1
|
Xia B, Abuduwaili MNR, He L, Zhao W, Zhu J, Su A. Effect of-new-parathyroid preservation solution on parathyroid autotransplantation. Curr Probl Surg 2025; 64:101718. [PMID: 40057325 DOI: 10.1016/j.cpsurg.2025.101718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 12/30/2024] [Accepted: 01/06/2025] [Indexed: 03/17/2025]
Affiliation(s)
- Baoying Xia
- Division of Thyroid & Parathyroid Surgery, Department of General Surgery, West China Hospital Sichuan University, Chengdu 610041, China; Department of General Surgery (Thyroid & Parathyroid Surgery), Jiangmen Central Hospital, Guangdong Jiangmen, China
| | - Mu Ni-Re Abuduwaili
- Division of Thyroid & Parathyroid Surgery, Department of General Surgery, West China Hospital Sichuan University, Chengdu 610041, China
| | - Linye He
- Division of Thyroid & Parathyroid Surgery, Department of General Surgery, West China Hospital Sichuan University, Chengdu 610041, China
| | - WanJun Zhao
- Division of Thyroid & Parathyroid Surgery, Department of General Surgery, West China Hospital Sichuan University, Chengdu 610041, China
| | - Jingqiang Zhu
- Division of Thyroid & Parathyroid Surgery, Department of General Surgery, West China Hospital Sichuan University, Chengdu 610041, China
| | - Anping Su
- Division of Thyroid & Parathyroid Surgery, Department of General Surgery, West China Hospital Sichuan University, Chengdu 610041, China.
| |
Collapse
|
2
|
Dergham A, Witherspoon L, Power L, Nashed JY, Skinner TAA. A Novel Cooling Device for Kidney Transplant Surgery. Surg Innov 2024; 31:400-406. [PMID: 38831684 PMCID: PMC11264556 DOI: 10.1177/15533506241260087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Background: Prolonged warm ischemia time (WIT) in kidney transplantation is associated with numerous adverse outcomes including delayed graft function and decreased patient and graft survival. Circumventing WIT lies in maintaining renal hypothermia and efficiently performing the vascular anastomosis during this portion of the procedure. Although numerous methods of intra-operative renal cooling have been proposed, most suffer from practical limitations, and none have been widely adopted. Herein we describe a novel device specifically designed to maintain renal hypothermia during kidney transplant surgery.Methods: Aluminum tubing was organized in a serpentine pattern to create a malleable, form-fitting cooling jacket to manipulate renal allografts during transplant surgery. Adult porcine kidneys were used to test the device with 4°C saline as coolant. Kidneys were placed at 24°C; surface and core temperatures were monitored using implanted thermocouples. Anastomosis of porcine kidney vessels to GORE-TEX® vascular grafts in an ex-vivo operative field was performed to assess the functionality of the device.Results: The device maintained surface and core graft temperatures of ≤5°C after 60 minutes of WIT. Furthermore, the device provided hands-free retraction and support for the allograft. We found that ex-vivo anastomosis testing was enhanced by the presence of the cooling jacket.Conclusions: This proof-of-concept study demonstrated that our novel device is a practical tool for renal transplantation and can maintain sufficiently cool graft temperatures to mitigate WIT in an ex-vivo setting. This device is the first of its kind and has the potential to improve kidney transplant outcomes by eliminating WIT during graft implantation.
Collapse
Affiliation(s)
- Ali Dergham
- Division of Urology, Department of Surgery, The Ottawa Hospital and University of Ottawa, Ottawa, ON, Canada
| | - Luke Witherspoon
- Division of Urology, Department of Surgery, The Ottawa Hospital and University of Ottawa, Ottawa, ON, Canada
| | - Liam Power
- Department of Urology, Dalhousie University, Halifax, NS, Canada
| | | | | |
Collapse
|
3
|
Li S, Fan L, Viktoria U, Oleksandr P, Li Z, Zhang W, Deng B. Effect of resuscitation of cryopreserved porcine adrenal glands at 26 °C on their recovery and functioning under xenotransplantation. Cryobiology 2024; 115:104895. [PMID: 38616031 DOI: 10.1016/j.cryobiol.2024.104895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/28/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
The study is devoted to the effect of lowered resuscitation temperature (26 °C) on cryopreserved porcine adrenal glands functional activity in vitro and in vivo under xenotransplantation. The adrenals were collected from newborn pigs, cryopreserved with 5 % DMSO at a rate of 1 °C/min, resuscitated at 26 or 37 °C for 48 h (5 % CO2, DMEM), embedded into small intestinal submucosa, and transplanted to bilaterally adrenalectomized rats. It has been shown that the glands resuscitated at 26 °C have suppressed free-radical processes and can produce cortisol and aldosterone in vitro, and may lead to elevated blood levels of these hormones. Moreover, the adrenal grafts maintain blood glucose levels and promote the formation of glycogen stores. Thus, the resuscitation at 26 °C can improve the quality of grafts and favor the introduction and application of the cryopreserved organs and tissues for transplantation in clinical and experimental practice.
Collapse
Affiliation(s)
- Shasha Li
- College of Basic Medical and Forensic Medicine, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang City, China.
| | - Lingling Fan
- College of Basic Medical and Forensic Medicine, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang City, China.
| | - Ustichenko Viktoria
- Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine.
| | - Pakhomov Oleksandr
- Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine.
| | - Zhongjie Li
- College of Basic Medical and Forensic Medicine, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang City, China.
| | - Wenlu Zhang
- College of Basic Medical and Forensic Medicine, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang City, China.
| | - Bo Deng
- College of Basic Medical and Forensic Medicine, Henan University of Science and Technology, 263 Kaiyuan Avenue, Luoyang City, China.
| |
Collapse
|
4
|
von Horn C, Lüer B, Malkus L, Minor T. Comparison Between Terminal or Preterminal Conditioning of Donor Livers by Ex Situ Machine Perfusion. Transplantation 2023; 107:1286-1290. [PMID: 36922379 PMCID: PMC10205117 DOI: 10.1097/tp.0000000000004568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/22/2022] [Accepted: 12/28/2022] [Indexed: 03/18/2023]
Abstract
BACKGROUND The successful implementation of end-ischemic normothermic machine perfusion (NMP) into clinical practice comes along with unusual demands for trained personnel and technical facilities in the implantation clinic. This creates an interest to bundle expertise and professional equipment for execution of MP at regional pump centers at the disadvantage of adding a second short period of cold preservation while sending the reconditioned grafts to the actual implant clinic. Differences of liver recovery upon reperfusion either immediately after NMP or after 3 h of cold storage subsequent to NMP should therefore be evaluated. METHODS Rat livers were cold stored for 18 h, subjected to 2 h of NMP, and then either directly evaluated by ex vivo reperfusion or exposed to a second cold storage period of 3 h to simulate transport from the hub center to the implant clinic. Livers stored for 18 h by cold storage only served as controls. RESULTS Both MP regimens significantly reduced hepatic enzyme release and improved bile production, clearance of lactate, and energetic recovery compared with the controls. However, no differences were seen between the 2 MP groups. CONCLUSIONS The study provides first evidence that machine perfusion at regional perfusion centers may be a safe and economical alternative to the widespread individual efforts in the respective implantation clinics.
Collapse
Affiliation(s)
| | - Bastian Lüer
- Surgical Research Department, University Hospital Essen, Essen, Germany
| | - Laura Malkus
- Surgical Research Department, University Hospital Essen, Essen, Germany
| | - Thomas Minor
- Surgical Research Department, University Hospital Essen, Essen, Germany
| |
Collapse
|
5
|
Lepoittevin M, Giraud S, Kerforne T, Barrou B, Badet L, Bucur P, Salamé E, Goumard C, Savier E, Branchereau J, Battistella P, Mercier O, Mussot S, Hauet T, Thuillier R. Preservation of Organs to Be Transplanted: An Essential Step in the Transplant Process. Int J Mol Sci 2022; 23:ijms23094989. [PMID: 35563381 PMCID: PMC9104613 DOI: 10.3390/ijms23094989] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 12/23/2022] Open
Abstract
Organ transplantation remains the treatment of last resort in case of failure of a vital organ (lung, liver, heart, intestine) or non-vital organ (essentially the kidney and pancreas) for which supplementary treatments exist. It remains the best alternative both in terms of quality-of-life and life expectancy for patients and of public health expenditure. Unfortunately, organ shortage remains a widespread issue, as on average only about 25% of patients waiting for an organ are transplanted each year. This situation has led to the consideration of recent donor populations (deceased by brain death with extended criteria or deceased after circulatory arrest). These organs are sensitive to the conditions of conservation during the ischemia phase, which have an impact on the graft’s short- and long-term fate. This evolution necessitates a more adapted management of organ donation and the optimization of preservation conditions. In this general review, the different aspects of preservation will be considered. Initially done by hypothermia with the help of specific solutions, preservation is evolving with oxygenated perfusion, in hypothermia or normothermia, aiming at maintaining tissue metabolism. Preservation time is also becoming a unique evaluation window to predict organ quality, allowing repair and/or optimization of recipient choice.
Collapse
Affiliation(s)
- Maryne Lepoittevin
- Biochemistry Department, CHU Poitiers, 86021 Poitiers, France; (M.L.); (S.G.); (R.T.)
- Faculty of Medicine and Pharmacy, University of Poitiers, 86073 Poitiers, France;
- INSERM U1313, IRMETIST, 86021 Poitiers, France; (B.B.); (L.B.)
| | - Sébastien Giraud
- Biochemistry Department, CHU Poitiers, 86021 Poitiers, France; (M.L.); (S.G.); (R.T.)
- Faculty of Medicine and Pharmacy, University of Poitiers, 86073 Poitiers, France;
- INSERM U1313, IRMETIST, 86021 Poitiers, France; (B.B.); (L.B.)
| | - Thomas Kerforne
- Faculty of Medicine and Pharmacy, University of Poitiers, 86073 Poitiers, France;
- INSERM U1313, IRMETIST, 86021 Poitiers, France; (B.B.); (L.B.)
- Cardio-Thoracic and Vascular Surgery Intensive Care Unit, Coordination of P.M.O., CHU Poitiers, 86021 Poitiers, France
| | - Benoit Barrou
- INSERM U1313, IRMETIST, 86021 Poitiers, France; (B.B.); (L.B.)
- Sorbonne Université Campus Pierre et Marie Curie, Faculté de Médecine, 75005 Paris, France
- Service Médico-Chirurgical de Transplantation Rénale, APHP, Hôpital Pitié-Salpêtrière, 75013 Paris, France
- Société Francophone de Transplantation et de l’Ecole Francophone pour le Prélèvement Multi-Organes, 75013 Paris, France; (P.B.); (E.S.); (C.G.); (E.S.); (J.B.); (P.B.); (O.M.); (S.M.)
| | - Lionel Badet
- INSERM U1313, IRMETIST, 86021 Poitiers, France; (B.B.); (L.B.)
- Société Francophone de Transplantation et de l’Ecole Francophone pour le Prélèvement Multi-Organes, 75013 Paris, France; (P.B.); (E.S.); (C.G.); (E.S.); (J.B.); (P.B.); (O.M.); (S.M.)
- Faculté de Médecine, Campus Lyon Santé Est, Université Claude Bernard, 69622 Lyon, France
- Service d’Urologie et Transplantation, Hospices Civils de Lyon, Hôpital Edouard-Herriot, 69003 Lyon, France
| | - Petru Bucur
- Société Francophone de Transplantation et de l’Ecole Francophone pour le Prélèvement Multi-Organes, 75013 Paris, France; (P.B.); (E.S.); (C.G.); (E.S.); (J.B.); (P.B.); (O.M.); (S.M.)
- Service de Chirurgie Digestive et Endocrinienne, Transplantation Hépatique, CHU de Tours, 37170 Chambray les Tours, France
- Groupement d’Imagerie Médicale, CHU de Tours, 37000 Tours, France
- University Hospital Federation SUPORT Tours Poitiers Limoges, 86021 Poitiers, France
| | - Ephrem Salamé
- Société Francophone de Transplantation et de l’Ecole Francophone pour le Prélèvement Multi-Organes, 75013 Paris, France; (P.B.); (E.S.); (C.G.); (E.S.); (J.B.); (P.B.); (O.M.); (S.M.)
- Service de Chirurgie Digestive et Endocrinienne, Transplantation Hépatique, CHU de Tours, 37170 Chambray les Tours, France
- Groupement d’Imagerie Médicale, CHU de Tours, 37000 Tours, France
- University Hospital Federation SUPORT Tours Poitiers Limoges, 86021 Poitiers, France
| | - Claire Goumard
- Société Francophone de Transplantation et de l’Ecole Francophone pour le Prélèvement Multi-Organes, 75013 Paris, France; (P.B.); (E.S.); (C.G.); (E.S.); (J.B.); (P.B.); (O.M.); (S.M.)
- Service de Chirurgie Digestive, Hépato-Bilio-Pancréatique et Transplantation Hépatique, APHP, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Eric Savier
- Société Francophone de Transplantation et de l’Ecole Francophone pour le Prélèvement Multi-Organes, 75013 Paris, France; (P.B.); (E.S.); (C.G.); (E.S.); (J.B.); (P.B.); (O.M.); (S.M.)
- Service de Chirurgie Digestive, Hépato-Bilio-Pancréatique et Transplantation Hépatique, APHP, Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Julien Branchereau
- Société Francophone de Transplantation et de l’Ecole Francophone pour le Prélèvement Multi-Organes, 75013 Paris, France; (P.B.); (E.S.); (C.G.); (E.S.); (J.B.); (P.B.); (O.M.); (S.M.)
- Service d’Urologie et de Transplantation, CHU de Nantes, 44000 Nantes, France
| | - Pascal Battistella
- Société Francophone de Transplantation et de l’Ecole Francophone pour le Prélèvement Multi-Organes, 75013 Paris, France; (P.B.); (E.S.); (C.G.); (E.S.); (J.B.); (P.B.); (O.M.); (S.M.)
- Service de Cardiologie et Maladies Vasculaires, CHU de Montpellier, CEDEX 5, 34295 Montpellier, France
| | - Olaf Mercier
- Société Francophone de Transplantation et de l’Ecole Francophone pour le Prélèvement Multi-Organes, 75013 Paris, France; (P.B.); (E.S.); (C.G.); (E.S.); (J.B.); (P.B.); (O.M.); (S.M.)
- Service de Chirurgie Thoracique et Cardio-Vasculaire, Centre Chirurgical Marie LANNELONGUE, 92350 Le Plessis Robinson, France
| | - Sacha Mussot
- Société Francophone de Transplantation et de l’Ecole Francophone pour le Prélèvement Multi-Organes, 75013 Paris, France; (P.B.); (E.S.); (C.G.); (E.S.); (J.B.); (P.B.); (O.M.); (S.M.)
- Service de Chirurgie Thoracique et Cardio-Vasculaire, Centre Chirurgical Marie LANNELONGUE, 92350 Le Plessis Robinson, France
| | - Thierry Hauet
- Biochemistry Department, CHU Poitiers, 86021 Poitiers, France; (M.L.); (S.G.); (R.T.)
- Faculty of Medicine and Pharmacy, University of Poitiers, 86073 Poitiers, France;
- INSERM U1313, IRMETIST, 86021 Poitiers, France; (B.B.); (L.B.)
- Société Francophone de Transplantation et de l’Ecole Francophone pour le Prélèvement Multi-Organes, 75013 Paris, France; (P.B.); (E.S.); (C.G.); (E.S.); (J.B.); (P.B.); (O.M.); (S.M.)
- University Hospital Federation SUPORT Tours Poitiers Limoges, 86021 Poitiers, France
- Correspondence:
| | - Raphael Thuillier
- Biochemistry Department, CHU Poitiers, 86021 Poitiers, France; (M.L.); (S.G.); (R.T.)
- Faculty of Medicine and Pharmacy, University of Poitiers, 86073 Poitiers, France;
- INSERM U1313, IRMETIST, 86021 Poitiers, France; (B.B.); (L.B.)
| |
Collapse
|
6
|
Tran DT, Sundararaj K, Atkinson C, Nadig SN. T-cell Immunometabolism: Therapeutic Implications in Organ Transplantation. Transplantation 2021; 105:e191-e201. [PMID: 33795597 PMCID: PMC8464628 DOI: 10.1097/tp.0000000000003767] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Although solid-organ transplantation has evolved steadily with many breakthroughs in the past 110 y, many problems remain to be addressed, and advanced therapeutic strategies need to be considered. T-cell immunometabolism is a rapidly advancing field that has gathered much attention recently, providing ample mechanistic insight from which many novel therapeutic approaches have been developed. Applications from the field include antitumor and antimicrobial therapies, as well as for reversing graft-versus-host disease and autoimmune diseases. However, the immunometabolism of T cells remains underexplored in solid-organ transplantation. In this review, we will highlight key findings from hallmark studies centered around various metabolic modes preferred by different T-cell subtypes (categorized into naive, effector, regulatory, and memory T cells), including glycolysis, glutaminolysis, oxidative phosphorylation, fatty acid synthesis, and oxidation. This review will discuss the underlying cellular signaling components that affect these processes, including the transcription factors myelocytomatosis oncogene, hypoxia-inducible factor 1-alpha, estrogen-related receptor alpha, and sterol regulatory element-binding proteins, along with the mechanistic target of rapamycin and adenosine monophosphate-activated protein kinase signaling. We will also explore potential therapeutic strategies targeting these pathways, as applied to the potential for tolerance induction in solid-organ transplantation.
Collapse
Affiliation(s)
- Danh T. Tran
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC
- Department of Surgery, Division of Transplant Surgery, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, Charleston, SC
| | - Kamala Sundararaj
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC
- Department of Surgery, Division of Transplant Surgery, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, Charleston, SC
- South Carolina Investigators in Transplantation, Department of Surgery, Medical University of South Carolina, Charleston, SC
| | - Carl Atkinson
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC
- Department of Surgery, Division of Transplant Surgery, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, Charleston, SC
- South Carolina Investigators in Transplantation, Department of Surgery, Medical University of South Carolina, Charleston, SC
| | - Satish N. Nadig
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC
- Department of Surgery, Division of Transplant Surgery, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, Charleston, SC
- South Carolina Investigators in Transplantation, Department of Surgery, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
7
|
von Horn C, Wilde B, Rauen U, Paul A, Minor T. Use of the new preservation solution Custodiol-MP for ex vivo reconditioning of kidney grafts. Artif Organs 2021; 45:1117-1123. [PMID: 33683761 DOI: 10.1111/aor.13951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/12/2020] [Accepted: 03/02/2021] [Indexed: 01/02/2023]
Abstract
Organ shortage and the increasing use of extended criteria donor grafts for transplantation drives efforts for more efficient organ preservation strategies from simple cold storage toward dynamic organ reconditioning. The choice of a suitable preservation solution is of high relevance in different organ preservation or reconditioning situations. Custodiol-MP is a new machine perfusion solution giving the opportunity to add colloids according to organ requirements. The present study aimed to compare new Custodiol-MP with clinically established Belzer MPS solution. Porcine kidneys were ischemically predamaged and cold stored for 20 hours. Ex vivo machine reconditioning was performed either with Custodiol-MP (n = 6) or with Belzer MPS solution (n = 6) for 90 minutes with controlled oxygenated rewarming up to 20°C. Kidney function was evaluated using an established ex vivo reperfusion model. In this experimental setting, differences between both types of perfusion solutions could not be observed. Machine perfusion with Custodiol-MP resulted in higher creatinine clearance (7.4 ± 8.6 mL/min vs. 2.8 ± 2.5 mL/min) and less TNC perfusate levels (0.22 ± 0.25 ng/mL vs. 0.09 ± 0.08 ng/mL), although differences did not reach significance. For short-term kidney perfusion Custodiol-MP is safe and applicable. Particularly, the unique feature of flexible colloid supplementation makes the solution attractive in specific experimental and clinical settings.
Collapse
Affiliation(s)
- Charlotte von Horn
- Department of Surgical Research, Clinic for General, Visceral and Transplantation Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Benjamin Wilde
- Department of Nephrology, University Hospital Essen, University of Duisburg-Essen, University Duisburg-Essen, Essen, Germany
| | - Ursula Rauen
- Institut für Physiologische Chemie, Universitätsklinikum Essen, University Duisburg-Essen, Essen, Germany
| | - Andreas Paul
- Clinic for General, Visceral and Transplantation Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Thomas Minor
- Department of Surgical Research, Clinic for General, Visceral and Transplantation Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
8
|
Abbas SH, Friend PJ. Principles and current status of abdominal organ preservation for transplantation. SURGERY IN PRACTICE AND SCIENCE 2020. [DOI: 10.1016/j.sipas.2020.100020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
9
|
Minor T, von Horn C, Gallinat A, Kaths M, Kribben A, Treckmann J, Paul A. First-in-man controlled rewarming and normothermic perfusion with cell-free solution of a kidney prior to transplantation. Am J Transplant 2020; 20:1192-1195. [PMID: 31599063 DOI: 10.1111/ajt.15647] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/08/2019] [Accepted: 09/25/2019] [Indexed: 01/25/2023]
Abstract
Cold preservation sensitizes organ grafts to exacerbation of tissue injury upon reperfusion. This reperfusion injury is not fully explained by the mere re-introduction of oxygen but rather is pertinent to the immediate rise in metabolic turnover associated with the abrupt restoration of normothermia. Here we report the first clinical case of gradual resumption of graft temperature upon ex vivo machine perfusion from hypothermia up to normothermic conditions using cell-free buffer as a perfusate. A kidney graft from an extended criteria donor was put on the machine after 12.5 hours of cold storage. During ex vivo perfusion, perfusion pressure and temperature were gradually elevated from 30 mm Hg and 8°C to 75 mm Hg and 35°C, respectively. Perfusate consisted of diluted Steen solution, oxygenated with 100% oxygen. Final flow rates at 35°C were 850 mL/min. The kidney was transplanted without complications and showed good immediate function. Serum creatinine fell from preoperative 720 µmol/L to 506 µmol/L during the first 24 hours after transplantation. Clearance after 1 week was 43.1 mL/min. Controlled oxygenated rewarming prior to transplantation can be performed up to normothermia without blood components or artificial oxygen carriers and may represent a promising tool to mitigate cold-induced reperfusion injury or to evaluate graft performance.
Collapse
Affiliation(s)
- Thomas Minor
- General, Visceral and Transplantation Surgery, University Hospital Essen, Essen, Germany
| | - Charlotte von Horn
- General, Visceral and Transplantation Surgery, University Hospital Essen, Essen, Germany
| | - Anja Gallinat
- General, Visceral and Transplantation Surgery, University Hospital Essen, Essen, Germany
| | - Moritz Kaths
- General, Visceral and Transplantation Surgery, University Hospital Essen, Essen, Germany
| | - Andreas Kribben
- Department of Nephrology, University Hospital Essen, Essen, Germany
| | - Jürgen Treckmann
- General, Visceral and Transplantation Surgery, University Hospital Essen, Essen, Germany
| | - Andreas Paul
- General, Visceral and Transplantation Surgery, University Hospital Essen, Essen, Germany
| |
Collapse
|
10
|
Horn C, Minor T. Transient hyperthermia during oxygenated rewarming of isolated rat livers. Transpl Int 2019; 33:272-278. [DOI: 10.1111/tri.13542] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/02/2019] [Accepted: 10/15/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Charlotte Horn
- Surgical Research Department General, Visceral and Transplantation Surgery University Hospital Essen Essen Germany
| | - Thomas Minor
- Surgical Research Department General, Visceral and Transplantation Surgery University Hospital Essen Essen Germany
| |
Collapse
|
11
|
Benjamens S, van den Berg TAJ, Kuipers TGJ, Moers C, Berger SP, Leuvenink HGD, Pol RA. Kidney temperature during living donor kidney transplantation is associated with short-term measured glomerular filtration rate - a prospective study. Transpl Int 2019; 33:174-180. [PMID: 31538677 PMCID: PMC7003892 DOI: 10.1111/tri.13528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/16/2019] [Accepted: 09/17/2019] [Indexed: 11/30/2022]
Abstract
The duration of warm ischaemia time is associated with short- and long-term kidney transplant function. A quick rise in graft temperature is reported during the vascular anastomosis. This study was initiated to gain insight into the effect of graft temperature on short-term transplant function. From 2013 to 2015, data of living donor kidney transplant recipients were prospectively collected. At set intraoperative time points, the graft temperature was measured using a noncontact infrared thermometer. Primary endpoint was measured glomerular filtration rate (mGFR) at 3- and 6-month post-transplantation. Univariable and multivariable associations were identified using linear regression analyses. Multivariable analysis included models with donor, recipient and procedure characteristics. We evaluated 152 patients, 83 (55%) were male, mean ±SD age was 50.3 ± 13.4 years, and 79 (52%) were pre-emptively transplanted. In univariable analysis graft temperature, after 10 min of warm ischaemia was significantly associated with 3- and 6-month mGFR, β -0.22 (95% CI -0.39 to -0.04, P = 0.01) and β-0.22 (95% CI: -0.44 to -0.01, P = 0.04). The association remained significant in multivariable models. An independent association between kidney graft temperature and 3- and 6-month mGFR was identified. This association opens up the opportunity to further investigate the clinical impact of kidney rewarming during transplantation.
Collapse
Affiliation(s)
- Stan Benjamens
- Department of Surgery, Division of Transplant Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Medical Imaging Center, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Tamar A J van den Berg
- Department of Surgery, Division of Transplant Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Thomas G J Kuipers
- Department of Surgery, Division of Transplant Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Cyril Moers
- Department of Surgery, Division of Transplant Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Stefan P Berger
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Henri G D Leuvenink
- Department of Surgery, Division of Transplant Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Robert A Pol
- Department of Surgery, Division of Transplant Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
12
|
Petrenko A, Carnevale M, Somov A, Osorio J, Rodríguez J, Guibert E, Fuller B, Froghi F. Organ Preservation into the 2020s: The Era of Dynamic Intervention. Transfus Med Hemother 2019; 46:151-172. [PMID: 31244584 PMCID: PMC6558325 DOI: 10.1159/000499610] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/04/2019] [Indexed: 12/12/2022] Open
Abstract
Organ preservation has been of major importance ever since transplantation developed into a global clinical activity. The relatively simple procedures were developed on a basic comprehension of low-temperature biology as related to organs outside the body. In the past decade, there has been a significant increase in knowledge of the sequelae of effects in preserved organs, and how dynamic intervention by perfusion can be used to mitigate injury and improve the quality of the donated organs. The present review focuses on (1) new information about the cell and molecular events impacting on ischemia/reperfusion injury during organ preservation, (2) strategies which use varied compositions and additives in organ preservation solutions to deal with these, (3) clear definitions of the developing protocols for dynamic organ perfusion preservation, (4) information on how the choice of perfusion solutions can impact on desired attributes of dynamic organ perfusion, and (5) summary and future horizons.
Collapse
Affiliation(s)
- Alexander Petrenko
- Department of Cryobiochemistry, Institute for Problems of Cryobiology and Cryomedicine, Ukraine Academy of Sciences, Kharkov, Ukraine
| | - Matias Carnevale
- Centro Binacional (Argentina-Italia) de Investigaciones en Criobiología Clínica y Aplicada (CAIC), Universidad Nacional de Rosario, Rosario, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Alexander Somov
- Department of Cryobiochemistry, Institute for Problems of Cryobiology and Cryomedicine, Ukraine Academy of Sciences, Kharkov, Ukraine
| | - Juliana Osorio
- Centro Binacional (Argentina-Italia) de Investigaciones en Criobiología Clínica y Aplicada (CAIC), Universidad Nacional de Rosario, Rosario, Argentina
| | - Joaquin Rodríguez
- Centro Binacional (Argentina-Italia) de Investigaciones en Criobiología Clínica y Aplicada (CAIC), Universidad Nacional de Rosario, Rosario, Argentina
| | - Edgardo Guibert
- Centro Binacional (Argentina-Italia) de Investigaciones en Criobiología Clínica y Aplicada (CAIC), Universidad Nacional de Rosario, Rosario, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Barry Fuller
- UCL Division of Surgery and Interventional Sciences, Royal Free Hospital, London, United Kingdom
| | - Farid Froghi
- UCL Division of Surgery and Interventional Sciences, Royal Free Hospital, London, United Kingdom
| |
Collapse
|
13
|
Extracorporeal Perfusion in Vascularized Composite Allotransplantation: Current Concepts and Future Prospects. Ann Plast Surg 2019; 80:669-678. [PMID: 29746324 DOI: 10.1097/sap.0000000000001477] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Severe injuries of the face and limbs remain a major challenge in today's reconstructive surgery. Vascularized composite allotransplantation (VCA) has emerged as a promising approach to restore these defects. Yet, there are major obstacles preventing VCA from broad clinical application. Two key restrictions are (1) the graft's limited possible ischemia time, keeping the potential donor radius extremely small, and (2) the graft's immunogenicity, making extensive lifelong monitoring and immunosuppressive treatment mandatory. Machine perfusion systems have demonstrated clinical success addressing these issues in solid organ transplantation by extending possible ischemia times and decreasing immunogenicity. Despite many recent promising preclinical trials, machine perfusion has not yet been utilized in clinical VCA. This review presents latest perfusion strategies in clinical solid organ transplantation and experimental VCA in light of the specific requirements by the vascularized composite allograft's unique tissue composition. It discusses optimal settings for temperature, oxygenation, and flow types, as well as perfusion solutions and the most promising additives. Moreover, it highlights the implications for the utility of VCA as therapeutic measure in plastic surgery, if machine perfusion can be successfully introduced in a clinical setting.
Collapse
|
14
|
Kaminski J, Delpech PO, Kaaki-Hosni S, Promeyrat X, Hauet T, Hannaert P. Oxygen Consumption by Warm Ischemia-Injured Porcine Kidneys in Hypothermic Static and Machine Preservation. J Surg Res 2019; 242:78-86. [PMID: 31071608 DOI: 10.1016/j.jss.2019.04.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 03/26/2019] [Accepted: 04/04/2019] [Indexed: 01/20/2023]
Abstract
Static cold storage (SCS) and hypothermic machine perfusion (HMP) are currently standard methods for renal grafts clinical preservation. Both methods are predominantly implemented without the active delivery of oxygen, even for donation after circulatory death-like kidneys. However, even under severe hypothermia (4°C-6°C), kidneys can consume oxygen and produce ATP. What is not established, though, is to what extent and how SCS and HMP compare in terms of oxygen. Using a porcine preclinical model of renal warm ischemia (WI) to compare SCS and HMP methods, we continuously monitored and quantified oxygen level and consumption along preservation; we also determined prepreservation and postpreservation cortical ATP level; values were given as median and [min; max] range. One-hour WI reduced ATP by ∼90% (from 3.3 [1.7; 4.5] mmol/L tissue in Controls). Oxygen consumption (QO2, μmol/min per 100 g) was determined from initial solution PO2 decrease (SCS and HMP) and from arterio-venous difference (HMP). In SCS and HMP, PO2 decreased rapidly (t1/2 ∼1 h) from atmospheric levels to 52.9 [38.0; 65.9] and 8.2 [3.0, 16.0] mmHg, respectively. In HMP, QO2 was 2.7 [0.4; 3.9] versus 0.5 [0.0; 1.3] in SCS (P < 0.05); postpreservation ATP amounted to 5.8 [3.2; 6.5] in HMP versus 0.1 [0.0; 0.2] in SCS. Despite hypothermic conditions in SCS or HMP, donation after circulatory death-like renal grafts require oxygen. Increased oxygen consumption, restored ATP level, and improved histological profile in HMP might explain the established HMP superiority over SCS. These results establish a rational basis for the use of oxygen in hypothermic preservation. Optimal levels required for preservation and graft-type variants remain to be determined.
Collapse
Affiliation(s)
| | - Pierre-Olivier Delpech
- INSERM U1082-IRTOMIT, CHU de Poitiers, Poitiers, France; Service d'Urologie, CHU de Poitiers, Poitiers, France
| | | | - Xavier Promeyrat
- Service d'Urologie et de Chirurgie de la Transplantation, Hôpital Édouard-Herriot, Université Claude-Bernard Lyon 1, Lyon, France
| | - Thierry Hauet
- INSERM U1082-IRTOMIT, CHU de Poitiers, Poitiers, France; Service de Biochimie, CHU de Poitiers, Poitiers, France
| | | |
Collapse
|
15
|
Real-time kidney graft perfusion monitoring using infrared imaging during pediatric kidney transplantation. J Pediatr Urol 2019; 15:222.e1-222.e7. [PMID: 31029559 DOI: 10.1016/j.jpurol.2019.03.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/16/2018] [Accepted: 03/20/2019] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Ischemia times in kidney transplantation have shown to be predictive for future graft function. Preservation solutions and anticoagulation protocols have improved the management of pediatric kidney transplantation. Nonetheless, there is no current tool for intra-operative graft monitoring. The aim of this project is to present a novel technique for intra-operative real-time assessment of graft perfusion using a non-invasive infrared camera. METHODS Prospectively, the authors included 10 pediatric patients. Surgical procedure followed their institutional protocol. Infrared imaging was captured at graft preparation, vascular anastomosis, unclamping, and at 30 s, 1, 5, and 10 min after unclamping. Analyzed variables included type of transplant, ischemia and procedure times, type of anastomosis, and results of doppler/ultrasound. Postoperative variables included creatinine levels during first 72 h. Any complications were also recorded. Delta analysis was calculated to establish the variation of temperature after unclamping. RESULTS Average age at transplant was 9.9 years. Five cases were living donor transplants. Mean overall ischemia time was 395.6 (SD 64.4 min). Two patients had poor graft perfusion after unclamping. Of those, one had torsion of the arterial anastomosis and the other was a graft from a donor that required cardiopulmonary resuscitation for 45 min. Thermal imaging showed a correlation of 0.318 between graft temperature change and creatinine decrease. Cut-off delta for temperature for good reperfusion was above 0.2 at 1 min CONCLUSION: Real-time infrared imaging shows to be a promising option for non-invasive graft perfusion monitoring. Initial results show good correlation between intra-operative temperature changes, graft perfusion, and postoperative graft function.
Collapse
|
16
|
Minor T, von Horn C. Rewarming Injury after Cold Preservation. Int J Mol Sci 2019; 20:ijms20092059. [PMID: 31027332 PMCID: PMC6539208 DOI: 10.3390/ijms20092059] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/05/2019] [Accepted: 04/24/2019] [Indexed: 01/14/2023] Open
Abstract
Organ dysfunction pertinent to tissue injury related to ischemic ex vivo preservation during transport from donor to recipient still represents a pivotal impediment in transplantation medicine. Cold storage under anoxic conditions minimizes metabolic activity, but eventually cannot prevent energetic depletion and impairment of cellular signal homeostasis. Reoxygenation of anoxically injured tissue may trigger additional damage to the graft, e.g., by abundant production of oxygen free radicals upon abrupt reactivation of a not yet equilibrated cellular metabolism. Paradoxically, this process is driven by the sudden restoration of normothermic conditions upon reperfusion and substantially less pronounced during re-oxygenation in the cold. The massive energy demand associated with normothermia is not met by the cellular systems that still suffer from hypothermic torpor and dys-equilibrated metabolites and eventually leads to mitochondrial damage, induction of apoptosis and inflammatory responses. This rewarming injury is partly alleviated by preceding supply of oxygen already in the cold but more effectively counteracted by an ensuing controlled and slow oxygenated warming up of the organ prior to implantation. A gentle restitution of metabolic turnover rates in line with the resumption of enzyme kinetics and molecular homeostasis improves post transplantation graft function and survival.
Collapse
Affiliation(s)
- Thomas Minor
- Department for Surgical Research, University Hospital Essen, Hufelandstr. 55, D-45147 Essen, Germany.
| | - Charlotte von Horn
- Department for Surgical Research, University Hospital Essen, Hufelandstr. 55, D-45147 Essen, Germany.
| |
Collapse
|
17
|
Minor T, von Horn C, Paul A. Role of erythrocytes in short-term rewarming kidney perfusion after cold storage. Artif Organs 2019; 43:584-592. [PMID: 30511774 DOI: 10.1111/aor.13403] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/27/2018] [Accepted: 11/29/2018] [Indexed: 12/23/2022]
Abstract
Short term normothermic reconditioning by machine perfusion after cold storage has shown beneficial effects in renal transplantation models. Systematic investigations concerning the inclusion of washed erythrocytes as oxygen carriers are lacking in this context. Porcine kidneys were subjected to 20 h of static cold storage. Prior to reperfusion, grafts were put on a machine for 2 h of oxygenated (95% O2 ; 5% CO2 ) rewarming perfusion. In one group (n = 6) washed erythrocytes were added to the perfusate after temperature has reached 20°C; the other group (n = 6) was run without additives. Control kidneys (n = 6) were immediately reperfused without treatment. Upon reperfusion in vitro, a more than twofold improvement of renal clearance of creatinine, urinary protein loss, fractional excretion of sodium, efficiency of oxygen utilization (TNa/VO2 ) and a significant reduction of innate immune activation (HMGB1, tenascin C, expression of TLR4) was seen after machine perfusion, compared with the controls. However, no advantage could be obtained by the addition of erythrocytes and inner cortical tissue pO2 always remained above normal values during cell-free machine perfusion. Our data strongly argue in favor of a rewarming perfusion of cold stored donor kidneys but do not substantiate an indication for adding oxygen carriers in this particular setting.
Collapse
Affiliation(s)
- Thomas Minor
- Department of Surgical Research, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Charlotte von Horn
- Department of Surgical Research, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Andreas Paul
- Clinic for General, Visceral and Transplantation Surgery, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
18
|
Barriers and Advances in Kidney Preservation. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9206257. [PMID: 30643824 PMCID: PMC6311271 DOI: 10.1155/2018/9206257] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 10/15/2018] [Accepted: 11/14/2018] [Indexed: 12/16/2022]
Abstract
Despite the fact that a significant fraction of kidney graft dysfunctions observed after transplantation is due to ischemia-reperfusion injuries, there is still no clear consensus regarding optimal kidney preservation strategy. This stems directly from the fact that as of yet, the mechanisms underlying ischemia-reperfusion injury are poorly defined, and the role of each preservation parameter is not clearly outlined. In the meantime, as donor demography changes, organ quality is decreasing which directly increases the rate of poor outcome. This situation has an impact on clinical guidelines and impedes their possible harmonization in the transplant community, which has to move towards changing organ preservation paradigms: new concepts must emerge and the definition of a new range of adapted preservation method is of paramount importance. This review presents existing barriers in transplantation (e.g., temperature adjustment and adequate protocol, interest for oxygen addition during preservation, and clear procedure for organ perfusion during machine preservation), discusses the development of novel strategies to overcome them, and exposes the importance of identifying reliable biomarkers to monitor graft quality and predict short and long-term outcomes. Finally, perspectives in therapeutic strategies will also be presented, such as those based on stem cells and their derivatives and innovative models on which they would need to be properly tested.
Collapse
|
19
|
Techniques to Ameliorate the Impact of Second Warm Ischemic Time on Kidney Transplantation Outcomes. Transplant Proc 2018; 50:3144-3151. [DOI: 10.1016/j.transproceed.2018.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/25/2018] [Accepted: 09/05/2018] [Indexed: 11/21/2022]
|
20
|
von Horn C, Hannaert P, Hauet T, Leuvenink H, Paul A, Minor T. Cold flush after dynamic liver preservation protects against ischemic changes upon reperfusion - an experimental study. Transpl Int 2018; 32:218-224. [PMID: 30251360 PMCID: PMC7380013 DOI: 10.1111/tri.13354] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 07/04/2018] [Accepted: 09/17/2018] [Indexed: 12/11/2022]
Abstract
Ex vivo machine perfusion of the liver after cold storage has found to be most effective if combined with controlled oxygenated rewarming up to (sub)‐normothermia. On disconnection of the warm graft from the machine, most surgeons usually perform a cold flush of the organ as protection against the second warm ischemia incurred upon implantation. Experimental evidence, however, is lacking and protective effect of deep hypothermia has been challenged for limited periods of liver ischemia in other models. A first systematic test was carried out on porcine livers, excised 30 min after cardiac arrest, subjected to 18 h of cold storage in UW and then machine perfused for 90 min with Aqix‐RSI solution. During machine perfusion, livers were gradually rewarmed up to 20 °C. One group (n = 6) was then reflushed with 4 °C cold Belzer UW solution whereas the second group (n = 6) remained without cold flush. All livers were exposed to 45 min warm ischemia at room temperature to simulate the surgical implantation period. Organ function was evaluated in an established reperfusion model using diluted autologous blood. Cold reflush after disconnection from the machine resulted in a significant increase in bile production upon blood reperfusion, along with a significant reduction in transaminases release alanine aminotransferase and of the intramitochondrial enzyme glutamate dehydrogenase. Interestingly, free radical‐mediated lipid peroxidation was also found significantly lower after cold reflush. No differences between the groups could be evidenced concerning histological injury and recovery of hepatic energy metabolism (tissue content of adenosine triphosphate). Post‐machine preservation cold reflush seems to be beneficial in this particular setting, even if the organs are warmed up only to 20 °C, without notion of adverse effects, and should therefore be implemented in the protocol.
Collapse
Affiliation(s)
- Charlotte von Horn
- Department for Surgical Research - General Visceral and Transplantation Surgery, University Hospital Essen, Essen, Germany
| | - Patrick Hannaert
- IRTOMIT, INSERM U1082, Université de Médecine et de Pharmacie de Poitiers, Poitiers, France
| | - Thierry Hauet
- IRTOMIT, INSERM U1082, Université de Médecine et de Pharmacie de Poitiers, Poitiers, France
| | - Henri Leuvenink
- Department of Surgery, University Medical Center Groningen, Groningen, The Netherlands
| | - Andreas Paul
- Department for Surgical Research - General Visceral and Transplantation Surgery, University Hospital Essen, Essen, Germany
| | - Thomas Minor
- Department for Surgical Research - General Visceral and Transplantation Surgery, University Hospital Essen, Essen, Germany
| | | |
Collapse
|
21
|
von Horn C, Minor T. Improved approach for normothermic machine perfusion of cold stored kidney grafts. Am J Transl Res 2018; 10:1921-1929. [PMID: 30018731 PMCID: PMC6038067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/23/2018] [Indexed: 06/08/2023]
Abstract
Normothermic machine perfusion can decrease reperfusion injury in renal transplantation. Clinical procurement logistics include retrieval and initial transport of the graft using static cold storage. Therefore, use and benefits of brief normothermic reconditioning by machine perfusion should be investigated in the initially cold preserved graft. Porcine kidneys (6 per group) were retrieved 20 min after cardiac standstill. After 20 h of static cold preservation some grafts were put on a machine perfusion circuit and normothermically perfused for 2 h at 35°C (NMP). Another group was subjected to controlled oxygenated rewarming (COR), starting perfusion at 8°C and elevating temperature and pressure slowly up to 35°C and 75 mmHg during the first 90 min of 2 h perfusion. Control kidneys were only cold stored (CS). Post implant graft function was evaluated afterwards in an established in vitro reperfusion model. During graft reconditioning, COR reduced oxygen free radical production and formation of 4-hydroxy-2-nonenal (HNE), an activator of mitochondrial uncoupling proteins, in comparison to NMP. Upon reperfusion, NMP only led to a slight improvement of renal function (clearance of creatinine, fractional excretion of Na and glucose) compared to controls. But 2-3 fold improvements of renal function were seen after COR, which also significantly improved aerobic efficiency (total Na absorption/VO2) upon reperfusion. A slow and controlled increase in temperature up to normothermia improves mitochondrial recovery and oxygen utilization efficiency, resulting in better functional recovery, possibly through a more mild and adapted increase of cellular metabolism.
Collapse
Affiliation(s)
- Charlotte von Horn
- Department of Surgical Research, Clinic for General, Visceral and Transplantation Surgery, University Hospital Essen, University Duisburg-Essen Germany
| | - Thomas Minor
- Department of Surgical Research, Clinic for General, Visceral and Transplantation Surgery, University Hospital Essen, University Duisburg-Essen Germany
| |
Collapse
|
22
|
Gallinat A, Lu J, von Horn C, Kaths M, Ingenwerth M, Paul A, Minor T. Transplantation of Cold Stored Porcine Kidneys After Controlled Oxygenated Rewarming. Artif Organs 2018; 42:647-654. [PMID: 29607529 DOI: 10.1111/aor.13096] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/17/2017] [Accepted: 11/16/2017] [Indexed: 12/16/2022]
Abstract
The concept of "controlled oxygenated rewarming" (COR) using ex vivo machine perfusion after cold storage was evaluated as tool to improve renal graft function after transplantation. Renal function after 20 min warm ischemia and 21 h cold storage was studied in an auto-transplant model in pigs (25-30 kg, n = 6 per group). In the study group, preimplant ex vivo machine perfusion for 90 min was added after cold storage, including gentle warming up of the graft to 20°C (COR). Kidneys that were only cold stored for 21 h served as controls. In vivo follow up was one week; the remaining native kidney was removed during transplantation. COR significantly improved cortical microcirculation upon early reperfusion and reduced free radical mediated injury and cellular apoptosis. Post-transplant kidney function (peak levels in serum) was also largely and significantly improved in comparison to the control group. A weak inverse correlation was found between renal flow during COR and later peak creatinine after transplantation (r2 = 0.5), better values were seen for oxygen consumption, measured during machine perfusion at 20°C (r2 = 0.81). Gentle graft rewarming prior to transplantation by COR improves post-transplant graft outcome and may also be a valuable adjunct in pretransplant graft assessment.
Collapse
Affiliation(s)
- Anja Gallinat
- Clinic of General, Visceral and Transplantation Surgery, University Hospital of Essen, Germany
| | - Jing Lu
- Department for Surgical Research, General, Visceral and Transplantation Surgery, University Hospital of Essen, Germany
| | - Charlotte von Horn
- Department for Surgical Research, General, Visceral and Transplantation Surgery, University Hospital of Essen, Germany
| | - Moritz Kaths
- Clinic of General, Visceral and Transplantation Surgery, University Hospital of Essen, Germany
| | - Marc Ingenwerth
- Department for Pathology, University Hospital of Essen, Germany
| | - Andreas Paul
- Clinic of General, Visceral and Transplantation Surgery, University Hospital of Essen, Germany
| | - Thomas Minor
- Department for Surgical Research, General, Visceral and Transplantation Surgery, University Hospital of Essen, Germany
| |
Collapse
|