1
|
Schuster L, Zaradzki M, Janssen H, Gallenstein N, Etheredge M, Hofmann I, Weigand MA, Immenschuh S, Larmann J. Heme oxygenase-1 modulates CD62E-dependent endothelial cell-monocyte interactions and mitigates HLA-I-induced transplant vasculopathy in mice. Front Immunol 2025; 16:1447319. [PMID: 40124367 PMCID: PMC11925954 DOI: 10.3389/fimmu.2025.1447319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 02/11/2025] [Indexed: 03/25/2025] Open
Abstract
The main risk factor for developing transplant vasculopathy (TV) after solid organ transplantation is de-novo production of donor-specific antibodies (DSAs) binding to endothelial cells (ECs) within the graft's vasculature. Diverse leukocyte populations recruited into the vessel wall via activated ECs contribute to vascular inflammation. Subsequent smooth muscle cell proliferation results in intima hyperplasia, the pathophysiological correlate of TV. We demonstrated that incubating aortic EC with anti-HLA-I antibodies led to increased monocyte adhesion to and transmigration across an EC monolayer. Both occurred in a CD62E-dependent fashion and were sensitive toward the anti-inflammatory enzyme heme oxygenase (HO)-1 modulation. Using a murine heterotopic aortic transplantation model, we demonstrated that anti-MHC I antibody-induced TV is ameliorated by pharmacologically induced HO-1 and the application of anti-CD62E antibodies results in a deceleration of developing TV. HO-1 modulation is a promising therapeutic approach to prevent leukocyte recruitment and subsequent intima hyperplasia in TV and thus precludes organ failure.
Collapse
Affiliation(s)
- Laura Schuster
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Marcin Zaradzki
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Henrike Janssen
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Nadia Gallenstein
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Melanie Etheredge
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Anesthesiology, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
| | - Ilse Hofmann
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Markus A. Weigand
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stephan Immenschuh
- Department of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Jan Larmann
- Department of Anesthesiology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Anesthesiology, University Hospital Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen, Aachen, Germany
| |
Collapse
|
2
|
Lone M, Anwar T, Sinnett-Smith J, Jin YP, Reed EF, Rozengurt E. Antibody ligation of HLA class II induces YAP nuclear localization and formation of cytoplasmic YAP condensates in human endothelial cells. Immunohorizons 2025; 9:vlae008. [PMID: 39865973 PMCID: PMC11841970 DOI: 10.1093/immhor/vlae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 10/26/2024] [Indexed: 01/28/2025] Open
Abstract
Antibody (Ab) crosslinking of HLA class II (HLA II) molecules on the surface of endothelial cells (ECs) triggers proliferative and prosurvival intracellular signaling, which are implicated in promoting chronic Ab-mediated rejection (cAMR). Despite the importance of cAMR in transplant medicine, the mechanisms involved remain incompletely understood. Here, we examined the regulation of yes-associated protein (YAP) nuclear cytoplasmic localization and phosphorylation in human ECs challenged with Abs that bind HLA II, which are strongly associated with cAMR. To examine changes in YAP localization in response to Ab-mediated engagement of HLA II, we used an adenoviral vector to express the class II transactivator or treatment with interferon γ. In unstimulated ECs expressing HLA II, YAP localized mainly in the cytoplasm. Stimulation with HLA II Ab (0.1-1 µg/mL) induced marked translocation of YAP to the nucleus. HLA II signaling triggered by high concentrations of HLA II Ab (1 µg/mL) also induced prominent YAP localization in cytoplasmic punctate structures that were disassembled by exposure to 1,6-hexanediol, suggesting that these structures are biomolecular condensates. Using multiple treatments, including stimulation with serum, thrombin or HLA I Ab and conditions (eg ECs plated at different densities) indicate that formation of YAP cytoplasmic puncta can be dissociated from YAP nuclear localization and phosphorylation at Ser127, a site in YAP targeted by the Hippo kinases LATS1/2. The results revealed that HLA II signaling regulates YAP subcellular distributions in ECs and demonstrate, for the first time, that HLA II Ab selectively stimulates YAP concentration in punctate structures.
Collapse
Affiliation(s)
- Moien Lone
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, United States
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| | - Tarique Anwar
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, United States
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| | - James Sinnett-Smith
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| | - Yi-Ping Jin
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, United States
| | - Elaine F Reed
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, United States
| | - Enrique Rozengurt
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| |
Collapse
|
3
|
Szili-Torok T, de Borst MH, Soteriou A, Post L, Bakker SJL, Tietge UJF. Apolipoprotein B-48 and late graft failure in kidney transplant recipients. Clin Kidney J 2024; 17:sfae289. [PMID: 39430793 PMCID: PMC11487158 DOI: 10.1093/ckj/sfae289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Indexed: 10/22/2024] Open
Abstract
Introduction Transplant vasculopathy resembles atherosclerotic plaque formation and is a major contributor to late graft failure in kidney transplant recipients (KTR). Remnant lipoproteins and associated triglycerides are causal risk factors for atherosclerotic plaques and have been implicated in late kidney graft failure. However, whether remnants derived from liver (containing apolipoprotein [apo] B100) or intestine (containing apoB48) are clinically more important is unclear. The current study investigated the association between baseline fasting apoB48 levels and late kidney graft failure. Methods 481 KTR with a functioning graft for at least 1 year were included in this retrospective, observational longitudinal single center cohort study. The primary endpoint was death-censored late graft failure, defined as need for initiation of dialysis or re-transplantation. ApoB48 was measured by enzyme-linked immunosorbent assay. Results During a median follow-up of 9.5 years, 61 KTR developed graft failure (12.7%). At baseline, KTR with higher apoB48 levels had lower eGFR (P < .001), lower high-density lipoprotein (HDL) cholesterol (P < .001), increased triglycerides (P < .001) and used cyclosporine more frequently (P = .003). Cox regression showed that higher baseline apoB48 was associated with higher risk of late graft failure [hazard ratio (95% confidence interval), 1.59 (1.22, 2.07), P < .001], independent of stepwise adjustment for potential confounders, including age and sex, immunosuppression type and proteinuria, triglycerides, and waist circumference (fully adjusted HR, 1.78 (1.29, 2.47), P < .001]. Conclusion ApoB48 is strongly associated with late graft failure, independent of potential confounders. Since apoB48-containing lipoproteins originate from the intestine, this study provides a rationale for considering pharmacological interventions targeting lipid absorption to improve graft outcome.
Collapse
Affiliation(s)
- Tamas Szili-Torok
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Martin H de Borst
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Alexandra Soteriou
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Laura Post
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Stephan J L Bakker
- Department of Internal Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Uwe J F Tietge
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Clinical Chemistry, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
4
|
Tatarintseva ZG, Tkhatl LK, Barbuhatti KO, Kosmacheva ED. [A Case of Successful Treatment of Severe Hyperlipidemia After Heart Transplantation With Inclisiran]. KARDIOLOGIIA 2024; 64:72-76. [PMID: 39102576 DOI: 10.18087/cardio.2024.7.n2679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/11/2024] [Indexed: 08/07/2024]
Abstract
The prognosis after heart transplantation continues to improve. Therefore, the prevention of chronic post-transplant sequelae, such as chronic kidney disease, allograft vasculopathy, and malignancies is becoming increasingly important. Everolimus, an inhibitor of the mammalian target of rapamycin (mTOR), is increasingly used for immunosuppression after heart transplantation. However, everolimus may cause a characteristic complex of adverse effects, including dyslipidemia. Currently there are no guidelines for the long-term screening and treatment of dyslipidemia in heart transplant recipients treated with everolimus. This article presents a clinical case of hypercholesterolemia that developed after the start of the everolimus treatment in a heart recipient. The patient was a 39-year-old man who underwent orthotopic heart transplantation for ischemic cardiomyopathy in 2012 (at the age of 27). In 2019, the patient's immunosuppressive therapy was converted from mycophenolate mofetil to everolimus due to the development of cardiac allograft vasculopathy. The change in the immunosuppressive therapy was associated with increases in total cholesterol and low-density lipoprotein cholesterol, which were not reversed with a combined lipid-lowering therapy (maximum doses of rosuvastatin, ezetimibe, fenofibrate). A decrease in lipid levels was achieved with a blocker of hepatic proprotein convertase subtilisin/kexin type 9 synthesis at the level of microribonucleic acid (inclisiran). This case demonstrates the difficulties in correcting dyslipidemia in patients with cardiac allograft, since the treatment with the immunosuppressant everolimus worsens existing dyslipidemia. However, the combination lipid-lowering therapy, that affects various elements of the pathogenesis (specifically, the combined inhibition of hydroxymethylglutaryl-CoA reductase with a statin, cholesterol absorption from the small intestine with ezetimibe, and PCSK9 messenger RNA with inclisiran), provides an effective control of blood lipids and minimizing the adverse effects of immunosuppressive therapy, such as cardiac allograft vasculopathy.
Collapse
Affiliation(s)
- Z G Tatarintseva
- Research Institute, Ochapovsky Territorial Clinical Hospital #1, Krasnodar; Kuban State Medical University, Krasnodar
| | - L K Tkhatl
- Research Institute, Ochapovsky Territorial Clinical Hospital #1, Krasnodar; Kuban State Medical University, Krasnodar
| | - K O Barbuhatti
- Research Institute, Ochapovsky Territorial Clinical Hospital #1, Krasnodar; Kuban State Medical University, Krasnodar
| | - E D Kosmacheva
- Research Institute, Ochapovsky Territorial Clinical Hospital #1, Krasnodar; Kuban State Medical University, Krasnodar
| |
Collapse
|
5
|
Qin Y, Shao B, Ren SH, Ye K, Qin H, Wang HD, Sun C, Zhu Y, Wang Z, Zhang J, Li X, Wang H. Interleukin-37 contributes to endometrial regenerative cell-mediated immunotherapeutic effect on chronic allograft vasculopathy. Cytotherapy 2024; 26:299-310. [PMID: 38159090 DOI: 10.1016/j.jcyt.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 11/26/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND AIMS Chronic allograft vasculopathy (CAV) remains a predominant contributor to late allograft failure after organ transplantation. Several factors have already been shown to facilitate the progression of CAV, and there is still an urgent need for effective and specific therapeutic approaches to inhibit CAV. Human mesenchymal-like endometrial regenerative cells (ERCs) are free from the deficiencies of traditional invasive acquisition methods and possess many advantages. Nevertheless, the exact immunomodulation mechanism of ERCs remains to be elucidated. METHODS C57BL/6 (B6) mouse recipients receiving BALB/c mouse donor abdominal aorta transplantation were treated with ERCs, negative control (NC)-ERCs and interleukin (IL)-37-/-ERCs (ERCs with IL-37 ablation), respectively. Pathologic lesions and inflammatory cell infiltration in the grafts, splenic immune cell populations, circulating donor-specific antibody levels and cytokine profiles were analyzed on postoperative day (POD) 40. The proliferative capacities of Th1, Th17 and Treg subpopulations were assessed in vitro. RESULTS Allografts from untreated recipients developed typical pathology features of CAV, namely endothelial thickening, on POD 40. Compared with untreated and IL-37-/-ERC-treated groups, IL-37-secreting ERCs (ERCs and NC-ERCs) significantly reduced vascular stenosis, the intimal hyperplasia and collagen deposition. IL-37-secreting ERCs significantly inhibited the proliferation of CD4+T cells, reduced the proportions of Th1 and Th17 cells, but increased the proportion of Tregs in vitro. Furthermore, in vitro results also showed that IL-37-secreting ERCs significantly inhibited Th1 and Th17 cell responses, abolished B-cell activation, diminished donor-specific antibody production and increased Treg proportions. Notably, IL-37-secreting ERCs remarkably downregulated the levels of pro-inflammatory cytokines (interferon-γ, tumor necrosis factor-α, IL-1β, IL-6 and IL-17A) and increased IL-10 levels in transplant recipients. CONCLUSIONS The knockdown of IL-37 dramatically abrogates the therapeutic ability of ERCs for CAV. Thus, this study highlights that IL-37 is indispensable for ERC-mediated immunomodulation for CAV and improves the long-term allograft acceptance.
Collapse
Affiliation(s)
- Yafei Qin
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China; Department of Vascular Surgery, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, PR China.
| | - Bo Shao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Shao-Hua Ren
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Kui Ye
- Department of Vascular Surgery, Tianjin Fourth Central Hospital, The Fourth Central Clinical College, Tianjin Medical University, Tianjin, PR China.
| | - Hong Qin
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Hong-da Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Chenglu Sun
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Yanglin Zhu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Zhaobo Wang
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin, PR China.
| | - Jingyi Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Xiang Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Hao Wang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, PR China; Tianjin General Surgery Institute, Tianjin Medical University General Hospital, Tianjin, PR China.
| |
Collapse
|
6
|
Zhang D, Zhang H, Lu J, Hu X. Multiomics Data Reveal the Important Role of ANXA2R in T Cell-mediated Rejection After Renal Transplantation. Transplantation 2024; 108:430-444. [PMID: 37677931 PMCID: PMC10798590 DOI: 10.1097/tp.0000000000004754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/14/2023] [Accepted: 06/29/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND T cell-mediated rejection (TCMR) is a severe issue after renal transplantation, but research on its T cell-receptor (TCR) repertoire is lacking. This study intended to elucidate the TCR repertoire landscape in TCMR and hence identify novel potential targets. METHODS A total of 12 multiomics data sets were collected. The TRUST4 algorithm was used to construct and analyze the TCR repertoire in renal allografts with TCMR and stable renal function. Then, novel TCR-related key genes were identified through various criteria and literature research. In bulk transcriptome, cell line, single-cell transcriptome data sets, multiple immune cell infiltration algorithms, and gene set enrichment analysis were used to analyze potential mechanisms of the identified key gene. Twenty-three pathological sections were collected for immunofluorescence staining in the clinical cohort. Finally, the diagnostic and prognostic values of ANXA2R were evaluated in multiple renal transplant data sets. RESULTS Allografts with TCMR showed significantly increased clonotype and specific clonal expansion. ANXA2R was found to be a novel key gene for TCMR and showed strong positive connections with the TCR complex and lymphocyte cells, especially CD8 + T cells. Immunofluorescence staining confirmed the existence of ANXA2R + CD8 + T cells, with their percentage significantly elevated in TCMR compared with stable renal function. Finally, both mRNA and protein levels of ANXA2R showed promising diagnostic and prognostic value for renal transplant recipients. CONCLUSIONS ANXA2R , identified as a novel TCR-related gene, had critical roles in clinicopathology, diagnosis, and prognosis in renal transplantation, which offered promising potential therapeutic targets.
Collapse
Affiliation(s)
- Di Zhang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - He Zhang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Jun Lu
- Department of Pathology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xiaopeng Hu
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Yoo HJ, Yi Y, Kang Y, Kim SJ, Yoon YI, Tran PH, Kang T, Kim MK, Han J, Tak E, Ahn CS, Song GW, Park GC, Lee SG, Kim JJ, Jung DH, Hwang S, Kim N. Reduced Ceramides Are Associated with Acute Rejection in Liver Transplant Patients and Skin Graft and Hepatocyte Transplant Mice, Reducing Tolerogenic Dendritic Cells. Mol Cells 2023; 46:688-699. [PMID: 37968983 PMCID: PMC10654454 DOI: 10.14348/molcells.2023.0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/11/2023] [Accepted: 08/22/2023] [Indexed: 11/17/2023] Open
Abstract
We set up this study to understand the underlying mechanisms of reduced ceramides on immune cells in acute rejection (AR). The concentrations of ceramides and sphingomyelins were measured in the sera from hepatic transplant patients, skin graft mice and hepatocyte transplant mice by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). Serum concentrations of C24 ceramide, C24:1 ceramide, C16:0 sphingomyelin, and C18:1 sphingomyelin were lower in liver transplantation (LT) recipients with than without AR. Comparisons with the results of LT patients with infection and cardiac transplant patients with cardiac allograft vasculopathy in humans and in mouse skin graft and hepatocyte transplant models suggested that the reduced C24 and C24:1 ceramides were specifically involved in AR. A ceramide synthase inhibitor, fumonisin B1 exacerbated allogeneic immune responses in vitro and in vivo, and reduced tolerogenic dendritic cells (tDCs), while increased P3-like plasmacytoid DCs (pDCs) in the draining lymph nodes from allogeneic skin graft mice. The results of mixed lymphocyte reactions with ceranib-2, an inhibitor of ceramidase, and C24 ceramide also support that increasing ceramide concentrations could benefit transplant recipients with AR. The results suggest increasing ceramides as novel therapeutic target for AR, where reduced ceramides were associated with the changes in DC subsets, in particular tDCs.
Collapse
Affiliation(s)
- Hyun Ju Yoo
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Convergence Medicine Research Center, Asan Medical Center, Seoul 05505, Korea
- Digestive Disease Research Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Yeogyeong Yi
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Yoorha Kang
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Su Jung Kim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Convergence Medicine Research Center, Asan Medical Center, Seoul 05505, Korea
| | - Young-In Yoon
- Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Phuc Huu Tran
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Taewook Kang
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Min Kyung Kim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Jaeseok Han
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Eunyoung Tak
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Chul-Soo Ahn
- Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Gi-Won Song
- Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Gil-Chun Park
- Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Sung-Gyu Lee
- Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Jae-Joong Kim
- Division of Cardiology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Dong-Hwan Jung
- Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Shin Hwang
- Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| | - Nayoung Kim
- Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea
| |
Collapse
|
8
|
Rowell J, Lau CI, Yánez DC, Zhang E, Crompton T. Hedgehog signalling in allograft vasculopathy: a new therapeutic target? Trends Pharmacol Sci 2023; 44:558-560. [PMID: 37296035 PMCID: PMC11569892 DOI: 10.1016/j.tips.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023]
Abstract
Allograft vasculopathy (AV) leads to chronic rejection of organ transplants, but its causes are obscure. New research from the Jane-Wit laboratory showed that Sonic Hedgehog (SHH) signalling from damaged graft endothelium drives vasculopathy by promoting proinflammatory cytokine production and NLRP3-inflammasome activation in alloreactive CD4+PTCH1hiPD-1hiT memory cells, offering new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Jasmine Rowell
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Ching-In Lau
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Diana C Yánez
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Eden Zhang
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Tessa Crompton
- UCL Great Ormond Street Institute of Child Health, London, UK.
| |
Collapse
|
9
|
The cathepsin-S/protease-activated receptor-(PAR)-2 axis drives chronic allograft vasculopathy and is a molecular target for therapeutic intervention. Transpl Immunol 2023; 77:101782. [PMID: 36608832 DOI: 10.1016/j.trim.2022.101782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 12/31/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND Cathepsin S (CatS) and proteinase-activated receptor (PAR)-2 are involved in the remodelling of vascular walls and neointima formation as well as in alloantigen presentation and T-cell priming. Therefore, we hypothesized that CatS/PAR-2 inhibition/deficiency would attenuate chronic allograft vasculopathy. METHODS Heterotopic aortic murine transplantation was performed from C57BL/6J donors to C57BL/6J recipients (syngeneic control group), Balb/c to C57BL/6J without treatment (allogenic control group), Balb/c to C57BL/6J with twice daily oral CatS inhibitor (allogenic treatment group) and Balb/c to Par2-/- C57BL/6J (allogenic knockout group). The recipients were sacrificed on day 28 and the grafts were harvested for histological analysis and RT-qPCR. RESULTS After 28 days, mice of the allogenic control group exhibited significant neointima formation and massive CD8 T-cell infiltration into the neointima while the syngeneic control group showed negligible allograft vasculopathy. The mRNA expression level of CatS in allografts was 5-fold of those in syngeneic grafts. Neointima formation and therefore intima/media-ratio were significantly decreased in the treatment and knockout group in comparison to the allogenic control group. Mice in treatment group also displayed significantly fewer CD8 T cells in the neointima compared with allogeneic controls. Additionally, treatment with the CatS inhibitor and PAR2-deficiency decreased mRNA-levels of interleukins and cytokines. CONCLUSION In conclusion, our data indicate that inhibiting CatS and PAR-2 deficiency led to a marked reduction of neointima formation and associated inflammation in a murine heterotopic model for allograft vasculopathy.
Collapse
|
10
|
Tan W, Boodagh P, Selvakumar PP, Keyser S. Strategies to counteract adverse remodeling of vascular graft: A 3D view of current graft innovations. Front Bioeng Biotechnol 2023; 10:1097334. [PMID: 36704297 PMCID: PMC9871289 DOI: 10.3389/fbioe.2022.1097334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
Vascular grafts are widely used for vascular surgeries, to bypass a diseased artery or function as a vascular access for hemodialysis. Bioengineered or tissue-engineered vascular grafts have long been envisioned to take the place of bioinert synthetic grafts and even vein grafts under certain clinical circumstances. However, host responses to a graft device induce adverse remodeling, to varied degrees depending on the graft property and host's developmental and health conditions. This in turn leads to invention or failure. Herein, we have mapped out the relationship between the design constraints and outcomes for vascular grafts, by analyzing impairment factors involved in the adverse graft remodeling. Strategies to tackle these impairment factors and counteract adverse healing are then summarized by outlining the research landscape of graft innovations in three dimensions-cell technology, scaffold technology and graft translation. Such a comprehensive view of cell and scaffold technological innovations in the translational context may benefit the future advancements in vascular grafts. From this perspective, we conclude the review with recommendations for future design endeavors.
Collapse
Affiliation(s)
- Wei Tan
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, United States,*Correspondence: Wei Tan,
| | - Parnaz Boodagh
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Sean Keyser
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
11
|
Jin YP, Nevarez-Mejia J, Terry AQ, Sosa RA, Heidt S, Valenzuela NM, Rozengurt E, Reed EF. Cross-Talk between HLA Class I and TLR4 Mediates P-Selectin Surface Expression and Monocyte Capture to Human Endothelial Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1359-1369. [PMID: 36165200 PMCID: PMC9635437 DOI: 10.4049/jimmunol.2200284] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/22/2022] [Indexed: 11/19/2022]
Abstract
Donor-specific HLA Abs contribute to Ab-mediated rejection (AMR) by binding to HLA molecules on endothelial cells (ECs) and triggering intracellular signaling, leading to EC activation and leukocyte recruitment. The molecular mechanisms involving donor-specific HLA Ab-mediated EC activation and leukocyte recruitment remain incompletely understood. In this study, we determined whether TLRs act as coreceptors for HLA class I (HLA I) in ECs. We found that human aortic ECs express TLR3, TLR4, TLR6, and TLR10, but only TLR4 was detected on the EC surface. Consequently, we performed coimmunoprecipitation experiments to examine complex formation between HLA I and TLR4. Stimulation of human ECs with HLA Ab increased the amount of complex formation between HLA I and TLR4. Reciprocal coimmunoprecipitation with a TLR4 Ab confirmed that the crosslinking of HLA I increased complex formation between TLR4 and HLA I. Knockdown of TLR4 or MyD88 with small interfering RNAs inhibited HLA I Ab-stimulated P-selectin expression, von Willebrand factor release, and monocyte recruitment on ECs. Our results show that TLR4 is a novel coreceptor for HLA I to stimulate monocyte recruitment on activated ECs. Taken together with our previous published results, we propose that HLA I molecules form two separate signaling complexes at the EC surface, that is, with TLR4 to upregulate P-selectin surface expression and capture of monocytes to human ECs and integrin β4 to induce mTOR-dependent firm monocyte adhesion via ICAM-1 clustering on ECs, two processes implicated in Ab-mediated rejection.
Collapse
Affiliation(s)
- Yi-Ping Jin
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Jessica Nevarez-Mejia
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Allyson Q Terry
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Rebecca A Sosa
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Sebastiaan Heidt
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands; and
| | - Nicole M Valenzuela
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Enrique Rozengurt
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Elaine F Reed
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA;
| |
Collapse
|
12
|
Ren Z, Cui S, Lyu S, Wang J, Zhou L, Jia Y, He Q, Lang R. Establishment of rat allogenic vein replacement model and pathological characteristics of the replaced vessels. Front Surg 2022; 9:984959. [PMID: 36157414 PMCID: PMC9500297 DOI: 10.3389/fsurg.2022.984959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND With the advancement of vascular anastomosis techniques in recent years, radical surgery for tumors combined with venous vascular resection and reconstruction has been widely used. This study intends to establish two different rat vein replacement models, and further analyze the pathological changes of blood vessels after replacement. METHODS Brown-Norway (BN) rats were selected as donors and recipients, randomly divided into control group, cuff group (1-week group, 2-week group, and 4-week group), and suture group (1-week group, 2-week group, and 4-week group), with 6 rats in each group. The perioperative conditions, inner diameter, flow velocity and histopathological changes of the replaced vessels at different time points were analyzed. RESULTS Both cuff group and suture group can safely establish the rat vein replacement model. From the surgical operation, the operation time and venous cross-clamp time in the cuff group were shorter than those in the suture group (P < 0.05). At 2 and 4 weeks after operation, the diameter of suture group was wider than that of cuff group, and the flow rate was faster (P < 0.05). With prolonged postoperative survival, the wall of the replaced vessels underwent infiltration of CD4+ and CD8+ lymphocytes and high TGF-β1 gene expression. This leads to the proliferation of blood vessels and intimal layer. The results of vascular pathological staining showed that the infiltration degree of CD4+ lymphocytes at 2 weeks after operation and CD8+ lymphocytes at 4 weeks after operation in the suture group was lighter than that in the cuff group (P < 0.05). Meanwhile, TGF-β1 gene content at 4 weeks after operation in suture group was significantly lower than that in cuff group (P < 0.05). CONCLUSION Compared with cuff method, suture method is more suitable for the study of long-term pathological changes after vein replacement in rats. The main pathological changes in the long term after venous replacement in syngeneic background may be vascular fibrosis caused by inflammatory cell infiltration.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qiang He
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ren Lang
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Plumblee L, Atkinson C, Jaishankar D, Scott E, Tietjen GT, Nadig SN. Nanotherapeutics in transplantation: How do we get to clinical implementation? Am J Transplant 2022; 22:1293-1298. [PMID: 35224837 PMCID: PMC9081154 DOI: 10.1111/ajt.17012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 01/25/2023]
Abstract
Patients undergoing organ transplantation transition from one life-altering issue (organ dysfunction) to a lifelong commitment-immunosuppression. Regimens of immunosuppressive agents (ISAs) come with significant side effects and comorbidities. Recently, the use of nanoparticles (NPs) as a solution to the problems associated with the long-term and systemic use of ISAs in transplantation has emerged. This minireview describes the role of NPs in organ transplantation and discusses obstacles to clinical implementation and pathways to clinical translation.
Collapse
Affiliation(s)
- Leah Plumblee
- Department of Microbiology and ImmunologyMedical University of South CarolinaCharlestonSouth Carolina
- Department of SurgeryDivision of Transplant SurgeryMedical University of South CarolinaCharlestonSouth Carolina
| | - Carl Atkinson
- Department of Microbiology and ImmunologyMedical University of South CarolinaCharlestonSouth Carolina
- Division of Pulmonary, Critical Care, and Sleep MedicineUniversity of FloridaGainesvilleFlorida
| | - Dinesh Jaishankar
- Department of SurgeryDivision of Transplant SurgeryMedical University of South CarolinaCharlestonSouth Carolina
| | - Evan Scott
- Department of Biomedical EngineeringNorthwestern UniversityEvanstonIllinois
- Department of Microbiology‐ImmunologyFeinberg School of MedicineNorthwestern UniversityChicagoIllinois
- Simpson Querrey InstituteNorthwestern UniversityChicagoIllinois
| | - Gregory T. Tietjen
- Department of SurgeryDepartment of Biomedical EngineeringYale School of MedicineYale UniversityNew HavenConnecticut
| | - Satish N. Nadig
- Department of Microbiology‐ImmunologyFeinberg School of MedicineNorthwestern UniversityChicagoIllinois
- Simpson Querrey InstituteNorthwestern UniversityChicagoIllinois
- Department of SurgeryDepartment of PediatricsComprehensive Transplant CenterFeinberg School of MedicineNorthwestern UniversityChicagoIllinois
| |
Collapse
|
14
|
Failing Heart Transplants and Rejection-A Cellular Perspective. J Cardiovasc Dev Dis 2021; 8:jcdd8120180. [PMID: 34940535 PMCID: PMC8708043 DOI: 10.3390/jcdd8120180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 11/17/2022] Open
Abstract
The median survival of patients with heart transplants is relatively limited, implying one of the most relevant questions in the field—how to expand the lifespan of a heart allograft? Despite optimal transplantation conditions, we do not anticipate a rise in long-term patient survival in near future. In order to develop novel strategies for patient monitoring and specific therapies, it is critical to understand the underlying pathological mechanisms at cellular and molecular levels. These events are driven by innate immune response and allorecognition driven inflammation, which controls both tissue damage and repair in a spatiotemporal context. In addition to immune cells, also structural cells of the heart participate in this process. Novel single cell methods have opened new avenues for understanding the dynamics driving the events leading to allograft failure. Here, we review current knowledge on the cellular composition of a normal heart, and cellular mechanisms of ischemia-reperfusion injury (IRI), acute rejection and cardiac allograft vasculopathy (CAV) in the transplanted hearts. We highlight gaps in current knowledge and suggest future directions, in order to improve cellular and molecular understanding of failing heart allografts.
Collapse
|
15
|
Rafieerad A, Yan W, Alagarsamy KN, Srivastava A, Sareen N, Arora RC, Dhingra S. Fabrication of Smart Tantalum Carbide MXene Quantum Dots with Intrinsic Immunomodulatory Properties for Treatment of Allograft Vasculopathy. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2106786. [PMID: 35153642 PMCID: PMC8820728 DOI: 10.1002/adfm.202106786] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/24/2021] [Indexed: 05/04/2023]
Abstract
MXene nanomaterials have sparked significant interest among interdisciplinary researchers to tackle today's medical challenges. In particular, colloidal MXene quantum dots (MQDs) offer the high specific surface area and compositional flexibility of MXene while providing improvements to aqueous stability and material-cell interactions. The current study for the first time reports the development and application of immunoengineered tantalum-carbide (Ta4C3T x ) MQDs for in vivo treatment of transplant vasculopathy. This report comes at a critical juncture in the field as poor long-term safety of other MXene compositions challenge the eventual clinical translatability of these materials. Using rational design and synthesis strategies, the Ta4C3T x MQDs leverage the intrinsic anti-inflammatory and antiapoptotic properties of tantalum to provide a novel nanoplatform for biomedical engineering. In particular, these MQDs are synthesized with high efficiency and purity using a facile hydrofluoric acid-free protocol and are enriched with different bioactive functional groups and stable surface TaO2 and Ta2O5. Furthermore, MQDs are spontaneously uptaken into antigen-presenting endothelial cells and alter surface receptor expression to reduce their activation of allogeneic T-lymphocytes. Finally, when applied in vivo, Ta4C3T x MQDs ameliorate the cellular and structural changes of early allograft vasculopathy. These findings highlight the robust potential of tailored Ta4C3T x MQDs for future applications in medicine.
Collapse
Affiliation(s)
- Alireza Rafieerad
- Regenerative Medicine Program Department of Physiology and Pathophysiology Rady Faculty of Health Sciences University of Manitoba Winnipeg Manitoba R3E 0W2 Canada
- Institute of Cardiovascular Sciences Albrechtsen St. Boniface Research Centre University of Manitoba Winnipeg Manitoba R2H 2A6 Canada
| | - Weiang Yan
- Regenerative Medicine Program Department of Physiology and Pathophysiology Rady Faculty of Health Sciences University of Manitoba Winnipeg Manitoba R3E 0W2 Canada
- Institute of Cardiovascular Sciences Albrechtsen St. Boniface Research Centre University of Manitoba Winnipeg Manitoba R2H 2A6 Canada
- Section of Cardiac Surgery Department of Surgery Max Rady College of Medicine Rady Faculty of Health Sciences University of Manitoba Winnipeg Manitoba R3E 0W2 Canada
| | - Keshav Narayan Alagarsamy
- Regenerative Medicine Program Department of Physiology and Pathophysiology Rady Faculty of Health Sciences University of Manitoba Winnipeg Manitoba R3E 0W2 Canada
- Institute of Cardiovascular Sciences Albrechtsen St. Boniface Research Centre University of Manitoba Winnipeg Manitoba R2H 2A6 Canada
| | - Abhay Srivastava
- Regenerative Medicine Program Department of Physiology and Pathophysiology Rady Faculty of Health Sciences University of Manitoba Winnipeg Manitoba R3E 0W2 Canada
- Institute of Cardiovascular Sciences Albrechtsen St. Boniface Research Centre University of Manitoba Winnipeg Manitoba R2H 2A6 Canada
| | - Niketa Sareen
- Regenerative Medicine Program Department of Physiology and Pathophysiology Rady Faculty of Health Sciences University of Manitoba Winnipeg Manitoba R3E 0W2 Canada
- Institute of Cardiovascular Sciences Albrechtsen St. Boniface Research Centre University of Manitoba Winnipeg Manitoba R2H 2A6 Canada
| | - Rakesh C Arora
- Institute of Cardiovascular Sciences Albrechtsen St. Boniface Research Centre University of Manitoba Winnipeg Manitoba R2H 2A6 Canada
- Section of Cardiac Surgery Department of Surgery Max Rady College of Medicine Rady Faculty of Health Sciences University of Manitoba Winnipeg Manitoba R3E 0W2 Canada
| | - Sanjiv Dhingra
- Regenerative Medicine Program Department of Physiology and Pathophysiology Rady Faculty of Health Sciences University of Manitoba Winnipeg Manitoba R3E 0W2 Canada
- Institute of Cardiovascular Sciences Albrechtsen St. Boniface Research Centre University of Manitoba Winnipeg Manitoba R2H 2A6 Canada
| |
Collapse
|
16
|
Xie CB, Zhou J, Mackay S, Pober JS. Complement-activated human endothelial cells stimulate increased polyfunctionality in alloreactive T cells. Am J Transplant 2021; 21:1902-1909. [PMID: 33415805 PMCID: PMC8096653 DOI: 10.1111/ajt.16485] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/07/2020] [Accepted: 12/30/2020] [Indexed: 01/25/2023]
Abstract
Antibody-mediated deposition of complement membrane attack complexes (MACs) on IFN-γ-primed human endothelial cells (ECs) triggers autocrine/paracrine IL-1β-mediated EC activation and IL-15 transpresentation to alloreactive effector memory T cells (TEM ), changes that enable ECs to increase T cell proliferation and cytokine release. Here, we report the use of single-cell microchip 32-plex proteomics to more deeply assess the functionality of the activated T cells and dependence upon EC-derived signals. Compared to control ECs, MAC-activated human ECs increase both the frequency and degree of polyfunctionality among both CD4+ and CD8+ -proliferated TEM , assessed as secreted proteins. IFN-γ and TNF-α remain the predominant cytokines made by alloreactive TEM , but a few CD4+ TEM also made IL-4 while more CD8+ TEM made perforin and granzyme B. Increased polyfunctionality was attenuated by treatment of the MAC-activated ECs with anti-IL-15 blocking antibody more effectively than IL-1 receptor blockade. The increased polyfunctionality of T cells resulting from interactions with MAC-activated ECs may further link binding of donor-specific antibody to T cell-mediated allograft pathologies.
Collapse
Affiliation(s)
- Catherine B. Xie
- Dept of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Jing Zhou
- IsoPlexis Corporation, Branford, CT, USA
| | | | - Jordan S. Pober
- Dept of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
17
|
Short and Mid Term Outcomes of Cryopreserved Abdominal Aortic Allografts Used as a Substitute for Infected Prosthetic Grafts in 200 Patients. Eur J Vasc Endovasc Surg 2021; 62:89-97. [PMID: 33858752 DOI: 10.1016/j.ejvs.2021.02.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 02/17/2021] [Accepted: 02/20/2021] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To investigate the use of cryopreserved arterial allografts (CAA) as a substitute for infected infrarenal aortic prostheses, and its outcomes. METHODS A single centre retrospective study of consecutive patients receiving an abdominal aortic CAA after removal of an infected graft was conducted between January 1997 and December 2013. The primary outcome was the rate of allograft related revision surgery. Secondary outcomes were the 30 day mortality rate, survival, primary patency, limb salvage, and infection recurrence. Allograft ruptures secondary to infection and risk factors for allograft failure were also investigated. RESULTS Two hundred patients (mean age 64.2 ± 9.4 years) were included. In 56 (28%) cases, infection was related to an enteric fistula. The mean follow up duration was 4.1 years. The 30 day mortality rate was 11%. Early revision surgery was needed in 59 patients (29.5%). Among them, 15 (7.5%) were allograft related and led to the death of three patients (1.5%), corresponding to a 7.5% 30 day allograft related revision surgery rate. During the first six months, 17 (8.5%) patients experienced 21 events with complete or partial rupture (pseudo-aneurysm) of the allograft responsible for five (2.5%) deaths, corresponding to a re-infection rate of 8.5%. The multivariable analysis showed that diabetes and pseudo-aneurysm of the native aorta on presentation were predictive factors for short term allograft rupture. After six months, 25 (12.5%) patients experienced long term allograft complications (rupture, n = 2, 1%; pseudo-aneurysm, n = 6, 3%; aneurysm, n = 2, 1%; thrombosis, n = 11, 5.5%; stenosis, n = 4, 2%;) requiring revision surgery resulting in one death. The five year rates of survival, allograft related revision surgery, limb salvage, primary patency, and infection recurrence were 56%, 30%, 89%, 80%, and 12%, respectively. CONCLUSION CAAs provide acceptable results to treat aortic graft infection with few early graft related fatal complications. Long term allograft related complications are quite common but are associated with low mortality and amputation rates.
Collapse
|
18
|
Zhang H, Li Z, Li W. M2 Macrophages Serve as Critical Executor of Innate Immunity in Chronic Allograft Rejection. Front Immunol 2021; 12:648539. [PMID: 33815407 PMCID: PMC8010191 DOI: 10.3389/fimmu.2021.648539] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 02/10/2021] [Indexed: 12/19/2022] Open
Abstract
Allograft functional failure due to acute or chronic rejection has long been a major concern in the area of solid organ transplantation for decades. As critical component of innate immune system, the macrophages are unlikely to be exclusive for driving acute or chronic sterile inflammation against allografts. Traditionally, macrophages are classified into two types, M1 and M2 like macrophages, based on their functions. M1 macrophages are involved in acute rejection for triggering sterile inflammation thus lead to tissue damage and poor allograft survival, while M2 macrophages represent contradictory features, playing pivotal roles in both anti-inflammation and development of graft fibrosis and resulting in chronic rejection. Macrophages also contribute to allograft vasculopathy, but the phenotypes remain to be identified. Moreover, increasing evidences are challenging traditional identification and classification of macrophage in various diseases. Better understanding the role of macrophage in chronic rejection is fundamental to developing innovative strategies for preventing late graft loss. In this review, we will update the recent progress in our understanding of diversity of macrophage-dominated innate immune response, and reveal the roles of M2 macrophages in chronic allograft rejection as well.
Collapse
Affiliation(s)
- Hanwen Zhang
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhuonan Li
- Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Wei Li
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
19
|
Zou H, Ming B, Li J, Xiao Y, Lai L, Gao M, Xu Y, Tan Z, Gong F, Zheng F. Extracellular HMGB1 Contributes to the Chronic Cardiac Allograft Vasculopathy/Fibrosis by Modulating TGF-β1 Signaling. Front Immunol 2021; 12:641973. [PMID: 33777037 PMCID: PMC7988222 DOI: 10.3389/fimmu.2021.641973] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/16/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiac allograft vasculopathy (CAV) charactered with aberrant remodeling and fibrosis usually leads to the loss of graft after heart transplantation. Our previous work has reported that extracellular high-mobility group box 1 (HMGB1) participated in the CAV progression via promoting inflammatory cells infiltration and immune damage. The aim of this study was to investigate the involvement of HMGB1 in the pathogenesis of CAV/fibrosis and potential mechanisms using a chronic cardiac rejection model in mice. We found high levels of transforming growth factor (TGF)-β1 in cardiac allografts after transplantation. Treatment with HMGB1 neutralizing antibody markedly prolonged the allograft survival accompanied by attenuated fibrosis of cardiac allograft, decreased fibroblasts-to-myofibroblasts conversion, and reduced synthesis and release of TGF-β1. In addition, recombinant HMGB1 stimulation promoted release of active TGF-β1 from cardiac fibroblasts and macrophages in vitro, and subsequent phosphorylation of Smad2 and Smad3 which were downstream of TGF-β1 signaling. These data indicate that HMGB1 contributes to the CAV/fibrosis via promoting the activation of TGF-β1/Smad signaling. Targeting HMGB1 might become a new therapeutic strategy for inhibiting cardiac allograft fibrosis and dysfunction.
Collapse
Affiliation(s)
- Huijuan Zou
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Reproductive Medicine Center, Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Bingxia Ming
- Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Li
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yifan Xiao
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Lai
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Gao
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Xu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Tan
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feili Gong
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Zheng
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, China.,NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.,Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
20
|
Isa SO, Buhari O, Adeniran-Isa M, Khan M, Khan H, Konda R, Changezi H, Afonso L. In-hospital outcomes after percutaneous coronary interventions in cardiac allograft recipients. SAGE Open Med 2021; 9:2050312121993290. [PMID: 33623702 PMCID: PMC7878996 DOI: 10.1177/2050312121993290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 01/11/2021] [Indexed: 11/15/2022] Open
Abstract
Introduction The average age and survival of heart transplant recipients have improved significantly over the last 10 years. In these long-term survivors, coronary allograft vasculopathy is one of the most common causes of death. There is a paucity of large-data research highlighting the short-term outcomes of percutaneous coronary interventions in cardiac allograft recipients. Methods We compared the in-hospital outcomes of heart transplant recipient and non-transplant recipients following percutaneous coronary intervention using data from the National inpatient sample (NIS). All adult patients (age ⩾ 18 years) who had percutaneous coronary intervention in the index admissions from January of 2005 to December of 2014 were included in the analysis. They were then divided into two groups based on their heart transplant status. The primary outcome was in-hospital mortality. Secondary outcomes were stroke, cardiac arrest, duration of hospitalization, and total hospital charges. Logistic regression models were used to compare in-hospital outcomes between the two groups. Results Of 1,316,528 patients who had percutaneous coronary intervention, 618 (0.05%) were heart transplant recipients and 1,315,910 (99.95%) were not. The heart transplant recipient group was significantly younger with lower rates of obesity and peripheral vascular disease but higher rate of chronic kidney disease, iron deficiency anemia, and chronic liver disease. There was significantly higher in-hospital mortality in transplant recipients below 65 years of age (adjusted odds ration = 2.3, p value < 0.0001). Subjects in the heart transplant recipient group also had longer hospital stays (p value = 0.002). Conclusion Heart transplant recipients younger than 65 years had higher in-hospital mortality. Subjects in the heart transplant recipient group were also younger and had longer duration of hospitalization than the non-transplant cohorts.
Collapse
Affiliation(s)
| | | | | | - Mahin Khan
- McLaren Flint/Michigan State University, Flint, MI, USA
| | - Hafiz Khan
- McLaren Flint/Michigan State University, Flint, MI, USA
| | | | | | - Luis Afonso
- Wayne State University/Detroit Medical Center, Detroit, MI, USA
| |
Collapse
|
21
|
Galectin-9 is required for endometrial regenerative cells to induce long-term cardiac allograft survival in mice. Stem Cell Res Ther 2020; 11:471. [PMID: 33153471 PMCID: PMC7643467 DOI: 10.1186/s13287-020-01985-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/20/2020] [Indexed: 12/25/2022] Open
Abstract
Background Endometrial regenerative cells (ERCs), a novel type of mesenchymal-like stem cells, were identified as an attractive candidate for immunoregulation and induction of cardiac allograft tolerance. However, the underlying mechanisms of ERCs in immune regulation still remain largely unclear. The present study is designed to determine whether the expression of Galectin-9 (Gal-9), a soluble tandem-repeat member of the galectin family, is crucial for ERC-based immunomodulation. Methods In this study, we measured Gal-9 expression on ERCs and then co-cultured Gal-9-ERCs, ERCs, and ERCs+lactose (Gal-9 blocker) with activated C57BL/6-derived splenocytes. Furthermore, we performed mouse heart transplantation between BALB/c (H-2d) donor and C57BL/6 (H-2b) recipient. ERCs were administrated 24 h after the surgery, either alone or in combination with rapamycin. Results Our data demonstrate that ERCs express Gal-9, and this expression is increased by IFN-γ stimulation in a dose-dependent manner. Moreover, both in vitro and in vivo results show that Gal-9-ERC-mediated therapy significantly suppressed Th1 and Th17 cell response, inhibited CD8+ T cell proliferation, abrogated B cell activation, decreased donor-specific antibody production, and enhanced the Treg population. The therapeutic effect of ERCs was further verified by their roles in prolonging cardiac allograft survival and alleviating graft pathological changes. Conclusions Taken together, these data indicate that Gal-9 is required for ERC-mediated immunomodulation and prevention of allograft rejection.
Collapse
|
22
|
Abstract
Since the advent of the vascular anastomosis by Alexis Carrel in the early 20th century, the repair and replacement of blood vessels have been key to treating acute injuries, as well as chronic atherosclerotic disease. Arteries serve diverse mechanical and biological functions, such as conducting blood to tissues, interacting with the coagulation system, and modulating resistance to blood flow. Early approaches for arterial replacement used artificial materials, which were supplanted by polymer fabrics in recent decades. With recent advances in the engineering of connective tissues, including arteries, we are on the cusp of seeing engineered human arteries become mainstays of surgical therapy for vascular disease. Progress in our understanding of physiology, cell biology, and biomanufacturing over the past several decades has made these advances possible.
Collapse
Affiliation(s)
- Laura E Niklason
- Departments of Anesthesiology and Biomedical Engineering, Yale University, New Haven, CT, USA. .,Humacyte Inc., Durham, NC 27713, USA
| | - Jeffrey H Lawson
- Humacyte Inc., Durham, NC 27713, USA. .,Department of Surgery, Duke University, Durham, NC, USA
| |
Collapse
|
23
|
Li T, Zhang Z, Bartolacci JG, Dwyer GK, Liu Q, Mathews LR, Velayutham M, Roessing AS, Lee YC, Dai H, Shiva S, Oberbarnscheidt MH, Dziki JL, Mullet SJ, Wendell SG, Wilkinson JD, Webber SA, Wood-Trageser M, Watkins SC, Demetris AJ, Hussey GS, Badylak SF, Turnquist HR. Graft IL-33 regulates infiltrating macrophages to protect against chronic rejection. J Clin Invest 2020; 130:5397-5412. [PMID: 32644975 PMCID: PMC7524467 DOI: 10.1172/jci133008] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 07/07/2020] [Indexed: 12/15/2022] Open
Abstract
Alarmins, sequestered self-molecules containing damage-associated molecular patterns, are released during tissue injury to drive innate immune cell proinflammatory responses. Whether endogenous negative regulators controlling early immune responses are also released at the site of injury is poorly understood. Herein, we establish that the stromal cell-derived alarmin interleukin 33 (IL-33) is a local factor that directly restricts the proinflammatory capacity of graft-infiltrating macrophages early after transplantation. By assessing heart transplant recipient samples and using a mouse heart transplant model, we establish that IL-33 is upregulated in allografts to limit chronic rejection. Mouse cardiac transplants lacking IL-33 displayed dramatically accelerated vascular occlusion and subsequent fibrosis, which was not due to altered systemic immune responses. Instead, a lack of graft IL-33 caused local augmentation of proinflammatory iNOS+ macrophages that accelerated graft loss. IL-33 facilitated a metabolic program in macrophages associated with reparative and regulatory functions, and local delivery of IL-33 prevented the chronic rejection of IL-33-deficient cardiac transplants. Therefore, IL-33 represents what we believe is a novel regulatory alarmin in transplantation that limits chronic rejection by restraining the local activation of proinflammatory macrophages. The local delivery of IL-33 in extracellular matrix-based materials may be a promising biologic for chronic rejection prophylaxis.
Collapse
Affiliation(s)
- Tengfang Li
- Department of Surgery and
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Kidney Transplantation and
| | - Zhongqiang Zhang
- Department of Surgery and
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Organ Transplantation and General Surgery, Second Xiangya Hospital of Central South University, Changsha, China
| | - Joe G. Bartolacci
- Department of Surgery and
- McGowan Institute for Regenerative Medicine and
| | - Gaelen K. Dwyer
- Department of Surgery and
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Quan Liu
- Department of Surgery and
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Southern University of Science and Technology, Shenzhen, China
| | - Lisa R. Mathews
- Department of Surgery and
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Murugesan Velayutham
- Department of Surgery and
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Pittsburgh Heart, Lung, and Blood, Vascular Medicine Institute and
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Anna S. Roessing
- Department of Surgery and
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yoojin C. Lee
- McGowan Institute for Regenerative Medicine and
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Helong Dai
- Department of Surgery and
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Kidney Transplantation and
| | - Sruti Shiva
- Pittsburgh Heart, Lung, and Blood, Vascular Medicine Institute and
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Martin H. Oberbarnscheidt
- Department of Surgery and
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jenna L. Dziki
- Department of Surgery and
- McGowan Institute for Regenerative Medicine and
| | - Steven J. Mullet
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Health Sciences Metabolomics and Lipidomics Core and
- Clinical Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Stacy G. Wendell
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Health Sciences Metabolomics and Lipidomics Core and
- Clinical Translational Science Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - James D. Wilkinson
- Department of Pediatrics, Vanderbilt School of Medicine, Nashville, Tennessee, USA
| | - Steven A. Webber
- Department of Pediatrics, Vanderbilt School of Medicine, Nashville, Tennessee, USA
| | - Michelle Wood-Trageser
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Pathology and
| | - Simon C. Watkins
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Anthony J. Demetris
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine and
- Department of Pathology and
| | - George S. Hussey
- Department of Surgery and
- McGowan Institute for Regenerative Medicine and
| | - Stephen F. Badylak
- Department of Surgery and
- McGowan Institute for Regenerative Medicine and
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hēth R. Turnquist
- Department of Surgery and
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine and
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
24
|
Lu M, Xue R, Wang P, Wang X, Tian X, Liu Y, Wang S, Cui A, Xie J, Le L, Zhao M, Quan J, Li N, Meng D, Wang X, Sun N, Chen AF, Xiang M, Chen S. Induced pluripotent stem cells attenuate chronic allogeneic vasculopathy in an integrin beta-1-dependent manner. Am J Transplant 2020; 20:2755-2767. [PMID: 32277602 DOI: 10.1111/ajt.15900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 01/25/2023]
Abstract
This study aimed to determine the mechanism of isogeneic-induced pluripotent stem cells (iPSCs) homing to vascular transplants and their therapeutic effect on chronic allogeneic vasculopathy. We found that integrin β1 (Intgβ1) was the dominant integrin β unit in iPSCs that mediates the adhesion of circulatory and endothelial cells (ECs). Intgβ1 knockout or Intgβ1-siRNAs inhibit iPSC adhesion and migration across activated endothelial monolayers. The therapeutic effects of the following were examined: iPSCs, Intgβ1-knockout iPSCs, iPSCs transfected with Intgβ1-siRNAs or nontargeting siRNAs, iPSC-derived ECs, iPSC-derived ECs simultaneously overexpressing Intgα4 and Intgβ1, iPSCs precultured in endothelial medium for 3 days (endothelial-prone stem cells), primary aortic ECs, mouse embryonic fibroblasts, and phosphate-buffered saline (control). The cells were administered every 3 days for a period of 8 weeks. iPSCs, iPSCs transfected with nontargeting siRNAs, and endothelial-prone stem cells selectively homed on the luminal surface of the allografts, differentiated into ECs, and decreased neointimal proliferation. Through a single administration, we found that iPSCs trafficked to allograft lesions, differentiated into ECs within 1 week, and survived for 4-8 weeks. The therapeutic effect of a single administration was moderate. Thus, Intgβ1 and pluripotency are essential for iPSCs to treat allogeneic vasculopathy.
Collapse
Affiliation(s)
- Meng Lu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Rong Xue
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Pingping Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaokai Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaoyu Tian
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yingying Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Shun Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Anfeng Cui
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jingxin Xie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Lili Le
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Meng Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jing Quan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ning Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Dan Meng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xinhong Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ning Sun
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Alex F Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Meng Xiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Sifeng Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Dipeptidyl Peptidase-4 Inhibitor Decreases Allograft Vasculopathy Via Regulating the Functions of Endothelial Progenitor Cells in Normoglycemic Rats. Cardiovasc Drugs Ther 2020; 35:1111-1127. [PMID: 32623597 DOI: 10.1007/s10557-020-07013-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE Chronic rejection induces the occurrence of orthotopic allograft transplantation (OAT) vasculopathy, which results in failure of the donor organ. Numerous studies have demonstrated that in addition to regulating blood sugar homeostasis, dipeptidyl peptidase-4 (DPP-4) inhibitors can also provide efficacious therapeutic and protective effects against cardiovascular diseases. However, their effects on OAT-induced vasculopathy remain unknown. Thus, the aim of this study was to investigate the direct effects of sitagliptin on OAT vasculopathy in vivo and in vitro. METHODS The PVG/Seac rat thoracic aorta graft to ACI/NKyo rat abdominal aorta model was used to explore the effects of sitagliptin on vasculopathy. Human endothelial progenitor cells (EPCs) were used to investigate the possible underlying mechanisms. RESULTS We demonstrated that sitagliptin decreases vasculopathy in OAT ACI/NKyo rats. Treatment with sitagliptin decreased BNP and HMGB1 levels, increased GLP-1 activity and stromal cell-derived factor 1α (SDF-1α) expression, elevated the number of circulating EPCs, and improved the differentiation possibility of mononuclear cells to EPCs ex vivo. However, in vitro studies showed that recombinant B-type natriuretic peptide (BNP) and high mobility group box 1 (HMGB1) impaired EPC function, whereas these phenomena were reversed by glucagon-like peptide 1 (GLP-1) receptor agonist treatment. CONCLUSIONS We suggest that the mechanisms underlying sitagliptin-mediated inhibition of OAT vasculopathy probably occur through a direct increase in GLP-1 activity. In addition to the GLP-1-dependent pathway, sitagliptin may regulate SDF-1α levels and EPC function to reduce OAT-induced vascular injury. This study may provide new prevention and treatment strategies for DPP-4 inhibitors in chronic rejection-induced vasculopathy.
Collapse
|
26
|
Xie CB, Jiang B, Qin L, Tellides G, Kirkiles-Smith NC, Jane-wit D, Pober JS. Complement-activated interferon-γ-primed human endothelium transpresents interleukin-15 to CD8+ T cells. J Clin Invest 2020; 130:3437-3452. [PMID: 32191642 PMCID: PMC7324183 DOI: 10.1172/jci135060] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/11/2020] [Indexed: 12/13/2022] Open
Abstract
Alloantibodies in presensitized transplant candidates deposit complement membrane attack complexes (MACs) on graft endothelial cells (ECs), increasing risk of CD8+ T cell-mediated acute rejection. We recently showed that human ECs endocytose MACs into Rab5+ endosomes, creating a signaling platform that stabilizes NF-κB-inducing kinase (NIK) protein. Endosomal NIK activates both noncanonical NF-κB signaling to synthesize pro-IL-1β and an NLRP3 inflammasome to process and secrete active IL-1β. IL-1β activates ECs, increasing recruitment and activation of alloreactive effector memory CD4+ T (Tem) cells. Here, we report that IFN-γ priming induced nuclear expression of IL-15/IL-15Rα complexes in cultured human ECs and that MAC-induced IL-1β stimulated translocation of IL-15/IL-15Rα complexes to the EC surface in a canonical NF-κB-dependent process in which IL-15/IL-15Rα transpresentation increased activation and maturation of alloreactive CD8+ Tem cells. Blocking NLRP3 inflammasome assembly, IL-1 receptor, or IL-15 on ECs inhibited the augmented CD8+ Tem cell responses, indicating that this pathway is not redundant. Adoptively transferred alloantibody and mouse complement deposition induced IL-15/IL-15Rα expression by human ECs lining human coronary artery grafts in immunodeficient mice, and enhanced intimal CD8+ T cell infiltration, which was markedly reduced by inflammasome inhibition, linking alloantibody to acute rejection. Inhibiting MAC signaling may similarly limit other complement-mediated pathologies.
Collapse
Affiliation(s)
| | - Bo Jiang
- Department of Surgery, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Vascular Surgery, First Hospital of China Medical University, Shenyang, China
| | - Lingfeng Qin
- Department of Surgery, Yale University School of Medicine, New Haven, Connecticut, USA
| | - George Tellides
- Department of Surgery, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - Dan Jane-wit
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
27
|
MicroRNA-142-5p is Up-regulated on Allogeneic Immune Responses and Up-regulates MHC Class II Expression in Human Umbilical Vein Endothelial Cells. Transplant Proc 2020; 53:408-416. [PMID: 32616346 DOI: 10.1016/j.transproceed.2020.05.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE MicroRNA could be biomarker and therapeutic target for rejection. The aim of this study was to investigate the role of miR-142-5p in allogeneic immune responses using in vitro and in vivo models. MATERIALS AND METHODS Primary and immortalized human umbilical vein endothelial cells (HUVECs) were cultured with unrelated blood mononuclear cells to induce allogeneic immune responses. Syngeneic and allogeneic skin graft was performed in mice. Flow cytometry, quantitative reverse transcription-polymerase chain reaction, and Western blotting was performed to understand the underlying mechanisms. RESULTS miR-142-5p was up-regulated in primary HUVEC and a HUVEC line when allogeneic immune responses were elicited. miR-142-5p was also up-regulated in the murine allogeneic skin graft. Overexpression of miR-142-5p in HUVEC increased the expression of HLA-ABC and HLA-DR additively to allogeneic immune responses, suggesting a possible increase in alloantigen presentation. Inhibition of miR-142-5p reduced the expression of HLA-DR. ZEB1, a putative target gene of miR-142-5p, was down-regulated in HUVEC on allogeneic immune response as well as in murine allogeneic skin graft. CONCLUSION These results suggest that the up-regulation of miR-142-5p on allogeneic immune response might facilitate endothelial activation to exacerbate rejection.
Collapse
|
28
|
Dun H, Ye L, Zhu Y, Wong BW. Combined abdominal heterotopic heart and aorta transplant model in mice. PLoS One 2020; 15:e0230649. [PMID: 32569305 PMCID: PMC7307752 DOI: 10.1371/journal.pone.0230649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 06/04/2020] [Indexed: 01/06/2023] Open
Abstract
Background Allograft vasculopathy (AV) remains a major obstacle to long-term allograft survival. While the mouse aortic transplantation model has been proven as a useful tool for study of the pathogenesis of AV, simultaneous transplantation of the aorta alongside the transplantation of another organ may reveal more clinically relevant mechanisms that contribute to the pathogenesis of chronic allograft rejection. Therefore, we developed a combined abdominal heart and aorta transplantation model in mice which benefits from reducing animal and drug utilization, while providing an improved model to study the progressive nature of AV. Methods The middle of the infrarenal aorta of the recipient mouse was ligatured between the renal artery and its bifurcation. Proximal and distal aortotomies were performed at this site above and below the ligature, respectively, for the subsequent anastomoses of the donor aorta and heart grafts to the recipient infrarenal aorta in an end-to-side fashion. The distal anastomotic site of the recipient infrarenal aorta was connected with the outlet of the donor aorta. Uniquely, the proximal anastomotic site on the recipient infrarenal aorta was shared to connect with both the inlet of the donor aorta and the inflow tract to the donor heart. The outflow tract from the donor heart was connected to the recipient inferior vena cava (IVC). Results The median times for harvesting the heart graft, aorta graft, recipient preparation and anastomosis were 11.5, 8.0, 9.0 and 40.5 min, respectively, resulting in a total median ischemic time of 70 min. The surgery survival rate was more than 96% (29/30). Both the syngeneic C57Bl/6 aorta and heart grafts survived more than 90 days in 29 C57Bl/6 recipients. Further, Balb/c to C57Bl/6 allografts treated with anti-CD40L and CTLA4.Ig survived more than 90 days with a 100% (3/3) survival rate. (3/3). Conclusions This model is presented as a new tool for researchers to investigate transplant immunology and assess immunosuppressive strategies. It is possible to share a common anastomotic stoma on the recipient abdominal aorta to reconstruct both the aorta graft entrance and heart graft inflow tract. This allows for the study of allogeneic effects on both the aorta and heart from the same animal in a single survival surgery.
Collapse
Affiliation(s)
- Hao Dun
- Laboratory of Lymphatic Metabolism + Epigenetics, Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Li Ye
- Laboratory of Lymphatic Metabolism + Epigenetics, Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Yuehui Zhu
- Laboratory of Lymphatic Metabolism + Epigenetics, Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Brian W. Wong
- Laboratory of Lymphatic Metabolism + Epigenetics, Department of Surgery, Washington University School of Medicine, St. Louis, MO, United States of America
- * E-mail:
| |
Collapse
|
29
|
Ramachandra CJA, Ja KPMM, Chua J, Cong S, Shim W, Hausenloy DJ. Myeloperoxidase As a Multifaceted Target for Cardiovascular Protection. Antioxid Redox Signal 2020; 32:1135-1149. [PMID: 31847538 DOI: 10.1089/ars.2019.7971] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Significance: Myeloperoxidase (MPO) is a heme peroxidase that is primarily expressed by neutrophils. It has the capacity to generate several reactive species, essential for its inherent antimicrobial activity and innate host defense. Dysregulated MPO release, however, can lead to tissue damage, as seen in several diseases. Increased MPO levels in circulation are therefore widely associated with conditions of increased oxidative stress and inflammation. Recent Advances: Several studies have shown a strong correlation between MPO and cardiovascular disease (CVD), through which elevated levels of circulating MPO are linked to poor prognosis with increased risk of CVD-related mortality. Accordingly, circulating MPO is considered a "high-risk" biomarker for patients with acute coronary syndrome, atherosclerosis, heart failure, hypertension, and stroke, thereby implicating MPO as a multifaceted target for cardiovascular protection. Consistently, recent studies that target MPO in animal models of CVD have demonstrated favorable outcomes with regard to disease progression. Critical Issues: Although most of these studies have established a critical link between circulating MPO and worsening cardiac outcomes, the mechanisms by which MPO exerts its detrimental effects in CVD remain unclear. Future Directions: Elucidating the mechanisms by which elevated MPO leads to poor prognosis and, conversely, investigating the beneficial effects of therapeutic MPO inhibition on alleviating disease phenotype will facilitate future MPO-targeted clinical trials for improving CVD-related outcomes.
Collapse
Affiliation(s)
- Chrishan J A Ramachandra
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore.,Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - K P Myu Mai Ja
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore
| | - Jasper Chua
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore.,Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Shuo Cong
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore.,Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Winston Shim
- Health and Social Sciences Cluster, Singapore Institute of Technology, Singapore, Singapore
| | - Derek J Hausenloy
- National Heart Centre Singapore, National Heart Research Institute Singapore, Singapore, Singapore.,Cardiovascular and Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore, Singapore.,Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore.,The Hatter Cardiovascular Institute, University College London, London, United Kingdom.,Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
| |
Collapse
|
30
|
Mallah SI, Atallah B, Moustafa F, Naguib M, El Hajj S, Bader F, Mehra MR. Evidence-based pharmacotherapy for prevention and management of cardiac allograft vasculopathy. Prog Cardiovasc Dis 2020; 63:194-209. [DOI: 10.1016/j.pcad.2020.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 03/17/2020] [Indexed: 01/08/2023]
|
31
|
The Adenosine A2A Receptor Agonist Accelerates Bone Healing and Adjusts Treg/Th17 Cell Balance through Interleukin 6. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2603873. [PMID: 32382539 PMCID: PMC7195650 DOI: 10.1155/2020/2603873] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 12/17/2022]
Abstract
The aim of this study was to explore the effect of adenosine A2A receptor agonists on fracture healing and the regulation of the immunity system after bone fracture. We implanted fibrin gel containing adenosine A2A receptor agonist CGS 21680/inhibitor ZM 241385/saline locally in rat tibial fracture models, finding that the adenosine A2A receptor agonist could promote fracture healing. At the same time, the adenosine A2A receptor agonist decreased the level of IL-6 in blood and the fracture area, increased Treg cells, and decreased Th17 cells in blood of bone fracture rats. Further, tibial fracture rats implanted with the adenosine A2A receptor agonist gel were injected with IL-6. We found that IL-6 could reverse the effect of adenosine A2A receptor agonists on fracture healing and Treg/Th17 cells in blood. Through the above results, we believe that the adenosine A2A receptor agonist can promote fracture healing and regulate Treg/Th17 cells in blood of rats with fractures. These effects are related to IL-6.
Collapse
|
32
|
Hammond MEH. Immune Cell Profiling and Risk Stratification: Cast a Wider Net. JACC Basic Transl Sci 2020; 5:341-343. [PMID: 32369041 PMCID: PMC7188867 DOI: 10.1016/j.jacbts.2020.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- M. Elizabeth H. Hammond
- U.T.A.H. Cardiac Transplant Program, Salt Lake City, Utah
- Division of Heart Failure and Cardiac Transplant, University of Utah School of Medicine, Salt Lake City, Utah
- Division of Heart Failure and Cardiac Transplant, Intermountain Healthcare, Salt Lake City, Utah
| |
Collapse
|
33
|
Miller L, Birks E, Guglin M, Lamba H, Frazier OH. Use of Ventricular Assist Devices and Heart Transplantation for Advanced Heart Failure. Circ Res 2020; 124:1658-1678. [PMID: 31120817 DOI: 10.1161/circresaha.119.313574] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There are only 2 treatments for the thousands of patients who progress to the most advanced form of heart failure despite the application of guideline-based medical therapy, use of ventricular assist devices and heart transplantation. There has been a great deal of progress in both of these therapies that have led to improved outcomes including significant improvement in survival and functional capacity. Heart transplantation offers the best short- and long-term survival for patients with end-stage heart failure, and the majority of these recipients achieve relatively limitless functional capacity for their age. However, the chronic shortage of available donors limits the number of recipients in the United States to an only 2500 patients/y or only a fraction of potential candidates. The significant improvement in outcomes now possible with durable ventricular assist devices has led to a significant increase in their use, which now exceeds the volume of heart transplants in the United States, with the greatest growth in use for those not considered to be candidates for heart transplantation, previously referred to as destination therapy. This article will review the substantial progress that has taken place for both of these life-saving treatment options, as well as the future directions.
Collapse
Affiliation(s)
- Leslie Miller
- From the Division of Cardiovascular Medicine, Texas Heart Institute, Houston (L.M., H.L., O.H.F.)
| | - Emma Birks
- Division of Cardiology, University of Louisville, KY (E.B.)
| | - Maya Guglin
- Division of Cardiology, University of Kentucky, Lexington (M.G.)
| | - Harveen Lamba
- From the Division of Cardiovascular Medicine, Texas Heart Institute, Houston (L.M., H.L., O.H.F.)
| | - O H Frazier
- From the Division of Cardiovascular Medicine, Texas Heart Institute, Houston (L.M., H.L., O.H.F.)
| |
Collapse
|
34
|
Rodríguez-Goncer I, Fernández-Ruiz M, Aguado JM. A critical review of the relationship between post-transplant atherosclerotic events and cytomegalovirus exposure in kidney transplant recipients. Expert Rev Anti Infect Ther 2019; 18:113-125. [PMID: 31852276 DOI: 10.1080/14787210.2020.1707079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Introduction: Cytomegalovirus (CMV) infection after kidney transplantation (KT) has been implicated in the so-called 'indirect effects' attributable to the viral ability to evade host's immunity and trigger sustained inflammation. Whether CMV exposure contributes to the development of post-transplant atherosclerotic events (AEs) remains controversial.Areas covered: This review (based on a PubMed/MEDLINE search from database inception to October 2019) summarizes the proposed mechanisms for the role of CMV in atherogenesis, including accelerated immunosenescence, endothelial injury and inflammatory milieu in the vessel wall. Sero-epidemiological evidence linking CMV exposure and cardiovascular disease in the general population is discussed. Finally, we performed a comprehensive review of observational studies investigating the impact of CMV infection on the occurrence of AE after KT, as well as the potential protective effect of antiviral prophylaxis.Expert opinion: Reviewed studies provide biological plausibility and preliminary clinical evidence pointing to the pathogenic role of CMV in post-transplant atherogenesis. However, no definitive recommendations can be made regarding the use of antiviral prophylaxis to prevent post-transplant AE, since existing evidence is mainly founded on inadequately powered post hoc analysis. Well-designed observational studies should clarify the differential impact of prophylactic or preemptive approaches on the occurrence of CMV-associated post-transplant AE among KT recipients.
Collapse
Affiliation(s)
- Isabel Rodríguez-Goncer
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Hospital "12 de Octubre", School of Medicine, Universidad Complutense, Madrid, Spain
| | - Mario Fernández-Ruiz
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Hospital "12 de Octubre", School of Medicine, Universidad Complutense, Madrid, Spain.,Spanish Network for Research in Infectious Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - José María Aguado
- Unit of Infectious Diseases, Hospital Universitario "12 de Octubre", Instituto de Investigación Hospital "12 de Octubre", School of Medicine, Universidad Complutense, Madrid, Spain.,Spanish Network for Research in Infectious Diseases, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
35
|
Ejzenberg D, Andraus W, Baratelli Carelli Mendes LR, Ducatti L, Song A, Tanigawa R, Rocha-Santos V, Macedo Arantes R, Soares JM, Serafini PC, Bertocco de Paiva Haddad L, Pulcinelli Francisco R, Carneiro D'Albuquerque LA, Chada Baracat E. Livebirth after uterus transplantation from a deceased donor in a recipient with uterine infertility. Lancet 2019; 392:2697-2704. [PMID: 30527853 DOI: 10.1016/s0140-6736(18)31766-5] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 01/23/2023]
Abstract
BACKGROUND Uterus transplantation from live donors became a reality to treat infertility following a successful Swedish 2014 series, inspiring uterus transplantation centres and programmes worldwide. However, no case of livebirth via deceased donor uterus has, to our knowledge, been successfully achieved, raising doubts about its feasibility and viability, including whether the womb remains viable after prolonged ischaemia. METHODS In September, 2016, a 32-year-old woman with congenital uterine absence (Mayer-Rokitansky-Küster-Hauser [MRKH] syndrome) underwent uterine transplantation in Hospital das Clínicas, University of São Paulo, Brazil, from a donor who died of subarachnoid haemorrhage. The donor was 45 years old and had three previous vaginal deliveries. The recipient had one in-vitro fertilisation cycle 4 months before transplant, which yielded eight cryopreserved blastocysts. FINDINGS The recipient showed satisfactory postoperative recovery and was discharged after 8 days' observation in hospital. Immunosuppression was induced with prednisolone and thymoglobulin and continued via tacrolimus and mycophenalate mofetil (MMF), until 5 months post-transplantation, at which time azathioprine replaced MMF. First menstruation occurred 37 days post-transplantation, and regularly (every 26-32 days) thereafter. Pregnancy occurred after the first single embryo transfer 7 months post-transplantation. No blood flow velocity waveform abnormalities were detected by Doppler ultrasound of uterine arteries, fetal umbilical, or middle cerebral arteries, nor any fetal growth impairments during pregnancy. No rejection episodes occurred after transplantation or during gestation. Caesarean delivery occurred on Dec 15, 2017, near gestational week 36. The female baby weighed 2550 g at birth, appropriate for gestational age, with Apgar scores of 9 at 1 min, 10 at 5 min, and 10 at 10 min, and along with the mother remains healthy and developing normally 7 months post partum. The uterus was removed in the same surgical procedure as the livebirth and immunosuppressive therapy was suspended. INTERPRETATION We describe, to our knowledge, the first case worldwide of livebirth following uterine transplantation from a deceased donor in a patient with MRKH syndrome. The results establish proof-of-concept for treating uterine infertility by transplantation from a deceased donor, opening a path to healthy pregnancy for all women with uterine factor infertility, without need of living donors or live donor surgery. FUNDING Fundação de Amparo à Pesquisa do Estado de São Paulo and Hospital das Clínicas, University of São Paulo, Brazil.
Collapse
Affiliation(s)
- Dani Ejzenberg
- Division of Gynaecology, Department of Obstetrics and Gynaecology, Hospital das Clínicas, University of São Paulo School of Medicine, São Paulo, Brazil.
| | - Wellington Andraus
- Digestive Organs Transplant Division, Gastroenterology Department, University of São Paulo School of Medicine FM-USP, São Paulo, Brazil
| | | | - Liliana Ducatti
- Digestive Organs Transplant Division, Gastroenterology Department, University of São Paulo School of Medicine FM-USP, São Paulo, Brazil
| | - Alice Song
- Digestive Organs Transplant Division, Gastroenterology Department, University of São Paulo School of Medicine FM-USP, São Paulo, Brazil
| | - Ryan Tanigawa
- Digestive Organs Transplant Division, Gastroenterology Department, University of São Paulo School of Medicine FM-USP, São Paulo, Brazil
| | - Vinicius Rocha-Santos
- Digestive Organs Transplant Division, Gastroenterology Department, University of São Paulo School of Medicine FM-USP, São Paulo, Brazil
| | - Rubens Macedo Arantes
- Digestive Organs Transplant Division, Gastroenterology Department, University of São Paulo School of Medicine FM-USP, São Paulo, Brazil
| | - José Maria Soares
- Division of Gynaecology, Department of Obstetrics and Gynaecology, Hospital das Clínicas, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Paulo Cesar Serafini
- Division of Gynaecology, Department of Obstetrics and Gynaecology, Hospital das Clínicas, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Luciana Bertocco de Paiva Haddad
- Division of Gynaecology, Department of Obstetrics and Gynaecology, Hospital das Clínicas, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Rossana Pulcinelli Francisco
- Division of Obstetrics, Department of Obstetrics and Gynaecology, Hospital das Clínicas, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Luiz Augusto Carneiro D'Albuquerque
- Division of Gynaecology, Department of Obstetrics and Gynaecology, Hospital das Clínicas, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Edmund Chada Baracat
- Division of Gynaecology, Department of Obstetrics and Gynaecology, Hospital das Clínicas, University of São Paulo School of Medicine, São Paulo, Brazil
| |
Collapse
|
36
|
Uehara M, Bahmani B, Jiang L, Jung S, Banouni N, Kasinath V, Solhjou Z, Jing Z, Ordikhani F, Bae M, Clardy J, Annabi N, McGrath MM, Abdi R. Nanodelivery of Mycophenolate Mofetil to the Organ Improves Transplant Vasculopathy. ACS NANO 2019; 13:12393-12407. [PMID: 31518498 PMCID: PMC7247279 DOI: 10.1021/acsnano.9b05115] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Inflammation occurring within the transplanted organ from the time of harvest is an important stimulus of early alloimmune reactivity and promotes chronic allograft rejection. Chronic immune-mediated injury remains the primary obstacle to the long-term success of organ transplantation. However, organ transplantation represents a rare clinical setting in which the organ is accessible ex vivo, providing an opportunity to use nanotechnology to deliver therapeutics directly to the graft. This approach facilitates the directed delivery of immunosuppressive agents (ISA) to target local pathogenic immune responses prior to the transplantation. Here, we have developed a system of direct delivery and sustained release of mycophenolate mofetil (MMF) to treat the donor organ prior to transplantation. Perfusion of a donor mouse heart with MMF-loaded PEG-PLGA nanoparticles (MMF-NPs) prior to transplantation abrogated cardiac transplant vasculopathy by suppressing intragraft pro-inflammatory cytokines and chemokines. Our findings demonstrate that ex vivo delivery of an ISA to donor organs using a nanocarrier can serve as a clinically feasible approach to reduce transplant immunity.
Collapse
Affiliation(s)
- Mayuko Uehara
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Baharak Bahmani
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Liwei Jiang
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Sungwook Jung
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Naima Banouni
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Vivek Kasinath
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhabiz Solhjou
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhao Jing
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Farideh Ordikhani
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Munhyung Bae
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Martina M. McGrath
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Address correspondence to: Reza Abdi, MD, Transplantation Research Center, Brigham and Women’s Hospital, 221 Longwood Ave, Boston MA 02115, USA, Tel: 617-732-5259, Fax: 617-732-5254, ; Martina M. McGrath, Transplantation Research Center, Brigham and Women’s Hospital, 221 Longwood Ave, Boston MA 02115, USA, Tel: 617-732-5259, Fax: 617-732-5254,
| | - Reza Abdi
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Address correspondence to: Reza Abdi, MD, Transplantation Research Center, Brigham and Women’s Hospital, 221 Longwood Ave, Boston MA 02115, USA, Tel: 617-732-5259, Fax: 617-732-5254, ; Martina M. McGrath, Transplantation Research Center, Brigham and Women’s Hospital, 221 Longwood Ave, Boston MA 02115, USA, Tel: 617-732-5259, Fax: 617-732-5254,
| |
Collapse
|
37
|
Xie CB, Qin L, Li G, Fang C, Kirkiles-Smith NC, Tellides G, Pober JS, Jane-Wit D. Complement Membrane Attack Complexes Assemble NLRP3 Inflammasomes Triggering IL-1 Activation of IFN-γ-Primed Human Endothelium. Circ Res 2019; 124:1747-1759. [PMID: 31170059 DOI: 10.1161/circresaha.119.314845] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
RATIONALE Complement activation contributes to multiple immune-mediated pathologies. In late allograft failure, donor-specific antibody deposits complement membrane attack complexes (MAC) on graft endothelial cells (ECs), substantially increasing their immunogenicity without causing lysis. Internalized MAC stabilize NIK (NF-κB [nuclear factor kappa-light-chain-enhancer of activated B cells]-inducing kinase) protein on Rab5+MAC+ endosomes, activating noncanonical NF-κB signaling. However, the link to increased immunogenicity is unclear. OBJECTIVE To identify mechanisms by which alloantibody and internalized MAC activate ECs to enhance their ability to increase T-cell responses. METHODS AND RESULTS In human EC cultures, internalized MAC also causes NLRP3 (NOD-like receptor family pyrin domain containing 3) translocation from endoplasmic reticulum to Rab5+MAC+NIK+ endosomes followed by endosomal NIK-dependent inflammasome assembly. Cytosolic NIK, stabilized by LIGHT (lymphotoxin-like inducible protein that competes with glycoprotein D for herpesvirus entry on T cells), does not trigger inflammasome assembly, and ATP-triggered inflammasome assembly does not require NIK. IFN-γ (interferon-γ) primes EC responsiveness to MAC by increasing NLRP3, pro-caspase 1, and gasdermin D expression. NIK-activated noncanonical NF-κB signaling induces pro-IL (interleukin)-1β expression. Inflammasome processed pro-IL-1β, and gasdermin D results in IL-1β secretion that increases EC immunogenicity through IL-1 receptor signaling. Activation of human ECs lining human coronary artery grafts in immunodeficient mouse hosts by alloantibody and complement similarly depends on assembly of an NLRP3 inflammasome. Finally, in renal allograft biopsies showing chronic rejection, caspase-1 is activated in C4d+ ECs of interstitial microvessels, supporting the relevance of the cell culture findings. CONCLUSIONS In response to antibody-mediated complement activation, IFN-γ-primed human ECs internalize MAC, triggering both endosomal-associated NIK-dependent NLRP3 inflammasome assembly and IL-1 synthesis, resulting in autocrine/paracrine IL-1β-mediated increases in EC immunogenicity. Similar responses may underlie other complement-mediated pathologies.
Collapse
Affiliation(s)
- Catherine B Xie
- From the Department of Immunobiology (C.B.X., N.C.K.-S., J.S.P.), Yale University School of Medicine, New Haven, CT
| | - Lingfeng Qin
- Department of Surgery (L.Q., G.L., G.T.), Yale University School of Medicine, New Haven, CT
| | - Guangxin Li
- Department of Surgery (L.Q., G.L., G.T.), Yale University School of Medicine, New Haven, CT
| | - Caodi Fang
- Division of Cardiovascular Medicine (C.F., D.J.-w), Yale University School of Medicine, New Haven, CT
| | - Nancy C Kirkiles-Smith
- From the Department of Immunobiology (C.B.X., N.C.K.-S., J.S.P.), Yale University School of Medicine, New Haven, CT
| | - George Tellides
- Department of Surgery (L.Q., G.L., G.T.), Yale University School of Medicine, New Haven, CT
| | - Jordan S Pober
- From the Department of Immunobiology (C.B.X., N.C.K.-S., J.S.P.), Yale University School of Medicine, New Haven, CT
| | - Dan Jane-Wit
- Division of Cardiovascular Medicine (C.F., D.J.-w), Yale University School of Medicine, New Haven, CT
| |
Collapse
|
38
|
Abstract
The global burden of chronic kidney disease will increase during the next century. As NFκB, first described more than 30 years ago, plays a major role in immune and non-immune-mediated diseases and in inflammatory and metabolic disorders, this review article summarizes current knowledge on the role of NFκB in in vivo kidney injury and describes the new and so far not completely understood crosstalk between canonical and non-canonical NFκB pathways in T-lymphocyte activation in renal disease.
Collapse
Affiliation(s)
- Ning Song
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Friedrich Thaiss
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Linlin Guo
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
39
|
Guevara-Noriega KA, Toiran AM, Alvarez-Concejo B, Pomar JL. Historical Overview of Vascular Allograft Transplantation. VASCULAR AND ENDOVASCULAR REVIEW 2019. [DOI: 10.15420/ver.2018.15.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
There is a mix of therapeutic options for revascularisation in vascular surgery. The authors performed a literature review on the evolution of vascular allograft transplantation and its use and acceptance by vascular surgeons. This review exposed three stages: the first stage involved preliminary experimentation; the second stage was a decline in use due to long-term complications, and the third stage is its current use in special indications subject to a thorough analysis. There are few indications for the use of vascular allografts in clinical guidelines. However, there are publications of long series of case studies with variable results reflecting international use of the procedure. There is a current trend that favours its use with limited and individualised indications.
Collapse
Affiliation(s)
- Kerbi Alejandro Guevara-Noriega
- Vascular Surgery Department, Clínica Teknon Barcelona, Barcelona, Spain; Vascular Surgery Department, Parc Tauli University Hospital, Sabadell, Barcelona, Spain
| | | | - Bruno Alvarez-Concejo
- Internal Medicine Residency Programme, University of Texas Southwestern Hospital, Dallas, Texas, US
| | - Jose Luis Pomar
- Cardiovascular Surgery Department. Hospital Clinic i Provincial de Barcelona, Barcelona, Spain
| |
Collapse
|
40
|
Pradier A, Papaserafeim M, Li N, Rietveld A, Kaestel C, Gruaz L, Vonarburg C, Spirig R, Puga Yung GL, Seebach JD. Small-Molecule Immunosuppressive Drugs and Therapeutic Immunoglobulins Differentially Inhibit NK Cell Effector Functions in vitro. Front Immunol 2019; 10:556. [PMID: 30972058 PMCID: PMC6445861 DOI: 10.3389/fimmu.2019.00556] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/01/2019] [Indexed: 12/14/2022] Open
Abstract
Small-molecule immunosuppressive drugs (ISD) prevent graft rejection mainly by inhibiting T lymphocytes. Therapeutic immunoglobulins (IVIg) are used for substitution, antibody-mediated rejection (AbMR) and HLA-sensitized recipients by targeting distinct cell types. Since the effect of ISD and IVIg on natural killer (NK) cells remains somewhat controversial in the current literature, the aim of this comparative study was to investigate healthy donor's human NK cell functions after exposure to ISD and IVIg, and to comprehensively review the current literature. NK cells were incubated overnight with IL2/IL12 and different doses and combinations of ISD and IVIg. Proliferation was evaluated by 3[H]-thymidine incorporation; phenotype, degranulation and interferon gamma (IFNγ) production by flow cytometry and ELISA; direct NK cytotoxicity by standard 51[Cr]-release and non-radioactive DELFIA assays using K562 as stimulator and target cells; porcine endothelial cells coated with human anti-pig antibodies were used as targets in antibody-dependent cellular cytotoxicity (ADCC) assays. We found that CD69, CD25, CD54, and NKG2D were downregulated by ISD. Proliferation was inhibited by methylprednisolone (MePRD), mycophenolic acid (MPA), and everolimus (EVE). MePRD and MPA reduced degranulation, MPA only of CD56bright NK cells. MePRD and IVIg inhibited direct cytotoxicity and ADCC. Combinations of ISD demonstrated cumulative inhibitory effects. IFNγ production was inhibited by MePRD and ISD combinations, but not by IVIg. In conclusion, IVIg, ISD and combinations thereof differentially inhibit NK cell functions. The most potent drug with an effect on all NK functions was MePRD. The fact that MePRD and IVIg significantly block NK cytotoxicity, especially ADCC, has major implications for AbMR as well as therapeutic strategies targeting cancer and immune cells with monoclonal antibodies.
Collapse
Affiliation(s)
- Amandine Pradier
- Division of Immunology and Allergy, University Hospitals and Medical Faculty, Geneva, Switzerland
| | - Maria Papaserafeim
- Division of Immunology and Allergy, University Hospitals and Medical Faculty, Geneva, Switzerland
| | - Ning Li
- Division of Immunology and Allergy, University Hospitals and Medical Faculty, Geneva, Switzerland
| | - Anke Rietveld
- Division of Immunology and Allergy, University Hospitals and Medical Faculty, Geneva, Switzerland
| | - Charlotte Kaestel
- Division of Immunology and Allergy, University Hospitals and Medical Faculty, Geneva, Switzerland
| | - Lyssia Gruaz
- Division of Immunology and Allergy, University Hospitals and Medical Faculty, Geneva, Switzerland
| | | | | | - Gisella L Puga Yung
- Division of Immunology and Allergy, University Hospitals and Medical Faculty, Geneva, Switzerland
| | - Jörg D Seebach
- Division of Immunology and Allergy, University Hospitals and Medical Faculty, Geneva, Switzerland
| |
Collapse
|
41
|
Leoce BM, Montoya M, Dardik H, Bernik TR. Rapid Degradation and Subsequent Endovascular Salvage of Upper Extremity Cryogenic Allograft Bypass. Ann Vasc Surg 2019; 57:276.e5-276.e8. [PMID: 30731231 DOI: 10.1016/j.avsg.2018.10.052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/08/2018] [Accepted: 10/26/2018] [Indexed: 10/27/2022]
Abstract
It has long been reported that cryogenic allografts have suboptimal mid- and long-term patencies and consequently are only used in the absence of autologous vein, predominantly in lower extremity limb salvage situations. As such, we felt that our recent experience with an upper extremity bypass for limb salvage using a cryogenic saphenous vein allograft, which aneurysmally degenerated after one month and required multiple endovascular rescues, serves to re-emphasize such concerns and the importance of continuous postoperative surveillance.
Collapse
Affiliation(s)
- Brian M Leoce
- Department of Vascular Surgery, Englewood Hospital and Medical Center, Englewood, NJ
| | - Melissa Montoya
- Department of Vascular Surgery, Englewood Hospital and Medical Center, Englewood, NJ
| | - Herbert Dardik
- Department of Vascular Surgery, Englewood Hospital and Medical Center, Englewood, NJ
| | - Thomas R Bernik
- Department of Vascular Surgery, Englewood Hospital and Medical Center, Englewood, NJ.
| |
Collapse
|
42
|
Kühl M, Binner C, Jozwiak J, Fischer J, Hahn J, Addas A, Dinov B, Garbade J, Hindricks G, Borger M. Treatment of hypercholesterolaemia with PCSK9 inhibitors in patients after cardiac transplantation. PLoS One 2019; 14:e0210373. [PMID: 30650126 PMCID: PMC6335020 DOI: 10.1371/journal.pone.0210373] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 12/20/2018] [Indexed: 01/16/2023] Open
Abstract
Background Hypercholesterolaemia is common in patients after cardiac transplantation. Monoclonal antibodies that inhibit proprotein convertase subtilisin-kexin type 9 (PCSK9) reduce low-density lipoprotein (LDL) cholesterol levels and subsequently the risk of cardiovascular events in patients with dyslipidaemia. There are no published data on the effect of this medication class on cholesterol levels in patients after cardiac transplantation. Methods In this retrospective study we investigated patients who were treated with PCSK9 inhibitors either because of intolerance of statins or residual hypercholesterolaemia with evidence of cardiac allograft vasculopathy. We compared the data of patients prior to the start with these medications with their most recent dataset. Results Ten patients (nine men; mean age 58±6 years) underwent cardiac transplantation 8.3±4.5 (range 3–15) years ago. The treatment duration of Evolocumab or Alirocumab was on average 296±125 days and lead to a reduction of total Cholesterol (281±52 mg/dl to 197±36 mg/dl; p = 0.002) and LDL Cholesterol (170±22 mg/dl to 101±39 mg/dl; p = 0.001). No significant effects on HDL Cholesterol, BNP, Creatin Kinase or hepatic enzymes were noticed. There were no unplanned hospitalisations, episodes of rejections, change of ejection fraction or opportunistic infections. Both patients on Alirocumab developed liver pathologies: One patient died of hepatocellular carcinoma and the other developed hepatitis E. Conclusions Our study demonstrates that the PCSK9 inhibitors Evolocumab and Alirocumab lead to a significant reduction of LDL Cholesterol in heart transplantation recipients. No effect on cardiac function or episodes of rejections were noticed. Larger and long-term studies are needed to establish safety and efficacy of PCSK9 inhibitors after cardiac transplantation.
Collapse
Affiliation(s)
- Michael Kühl
- Department of Cardiac Surgery, University of Leipzig–Leipzig Heart Center, Leipzig, Germany
- Department of Cardiology / Rhythmology, University of Leipzig–Leipzig Heart Center, Leipzig, Germany
- * E-mail:
| | - Christian Binner
- Department of Cardiac Surgery, University of Leipzig–Leipzig Heart Center, Leipzig, Germany
| | - Joanna Jozwiak
- Department of Cardiac Surgery, University of Leipzig–Leipzig Heart Center, Leipzig, Germany
| | - Julia Fischer
- Department of Cardiac Surgery, University of Leipzig–Leipzig Heart Center, Leipzig, Germany
| | - Jochen Hahn
- Department of Cardiac Surgery, University of Leipzig–Leipzig Heart Center, Leipzig, Germany
| | - Alaeldin Addas
- Department of Cardiac Surgery, University of Leipzig–Leipzig Heart Center, Leipzig, Germany
| | - Boris Dinov
- Department of Cardiology / Rhythmology, University of Leipzig–Leipzig Heart Center, Leipzig, Germany
| | - Jens Garbade
- Department of Cardiac Surgery, University of Leipzig–Leipzig Heart Center, Leipzig, Germany
| | - Gerhard Hindricks
- Department of Cardiology / Rhythmology, University of Leipzig–Leipzig Heart Center, Leipzig, Germany
| | - Michael Borger
- Department of Cardiac Surgery, University of Leipzig–Leipzig Heart Center, Leipzig, Germany
| |
Collapse
|
43
|
Kleive D, Berstad AE, Sahakyan MA, Verbeke CS, Naper C, Haugvik SP, Gladhaug IP, Line PD, Labori KJ. Portal vein reconstruction using primary anastomosis or venous interposition allograft in pancreatic surgery. J Vasc Surg Venous Lymphat Disord 2018; 6:66-74. [PMID: 29128301 DOI: 10.1016/j.jvsv.2017.09.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 09/07/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Superior mesenteric vein/portal vein (SMV/PV) resection and reconstruction during pancreatic surgery are increasingly common. Several reconstruction techniques exist. The aim of this study was to evaluate characteristics of patients and clinical outcomes for SMV/PV reconstruction using interposed cold-stored cadaveric venous allograft (AG+) or primary end-to-end anastomosis (AG-) after segmental vein resections during pancreatic surgery. METHODS All patients undergoing pancreatic surgery with SMV/PV resection and reconstruction from 2006 to 2015 were identified. Clinical and histopathologic outcomes as well as preoperative and postoperative radiologic findings were assessed. RESULTS A total of 171 patients were identified. The study included 42 and 71 patients reconstructed with AG+ and AG-, respectively. Patients in the AG+ group had longer mean operative time (506 minutes [standard deviation, 83 minutes] for AG+ vs 420 minutes [standard deviation, 91 minutes] for AG-; P < .01) and more intraoperative bleeding (median, 1000 mL [interquartile range (IQR), 650-2200 mL] for AG+ vs 600 mL [IQR, 300-1000 mL] for AG-; P < .01). Neoadjuvant therapy was administered more frequently for patients in the AG+ group (23.8% vs 8.5%; P = .02). Patients with AG+ had a longer length of tumor-vein involvement (median, 2.4 cm [IQR, 1.6-3.0 cm] for AG+ vs 1.8 cm [IQR, 1.2-2.4 cm] for AG-; P = .01), and a higher number of patients had a tumor-vein interface >180 degrees (35.7% for AG+ vs 21.1% for AG-; P = .02). There was no difference in number of patients with major complications (42.9% for AG+ vs 36.6% for AG-; P = .51) or early failure at the reconstruction site (9.5% for AG+ vs 8.5% for AG-; P = 1). A subgroup analysis of 10 patients in the AG+ group revealed the presence of donor-specific antibodies in all patients. CONCLUSIONS The short-term outcome of SMV/PV reconstruction with interposed cold-stored cadaveric venous allografts is comparable to that of reconstruction with primary end-to-end anastomosis. Graft rejection could be a contributing factor to severe stenosis in patients reconstructed with allograft.
Collapse
Affiliation(s)
- Dyre Kleive
- Department of Hepato-Pancreato-Biliary Surgery, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | | | - Mushegh A Sahakyan
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; The Intervention Centre, Oslo University Hospital, Oslo, Norway
| | - Caroline S Verbeke
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Christian Naper
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, Oslo, Norway
| | - Sven Petter Haugvik
- Department of Hepato-Pancreato-Biliary Surgery, Oslo University Hospital, Oslo, Norway; Department of Surgery, Drammen Hospital, Vestre Viken Hospital Trust, Drammen, Norway
| | - Ivar P Gladhaug
- Department of Hepato-Pancreato-Biliary Surgery, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Pål-Dag Line
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | - Knut Jørgen Labori
- Department of Hepato-Pancreato-Biliary Surgery, Oslo University Hospital, Oslo, Norway
| |
Collapse
|