index Medicus databases. We included observational studies reporting the detection rate of common respiratory viruses in children with bronchiolitis using molecular assays. Data was extracted and the quality of the included articles was assessed. We conducted sensitivity, subgroups, publication bias, and heterogeneity analyses using a random effect model. RESULTS The final meta-analysis included 51 studies. Human respiratory syncytial virus (HRSV) was largely the most commonly detected virus 59.2%; 95% CI [54.7; 63.6]). The second predominant virus was Rhinovirus (RV) 19.3%; 95% CI [16.7; 22.0]) followed by Human bocavirus (HBoV) 8.2%; 95% CI [5.7; 11.2]). Other reported viruses included Human Adenovirus (HAdV) 6.1%; 95% CI [4.4; 8.0]), Human Metapneumovirus (HMPV) 5.4%; 95% CI [4.4; 6.4]), Human Parainfluenzavirus (HPIV) 5.4%; 95% CI [3.8; 7.3]), Influenza 3.2%; 95% CI [2.2; 4.3], Human Coronavirus (HCoV) 2.9%; 95% CI [2.0; 4.0]), and Enterovirus (EV) 2.9%; 95% CI [1.6; 4.5]). HRSV was the predominant virus involved in multiple detection and most codetections were HRSV + RV 7.1%, 95% CI [4.6; 9.9]) and HRSV + HBoV 4.5%, 95% CI [2.4; 7.3]). CONCLUSIONS The present study has shown that HRSV is the main cause of bronchiolitis in children, we also have Rhinovirus, and Bocavirus which also play a significant role. Data on the role played by SARS-CoV-2 in children with acute bronchiolitis is needed. REVIEW REGISTRATION PROSPERO, CRD42018116067.
Collapse
Affiliation(s)
- Sebastien Kenmoe
- Department of Virology, Centre Pasteur of Cameroon, Yaoundé, Cameroon
| | - Cyprien Kengne-Nde
- National AIDS Control Committee, Epidemiological Surveillance, Evaluation and Research Unit, Yaounde, Cameroon
| | - Jean Thierry Ebogo-Belobo
- Medical Research Centre, Institute of Medical Research and Medicinal Plants Studies, Yaoundé, Cameroon
| | - Donatien Serge Mbaga
- Department of Microbiology, Faculty of Science, The University of Yaounde I, Yaoundé, Cameroon
| | - Abdou Fatawou Modiyinji
- Department of Virology, Centre Pasteur of Cameroon, Yaoundé, Cameroon
- Department of Animals Biology and Physiology, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Richard Njouom
- Department of Virology, Centre Pasteur of Cameroon, Yaoundé, Cameroon
| |
Collapse
|
8
|
Kenmoe S, Kengne-nde C, Ebogo-belobo JT, Mbaga DS, Modiyinji AF, Njouom R. Systematic review and meta-analysis of the prevalence of common respiratory viruses in children < 2 years with bronchiolitis reveal a weak role played by the SARS-CoV-2.. [DOI: 10.1101/2020.08.28.20183681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
AbstractIntroduction The advent of genome amplification assays has allowed description of new respiratory viruses and to reconsider the role played by certain respiratory viruses in bronchiolitis. This systematic review and meta-analysis was initiated to clarify the prevalence of respiratory viruses in children with bronchiolitis in the coronavirus disease 2019 pandemic context.MethodsWe performed an electronic search through Pubmed and Global Index Medicus databases. We included observational studies reporting the detection rate of common respiratory viruses in children with bronchiolitis using molecular assays. Data was extracted and the quality of the included articles was assessed. We conducted sensitivity, subgroups, publication bias, and heterogeneity analyses using a random effect model.ResultsThe final meta-analysis included 51 studies. Human respiratory syncytial virus (HRSV) was largely the most commonly detected virus 59.2%; 95% CI [54.7; 63.6]). The second predominant virus was Rhinovirus (RV) 19.3%; 95% CI [16.7; 22.0]) followed by Human bocavirus (HBoV) 8.2%; 95% CI [5.7; 11.2]). Other reported viruses included Human Adenovirus (HAdV) 6.1%; 95% CI [4.4; 8.0]), Human Metapneumovirus (HMPV) 5.4%; 95% CI [4.4; 6.4]), Human Parainfluenzavirus (HPIV) 5.4%; 95% CI [3.8; 7.3]), Influenza 3.2%; 95% CI [2.2; 4.3], mild Human Coronavirus (HCoV) 2.9%; 95% CI [2.0; 4.0]), and Enterovirus (EV) 2.9%; 95% CI [1.6; 4.5]). HRSV was the predominant virus involved in multiple detection and most codetections were HRSV + RV 7.1%, 95% CI [4.6; 9.9]) and HRSV + HBoV 4.5%, 95% CI [2.4; 7.3]).ConclusionsThe present study has shown that HRSV is the main cause of bronchiolitis in children, we also have Rhinovirus, and Bocavirus which also play a significant role. No study has reported the presence of Severe Acute Respiratory Syndrome Coronavirus-2 in children with bronchiolitis to date.
Collapse
|
9
|
DNA Damage Signaling Is Required for Replication of Human Bocavirus 1 DNA in Dividing HEK293 Cells. J Virol 2016; 91:JVI.01831-16. [PMID: 27733644 DOI: 10.1128/jvi.01831-16] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 10/05/2016] [Indexed: 02/07/2023] Open
Abstract
Human bocavirus 1 (HBoV1), an emerging human-pathogenic respiratory virus, is a member of the genus Bocaparvovirus of the Parvoviridae family. In human airway epithelium air-liquid interface (HAE-ALI) cultures, HBoV1 infection initiates a DNA damage response (DDR), activating all three phosphatidylinositol 3-kinase-related kinases (PI3KKs): ATM, ATR, and DNA-PKcs. In this context, activation of PI3KKs is a requirement for amplification of the HBoV1 genome (X. Deng, Z. Yan, F. Cheng, J. F. Engelhardt, and J. Qiu, PLoS Pathog, 12:e1005399, 2016, https://doi.org/10.1371/journal.ppat.1005399), and HBoV1 replicates only in terminally differentiated, nondividing cells. This report builds on the previous discovery that the replication of HBoV1 DNA can also occur in dividing HEK293 cells, demonstrating that such replication is likewise dependent on a DDR. Transfection of HEK293 cells with the duplex DNA genome of HBoV1 induces hallmarks of DDR, including phosphorylation of H2AX and RPA32, as well as activation of all three PI3KKs. The large viral nonstructural protein NS1 is sufficient to induce the DDR and the activation of the three PI3KKs. Pharmacological inhibition or knockdown of any one of the PI3KKs significantly decreases both the replication of HBoV1 DNA and the downstream production of progeny virions. The DDR induced by the HBoV1 NS1 protein does not cause obvious damage to cellular DNA or arrest of the cell cycle. Notably, key DNA replication factors and major DNA repair DNA polymerases (polymerase η [Pol η] and polymerase κ [Pol κ]) are recruited to the viral DNA replication centers and facilitate HBoV1 DNA replication. Our study provides the first evidence of the DDR-dependent parvovirus DNA replication that occurs in dividing cells and is independent of cell cycle arrest. IMPORTANCE The parvovirus human bocavirus 1 (HBoV1) is an emerging respiratory virus that causes lower respiratory tract infections in young children worldwide. HEK293 cells are the only dividing cells tested that fully support the replication of the duplex genome of this virus and allow the production of progeny virions. In this study, we demonstrate that HBoV1 induces a DDR that plays significant roles in the replication of the viral DNA and the production of progeny virions in HEK293 cells. We also show that both cellular DNA replication factors and DNA repair DNA polymerases colocalize within centers of viral DNA replication and that Pol η and Pol κ play an important role in HBoV1 DNA replication. Whereas the DDR that leads to the replication of the DNA of other parvoviruses is facilitated by the cell cycle, the DDR triggered by HBoV1 DNA replication or NS1 is not. HBoV1 is the first parvovirus whose NS1 has been shown to be able to activate all three PI3KKs (ATM, ATR, and DNA-PKcs).
Collapse
|
10
|
Analysis of cis and trans Requirements for DNA Replication at the Right-End Hairpin of the Human Bocavirus 1 Genome. J Virol 2016; 90:7761-77. [PMID: 27334591 PMCID: PMC4988151 DOI: 10.1128/jvi.00708-16] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 06/13/2016] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Parvoviruses are single-stranded DNA viruses that use the palindromic structures at the ends of the viral genome for their replication. The mechanism of parvovirus replication has been studied mostly in the dependoparvovirus adeno-associated virus 2 (AAV2) and the protoparvovirus minute virus of mice (MVM). Here, we used human bocavirus 1 (HBoV1) to understand the replication mechanism of bocaparvovirus. HBoV1 is pathogenic to humans, causing acute respiratory tract infections, especially in young children under 2 years old. By using the duplex replicative form of the HBoV1 genome in human embryonic kidney 293 (HEK293) cells, we identified the HBoV1 minimal replication origin at the right-end hairpin (OriR). Mutagenesis analyses confirmed the putative NS1 binding and nicking sites within the OriR. Of note, unlike the large nonstructural protein (Rep78/68 or NS1) of other parvoviruses, HBoV1 NS1 did not specifically bind OriR in vitro, indicating that other viral and cellular components or the oligomerization of NS1 is required for NS1 binding to the OriR. In vivo studies demonstrated that residues responsible for NS1 binding and nicking are within the origin-binding domain. Further analysis identified that the small nonstructural protein NP1 is required for HBoV1 DNA replication at OriR. NP1 and other viral nonstructural proteins (NS1 to NS4) colocalized within the viral DNA replication centers in both OriR-transfected cells and virus-infected cells, highlighting a direct involvement of NP1 in viral DNA replication at OriR. Overall, our study revealed the characteristics of HBoV1 DNA replication at OriR, suggesting novel characteristics of autonomous parvovirus DNA replication. IMPORTANCE Human bocavirus 1 (HBoV1) causes acute respiratory tract infections in young children. The duplex HBoV1 genome replicates in HEK293 cells and produces progeny virions that are infectious in well-differentiated airway epithelial cells. A recombinant AAV2 vector pseudotyped with an HBoV1 capsid has been developed to efficiently deliver the cystic fibrosis transmembrane conductance regulator gene to human airway epithelia. Here, we identified both cis-acting elements and trans-acting proteins that are required for HBoV1 DNA replication at the right-end hairpin in HEK293 cells. We localized the minimal replication origin, which contains both NS1 nicking and binding sites, to a 46-nucleotide sequence in the right-end hairpin. The identification of these essential elements of HBoV1 DNA replication acting both in cis and in trans will provide guidance to develop antiviral strategies targeting viral DNA replication at the right-end hairpin and to design next-generation recombinant HBoV1 vectors, a promising tool for gene therapy of lung diseases.
Collapse
|
11
|
Human bocavirus in hospitalized children with acute gastroenteritis in Russia from 2010 to 2012. INFECTION GENETICS AND EVOLUTION 2016; 37:143-9. [DOI: 10.1016/j.meegid.2015.11.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/14/2015] [Accepted: 11/17/2015] [Indexed: 01/23/2023]
|
12
|
New Epidemiological and Clinical Signatures of 18 Pathogens from Respiratory Tract Infections Based on a 5-Year Study. PLoS One 2015; 10:e0138684. [PMID: 26406339 PMCID: PMC4583381 DOI: 10.1371/journal.pone.0138684] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 09/02/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Respiratory tract infections (RTIs) are a heavy burden on society. However, due to the complex etiology of RTIs, the clinical diagnosis, treatment, and prevention of these infections remain challenging, especially in developing countries. METHODS To determine the epidemiological and clinical characteristics of 18 respiratory pathogens, we analyzed 12,502 patients with acute respiratory infections (ARIs) by performing polymerase chain reaction (PCR) on patient pharyngeal swabs. RESULTS Samples positive for at least 1 pathogen were obtained from 48.42% of the total patients. Of these pathogen-positive patients, 17.99% were infected with more than 1 pathogen. Of the 18 pathogens analyzed, four were detected with a positive detection rate (PDR) > 5%: influenza A virus (IAV) > respiratory syncytial virus (RSV) >Mycoplasma pneumoniae (MP) > human coronavirus (HCoV). The pathogens with the 4 highest co-infection rates (CIRs) were as follows: HCoV > human bocavirus (HBoV) > enterovirus (EV) > parainfluenza virus (PIV). The overall positive detection rate (PDR) varied significantly according to patient age, the season and year of detection, and the disease subgroup, but not according to patient sex. The individual PDRs of the pathogens followed 3 types of distributions for patient sex, 4 types of distributions for patient age, 4 types of seasonal distributions, 2 types of seasonal epidemic trends, 4 types of yearly epidemic trends, and different susceptibility distributions in the disease subgroups. Additionally, the overall CIR showed significantly different distributions according to patient sex, patient age, and the disease subgroup, whereas the CIRs of individual pathogens suggested significant preference characteristics. CONCLUSION IAV remains the most common pathogen among the pathogens analyzed. More effort should be directed toward the prevention and control of pathogens that show a trend of increasing incidence such as HCoV, human adenovirus (ADV), and RSV. Although clinically distinguishing specific pathogens responsible for RTIs is difficult, the epidemiological and clinical characteristics of the various RTI-causing agents could provide clues for clinicians, thereby informing decisions regarding prevention and medication and guiding appropriate public health strategies.
Collapse
|
13
|
Kwak KJ, Kim YH, Choi HJ. Clinical characteristics of respiratory viral infection in children during spring/summer: focus on human bocavirus. ALLERGY ASTHMA & RESPIRATORY DISEASE 2015. [DOI: 10.4168/aard.2015.3.6.410] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Kwang Jin Kwak
- Department of Pediatrics, Keimyung University School of Medicine, Daegu, Korea
| | - Yeo Hyang Kim
- Department of Pediatrics, Kyungpook National University School of Medicine, Daegu, Korea
| | - Hee Joung Choi
- Department of Pediatrics, Keimyung University School of Medicine, Daegu, Korea
| |
Collapse
|
14
|
|
15
|
Abstract
The common cold is the most frequent, although generally mild, human disease. Human Rhinoviruses are the prevalent causative agents, but other viruses are also implicated. Being so common, viral colds, have significant implications on public health and quality of life, but may also be life-threatening for vulnerable groups of patients. Specific diagnosis and treatment of the common cold still remain unmet needs. Molecular diagnostic techniques allow specific detection of known pathogens as well as the identification of newly emerging viruses. Although a number of medications or natural treatments have been shown to have some effect, either on the number or on the severity of common colds, no single agent is considerably effective. Virus-specific management remains in most cases a challenging potential as many factors have to be taken into account, including the diversity of the viral genomes, the heterogeneity of affected individuals, as well as the complexity of this long standing host-virus relationship.
Collapse
|
16
|
Human bocavirus 1 infects commercially available primary human airway epithelium cultures productively. J Virol Methods 2013; 195:112-9. [PMID: 24134939 PMCID: PMC3855471 DOI: 10.1016/j.jviromet.2013.10.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/29/2013] [Accepted: 10/01/2013] [Indexed: 01/11/2023]
Abstract
Human bocavirus 1 (HBoV1), a human parvovirus, belongs to the genus Bocavirus of the Parvoviridae family. It causes wheezing in young children with acute respiratory tract infections. HBoV1 has been shown to infect polarized human airway epithelium (HAE) made in house, and induces airway epithelial damage. In this study, two commercially available HAE cultures, EpiAirway and MucilAir HAE, were examined for HBoV1 infection. Both HAE cultures support fully productive HBoV1 infection. Infected EpiAirway and MucilAir HAE cultures showed loss of cilia, disruption of the tight junction barrier, and a significant decrease in transepithelial electrical resistance. Notably, HBoV1 persistent infection was demonstrated by maintaining HBoV1-infected EpiAirway HAE for as long as 50 days. After 2 days post-infection, progeny virus was produced consistently daily at a level of over 2×10(8) viral genome copies per culture (0.6 cm(2)). This study is the first to use commercial sources of HAE cultures for HBoV1 infection. The availability of these cultures will enable a wide range of laboratories to study HBoV1 infection.
Collapse
|
17
|
Kumpu M, Lehtoranta L, Roivainen M, Rönkkö E, Ziegler T, Söderlund-Venermo M, Kautiainen H, Järvenpää S, Kekkonen R, Hatakka K, Korpela R, Pitkäranta A. The use of the probiotic Lactobacillus rhamnosus GG and viral findings in the nasopharynx of children attending day care. J Med Virol 2013; 85:1632-8. [PMID: 23794458 DOI: 10.1002/jmv.23623] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2013] [Indexed: 01/23/2023]
Abstract
Limited data are available on the effects of probiotics on the nasopharyngeal presence of respiratory viruses in children attending day care. In this substudy of a randomized, double-blinded, placebo-controlled 28-week intervention study, nasopharyngeal swab samples were collected, on visits to a physician due to symptoms of infection, from children receiving control milk (N = 97) and children receiving the same milk supplemented with probiotic Lactobacillus rhamnosus GG (N = 97). The presence of 14 respiratory viruses was assessed by PCR methods, and viral findings were compared with symptom prevalences in the intervention groups. Rhinovirus was identified in 28.6% of 315 swab samples, followed by respiratory syncytial virus (12.4%), parainfluenza virus 1 (12.1%), enterovirus (8.9%), influenza A(H1N1)pdm09 (7.9%), human bocavirus 1 (3.8%), parainfluenza virus 2 (3.2%), adenovirus (2.9%), and influenza A(H3N2) (0.6%). The children in the probiotic group had less days with respiratory symptoms per month than the children in the control group (6.48 [95% CI 6.28-6.68] vs. 7.19 [95% CI 6.98-7.41], P < 0.001). Probiotic intervention did not reduce significantly the occurrence of the examined respiratory viruses, or have an effect on the number of respiratory symptoms observed at the time of a viral finding. Rhinovirus, respiratory syncytial virus, and parainfluenza virus 1 were the most common respiratory viruses in symptomatic children. Children receiving Lactobacillus rhamnosus GG had fewer days with respiratory symptoms than children in the control group, although probiotic intervention was not effective in reducing the amount of viral findings or the respiratory symptoms associated with viral findings.
Collapse
|
18
|
Jaton-Ogay K, Bille J. Microbiological diagnosis of community-acquired respiratory tract infections by nucleic acid detection. ACTA ACUST UNITED AC 2013; 2:947-61. [PMID: 23495868 DOI: 10.1517/17530059.2.8.947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Microbiological diagnostic procedures have changed significantly over the last decade. Initially the implementation of the polymerase chain reaction (PCR) resulted in improved detection tests for microbes that were difficult or even impossible to detect by conventional methods such as culture and serology, especially in community-acquired respiratory tract infections (CA-RTI). A further improvement was the development of real-time PCR, which allows end point detection and quantification, and many diagnostic laboratories have now implemented this powerful method. OBJECTIVE At present, new performant and convenient molecular tests have emerged targeting in parallel many viruses and bacteria responsible for lower and/or upper respiratory tract infections. The range of test formats and microbial agents detected is evolving very quickly and the added value of these new tests needs to be studied in terms of better use of antibiotics, better patient management, duration of hospitalization and overall costs. CONCLUSIONS Molecular tools for a better microbial documentation of CA-RTI are now available. Controlled studies are now required to address the relevance issue of these new methods, such as, for example, the role of some newly detected respiratory viruses or of the microbial DNA load in a particular patient at a particular time. The future challenge for molecular diagnosis will be to become easy to handle, highly efficient and cost-effective, delivering rapid results with a direct impact on clinical management.
Collapse
Affiliation(s)
- Katia Jaton-Ogay
- Institute of Microbiology, University Hospital Center of Lausanne and University of Lausanne, 1011 Lausanne, Switzerland +41 21 314 40 76 ; +41 21 314 40 60 ;
| | | |
Collapse
|
19
|
Sun B, Cai Y, Li Y, Li J, Liu K, Li Y, Yang Y. The nonstructural protein NP1 of human bocavirus 1 induces cell cycle arrest and apoptosis in Hela cells. Virology 2013; 440:75-83. [PMID: 23507451 DOI: 10.1016/j.virol.2013.02.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/09/2013] [Accepted: 02/13/2013] [Indexed: 12/27/2022]
Abstract
Human bocavirus type 1 (HBoV1) is a newly identified pathogen associated with human respiratory tract illnesses. Previous studies demonstrated that proteins of HBoV1 failed to cause cell death, which is considered as a possible common feature of bocaviruses. However, our work showed that the NP1 of HBoV1 induced apoptotic cell death in Hela cells in the absence of viral genome replication and expression of other viral proteins. Mitochondria apoptotic pathway was involved in the NP1-induced apoptosis that was confirmed by apoptotic characteristics including morphological changes, DNA fragmentation and caspase activation. We also demonstrated that the cell cycle of NP1-transfected Hela cells was transiently arrested at G2/M phase followed by rapid appearance of apoptosis and that the N terminal domain of NP1 was critical to its nuclear localization and function in apoptosis induction in Hela cells. These findings might provide alternative information for further study of mechanism of HBoV1 pathogenesis.
Collapse
Affiliation(s)
- Bin Sun
- College of Life Science, Central China Normal University, Wuhan 430079, Hubei, China
| | | | | | | | | | | | | |
Collapse
|
20
|
Huang Q, Deng X, Yan Z, Cheng F, Luo Y, Shen W, Lei-Butters DCM, Chen AY, Li Y, Tang L, Söderlund-Venermo M, Engelhardt JF, Qiu J. Establishment of a reverse genetics system for studying human bocavirus in human airway epithelia. PLoS Pathog 2012; 8:e1002899. [PMID: 22956907 PMCID: PMC3431310 DOI: 10.1371/journal.ppat.1002899] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 07/24/2012] [Indexed: 12/21/2022] Open
Abstract
Human bocavirus 1 (HBoV1) has been identified as one of the etiological agents of wheezing in young children with acute respiratory-tract infections. In this study, we have obtained the sequence of a full-length HBoV1 genome (including both termini) using viral DNA extracted from a nasopharyngeal aspirate of an infected patient, cloned the full-length HBoV1 genome, and demonstrated DNA replication, encapsidation of the ssDNA genome, and release of the HBoV1 virions from human embryonic kidney 293 cells. The HBoV1 virions generated from this cell line-based production system exhibits a typical icosahedral structure of approximately 26 nm in diameter, and is capable of productively infecting polarized primary human airway epithelia (HAE) from the apical surface. Infected HAE showed hallmarks of lung airway-tract injury, including disruption of the tight junction barrier, loss of cilia and epithelial cell hypertrophy. Notably, polarized HAE cultured from an immortalized airway epithelial cell line, CuFi-8 (originally derived from a cystic fibrosis patient), also supported productive infection of HBoV1. Thus, we have established a reverse genetics system and generated the first cell line-based culture system for the study of HBoV1 infection, which will significantly advance the study of HBoV1 replication and pathogenesis. Human bocavirus 1 (HBoV1) has been identified as one of the etiological agents of wheezing in young children with acute respiratory-tract infections. HBoV1 productively infects polarized primary human airway epithelia. However, no cell lines permissive to HBoV1 infection have yet been established. More importantly, the sequences at both ends of the HBoV1 genome have remained unknown. We have resolved both of these issues in this study. We have sequenced a full-length HBoV1 genome and cloned it into a plasmid. We further demonstrated that this HBoV1 plasmid replicated and produced viruses in human embryonic kidney 293 cells. Infection of these HBoV1 progeny virions produced obvious cytopathogenic effects in polarized human airway epithelia, which were represented by disruption of the epithelial barrier. Moreover, we identified an airway epithelial cell line supporting HBoV1 infection, when it was polarized. This is the first study to obtain the full-length HBoV1 genome, to demonstrate pathogenesis of HBoV1 infection in human airway epithelia, and to identify the first cell line to support productive HBoV1 infection.
Collapse
Affiliation(s)
- Qinfeng Huang
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Xuefeng Deng
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- College of Life Sciences, Central China Normal University, Wuhan, China
| | - Ziying Yan
- Department of Anatomy and Cell Biology, College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Fang Cheng
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Yong Luo
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Weiran Shen
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Diana C. M. Lei-Butters
- Department of Anatomy and Cell Biology, College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Aaron Yun Chen
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Yi Li
- College of Life Sciences, Central China Normal University, Wuhan, China
| | - Liang Tang
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | | | - John F. Engelhardt
- Department of Anatomy and Cell Biology, College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
21
|
Nearly constant shedding of diverse enteric viruses by two healthy infants. J Clin Microbiol 2012; 50:3427-34. [PMID: 22875894 DOI: 10.1128/jcm.01589-12] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Stool samples from two healthy infant siblings collected at about weekly intervals during their first year of life were analyzed by PCR for 15 different enteric viral genera. Adenovirus, Aichi virus, Anellovirus, Astrovirus, Bocavirus, Enterovirus, Parechovirus, Picobirnavirus, and Rotavirus were detected. Not detected were Coronavirus, Cardiovirus, Cosavirus, Salivirus, Sapovirus, and Norovirus. Long-term virus shedding, lasting from one to 12 months, was observed for adenoviruses, anelloviruses, bocaviruses, enteroviruses, parechoviruses, and picobirnaviruses. Repeated administration of oral poliovirus vaccine resulted in progressively shorter periods of poliovirus detection. Four nonpolio enterovirus genotypes were also detected. An average of 1.8 distinct human viruses were found per time point. Ninety-two percent (66/72) of the fecal samples tested contained one to five different human viruses. Two British siblings in the mid-1980s showed nearly constant fecal viral shedding. Our results demonstrate that frequent enteric infections with diverse viruses occur during early childhood in the absence of severe clinical symptoms.
Collapse
|
22
|
Acute diarrhea in West African children: diverse enteric viruses and a novel parvovirus genus. J Virol 2012; 86:11024-30. [PMID: 22855485 DOI: 10.1128/jvi.01427-12] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Parvoviruses cause a variety of mild to severe symptoms or asymptomatic infections in humans and animals. During a viral metagenomic analysis of feces from children with acute diarrhea in Burkina Faso, we identified in decreasing prevalence nucleic acids from anelloviruses, dependoviruses, sapoviruses, enteroviruses, bocaviruses, noroviruses, adenoviruses, parechoviruses, rotaviruses, cosavirus, astroviruses, and hepatitis B virus. Sequences from a highly divergent parvovirus, provisionally called bufavirus, were also detected whose NS1 and VP1 proteins showed <39% and <31% identities to those of previously known parvoviruses. Four percent of the fecal samples were PCR positive for this new parvovirus, including a related bufavirus species showing only 72% identity in VP1. The high degree of genetic divergence of these related genomes from those of other parvoviruses indicates the presence of a proposed new Parvoviridae genus containing at least two species. Studies of the tropism and pathogenicity of these novel parvoviruses will be facilitated by the availability of their genome sequences.
Collapse
|
23
|
Shan T, Li L, Simmonds P, Wang C, Moeser A, Delwart E. The fecal virome of pigs on a high-density farm. J Virol 2011; 85:11697-708. [PMID: 21900163 PMCID: PMC3209269 DOI: 10.1128/jvi.05217-11] [Citation(s) in RCA: 260] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 08/23/2011] [Indexed: 12/14/2022] Open
Abstract
Swine are an important source of proteins worldwide but are subject to frequent viral outbreaks and numerous infections capable of infecting humans. Modern farming conditions may also increase viral transmission and potential zoonotic spread. We describe here the metagenomics-derived virome in the feces of 24 healthy and 12 diarrheic piglets on a high-density farm. An average of 4.2 different mammalian viruses were shed by healthy piglets, reflecting a high level of asymptomatic infections. Diarrheic pigs shed an average of 5.4 different mammalian viruses. Ninety-nine percent of the viral sequences were related to the RNA virus families Picornaviridae, Astroviridae, Coronaviridae, and Caliciviridae, while 1% were related to the small DNA virus families Circoviridae, and Parvoviridae. Porcine RNA viruses identified, in order of decreasing number of sequence reads, consisted of kobuviruses, astroviruses, enteroviruses, sapoviruses, sapeloviruses, coronaviruses, bocaviruses, and teschoviruses. The near-full genomes of multiple novel species of porcine astroviruses and bocaviruses were generated and phylogenetically analyzed. Multiple small circular DNA genomes encoding replicase proteins plus two highly divergent members of the Picornavirales order were also characterized. The possible origin of these viral genomes from pig-infecting protozoans and nematodes, based on closest sequence similarities, is discussed. In summary, an unbiased survey of viruses in the feces of intensely farmed animals revealed frequent coinfections with a highly diverse set of viruses providing favorable conditions for viral recombination. Viral surveys of animals can readily document the circulation of known and new viruses, facilitating the detection of emerging viruses and prospective evaluation of their pathogenic and zoonotic potentials.
Collapse
Affiliation(s)
- Tongling Shan
- Blood Systems Research Institute, San Francisco, California
- Department of Laboratory Medicine, University of California at San Francisco, San Francisco, California
- Zoonosis and Comparative Medicine Group, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Linlin Li
- Blood Systems Research Institute, San Francisco, California
- Department of Laboratory Medicine, University of California at San Francisco, San Francisco, California
| | - Peter Simmonds
- Centre for Immunology, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | - Chunlin Wang
- Stanford Genome Technology Center, Stanford, California
| | - Adam Moeser
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, California
- Department of Laboratory Medicine, University of California at San Francisco, San Francisco, California
| |
Collapse
|
24
|
Discovery and genomic characterization of a novel ovine partetravirus and a new genotype of bovine partetravirus. PLoS One 2011; 6:e25619. [PMID: 21980506 PMCID: PMC3181347 DOI: 10.1371/journal.pone.0025619] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 09/08/2011] [Indexed: 01/19/2023] Open
Abstract
Partetravirus is a recently described group of animal parvoviruses which include the human partetravirus, bovine partetravirus and porcine partetravirus (previously known as human parvovirus 4, bovine hokovirus and porcine hokovirus respectively). In this report, we describe the discovery and genomic characterization of partetraviruses in bovine and ovine samples from China. These partetraviruses were detected by PCR in 1.8% of bovine liver samples, 66.7% of ovine liver samples and 71.4% of ovine spleen samples. One of the bovine partetraviruses detected in the present samples is phylogenetically distinct from previously reported bovine partetraviruses and likely represents a novel genotype. The ovine partetravirus is a novel partetravirus and phylogenetically most related to the bovine partetraviruses. The genome organization is conserved amongst these viruses, including the presence of a putative transmembrane protein encoded by an overlapping reading frame in ORF2. Results from the present study provide further support to the classification of partetraviruses as a separate genus in Parvovirinae.
Collapse
|
25
|
Malecki M, Schildgen V, Schildgen O. Human bocavirus: still more questions than answers. Future Virol 2011. [DOI: 10.2217/fvl.11.78] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The human bocavirus was first detected in 2005 and since then has been found in both respiratory secretions from patients with airway infections and in stool samples from patients with gastroenteritis. Meanwhile, four different genotypes have been identified that most likely derive from recombination events. Although the modified Koch’s postulates have not yet been fulfilled completely, owing to the lack of an animal model or a simple cell culture system, there is increasing evidence that the human bocaviruses are serious participants in infectious diseases of the respiratory and the GI tracts. This article reviews the current status of the clinical features of human bocaviruses and provides an overview of the latest findings concerning the biology, phylogeny, epidemiology and diagnostic tools related to human bocaviruses. Furthermore, it discusses the potential pathogenicity of human bocavirus, as well as its persistence and reactivation in hosts.
Collapse
Affiliation(s)
- Monika Malecki
- Kliniken der Stadt Köln gGmbH, Krankenhaus Merheim, Klinikum der Privaten Universität Witten/Herdecke, Institut für Pathologie, Ostmerheimer Str. 200, D-51109 Cologne, Germany
| | - Verena Schildgen
- Kliniken der Stadt Köln gGmbH, Krankenhaus Merheim, Klinikum der Privaten Universität Witten/Herdecke, Institut für Pathologie, Ostmerheimer Str. 200, D-51109 Cologne, Germany
| | | |
Collapse
|
26
|
Abstract
California sea lions are one of the major marine mammal species along the Pacific coast of North America. Sea lions are susceptible to a wide variety of viruses, some of which can be transmitted to or from terrestrial mammals. Using an unbiased viral metagenomic approach, we surveyed the fecal virome in California sea lions of different ages and health statuses. Averages of 1.6 and 2.5 distinct mammalian viral species were shed by pups and juvenile sea lions, respectively. Previously undescribed mammalian viruses from four RNA virus families (Astroviridae, Picornaviridae, Caliciviridae, and Reoviridae) and one DNA virus family (Parvoviridae) were characterized. The first complete or partial genomes of sapeloviruses, sapoviruses, noroviruses, and bocavirus in marine mammals are reported. Astroviruses and bocaviruses showed the highest prevalence and abundance in California sea lion feces. The diversity of bacteriophages was higher in unweaned sea lion pups than in juveniles and animals in rehabilitation, where the phage community consisted largely of phages related to the family Microviridae. This study increases our understanding of the viral diversity in marine mammals, highlights the high rate of enteric viral infections in these highly social carnivores, and may be used as a baseline viral survey for comparison with samples from California sea lions during unexplained disease outbreaks.
Collapse
|
27
|
Kim JS, Lim CS, Kim YK, Lee KN, Lee CK. Human bocavirus in patients with respiratory tract infection. Korean J Lab Med 2011; 31:179-84. [PMID: 21779192 PMCID: PMC3129349 DOI: 10.3343/kjlm.2011.31.3.179] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 04/19/2011] [Accepted: 05/09/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Human bocavirus (HBoV) is a newly identified viral pathogen, and its clinical epidemiology and significance in respiratory infections have not yet been completely elucidated. We investigated the prevalence of HBoV infection and the association between viral (HBoV) load and clinical features of the infection in patients of all age-groups. METHODS Nasopharyngeal aspirates from patients with symptoms of respiratory infection were tested for presence of HBoV by using real-time polymerase chain reaction. HBoV-positive patients were categorized into low- and high-viral-load groups using 1.0×10(6) copies/mL as the threshold value of viral load. RESULTS Detection rate of HBoV was 4.8% (N=93) in a total of 1,926 samples with peak incidence of infection being observed in patients aged 6-12 months. HBoV infection was more frequently observed in young children, especially, in children aged less than 5 yr, and the HBoV load decreased with increase in age. HBoV was codetected with other respiratory viruses in 17 (18.3%) of the 93 HBoV-positive patients and 15 patients (88.2%) belonged to the low-viral-load group. Patients infected with HBoV alone showed a higher viral load than those patients in whom HBoV was codetected with other respiratory viruses (median load, 3.78×10(5) copies/mL vs. 1.94×10(4) copies/mL, P=0.014). Higher pulse rate (P=0.007) and respiratory rate (P=0.021) were observed in patients with a high-viral-load. CONCLUSIONS Our results suggest that HBoV may be the causative agent of respiratory infection in the high-viral-load group.
Collapse
Affiliation(s)
- Jang Su Kim
- Department of Laboratory Medicine, Korea University College of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|
28
|
Molecular Detection of Respiratory Viruses. Mol Microbiol 2011. [DOI: 10.1128/9781555816834.ch39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Pavia AT. Viral infections of the lower respiratory tract: old viruses, new viruses, and the role of diagnosis. Clin Infect Dis 2011; 52 Suppl 4:S284-9. [PMID: 21460286 PMCID: PMC3106235 DOI: 10.1093/cid/cir043] [Citation(s) in RCA: 242] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Viral infections of the lower respiratory tract cause an enormous disease burden in children, and the role of respiratory viruses in serious lower respiratory tract infections (LRTIs) in older adults is increasingly appreciated. Although viruses are responsible for a large proportion LRTIs, antibiotics are often prescribed. New diagnostic platforms have the potential to detect a wider range of established and newly discovered viruses with greater sensitivity. This will create additional challenges. Although it is clear that influenza, parainfluenza, respiratory syncytial virus, human metapneumovirus, and adenovirus are important causes of pneumonia, the role of rhinoviruses and some of the newly described viruses, including human coronaviruses and bocavirus, is harder to determine. Better diagnostic tests that establish the cause of LRTIs in children have the potential to both reduce overall antibiotic use and to improve the targeted use of antibiotics. In addition, rapid identification of viral infections can help control nosocomial transmission.
Collapse
Affiliation(s)
- Andrew T Pavia
- Department of Pediatrics, Division of Pediatric Infectious Diseases, University of Utah, Salt Lake City, UT 84108, USA.
| |
Collapse
|
30
|
Lüsebrink J, Schildgen V, Tillmann RL, Wittleben F, Böhmer A, Müller A, Schildgen O. Detection of head-to-tail DNA sequences of human bocavirus in clinical samples. PLoS One 2011; 6:e19457. [PMID: 21573237 PMCID: PMC3087758 DOI: 10.1371/journal.pone.0019457] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 03/30/2011] [Indexed: 12/30/2022] Open
Abstract
Parvoviruses are single stranded DNA viruses that replicate in a so called “rolling-hairpin” mechanism, a variant of the rolling circle replication known for bacteriophages like ϕX174. The replication intermediates of parvoviruses thus are concatemers of head-to-head or tail-to-tail structure. Surprisingly, in case of the novel human bocavirus, neither head-to-head nor tail-to-tail DNA sequences were detected in clinical isolates; in contrast head-to-tail DNA sequences were identified by PCR and sequencing. Thereby, the head-to-tail sequences were linked by a novel sequence of 54 bp of which 20 bp also occur as conserved structures of the palindromic ends of parvovirus MVC which in turn is a close relative to human bocavirus.
Collapse
Affiliation(s)
- Jessica Lüsebrink
- Institut für Pathologie, Kliniken der Stadt Köln gGmbH, Klinikum der Privaten Universität Witten-Herdecke, Köln (Cologne), Germany
| | - Verena Schildgen
- Institut für Pathologie, Kliniken der Stadt Köln gGmbH, Klinikum der Privaten Universität Witten-Herdecke, Köln (Cologne), Germany
| | - Ramona Liza Tillmann
- Institut für Pathologie, Kliniken der Stadt Köln gGmbH, Klinikum der Privaten Universität Witten-Herdecke, Köln (Cologne), Germany
| | - Felix Wittleben
- Institut für Pathologie, Kliniken der Stadt Köln gGmbH, Klinikum der Privaten Universität Witten-Herdecke, Köln (Cologne), Germany
| | - Anne Böhmer
- Institut für Pathologie, Kliniken der Stadt Köln gGmbH, Klinikum der Privaten Universität Witten-Herdecke, Köln (Cologne), Germany
| | - Andreas Müller
- Department of Paediatrics, University Hospital Bonn, Bonn, Germany
| | - Oliver Schildgen
- Institut für Pathologie, Kliniken der Stadt Köln gGmbH, Klinikum der Privaten Universität Witten-Herdecke, Köln (Cologne), Germany
- * E-mail:
| |
Collapse
|
31
|
The airway epithelium: soldier in the fight against respiratory viruses. Clin Microbiol Rev 2011; 24:210-29. [PMID: 21233513 DOI: 10.1128/cmr.00014-10] [Citation(s) in RCA: 465] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The airway epithelium acts as a frontline defense against respiratory viruses, not only as a physical barrier and through the mucociliary apparatus but also through its immunological functions. It initiates multiple innate and adaptive immune mechanisms which are crucial for efficient antiviral responses. The interaction between respiratory viruses and airway epithelial cells results in production of antiviral substances, including type I and III interferons, lactoferrin, β-defensins, and nitric oxide, and also in production of cytokines and chemokines, which recruit inflammatory cells and influence adaptive immunity. These defense mechanisms usually result in rapid virus clearance. However, respiratory viruses elaborate strategies to evade antiviral mechanisms and immune responses. They may disrupt epithelial integrity through cytotoxic effects, increasing paracellular permeability and damaging epithelial repair mechanisms. In addition, they can interfere with immune responses by blocking interferon pathways and by subverting protective inflammatory responses toward detrimental ones. Finally, by inducing overt mucus secretion and mucostasis and by paving the way for bacterial infections, they favor lung damage and further impair host antiviral mechanisms.
Collapse
|
32
|
Santos RA, Nogueira CS, Granja S, Baptista JB, Ribeiro ML, Rocha MG. Kawasaki disease and human bocavirus--potential association? JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2011; 44:235-7. [PMID: 21524620 DOI: 10.1016/j.jmii.2011.01.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 12/04/2010] [Accepted: 12/05/2010] [Indexed: 11/25/2022]
Abstract
Kawasaki disease (KD) is an acute febrile multisystem vasculitic syndrome of unknown etiology, occurring mostly in infants and children younger than 5 years of age. We present a 13-month-old male with KD from whom was found human bocavirus DNA in nasopharyngeal secretions. Human bocavirus DNA in a patient with KD raised question about the coincidental or possible etiological association.
Collapse
Affiliation(s)
- R A Santos
- Pediatric Hospital of Coimbra, Avenida Bissaya Barreto, Coimbra, Portugal
| | | | | | | | | | | |
Collapse
|
33
|
Azoulay E. Emerging Viral Infections. PULMONARY INVOLVEMENT IN PATIENTS WITH HEMATOLOGICAL MALIGNANCIES 2011. [PMCID: PMC7123354 DOI: 10.1007/978-3-642-15742-4_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Elie Azoulay
- Service de Réanimation Médicale, Hôpital Saint Louis, Avenue Claude Vellefaux 1, Paris, 75010 France
| |
Collapse
|
34
|
Saavedra-Lozano J, Garrido C, Catalán P, González F. [Children with cancer and respiratory viral infection: epidemiology, diagnosis and treatment options]. Enferm Infecc Microbiol Clin 2010; 29:40-51. [PMID: 21183254 PMCID: PMC7103288 DOI: 10.1016/j.eimc.2010.04.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 04/26/2010] [Accepted: 04/30/2010] [Indexed: 11/26/2022]
Abstract
Community-adquired respiratory viral infection is the most common cause of febrile infection in children, and an important cause of infection to consider in children with cancer. Nevertheless, there are few well-designed, controlled studies in this population, which makes it difficult to understand the importance, behaviour and management of these viruses in immunocompromised children. New diagnostic techniques in PCR-based microbiology, could provide many opportunities for early diagnosis, preventing the spread of the virus and to implement the correct therapy. It is important to design appropriate prospective studies to assess these types of infections in children with cancer. In this review we analyse the main studies published in the literature, evaluating the epidemiology, diagnosis and management of children with cancer and respiratory viral infection.
Collapse
Affiliation(s)
- Jesús Saavedra-Lozano
- Servicio de Pediatría, Hospital General Universitario Gregorio Marañón, Madrid, España.
| | | | | | | |
Collapse
|
35
|
Bocavirus infection induces a DNA damage response that facilitates viral DNA replication and mediates cell death. J Virol 2010; 85:133-45. [PMID: 21047968 DOI: 10.1128/jvi.01534-10] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Minute virus of canines (MVC) is an autonomous parvovirus that replicates efficiently without helper viruses in Walter Reed/3873D (WRD) canine cells. We previously showed that MVC infection induces mitochondrion-mediated apoptosis and G(2)/M-phase arrest in infected WRD cells. However, the mechanism responsible for these effects has not been established. Here, we report that MVC infection triggers a DNA damage response in infected cells, as evident from phosphorylation of H2AX and RPA32. We discovered that both ATM (ataxia telangiectasia-mutated kinase) and ATR (ATM- and Rad3-related kinase) were phosphorylated in MVC-infected WRD cells and confirmed that ATM activation was responsible for the phosphorylation of H2AX, whereas ATR activation was required for the phosphorylation of RPA32. Both pharmacological inhibition of ATM activation and knockdown of ATM in MVC-infected cells led to a significant reduction in cell death, a moderate correction of cell cycle arrest, and most importantly, a reduction in MVC DNA replication and progeny virus production. Parallel experiments with an ATR-targeted small interfering RNA (siRNA) had no effect. Moreover, we identified that this ATM-mediated cell death is p53 dependent. In addition, we localized the Mre11-Rad50-Nbs1 (MRN) complex, the major mediator as well as a substrate of the ATM-mediated DNA damage response pathway to MVC replication centers during infection, and show that Mre11 knockdown led to a reduction in MVC DNA replication. Our findings are the first to support the notion that an autonomous parvovirus is able to hijack the host DNA damage machinery for its own replication and for the induction of cell death.
Collapse
|
36
|
Chen AY, Cheng F, Lou S, Luo Y, Liu Z, Delwart E, Pintel D, Qiu J. Characterization of the gene expression profile of human bocavirus. Virology 2010; 403:145-154. [PMID: 20457462 PMCID: PMC2879452 DOI: 10.1016/j.virol.2010.04.014] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 04/09/2010] [Accepted: 04/15/2010] [Indexed: 12/16/2022]
Abstract
We have generated a quantitative transcription profile of human bocavirus type 1 (HBoV1) by transfecting a nearly full-length clone in human lung epithelial A549 cells as well as in a replication competent system in 293 cells. The overall transcription profile of HBoV1 is similar to that of two other members of genus Bocavirus, minute virus of canines and bovine parvovirus 1. In particular, a spliced NS1-transcript that was not recognized previously expressed the large non-structural protein NS1 at approximately 100kDa; and the NP1-encoding transcripts were expressed abundantly. In addition, the protein expression profile of human bocavirus type 2 (HBoV2) was examined in parallel by transfection of a nearly full-length clone in A549 cells, which is similar to that of HBoV1. Moreover, our results showed that, unlike human parvovirus B19 infection, expression of the HBoV1 proteins only does not induce cell cycle arrest and apoptosis of A549 cells.
Collapse
Affiliation(s)
- Aaron Yun Chen
- Department of Microbiology, Molecular Genetics and Immunology University of Kansas Medical Center, Kansas City, Kansas
| | - Fang Cheng
- Department of Microbiology, Molecular Genetics and Immunology University of Kansas Medical Center, Kansas City, Kansas
| | - Sai Lou
- Department of Microbiology, Molecular Genetics and Immunology University of Kansas Medical Center, Kansas City, Kansas
- Department of Infectious Diseases, The First Affiliated Hospital Xi’an Jiaotong University, Xi’an, China
| | - Yong Luo
- Department of Microbiology, Molecular Genetics and Immunology University of Kansas Medical Center, Kansas City, Kansas
| | - Zhengwen Liu
- Department of Infectious Diseases, The First Affiliated Hospital Xi’an Jiaotong University, Xi’an, China
| | - Eric Delwart
- Blood Systems Research Institute, San Francisco, California
| | - David Pintel
- Life Sciences Center, University of Missouri-Columbia, Columbia, Missouri
| | - Jianming Qiu
- Department of Microbiology, Molecular Genetics and Immunology University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
37
|
Identification and characterization of a new bocavirus species in gorillas. PLoS One 2010; 5:e11948. [PMID: 20668709 PMCID: PMC2909267 DOI: 10.1371/journal.pone.0011948] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 07/12/2010] [Indexed: 01/28/2023] Open
Abstract
A novel parvovirus, provisionally named Gorilla Bocavirus species 1 (GBoV1), was identified in four stool samples from Western gorillas (Gorilla gorilla) with acute enteritis. The complete genomic sequence of the new parvovirus revealed three open reading frames (ORFs) with an organization similar to that of known bocaviruses. Phylogenetic analysis using complete capsid and non structural (NS) gene sequence suggested that the new parvovirus is most closely related to human bocaviruses (HBoV). However, the NS ORF is more similar in length to the NS ORF found in canine minute virus and bovine parvovirus than in HBoV. Comparative genetic analysis using GBoV and HBoV genomes enabled characterization of unique splice donor and acceptor sites that appear to be highly conserved among all four HBoV species, and provided evidence for expression of two different NS proteins in all primate bocaviruses. GBoV is the first non-human primate bocavirus identified and provides new insights into the genetic diversity and evolution of this highly prevalent and recently discovered group of parvoviruses.
Collapse
|
38
|
Kapoor A, Simmonds P, Slikas E, Li L, Bodhidatta L, Sethabutr O, Triki H, Bahri O, Oderinde BS, Baba MM, Bukbuk DN, Besser J, Bartkus J, Delwart E. Human bocaviruses are highly diverse, dispersed, recombination prone, and prevalent in enteric infections. J Infect Dis 2010; 201:1633-43. [PMID: 20415538 PMCID: PMC2902747 DOI: 10.1086/652416] [Citation(s) in RCA: 279] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A new species of parvovirus, tentatively named human bocavirus 4 (HBoV4), was genetically characterized. Among 641 feces samples obtained from children and adults, the most commonly detected bocavirus species were, in descending order, HBoV2, HBoV3, HBoV4, and HBoV1, with an HBoV2 prevalence of 21% and 26% in Nigerian and Tunisian children, respectively. HBoV3 or HBoV4 species were found in 12 of 192 patients with non-polio acute flaccid paralysis in Tunisia and Nigeria and 0 of 96 healthy Tunisian contacts (P= .01). Evidence of extensive recombination at the NP1 and VP1 gene boundary between and within bocavirus species was found. The high degree of genetic diversity seen among the human bocaviruses found in feces specimens, relative to the highly homogeneous HBoV1, suggest that this worldwide-distributed respiratory pathogen may have recently evolved from an enteric bocavirus after acquiring an expanded tropism favoring the respiratory tract. Elucidating the possible role of the newly identified enteric bocaviruses in human diseases, including acute flaccid paralysis and diarrhea, will require further epidemiological studies.
Collapse
Affiliation(s)
- Amit Kapoor
- Blood Systems Research Institute, and Department of Laboratory Medicine, University of California-San Francisco, 270 Masonic Ave., San Francisco, CA 94118, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Chatzidimitriou D, Exindari M, Gavriilaki E, Skoura L, Gioula G, Melidou A, Malisiovas N. Absence of human bocavirus in atherosclerotic plaques of carotid arteries by real-time polymerase chain reaction. ACTA ACUST UNITED AC 2010; 42:623-5. [DOI: 10.3109/00365541003716518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
40
|
Bocavirus infection induces mitochondrion-mediated apoptosis and cell cycle arrest at G2/M phase. J Virol 2010; 84:5615-26. [PMID: 20335259 DOI: 10.1128/jvi.02094-09] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Bocavirus is a newly classified genus of the family Parvovirinae. Infection with Bocavirus minute virus of canines (MVC) produces a strong cytopathic effect in permissive Walter Reed/3873D (WRD) canine cells. We have systematically characterized the MVC infection-produced cytopathic effect in WRD cells, namely, the cell death and cell cycle arrest, and carefully examined how MVC infection induces the cytopathic effect. We found that MVC infection induces an apoptotic cell death characterized by Bax translocalization to the mitochondrial outer membrane, disruption of the mitochondrial outer membrane potential, and caspase activation. Moreover, we observed that the activation of caspases occurred only when the MVC genome was replicating, suggesting that replication of the MVC genome induces apoptosis. MVC infection also induced a gradual cell cycle arrest from the S phase in early infection to the G(2)/M phase at a later stage, which was confirmed by the upregulation of cyclin B1 and phosphorylation of cdc2. Cell cycle arrest at the G(2)/M phase was reproduced by transfection of a nonreplicative NS1 knockout mutant of the MVC infectious clone, as well as by inoculation of UV-irradiated MVC. In contrast with other parvoviruses, only expression of the MVC proteins by transfection did not induce apoptosis or cell cycle arrest. Taken together, our results demonstrate that MVC infection induces a mitochondrion-mediated apoptosis that is dependent on the replication of the viral genome, and the MVC genome per se is able to arrest the cell cycle at the G(2)/M phase. Our results may shed light on the molecular pathogenesis of Bocavirus infection in general.
Collapse
|
41
|
Chatzidimitriou D, Gavriilaki E, Sakellari I, Diza E. Hematopoietic cell transplantation and emerging viral infections. J Med Virol 2010; 82:528-38. [PMID: 20087928 PMCID: PMC7166846 DOI: 10.1002/jmv.21696] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2009] [Indexed: 12/11/2022]
Abstract
Viral infections remain important causes of morbidity and mortality in hematopoietic cell transplant recipients. More recent developments in preparative regimens and graft manipulations, as well as the control of well-recognized post-transplant infections by the introduction of prophylaxis and preemptive strategies, have influenced the timing and the epidemiology of infections. As new pathogens, such as human metapneumovirus (HMPV), human bocavirus, human coronaviruses HCoV-NL63 and HCoV-HKU1, human herpesviruses HHV-6 and HHV-7, and polyomaviruses, have emerged, it is fundamental to determine the significance of the newly discovered viruses and their role in the transplantation field. This article summarizes recent data on epidemiology and laboratory diagnosis of new pathogens, as well as clinical features and management of the associated infectious complications. J. Med. Virol. 82:528-538, 2010. (c) 2010 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- D Chatzidimitriou
- 2nd Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | | | | | | |
Collapse
|
42
|
Don M, Söderlund-Venermo M, Valent F, Lahtinen A, Hedman L, Canciani M, Hedman K, Korppi M. Serologically verified human bocavirus pneumonia in children. Pediatr Pulmonol 2010; 45:120-6. [PMID: 19960524 DOI: 10.1002/ppul.21151] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
WORKING HYPOTHESIS Human bocavirus (HBoV) is a newly identified parvovirus frequently found in children suffering from acute respiratory and intestinal infections. The aim of the present study was to evaluate, by using a newly developed antibody assay, the role of HBoV in pediatric community-acquired pneumonia (CAP) and the seropositivity rate to HBoV in a prospective study in North-Italian children. MATERIALS/PATIENTS AND METHODS During a 15-month study period, 124 children were admitted due to presumptive pneumonia, and in 101 of them, pneumonia was radiologically confirmed. The etiology of CAP was studied by antibody assays to 16 microbes, including the newly developed enzyme immunoassay for HBoV. RESULTS Serological evidence of acute HBoV infection was found in 12 (12%) children, being single in 7 and mixed in 5 cases (4 with other viruses and 3 with bacteria). IgM was positive in 11 cases. A diagnostic rise in IgG antibodies between paired sera was observed in six cases. HBoV was the second most common virus next to respiratory syncytial virus (17%). The seropositivity rate to HBoV increased with age, reaching nearly 100% before school age. CONCLUSIONS The present results show that HBoV is able to induce significant antibody responses and suggest that HBoV may be a fairly common cause of pneumonia in children. Seroconversion to HBoV in most children takes place in early childhood.
Collapse
Affiliation(s)
- Massimiliano Don
- Pediatric Department, School of Medicine, DPMSC, University of Udine, Udine, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Heads up on human bocavirus. Nursing 2010; 40:63. [PMID: 20083987 DOI: 10.1097/01.nurse.0000367872.33509.94] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
Rezes S, Söderlund-Venermo M, Roivainen M, Kemppainen K, Szabó Z, Sziklai I, Pitkäranta A. Human bocavirus and rhino-enteroviruses in childhood otitis media with effusion. J Clin Virol 2009; 46:234-7. [PMID: 19736042 PMCID: PMC7108299 DOI: 10.1016/j.jcv.2009.08.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2009] [Revised: 08/07/2009] [Accepted: 08/13/2009] [Indexed: 11/19/2022]
Abstract
Background Viral respiratory infections play an important role in the pathogenesis of otitis media with effusion (OME) in children. The most common human rhinoviruses (HRVs) have been detected in middle ear effusions (MEE), but there is only limited data available about the closely related human enteroviruses (HEVs). The newly discovered human bocavirus (HBoV) has not, however, been identified in MEE of OME children. Objectives The aim of our study was to determine the presence of HBoV and HRV/HEV and the rate of coinfection in a set of MEE samples collected from OME children. Study design Seventy-five MEE samples from 54 children with no acute respiratory symptoms were studied with reverse transcription polymerase chain reaction (RT-PCR) for detection of HRV/HEV and quantitative PCR for detection of HBoV. Results Twenty-six (35%) of 75 MEE samples were positive for viral nucleic acid, 22 (29%) for HEV, 10 (13%) for HRV and 2 (3%) for HBoV. There was no statistically significant difference between mucoid and serous effusions in the rate of virus detection. Forty-three percent of bilateral cases showed a contra-lateral difference in viral finding. Conclusions Our results suggest that these common respiratory viruses can be associated with OME in children. Whether these viruses are causative etiologic factors of MEE persistence or merely remnants of previous infections is not known.
Collapse
Affiliation(s)
- Szilárd Rezes
- Department of Otorhinolaryngology and Head and Neck Surgery, Health Science Centre, University of Debrecen, 98 Nagyerdei krt., Debrecen, Hungary.
| | | | | | | | | | | | | |
Collapse
|
45
|
De Vos N, Vankeerberghen A, Vaeyens F, Van Vaerenbergh K, Boel A, De Beenhouwer H. Simultaneous detection of human bocavirus and adenovirus by multiplex real-time PCR in a Belgian paediatric population. Eur J Clin Microbiol Infect Dis 2009; 28:1305-10. [PMID: 19705175 PMCID: PMC7087762 DOI: 10.1007/s10096-009-0780-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2009] [Accepted: 07/10/2009] [Indexed: 12/31/2022]
Abstract
Since the discovery of human bocavirus (hBoV), the virus has been detected worldwide in respiratory tract samples from young children by various polymerase chain reaction (PCR) assays and real-time PCRs (Q-PCR). Until now, no data have been reported on the presence of hBoV in Belgium and the detection of hBoV in a multiplex Q-PCR setting has not been described. The aim of this study was to develop a fast and reliable multiplex Q-PCR for the simultaneous detection of hBoV DNA and adenovirus (AdV) DNA. During the winter of 2004–2005, 445 nasopharyngeal aspirates (NPAs) were analysed from 404 Belgian children up to 5 years old with acute respiratory tract infections (ARTIs). (Co)infections with hBoV, AdV, respiratory syncytial virus (RSV), human metapneumovirus (hMPV) and influenza A virus were investigated. A viral agent was detected in 61% (n = 272/445) of the NPAs. Multiplex Q-PCR found a prevalence of 11% (n = 51/445) hBoV and 13% (n = 58/445) AdV. Coinfections were more frequently found with AdV (62%; n = 36/58) than with hBoV (49%; n = 25/51). Follow-up samples were available from 22 patients with ARTIs. In three patients, hBoV DNA persisted for one month. Multiplex Q-PCR may help in closing the diagnostic gap by addressing a broader range of potential respiratory pathogens.
Collapse
Affiliation(s)
- N De Vos
- Laboratory of Clinical Biology, Department of Microbiology and Molecular Biology, Onze Lieve Vrouw (OLV) Hospital, Moorselbaan 164, 9300, Aalst, Belgium
| | | | | | | | | | | |
Collapse
|
46
|
Huang T, Wang W, Bessaud M, Ren P, Sheng J, Yan H, Zhang J, Lin X, Wang Y, Delpeyroux F, Deubel V. Evidence of recombination and genetic diversity in human rhinoviruses in children with acute respiratory infection. PLoS One 2009; 4:e6355. [PMID: 19633719 PMCID: PMC2712091 DOI: 10.1371/journal.pone.0006355] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 06/02/2009] [Indexed: 11/20/2022] Open
Abstract
Background Human rhinoviruses (HRVs) are a highly prevalent cause of acute respiratory infection in children. They are classified into at least three species, HRV-A, HRV-B and HRV-C, which are characterized by sequencing the 5′ untranslated region (UTR) or the VP4/VP2 region of the genome. Given the increased interest for novel HRV strain identification and their worldwide distribution, we have carried out clinical and molecular diagnosis of HRV strains in a 2-year study of children with acute respiratory infection visiting one district hospital in Shanghai. Methodology/Findings We cloned and sequenced a 924-nt fragment that covered part of the 5′UTR and the VP4/VP2 capsid genes. Sixty-four HRV-infected outpatients were diagnosed amongst 827 children with acute low respiratory tract infection. Two samples were co-infected with HRV-A and HRV-B or HRV-C. By comparative analysis of the VP4/VP2 sequences of the 66 HRVs, we showed a high diversity of strains in HRV-A and HRV-B species, and a prevalence of 51.5% of strains that belonged to the recently identified HRV-C species. When analyzing a fragment of the 5′ UTR, we characterized at least two subspecies of HRV-C: HRV-Cc, which clustered differently from HRV-A and HRV-B, and HRV-Ca, which resulted from previous recombination in this region with sequences related to HRV-A. The full-length sequence of one strain of each HRV-Ca and HRV-Cc subspecies was obtained for comparative analysis. We confirmed the close relationship of their structural proteins but showed apparent additional recombination events in the 2A gene and 3′UTR of the HRV-Ca strain. Double or triple infections with HRV-C and respiratory syncytial virus and/or bocavirus were diagnosed in 33.3% of the HRV-infected patients, but no correlation with severity of clinical outcome was observed. Conclusion Our study showed a high diversity of HRV strains that cause bronchitis and pneumonia in children. A predominance of HRV-C over HRV-A and HRV-B was observed, and two subspecies of HRV-C were identified, the diversity of which seemed to be related to recombination with former HRV-A strains. None of the HRV-C strains appeared to have a higher clinical impact than HRV-A or HRV-B on respiratory compromise.
Collapse
Affiliation(s)
- Ting Huang
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai Institute of Biological Sciences, Unit of Emerging Viruses, Shanghai, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Ruohola A, Waris M, Allander T, Ziegler T, Heikkinen T, Ruuskanen O. Viral etiology of common cold in children, Finland. Emerg Infect Dis 2009; 15:344-6. [PMID: 19193292 PMCID: PMC2657644 DOI: 10.3201/eid1502.081468] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
48
|
Pierangeli A, Scagnolari C, Trombetti S, Grossi R, Battaglia M, Moretti C, Midulla F, Antonelli G. Human bocavirus infection in hospitalized children in Italy. Influenza Other Respir Viruses 2009; 2:175-9. [PMID: 19453422 PMCID: PMC4941900 DOI: 10.1111/j.1750-2659.2008.00057.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Background Human bocavirus (HBoV) was first discovered in Sweden in 2005 and has now been found worldwide; however its role in clinically relevant diseases has not yet been clearly defined. Objectives To gain new insight into HBoV infection among children hospitalized with acute respiratory infections in Rome. Methods Between November 2004 and May 2007, 415 nasal washings were tested for the presence of an extensive range of respiratory viruses using molecular methods. Results Viral pathogens were detected in 214 children (51·6%), 28·9% being respiratory syncytial virus (RSV) and 9·6% being rhinovirus positive. Of the 34 children (8·2%) who tested positive for HBoV, 21 (61·8%) were co‐infected with another respiratory virus, mainly RSV. Human bocavirus was the only pathogen identified in four pneumonia and six bronchiolitis cases in March 2005 and January 2007, respectively. Human bocavirus was also detected in one child hospitalized with gastroenteritis and in another with erythema. Conclusions In the examined population, HBoV was the third most common virus detected but with a high rate of co‐infection with other respiratory viruses. Human bocavirus appeared to be the etiological agent in some pneumonia and bronchiolitis cases in which tests for all likely respiratory pathogens were negative.
Collapse
Affiliation(s)
- Alessandra Pierangeli
- Department of Experimental Medicine, Virology Section, Sapienza University, Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Park JS. Acute viral lower respiratory tract infections in children. KOREAN JOURNAL OF PEDIATRICS 2009. [DOI: 10.3345/kjp.2009.52.3.269] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Joon Soo Park
- Department of Pediatrics, Soonchunhyang University School of Medicine, Cheonan, Korea
| |
Collapse
|
50
|
Tan BH, Lim EAS, Seah SGK, Loo LH, Tee NWS, Lin RTP, Sugrue RJ. The incidence of human bocavirus infection among children admitted to hospital in Singapore. J Med Virol 2008; 81:82-9. [PMID: 19031441 PMCID: PMC7166333 DOI: 10.1002/jmv.21361] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Human bocavirus (HBoV) is a parvovirus, belonging to the genus Bocavirus. The virus was identified recently in Sweden, and has now been detected in several different countries. Although it is associated with lower respiratory tract infections in pediatric patients, the incidence of HBoV infection in a developed country in South East Asia, has not been examined. The objective of this study was to determine the importance of HBoV as a cause of lower respiratory tract infections among children admitted to hospital in Singapore. Five hundred nasopharyngeal swabs were collected from anonymized pediatric patients admitted to the Kandang Kerbau Women's and Children's Hospital for acute respiratory infections. The specimens were tested for the presence of HBoV using polymerase chain reactions. HBoV was detected in 8.0% of the patients tested, and a majority of these HBoV patients exhibited lower respiratory tract infections. A significant level of coinfection with respiratory syncytial viruses and rhinoviruses was also observed in these HBoV patients. The data suggest that HBoV is an important cause of lower respiratory tract infections among children admitted to hospital in Singapore, and is the first study examining the incidence of HBoV infection in a developed country in South East Asia. J. Med. Virol. 81:82–89, 2009. © 2008 Wiley‐Liss, Inc.
Collapse
Affiliation(s)
- Boon-Huan Tan
- Detection and Diagnostics Laboratory, Defence Medical and Environmental Research Institute, DSO National Laboratories, Singapore.
| | | | | | | | | | | | | |
Collapse
|