1
|
Purnomo AF, Nurkolis F, Syahputra RA, Moon S, Lee D, Taslim NA, Park MN, Daryanto B, Seputra KP, Satyagraha P, Lutfiana NC, Wisnu Tirtayasa PM, Kim B. Elucidating the nexus between onco-immunology and kidney transplantation: An insight from precision medicine perspective. Heliyon 2024; 10:e33751. [PMID: 39040404 PMCID: PMC11261886 DOI: 10.1016/j.heliyon.2024.e33751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024] Open
Abstract
The interplay of onco-immunology and kidney transplantation heralds a transformative era in medical science. This integration, while promising, presents significant challenges. Chief among these is the dichotomy of immunosuppression-boosting immunity against malignancies while suppressing it for graft survival. Additionally, limited clinical data on novel therapies, genetic variations influencing responses, economic concerns, and the narrow therapeutic window for post-transplant malignancies necessitate strategic addressal. Conversely, opportunities abound, including personalized immune monitoring, targeted therapies, minimized immunosuppression, and improved patient quality of life. Emphasizing collaborative research and interdisciplinary cooperation, the merging of these fields offers the potential for enhanced graft survival and reduced post-transplant malignancy risks. As we harness modern technology and promote patient-centric care, the vision for the future of kidney transplantation becomes increasingly hopeful, paving the way for more personalized and effective treatments. The article aims to elucidate the critical challenge of balancing immunosuppression to simultaneously combat malignancies and ensure graft survival. It addresses the scarcity of clinical data on novel therapies, the impact of genetic variations on treatment responses, and the economic and therapeutic concerns in managing post-transplant malignancies. Furthermore, it explores the opportunities precision medicine offers, such as personalized immune monitoring, targeted therapies, and reduced immunosuppression, which could significantly improve patient outcomes. Highlighting the importance of collaborative research and interdisciplinary efforts, the article seeks to demonstrate the potential for enhanced graft survival and reduced post-transplant malignancy risks. By leveraging modern technology and prioritizing patient-centric care, it envisions a future where kidney transplantation is more personalized and effective, offering hope for advancements in this field.
Collapse
Affiliation(s)
- Athaya Febriantyo Purnomo
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, United Kingdom
- Department of Urology, Faculty of Medicine Universitas Brawijaya–Saiful Anwar General Hospital, Malang, 65142, Indonesia
| | - Fahrul Nurkolis
- Department of Biological Sciences, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Yogyakarta, 55281, Indonesia
| | - Rony Abdi Syahputra
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Seungjoon Moon
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul, 02447, Republic of Korea
- Chansol Hospital of Korean Medicine, 290, Buheung-ro, Bupyeong-gu, Incheon, South Korea, 21390, Republic of Korea
| | - Dain Lee
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul, 02447, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Nurpudji Astuti Taslim
- Division of Clinical Nutrition, Department of Nutrition, Faculty of Medicine, Hasanuddin University, Makassar, 90245, Indonesia
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul, 02447, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Besut Daryanto
- Department of Urology, Faculty of Medicine Universitas Brawijaya–Saiful Anwar General Hospital, Malang, 65142, Indonesia
| | - Kurnia Penta Seputra
- Department of Urology, Faculty of Medicine Universitas Brawijaya–Saiful Anwar General Hospital, Malang, 65142, Indonesia
| | - Paksi Satyagraha
- Department of Urology, Faculty of Medicine Universitas Brawijaya–Saiful Anwar General Hospital, Malang, 65142, Indonesia
| | - Nurul Cholifah Lutfiana
- Department of Biochemistry and Biomedicine, Faculty of Medicine, Universitas Muhammadiyah Surabaya, Surabaya, Indonesia
| | - Pande Made Wisnu Tirtayasa
- Department of Urology, Faculty of Medicine, Universitas Udayana, Universitas Udayana Teaching Hospital, Bali, 80361, Indonesia
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul, 02447, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| |
Collapse
|
2
|
Role of the Immune System in Renal Transplantation, Types of Response, Technical Approaches and Current Challenges. IMMUNO 2022. [DOI: 10.3390/immuno2040035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Advances over the last decades have made renal transplantation an important therapy for patients with end-stage renal disease, as the incidences of acute rejection and short-term transplant loss have been significantly reduced. However, long-term transplant survival remains a challenge in the renal transplantation community. The main causes of long-term graft loss are acute and chronic rejection, as well as the complications related to immunosuppression therapy. In spite of the breakthroughs achieved in recent years, histology is the gold standard technique to confirm the activation of the immune system against the graft with all the ensuing problems that taking biopsies brings to immunosuppressed patients. For this reason, several assays have been developed to try to monitor the immune function, but they show serious constraints owing to the fact that they require substantial laboratory work, they are not clinically available and they provide controversial results, so the combination of multiple assays is often needed to obtain a reliable diagnosis. Thus, the aim of this review is to perform a retrospective study of the immune system in renal transplantation, with special emphasis on the cutting-edge technological developments for monitoring, classification and early detection of rejection episodes in order to contribute to a better adjustment of immunosuppressive therapies and, hence, to a more personalized medicine that improves the quality of life of patients.
Collapse
|
3
|
Phillpott M, Daga S, Higgins R, Lowe D, Krishnan N, Zehnder D, Briggs D, Khovanova N. Dynamic Behaviour of Donor Specific Antibodies in the Early Period Following HLA Incompatible Kidney Transplantation. Transpl Int 2022; 35:10128. [PMID: 35516975 PMCID: PMC9062976 DOI: 10.3389/ti.2022.10128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/03/2022] [Indexed: 11/24/2022]
Abstract
In HLA-incompatible kidney transplantation, monitoring donor-specific antibodies (DSA) plays a crucial role in providing appropriate treatment and increases kidney survival times. This work aimed to determine if early post-transplant DSA dynamics inform graft outcome over and above other predictive factors. Eighty-eight cases were classified by unsupervised machine learning into five distinct DSA response groups: no response, fast modulation, slow modulation, rise to sustained and sustained. Fast modulation dynamics gave an 80% rate for early acute rejection, whereas the sustained group was associated with the lowest rejection rates (19%). In complete contrast, the five-year graft failure was lowest in the modulation groups (4–7%) and highest in the sustained groups (25–31%). Multivariable analysis showed that a higher pre-treatment DSA level, male gender and absence of early acute rejection were strongly associated with a sustained DSA response. The modulation group had excellent five-year outcomes despite higher rates of early rejection episodes. This work further develops an understanding of post-transplant DSA dynamics and their influence on graft survival following HLA-incompatible kidney transplantation.
Collapse
Affiliation(s)
- Mason Phillpott
- School of Engineering, University of Warwick, Coventry, United Kingdom
| | - Sunil Daga
- St James's University Hospital, LTHT NHS Trust, Leeds, United Kingdom.,Warwick Medical School, University of Warwick, Coventry, United Kingdom.,NIHR Leeds In-Vitro Diagnostics Co-operative, Leeds, United Kingdom
| | - Rob Higgins
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - David Lowe
- Histocompatibility and Immunogenetics, NHS Blood and Transplant, Birmingham, United Kingdom
| | - Nithya Krishnan
- University Hospitals Coventry & Warwickshire NHS Trust, Coventry, United Kingdom
| | - Daniel Zehnder
- Warwick Medical School, University of Warwick, Coventry, United Kingdom.,North Cumbria Integrated Care NHS Trust, Carlisle, Cumbria, United Kingdom
| | - David Briggs
- Histocompatibility and Immunogenetics, NHS Blood and Transplant, Birmingham, United Kingdom.,Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Natalia Khovanova
- School of Engineering, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
4
|
Risk Factors of Rejection in Renal Transplant Recipients: A Narrative Review. J Clin Med 2022; 11:jcm11051392. [PMID: 35268482 PMCID: PMC8911293 DOI: 10.3390/jcm11051392] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/25/2022] [Accepted: 02/28/2022] [Indexed: 12/14/2022] Open
Abstract
Multiple factors influence graft rejection after kidney transplantation. Pre-operative factors affecting graft function and survival include donor and recipient characteristics such as age, gender, race, and immunologic compatibility. In addition, several peri- and post-operative parameters affect graft function and rejection, such as cold and warm ischemia times, and post-operative immunosuppressive treatment. Exposure to non-self-human leucocyte antigens (HLAs) prior to transplantation up-regulates the recipient’s immune system. A higher rate of acute rejection is observed in transplant recipients with a history of pregnancies or significant exposure to blood products because these patients have higher panel reactive antibody (PRA) levels. Identifying these risk factors will help physicians to reduce the risk of allograft rejection, thereby promoting graft survival. In the current review, we summarize the existing literature on donor- and recipient-related risk factors of graft rejection and graft loss following kidney transplantation.
Collapse
|
5
|
Cristoferi I, Giacon TA, Boer K, van Baardwijk M, Neri F, Campisi M, Kimenai HJAN, Clahsen-van Groningen MC, Pavanello S, Furian L, Minnee RC. The applications of DNA methylation as a biomarker in kidney transplantation: a systematic review. Clin Epigenetics 2022; 14:20. [PMID: 35130936 PMCID: PMC8822833 DOI: 10.1186/s13148-022-01241-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/27/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Although kidney transplantation improves patient survival and quality of life, long-term results are hampered by both immune- and non-immune-mediated complications. Current biomarkers of post-transplant complications, such as allograft rejection, chronic renal allograft dysfunction, and cutaneous squamous cell carcinoma, have a suboptimal predictive value. DNA methylation is an epigenetic modification that directly affects gene expression and plays an important role in processes such as ischemia/reperfusion injury, fibrosis, and alloreactive immune response. Novel techniques can quickly assess the DNA methylation status of multiple loci in different cell types, allowing a deep and interesting study of cells' activity and function. Therefore, DNA methylation has the potential to become an important biomarker for prediction and monitoring in kidney transplantation. PURPOSE OF THE STUDY The aim of this study was to evaluate the role of DNA methylation as a potential biomarker of graft survival and complications development in kidney transplantation. MATERIAL AND METHODS: A systematic review of several databases has been conducted. The Newcastle-Ottawa scale and the Jadad scale have been used to assess the risk of bias for observational and randomized studies, respectively. RESULTS Twenty articles reporting on DNA methylation as a biomarker for kidney transplantation were included, all using DNA methylation for prediction and monitoring. DNA methylation pattern alterations in cells isolated from different tissues, such as kidney biopsies, urine, and blood, have been associated with ischemia-reperfusion injury and chronic renal allograft dysfunction. These alterations occurred in different and specific loci. DNA methylation status has also proved to be important for immune response modulation, having a crucial role in regulatory T cell definition and activity. Research also focused on a better understanding of the role of this epigenetic modification assessment for regulatory T cells isolation and expansion for future tolerance induction-oriented therapies. CONCLUSIONS Studies included in this review are heterogeneous in study design, biological samples, and outcome. More coordinated investigations are needed to affirm DNA methylation as a clinically relevant biomarker important for prevention, monitoring, and intervention.
Collapse
Affiliation(s)
- Iacopo Cristoferi
- Division of HPB and Transplant Surgery, Department of Surgery, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015GD, Rotterdam, the Netherlands.
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015GD, Rotterdam, the Netherlands.
- Erasmus MC Transplant Institute, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015GD, Rotterdam, the Netherlands.
| | - Tommaso Antonio Giacon
- Kidney and Pancreas Transplantation Unit, Department of Surgical, Oncological and Gastroenterological Sciences, Padua University Hospital, Via Giustiniani 2, 35128, Padua, Italy
- Occupational Medicine, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padua University, Via Giustiniani 2, 35128, Padua, Italy
- Environmental and Respiratory Physiology Laboratory, Department of Biomedical Sciences, Padua University, Via Marzolo 3, 35131, Padua, Italy
- Institute of Anaesthesia and Intensive Care, Department of Medicine - DIMED, Padua University Hospital, Via Cesare Battisti 267, 35128, Padua, Italy
| | - Karin Boer
- Erasmus MC Transplant Institute, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015GD, Rotterdam, the Netherlands
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015GD, Rotterdam, The Netherlands
| | - Myrthe van Baardwijk
- Division of HPB and Transplant Surgery, Department of Surgery, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015GD, Rotterdam, the Netherlands
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015GD, Rotterdam, the Netherlands
- Erasmus MC Transplant Institute, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015GD, Rotterdam, the Netherlands
| | - Flavia Neri
- Kidney and Pancreas Transplantation Unit, Department of Surgical, Oncological and Gastroenterological Sciences, Padua University Hospital, Via Giustiniani 2, 35128, Padua, Italy
| | - Manuela Campisi
- Occupational Medicine, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padua University, Via Giustiniani 2, 35128, Padua, Italy
| | - Hendrikus J A N Kimenai
- Division of HPB and Transplant Surgery, Department of Surgery, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015GD, Rotterdam, the Netherlands
- Erasmus MC Transplant Institute, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015GD, Rotterdam, the Netherlands
| | - Marian C Clahsen-van Groningen
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015GD, Rotterdam, the Netherlands
- Erasmus MC Transplant Institute, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015GD, Rotterdam, the Netherlands
- Institute of Experimental Medicine and Systems Biology, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Sofia Pavanello
- Occupational Medicine, Department of Cardiac, Thoracic, Vascular Sciences and Public Health, Padua University, Via Giustiniani 2, 35128, Padua, Italy
| | - Lucrezia Furian
- Kidney and Pancreas Transplantation Unit, Department of Surgical, Oncological and Gastroenterological Sciences, Padua University Hospital, Via Giustiniani 2, 35128, Padua, Italy
| | - Robert C Minnee
- Division of HPB and Transplant Surgery, Department of Surgery, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015GD, Rotterdam, the Netherlands
- Erasmus MC Transplant Institute, Erasmus MC, University Medical Center Rotterdam, Doctor Molewaterplein 40, 3015GD, Rotterdam, the Netherlands
| |
Collapse
|
6
|
Wu J, Zhang F, Zhang J, Sun Z, Wang W. Advances of miRNAs in kidney graft injury. Transplant Rev (Orlando) 2020; 35:100591. [PMID: 33309915 DOI: 10.1016/j.trre.2020.100591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/14/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022]
Abstract
Kidney transplantation is the preferred treatment for patients with end-stage renal disease. However, various types of kidney graft injury after transplantation are still key factors that affect the survival of the kidney graft. Therefore, exploring the underlying mechanisms involved is very important. Current diagnostic measures for kidney graft injury (including needle biopsy, blood creatinine, eGFR, etc.) have many limiting factors such as invasiveness, insufficient sensitivity and specificity, so they cannot provide timely and effective information to clinicians. As for kidney grafts that have occurred injury, the traditional treatment has a little efficacy and many side effects. Therefore, there is an urgent need for developing new biomarkers and targeted treatment for kidney graft injury. Recently, studies have found that miRNAs are involved in the regulation of the progression of kidney graft injury. At the same time, it has high stability in blood, urine, and other body fluids, so it is suggested to have the potential as a biomarker and therapeutic target for kidney graft injury. Here, we reviewed the miRNAs involved in the pathophysiology of kidney graft injury such as ischemia/reperfusion injury, acute rejection, drug-induced nephrotoxicity, chronic allograft dysfunction, BK virus infection, and the latest advances of miRNAs as biomarkers and therapeutic targets of kidney graft injury, then summarized the specific data of miRNAs expression level in kidney graft injury, which aims to provide a reference for subsequent basic research and clinical transformation.
Collapse
Affiliation(s)
- Jiyue Wu
- Institute of Urology, Beijing Chaoyang Hospital, Capital Medical Unversity, China
| | - Feilong Zhang
- Institute of Urology, Beijing Chaoyang Hospital, Capital Medical Unversity, China
| | - Jiandong Zhang
- Institute of Urology, Beijing Chaoyang Hospital, Capital Medical Unversity, China
| | - Zejia Sun
- Institute of Urology, Beijing Chaoyang Hospital, Capital Medical Unversity, China
| | - Wei Wang
- Institute of Urology, Beijing Chaoyang Hospital, Capital Medical Unversity, China.
| |
Collapse
|
7
|
The TreaT-Assay: A Novel Urine-Derived Donor Kidney Cell-Based Assay for Prediction of Kidney Transplantation Outcome. Sci Rep 2019; 9:19037. [PMID: 31836826 PMCID: PMC6911059 DOI: 10.1038/s41598-019-55442-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/19/2019] [Indexed: 02/07/2023] Open
Abstract
Donor-reactive immunity plays a major role in rejection after kidney transplantation, but analysis of donor-reactive T-cells is not applied routinely. However, it has been shown that this could help to identify patients at risk of acute rejection. A major obstacle is the limited quantity or quality of the required allogenic stimulator cells, including a limited availability of donor-splenocytes or an insufficient HLA-matching with HLA-bank cells. To overcome these limitations, we developed a novel assay, termed the TreaT (Transplant reactive T-cells)-assay. We cultivated renal tubular epithelial cells from the urine of kidney transplant patients and used them as stimulators for donor-reactive T-cells, which we analyzed by flow cytometry. We could demonstrate that using the TreaT-assay the quantification and characterization of alloreactive T-cells is superior to other stimulators. In a pilot study, the number of pre-transplant alloreactive T-cells negatively correlated with the post-transplant eGFR. Frequencies of pre-transplant CD161+ alloreactive CD4+ T-cells and granzyme B producing alloreactive CD8+ T-cells were substantially higher in patients with early acute rejection compared to patients without complications. In conclusion, we established a novel assay for the assessment of donor-reactive memory T-cells based on kidney cells with the potential to predict early acute rejection and post-transplant eGFR.
Collapse
|
8
|
Yucesan E, Goncu B, Ozdemir B, Idiz O, Ersoy YE, Aysan E. Importance of HLA typing, PRA and DSA tests for successful parathyroid allotransplantation. Immunobiology 2019; 224:485-489. [PMID: 31204065 DOI: 10.1016/j.imbio.2019.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/18/2019] [Accepted: 05/28/2019] [Indexed: 02/06/2023]
Abstract
Parathyroid allotransplantation is increasingly practiced for patients who have permanent hypoparathyroidsm. Parathyroid allotransplantation success is varied, and no defined criteria about immunologic monitoring for pre-/post-transplantation follow-up. This study sought to evaluate the possible role of immunological tests. Four unrelated recipients and one living donor who have chronic kidney disease were evaluated for HLA-typing, PRA, CXM tests to conduct parathyroid allotransplantation. Parathyroid glands were obtained and resected from the donor, then cells were isolated and cryopreserved. Upon histologic examination, cells were cultivated and injected into muscle of four recipients. Recipient's were followed for parathormone and calcium levels for four years. PRA screening were monitored and de novo DSA was evaluated as well. In two of the recipients, allografts continued to be functional more than four years. In one recipient, allograft remained functional for two years and another recipient lost function after one year. Two out four were negative for de novo DSA and three out of four of the recipients remained negative for PRA. Neither HLA-matching nor de novo DSA positivity and PRA screenings seems significant for successfull parathyroid allotransplantation. This study has considerable potential for immunological monitoring of parathyroid allotransplantation.
Collapse
Affiliation(s)
- Emrah Yucesan
- Bezmialem Vakif University, Institute of Life Sciences and Biotechnology, Istanbul, Turkey.
| | - Beyza Goncu
- Bezmialem Vakif University, Experimental Research Center, Istanbul, Turkey
| | - Burcu Ozdemir
- Bezmialem Vakif University, Experimental Research Center, Istanbul, Turkey
| | - Oguz Idiz
- Istanbul Teaching and Research Hospital, General Surgery Clinic, Istanbul, Turkey
| | - Yeliz Emine Ersoy
- Bezmialem Vakif University, Faculty of Medicine, Department of General Surgery, Istanbul, Turkey
| | - Erhan Aysan
- Bezmialem Vakif University, Faculty of Medicine, Department of General Surgery, Istanbul, Turkey
| |
Collapse
|
9
|
Zahran A, Attia A, Mansell H, Shoker A. Contribution of diminished kidney transplant GFR to increased circulating chemokine ligand 27 level. JOURNAL OF INFLAMMATION-LONDON 2018; 15:18. [PMID: 30214382 PMCID: PMC6131940 DOI: 10.1186/s12950-018-0194-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 09/03/2018] [Indexed: 12/20/2022]
Abstract
Background Inflammatory chemokine ligands (CCLs) play an important role in cardiovascular disease and allograft injury. CCLs may independently associate with diminished estimated glomerular filtration rate (eGFR) in stable renal transplant recipients (RTR). Methods Plasma levels of 19 CCLs (1, 2, 3, 4, 5, 8, 11, 13, 15, 17, 21, 24, 26, 27, CXCL5, 8, 10, 12 and 13) were measured in a cohort of 101 RTR. The cohort was divided according to CKD-EPI equation into three groups; group 1: eGFR ≥ 60 ml/min, group 2: eGFR 30–59.9 ml/min and group 3 eGFR ≤ 29.9 ml/min. ANOVA, Krusklwallis, Mann- Whitney Spearman correlation and regression analysis tests were used to determine association between reduced eGFR and inflammatory CCLs plasma levels measured by multiplex techniques. 20 healthy subjects with eGFR above 90 ml/min were included as control. Significance was sat at < 0.05. Results Levels of CCLs 1, 4, 15, 27, CXCL8 and CXCL10 were significantly different among the four studied groups. Multivariate regression analysis (MVA) between eGFR and all CCLs demonstrated that CCL27 was the only ligand to remain significantly associated with diminished eGFR {P = 0.021 and r = − 0.35,(P = 0.001)}. In a second MVA between CCL 27 and patient’s demographics and laboratory variables, diminished eGFR, and elevated PTH, out of the twenty one available variables remained significantly associated with elevated CCL27levels. Conclusion Diminished eGFR in stable RTR is associated with elevated plasma levels of CCL27. This association may explain, at least in part, the independent contribution of reduced eGFR to enhanced inflammation in RTR.
Collapse
Affiliation(s)
- Ahmed Zahran
- 1Nephrology Unit, Department of Medicine, Faculty of Medicine, University of Menoufia, Shibin El Kom, Egypt
| | - Ahmed Attia
- 2National Liver Institute, University of Menoufia, Shibin El Kom, Egypt
| | - Holly Mansell
- 3College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK Canada
| | - Ahmed Shoker
- 4Department of Medicine, University of Saskatchewan, Saskatoon, SK Canada.,5Saskatchewan Transplant Program, St Paul's Hospital, 1702- 20th Street West, Saskatoon, SK S7M 0Z9 Canada
| |
Collapse
|
10
|
Gandolfini I, Crespo E, Baweja M, Jarque M, Donadei C, Luque S, Montero N, Allesina A, Perin L, Maggiore U, Cravedi P, Bestard O. Impact of preformed T-cell alloreactivity by means of donor-specific and panel of reactive T cells (PRT) ELISPOT in kidney transplantation. PLoS One 2018; 13:e0200696. [PMID: 30059561 PMCID: PMC6066206 DOI: 10.1371/journal.pone.0200696] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 07/02/2018] [Indexed: 01/09/2023] Open
Abstract
Donor-specific (d-sp) interferon gamma enzyme-linked immunosorbent spot (d-sp ELISPOT) and Panel of reactive T-cell (PRT) ELISPOT assays have been developed to detect alloreactive memory T (Tmem) cells in order to estimate the risk of acute rejection after kidney transplantation. Adding IL15 to the PRT assay (PRT+IL15) may uncover the presence of pathogenic alloreactive CD28-Tmem. Face-to-face comparisons of these assays have not been done yet. We performed pre-transplant d-sp ELISPOT and PRT assays (±IL15, against six B-cell lines) in 168 consecutive kidney transplant recipients and evaluated the multivariable-adjusted associations with biopsy-proven acute rejection (BPAR), de novo donor-specific antibodies (DSA), and eGFR decline over a 48-month follow-up period. D-sp ELISPOT was positive in 81 (48%) subjects, while 71 (42%) and 81 (48%) subjects displayed positive PRT and PRT+IL15, respectively. Their median [interquartile range] numerical test result was 23 [6–65], 18 [8–37], and 26 [10–45] spots/3x105 PBMCs, respectively. The number of PRT spots were weakly correlated with those of d-sp ELISPOT, but highly correlated with PRT+IL15 (rho = 0.96, P<0.001). d-sp ELISPOT, but not PRT (±IL15) was independently associated with BPAR (adjusted Odds Ratio of BPAR associated with d-sp ELISPOT positivity: 4.20 [95%CI: 1.06 to 21.73; P = 0.041]). Unlike d-sp ELISPOT, median PRT and PRT+IL15 were independently associated with higher Δ3-48month eGFR decline post-transplantation (for both assays, about -3mL/min/1.73m2 per one standard deviation unit increase in the spot number). Pre-transplant T-cell immune-monitoring using d-sp ELISPOT and PRT assays identifies kidney transplant candidates at high risk of BPAR and worse kidney allograft progression.
Collapse
Affiliation(s)
- Ilaria Gandolfini
- Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- Kidney and Kidney-Pancreas Transplant Unit (Department of Nephrology), Parma University Hospital, Parma, Italy
| | - Elena Crespo
- Experimental Nephrology Laboratory, IDIBELL, Barcelona University, Barcelona, Spain
| | - Mukta Baweja
- Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Marta Jarque
- Experimental Nephrology Laboratory, IDIBELL, Barcelona University, Barcelona, Spain
| | - Chiara Donadei
- Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Sergio Luque
- Experimental Nephrology Laboratory, IDIBELL, Barcelona University, Barcelona, Spain
| | - Núria Montero
- Kidney Transplant Unit, Bellvitge University Hospital, IDIBELL, Barcelona University, Barcelona, Spain
| | - Anna Allesina
- Experimental Nephrology Laboratory, IDIBELL, Barcelona University, Barcelona, Spain
| | - Laura Perin
- GOFARR Laboratory, Saban Research Institute, Division of Urology, Children's Hospital Los Angeles, Los Angeles, California, United States of America
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Umberto Maggiore
- Kidney and Kidney-Pancreas Transplant Unit (Department of Nephrology), Parma University Hospital, Parma, Italy
| | - Paolo Cravedi
- Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Oriol Bestard
- Experimental Nephrology Laboratory, IDIBELL, Barcelona University, Barcelona, Spain
- Kidney Transplant Unit, Bellvitge University Hospital, IDIBELL, Barcelona University, Barcelona, Spain
- * E-mail:
| |
Collapse
|
11
|
Torque Teno Virus Load-Inverse Association With Antibody-Mediated Rejection After Kidney Transplantation. Transplantation 2017; 101:360-367. [PMID: 27525643 DOI: 10.1097/tp.0000000000001455] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Antibody-mediated rejection (AMR) represents one of the cardinal causes of late allograft loss after kidney transplantation, and there is great need for noninvasive tools improving early diagnosis of this rejection type. One promising strategy might be the quantification of peripheral blood DNA levels of the highly prevalent and apathogenic Torque Teno virus (TTV), which might mirror the overall level of immunosuppression and thus help determine the risk of alloimmune response. METHODS To assess the association between TTV load in the peripheral blood and AMR, 715 kidney transplant recipients (median, 6.3 years posttransplantation) were subjected to a systematical cross-sectional AMR screening and, in parallel, TTV quantification. RESULTS Eighty-six of these recipients had donor-specific antibodies and underwent protocol biopsy, AMR-positive patients (n = 46) showed only 25% of the TTV levels measured in patients without AMR (P = 0.003). In a generalized linear model, higher TTV levels were associated with a decreased risk for AMR after adjustment for potential confounders (risk ratio 0.94 per TTV log level; 95% confidence interval 0.90-0.99; P = 0.02). CONCLUSIONS Future studies will have to clarify whether longitudinal assessment of TTV load might predict AMR risk and help guide the type and intensity of immunosuppression to prevent antibody-mediated graft injury.
Collapse
|
12
|
Juvet SC, Moshkelgosha S, Sanderson S, Hester J, Wood KJ, Bushell A. Measurement of T Cell Alloreactivity Using Imaging Flow Cytometry. J Vis Exp 2017. [PMID: 28448002 PMCID: PMC5408926 DOI: 10.3791/55283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The measurement of immunological reactivity to donor antigens in transplant recipients is likely to be crucial for the successful reduction or withdrawal of immunosuppression. The mixed leukocyte reaction (MLR), limiting dilution assays, and trans-vivo delayed-type hypersensitivity (DTH) assay have all been applied to this question, but these methods have limited predictive ability and/or significant practical limitations that reduce their usefulness.Imaging flow cytometry is a technique that combines the multiparametric quantitative powers of flow cytometry with the imaging capabilities of fluorescent microscopy. We recently made use of an imaging flow cytometry approach to define the proportion of recipient T cells capable of forming mature immune synapses with donor antigen-presenting cells (APCs). Using a well-characterized mouse heart transplant model, we have shown that the frequency of in vitro immune synapses among T-APC membrane contact events strongly predicted allograft outcome in rejection, tolerance, and a situation where transplant survival depends on induced regulatory T cells.The frequency of T-APC contacts increased with T cells from mice during acute rejection and decreased with T cells from mice rendered unresponsive to alloantigen. The addition of regulatory T cells to the in vitro system reduced prolonged T-APC contacts. Critically, this effect was also seen with human polyclonally expanded, naturally occurring regulatory T cells, which are known to control the rejection of human tissues in humanized mouse models. Further development of this approach may allow for a deeper characterization of the alloreactive T-cell compartment in transplant recipients. In the future, further development and evaluation of this method using human cells may form the basis for assays used to select patients for immunosuppression minimization, and it can be used to measure the impact of tolerogenic therapies in the clinic.
Collapse
Affiliation(s)
- Stephen C Juvet
- Division of Respirology, Departments of Medicine and Immunology, Toronto Lung Transplant Program, Multiorgan Transplant Program, Toronto General Research Institute, University of Toronto and University Health Network;
| | - Sajad Moshkelgosha
- Latner Thoracic Surgery Laboratories, Toronto General Research Institute, University Health Network
| | - Sharon Sanderson
- National Institutes of Health Research, Oxford Biomedical Research Centre, Translational Immunology Laboratory, NDORMS, Kennedy Institute of Rheumatology, University of Oxford
| | - Joanna Hester
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford
| | - Kathryn J Wood
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford
| | - Andrew Bushell
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford
| |
Collapse
|
13
|
Menon MC, Murphy B, Heeger PS. Moving Biomarkers toward Clinical Implementation in Kidney Transplantation. J Am Soc Nephrol 2017; 28:735-747. [PMID: 28062570 DOI: 10.1681/asn.2016080858] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Long-term kidney transplant outcomes remain suboptimal, delineating an unmet medical need. Although current immunosuppressive therapy in kidney transplant recipients is effective, dosing is conventionally adjusted empirically on the basis of time after transplant or altered in response to detection of kidney dysfunction, histologic evidence of allograft damage, or infection. Such strategies tend to detect allograft rejection after significant injury has already occurred, fail to detect chronic subclinical inflammation that can negatively affect graft survival, and ignore specific risks and immune mechanisms that differentially contribute to allograft damage among transplant recipients. Assays and biomarkers that reliably quantify and/or predict the risk of allograft injury have the potential to overcome these deficits and thereby, aid clinicians in optimizing immunosuppressive regimens. Herein, we review the data on candidate biomarkers that we contend have the highest potential to become clinically useful surrogates in kidney transplant recipients, including functional T cell assays, urinary gene and protein assays, peripheral blood cell gene expression profiles, and allograft gene expression profiles. We identify barriers to clinical biomarker adoption in the transplant field and suggest strategies for moving biomarker-based individualization of transplant care from a research hypothesis to clinical implementation.
Collapse
Affiliation(s)
- Madhav C Menon
- Renal Division, Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Barbara Murphy
- Renal Division, Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Peter S Heeger
- Renal Division, Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
14
|
Barcelona Consensus on Biomarker-Based Immunosuppressive Drugs Management in Solid Organ Transplantation. Ther Drug Monit 2016; 38 Suppl 1:S1-20. [PMID: 26977997 DOI: 10.1097/ftd.0000000000000287] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
With current treatment regimens, a relatively high proportion of transplant recipients experience underimmunosuppression or overimmunosuppression. Recently, several promising biomarkers have been identified for determining patient alloreactivity, which help in assessing the risk of rejection and personal response to the drug; others correlate with graft dysfunction and clinical outcome, offering a realistic opportunity for personalized immunosuppression. This consensus document aims to help tailor immunosuppression to the needs of the individual patient. It examines current knowledge on biomarkers associated with patient risk stratification and immunosuppression requirements that have been generally accepted as promising. It is based on a comprehensive review of the literature and the expert opinion of the Biomarker Working Group of the International Association of Therapeutic Drug Monitoring and Clinical Toxicology. The quality of evidence was systematically weighted, and the strength of recommendations was rated according to the GRADE system. Three types of biomarkers are discussed: (1) those associated with the risk of rejection (alloreactivity/tolerance), (2) those reflecting individual response to immunosuppressants, and (3) those associated with graft dysfunction. Analytical aspects of biomarker measurement and novel pharmacokinetic-pharmacodynamic models accessible to the transplant community are also addressed. Conventional pharmacokinetic biomarkers may be used in combination with those discussed in this article to achieve better outcomes and improve long-term graft survival. Our group of experts has made recommendations for the most appropriate analysis of a proposed panel of preliminary biomarkers, most of which are currently under clinical evaluation in ongoing multicentre clinical trials. A section of Next Steps was also included, in which the Expert Committee is committed to sharing this knowledge with the Transplant Community in the form of triennial updates.
Collapse
|
15
|
Analytical Aspects of the Implementation of Biomarkers in Clinical Transplantation. Ther Drug Monit 2016; 38 Suppl 1:S80-92. [PMID: 26418704 DOI: 10.1097/ftd.0000000000000230] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In response to the urgent need for new reliable biomarkers to complement the guidance of the immunosuppressive therapy, a huge number of biomarker candidates to be implemented in clinical practice have been introduced to the transplant community. This includes a diverse range of molecules with very different molecular weights, chemical and physical properties, ex vivo stabilities, in vivo kinetic behaviors, and levels of similarity to other molecules, etc. In addition, a large body of different analytical techniques and assay protocols can be used to measure biomarkers. Sometimes, a complex software-based data evaluation is a prerequisite for appropriate interpretation of the results and for their reporting. Although some analytical procedures are of great value for research purposes, they may be too complex for implementation in a clinical setting. Whereas the proof of "fitness for purpose" is appropriate for validation of biomarker assays used in exploratory drug development studies, a higher level of analytical validation must be achieved and eventually advanced analytical performance might be necessary before diagnostic application in transplantation medicine. A high level of consistency of results between laboratories and between methods (if applicable) should be obtained and maintained to make biomarkers effective instruments in support of therapeutic decisions. This overview focuses on preanalytical and analytical aspects to be considered for the implementation of new biomarkers for adjusting immunosuppression in a clinical setting and highlights critical points to be addressed on the way to make them suitable as diagnostic tools. These include but are not limited to appropriate method validation, standardization, education, automation, and commercialization.
Collapse
|
16
|
Matsuda Y, Sarwal MM. Unraveling the Role of Allo-Antibodies and Transplant Injury. Front Immunol 2016; 7:432. [PMID: 27818660 PMCID: PMC5073555 DOI: 10.3389/fimmu.2016.00432] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 10/03/2016] [Indexed: 12/25/2022] Open
Abstract
Alloimmunity driving rejection in the context of solid organ transplantation can be grossly divided into mechanisms predominantly driven by either T cell-mediated rejection (TCMR) and antibody-mediated rejection (ABMR), though the co-existence of both types of rejections can be seen in a variable number of sampled grafts. Acute TCMR can generally be well controlled by the establishment of effective immunosuppression (1, 2). Acute ABMR is a low frequency finding in the current era of blood group and HLA donor/recipient matching and the avoidance of engraftment in the context of high-titer, preformed donor-specific antibodies. However, chronic ABMR remains a major complication resulting in the untimely loss of transplanted organs (3-10). The close relationship between donor-specific antibodies and ABMR has been revealed by the highly sensitive detection of human leukocyte antigen (HLA) antibodies (7, 11-15). Injury to transplanted organs by activation of humoral immune reaction in the context of HLA identical transplants and the absence of donor specific antibodies (17-24), strongly suggest the participation of non-HLA (nHLA) antibodies in ABMR (25). In this review, we discuss the genesis of ABMR in the context of HLA and nHLA antibodies and summarize strategies for ABMR management.
Collapse
Affiliation(s)
- Yoshiko Matsuda
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Minnie M. Sarwal
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
17
|
Juvet SC, Sanderson S, Hester J, Wood KJ, Bushell A. Quantification of CD4(+) T Cell Alloreactivity and Its Control by Regulatory T Cells Using Time-Lapse Microscopy and Immune Synapse Detection. Am J Transplant 2016; 16:1394-407. [PMID: 26603026 PMCID: PMC4855688 DOI: 10.1111/ajt.13607] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Revised: 10/07/2015] [Accepted: 11/03/2015] [Indexed: 01/25/2023]
Abstract
Assays designed to select transplant recipients for immunosuppression withdrawal have met with limited success, perhaps because they measure events downstream of T cell-alloantigen interactions. Using in vitro time-lapse microscopy in a mouse transplant model, we investigated whether transplant outcome would result in changes in the proportion of CD4(+) T cells forming prolonged interactions with donor dendritic cells. By blocking CD4-MHC class II and CD28-B7 interactions, we defined immunologically relevant interactions as those ≥500 s. Using this threshold, T cell-dendritic cell (T-DC) interactions were examined in rejection, tolerance and T cell control mediated by regulatory T cells. The frequency of T-DC contacts ≥500 s increased with T cells from mice during acute rejection and decreased with T cells from mice rendered unresponsive to alloantigen. Regulatory T cells reduced prolonged T-DC contacts. Importantly, this effect was replicated with human polyclonally expanded naturally occurring regulatory T cells, which we have previously shown can control rejection of human tissues in humanized mouse models. Finally, in a proof-of-concept translational context, we were able to visualize differential allogeneic immune synapse formation in polyclonal CD4(+) T cells using high-throughput imaging flow cytometry.
Collapse
Affiliation(s)
- S. C. Juvet
- Transplantation Research Immunology GroupNuffield Department of Surgical SciencesJohn Radcliffe HospitalUniversity of OxfordOxfordUK,Toronto Lung Transplant Program and Division of RespirologyDepartment of MedicineUniversity Health Network and University of TorontoTorontoOntarioCanada,Present address: Toronto General HospitalTorontoOntarioCanada
| | - S. Sanderson
- NIHR BRC Translational Immunology LaboratoryNuffield Department of MedicineJohn Radcliffe HospitalUniversity of OxfordOxfordUK
| | - J. Hester
- Transplantation Research Immunology GroupNuffield Department of Surgical SciencesJohn Radcliffe HospitalUniversity of OxfordOxfordUK
| | - K. J. Wood
- Transplantation Research Immunology GroupNuffield Department of Surgical SciencesJohn Radcliffe HospitalUniversity of OxfordOxfordUK
| | - A. Bushell
- Transplantation Research Immunology GroupNuffield Department of Surgical SciencesJohn Radcliffe HospitalUniversity of OxfordOxfordUK
| |
Collapse
|
18
|
Tao YF, Lin F, Yan XY, Gao XG, Teng F, Fu ZR, Wang ZX. Galectin-9 in Combination With EX-527 Prolongs the Survival of Cardiac Allografts in Mice After Cardiac Transplantation. Transplant Proc 2016; 47:2003-9. [PMID: 26293089 DOI: 10.1016/j.transproceed.2015.04.091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 04/28/2015] [Indexed: 12/23/2022]
Abstract
Galectin-9 (Gal-9), a member of the galectin family, has a variety of biologic activities. However, its role in allografts is not fully clarified yet. The relationship between interleukin-17 (IL-17) and Gal-9 and the role of Gal-9 in T(H)17-cell differentiation also remain unclear. We built a murine cardiac transplantation model, which we treated with Gal-9 and/or EX-527, a specific Sirtuin-1 inhibitor. Afterwards, flow-cytometric analysis and reverse-transcription polymerase chain reaction were used to detect the number of T(H)17 cells and the expression of key factors involved in the differentiation of T(H)17 cells; in addition, the survival times of cardiac transplanted mice in different groups were recorded. The levels of circulating T(H)17 cells were found to increase in the peripheral blood of mice that exhibited acute rejection (AR) after heart transplantation, which was determined to be correlated with the rejection grade. Gal-9 or EX-527 can inhibit the activation and differentiation of T(H)17 cells and effectively suppress T(H)17-cell-mediated AR. These data provide new evidence for the potential regulatory effects of Gal-9 in alloimmune responses in a murine model of heart transplantation, and suggest the combined use of galectin-9 and EX-527 may be a powerful method to induce tolerance of fully mismatched murine cardiac allografts.
Collapse
Affiliation(s)
- Y-f Tao
- Department of General Surgery and Liver Transplant Center, Huashan Hospital, Fudan University, Shanghai, China
| | - F Lin
- Department of General Surgery, Taizhou First People's Hospital, Taizhou, Zhejiang, China
| | - X-y Yan
- Peking University Clinical Research Institute, Health Science Center, Peking University, Beijing, China
| | - X-g Gao
- Division of Liver Transplantation, Organ Transplant Center, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - F Teng
- Division of Liver Transplantation, Organ Transplant Center, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Z-r Fu
- Division of Liver Transplantation, Organ Transplant Center, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Z-x Wang
- Department of General Surgery and Liver Transplant Center, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
19
|
Crescioli C. Chemokines and transplant outcome. Clin Biochem 2016; 49:355-62. [DOI: 10.1016/j.clinbiochem.2015.07.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/10/2015] [Accepted: 07/20/2015] [Indexed: 12/26/2022]
|
20
|
Abstract
PURPOSE OF REVIEW To summarize the promises and limitations of candidate noninvasive immunological biomarkers in cardiac rejection, with a special focus on the chemokine CXCL10, as a pretransplant predictive marker of early heart acute rejection. Potential issues for transfer from research to the clinic are addressed. RECENT FINDINGS Early changes of immune biomolecules in peripheral blood, reflecting graft or heart recipient's immune status, are candidate biomarkers able to diagnose or predict cardiac rejection, ideally giving an opportunity to intervene before heart failure occurs. The support of robust analytical methodologies is necessary for the transition from biomarker discovery to clinical implementation. SUMMARY Cardiac rejection represents the main problem after heart transplantation. Endomyocardial biopsy, although invasive and not risk free, is the gold-standard procedure for rejection monitoring. Noninvasive heart damage biomarkers manifest substantially after rejection occurrence. The goal is to detect graft injury at the earliest possible stage in disease initiation. Some biomolecules associated with the early immune response to cardiac allograft retain the power to be diagnostic and, even better, predictive of acute rejection, as in the case of pretransplant CXCL10 serum level. Multicenter studies for assay validation and standardization, integrated analysis of multiple biomarkers, and cost-effectiveness evaluation are mandatory efforts.
Collapse
|
21
|
Wieland E, Shipkova M. Lymphocyte surface molecules as immune activation biomarkers. Clin Biochem 2015; 49:347-54. [PMID: 26247177 DOI: 10.1016/j.clinbiochem.2015.07.099] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 07/23/2015] [Accepted: 07/25/2015] [Indexed: 01/07/2023]
Abstract
Immunosuppression is mandatory after solid organ transplantation between HLA mismatched individuals. It is a lifelong therapy that needs to be closely monitored to avoid under- and over-immunosuppression. For many drugs, pharmacokinetic monitoring has been proven to be beneficial. However, the therapeutic ranges are statistically derived surrogate markers for the effects that cannot predict the individual response of single patients. Better tailored immunosuppression biomarkers are needed that indicate immune activation. T cells are critically involved in organ rejection, and the means to assess their activation state may be promising to individualize immunosuppressive therapies. Activated T cells can be monitored with flow cytometry based on surface molecules that are typically up regulated or with molecules that are cleaved off the cell surface. Among these molecules are the interleukin-2 receptor (CD25); transferrin receptor (CD71); the T cell co-stimulatory molecules CD28, CD69, and CD154 and sCD30, which is a member of the TNF-alpha family. The effect of immunosuppressive drugs on T cell activation can be recorded with indirect cell function assays or by directly monitoring activated T cells in whole blood. Soluble proteins can be measured with immunoassays. This review provides a summary of the experimental and clinical studies investigating the potential of surface molecules as a tool for immune monitoring. It critically discusses the obstacles and shortcomings from an analytical and diagnostic perspective that are currently preventing their use in multicenter trials and clinical routine monitoring of transplant patients.
Collapse
Affiliation(s)
- Eberhard Wieland
- Klinikum Stuttgart, Central Institute for Clinical Chemistry and Laboratory Medicine, Germany.
| | - Maria Shipkova
- Klinikum Stuttgart, Central Institute for Clinical Chemistry and Laboratory Medicine, Germany.
| |
Collapse
|
22
|
Kornberg A. Intravenous immunoglobulins in liver transplant patients: Perspectives of clinical immune modulation. World J Hepatol 2015; 7:1494-1508. [PMID: 26085909 PMCID: PMC4462688 DOI: 10.4254/wjh.v7.i11.1494] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 04/19/2015] [Accepted: 05/08/2015] [Indexed: 02/06/2023] Open
Abstract
Shortage of appropriate donor grafts is the foremost current problem in organ transplantation. As a logical consequence, waiting times have extended and pretransplant mortality rates were significantly increasing. The implementation of a priority-based liver allocation system using the model of end-stage liver disease (MELD) score helped to reduce waiting list mortality in liver transplantation (LT). However, due to an escalating organ scarcity, pre-LT MELD scores have significantly increased and liver recipients became more complex in recent years. This has finally led to posttransplant decreasing survival rates, attributed mainly to elevated rates of infectious and immunologic complications. To meet this challenging development, an increasing number of extended criteria donor grafts are currently accepted, which may, however, aggravate the patients’ infectious and immunologic risk profiles. The administration of intravenous immunoglobulins (IVIg) is an established treatment in patients with immune deficiencies and other antibody-mediated diseases. In addition, IVIg was shown to be useful in treatment of several disorders caused by deterioration of the cellular immune system. It proved to be effective in preventing hyperacute rejection in highly sensitized kidney and heart transplants. In the liver transplant setting, the administration of specific Ig against hepatitis B virus is current standard in post-LT antiviral prophylaxis. The mechanisms of action of IVIg are complex and not fully understood. However, there is increasing experimental and clinical evidence that IVIg has an immuno-balancing impact by a combination of immuno-supporting and immuno-suppressive properties. It may be suggested that, especially in the context of a worsening organ shortage with all resulting clinical implications, liver transplant patients should benefit from immuno-regulatory capabilities of IVIg. In this review, perspectives of immune modulation by IVIg and impact on outcome in liver transplant patients are described.
Collapse
|
23
|
Amirzargar MA, Amirzargar A, Basiri A, Hajilooi M, Roshanaei G, Rajabi G, Solgi G. Pre- and Posttransplant IgA Anti-Fab Antibodies to Predict Long-term Kidney Graft Survival. Transplant Proc 2015; 47:1110-3. [PMID: 26036531 DOI: 10.1016/j.transproceed.2014.11.065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 10/26/2014] [Accepted: 11/19/2014] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Immunologic factors are reliable markers for allograft monitoring, because of their seminal role in rejection process. One of these factors is the immunoglobulin (Ig)A anti-Fab of the IgG antibody. This study aimed to evaluate the predictive value of pre- and posttransplant levels of this marker for kidney allograft function and survival. METHODS Sera samples of 59 living unrelated donor kidney recipients were collected before and after transplantation (days 7, 14, and 30) and investigated for IgA anti-Fab of IgG antibody levels using enzyme-linked immunosorbent assay in relation with allograft outcome. RESULTS Among 59 patients, 15 cases (25%) including 10 with acute rejection and 5 with chronic rejection episodes showed graft failure during a mean of 5 years of follow-up. High posttransplant levels of IgA anti-Fab antibodies were observed more frequently in patients with stable graft function (SGF) compared with patients with graft failure (P = 2 × 10(-6)). None of patients with acute or chronic rejection episodes had high levels of IgA anti-Fab antibodies at day 30 posttransplant compared with the SGF group (P = 10(-6) and P = .01, respectively). In addition, high levels of IgA anti-Fab antibody correlated with lesser concentration of serum creatinine at 1 month posttransplantation (P = .01). Five-year graft survival was associated with high levels of pre- and posttransplant IgA anti-Fab antibodies (P = .02 and P = .003, respectively). CONCLUSIONS Our findings indicate the protective effect of higher levels of IgA anti-Fab antibodies regarding to kidney allograft outcomes and long-term graft survival.
Collapse
Affiliation(s)
- M A Amirzargar
- Department of Urology, Medical School, Hamadan University of Medical Sciences, Hamadan, Iran
| | - A Amirzargar
- Molecular Immunology Research Center, Medical School, Tehran University of Medical Sciences, Tehran, Iran
| | - A Basiri
- Urology Research Center, Labbafinejad Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - M Hajilooi
- Immunology Department, Medical School, Hamadan University of Medical Sciences, Hamadan, Iran
| | - G Roshanaei
- Research Center for Health Science, Department of Biostatistics and Epidemiology, School of Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - G Rajabi
- Department of Urology, Medical School, Hamadan University of Medical Sciences, Hamadan, Iran
| | - G Solgi
- Immunology Department, Medical School, Hamadan University of Medical Sciences, Hamadan, Iran; Psoriasis Research Center, Department of Dermatology, Farshchian Hospital, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
24
|
Mehrotra A, Leventhal J, Purroy C, Cravedi P. Monitoring T cell alloreactivity. Transplant Rev (Orlando) 2014; 29:53-9. [PMID: 25475045 DOI: 10.1016/j.trre.2014.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 10/03/2014] [Accepted: 11/09/2014] [Indexed: 01/06/2023]
Abstract
Currently, immunosuppressive therapy in kidney transplant recipients is center-specific, protocol-driven, and adjusted according to functional or histological evaluation of the allograft and/or signs of drug toxicity or infection. As a result, a large fraction of patients receive too much or too little immunosuppression, exposing them to higher rates of infection, malignancy and drug toxicity, or increased risk of acute and chronic graft injury from rejection, respectively. The individualization of immunosuppression requires the development of assays able to reliably quantify and/or predict the magnitude of the recipient's immune response toward the allograft. As alloreactive T cells are central mediators of allograft rejection, monitoring T cell alloreactivity has become a priority for the transplant community. Among available assays, flow cytometry based phenotyping, T cell proliferation, T cell cytokine secretion, and ATP release (ImmuKnow), have been the most thoroughly tested. While numerous cross-sectional studies have found associations between the results of these assays and the presence of clinically relevant post-transplantation outcomes, data from prospective studies are still scanty, thereby preventing widespread implementation in the clinic. Future studies are required to test the hypothesis that tailoring immunosuppression on the basis of results offered by these biomarkers leads to better outcomes than current standard clinical practice.
Collapse
Affiliation(s)
- Anita Mehrotra
- Renal Division, Department of Medicine, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Jeremy Leventhal
- Renal Division, Department of Medicine, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Carolina Purroy
- Renal Division, Department of Medicine, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Paolo Cravedi
- Renal Division, Department of Medicine, Icahn School of Medicine at Mount Sinai, NY, USA.
| |
Collapse
|
25
|
Juvet SC, Whatcott AG, Bushell AR, Wood KJ. Harnessing regulatory T cells for clinical use in transplantation: the end of the beginning. Am J Transplant 2014; 14:750-63. [PMID: 24592900 DOI: 10.1111/ajt.12647] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 12/19/2013] [Accepted: 12/19/2013] [Indexed: 01/25/2023]
Abstract
Owing to the adverse effects of immunosuppression and an inability to prevent chronic rejection, there is a pressing need for alternative strategies to control alloimmunity. In three decades, regulatory T cells (Tregs) have evolved from a hypothetical mediator of adoptively transferred tolerance to a well-defined population that can be expanded ex vivo and returned safely to patients in clinical trials. Herein, we review the historical developments that have permitted these advances and the current status of clinical trials examining Tregs as a cellular therapy in transplantation. We conclude by discussing the critical unanswered questions that face this field in the coming years.
Collapse
Affiliation(s)
- S C Juvet
- Nuffield Department of Surgical Sciences, Transplantation Research Immunology Group, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | | | | | | |
Collapse
|
26
|
Lipshultz SE, Chandar JJ, Rusconi PG, Fornoni A, Abitbol CL, Burke GW, Zilleruelo GE, Pham SM, Perez EE, Karnik R, Hunter JA, Dauphin DD, Wilkinson JD. Issues in solid-organ transplantation in children: translational research from bench to bedside. Clinics (Sao Paulo) 2014; 69 Suppl 1:55-72. [PMID: 24860861 PMCID: PMC3884162 DOI: 10.6061/clinics/2014(sup01)11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In this review, we identify important challenges facing physicians responsible for renal and cardiac transplantation in children based on a review of the contemporary medical literature. Regarding pediatric renal transplantation, we discuss the challenge of antibody-mediated rejection, focusing on both acute and chronic antibody-mediated rejection. We review new diagnostic approaches to antibody-mediated rejection, such as panel-reactive antibodies, donor-specific cross-matching, antibody assays, risk assessment and diagnosis of antibody-mediated rejection, the pathology of antibody-mediated rejection, the issue of ABO incompatibility in renal transplantation, new therapies for antibody-mediated rejection, inhibiting of residual antibodies, the suppression or depletion of B-cells, genetic approaches to treating acute antibody-mediated rejection, and identifying future translational research directions in kidney transplantation in children. Regarding pediatric cardiac transplantation, we discuss the mechanisms of cardiac transplant rejection, including the role of endomyocardial biopsy in detecting graft rejection and the role of biomarkers in detecting cardiac graft rejection, including biomarkers of inflammation, cardiomyocyte injury, or stress. We review cardiac allograft vasculopathy. We also address the role of genetic analyses, including genome-wide association studies, gene expression profiling using entities such as AlloMap®, and adenosine triphosphate release as a measure of immune function using the Cylex® ImmuKnow™ cell function assay. Finally, we identify future translational research directions in heart transplantation in children.
Collapse
Affiliation(s)
- Steven E Lipshultz
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University School of Medicine, Detroit, MI, United States
| | - Jayanthi J Chandar
- Division of Pediatric Nephrology, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Paolo G Rusconi
- Division of Pediatric Cardiology, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Alessia Fornoni
- Division of Pediatric Nephrology, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Carolyn L Abitbol
- Division of Pediatric Nephrology, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - George W Burke
- Division of Pediatric Nephrology, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Gaston E Zilleruelo
- Division of Pediatric Nephrology, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Si M Pham
- Artificial Heart Programs, Transplant Institute, Jackson Memorial Division of Heart/Lung Transplant, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Elena E Perez
- Division of Pediatric Immunology and Allergy, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Ruchika Karnik
- Division of Pediatric Cardiology, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Juanita A Hunter
- Division of Pediatric Cardiology, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Danielle D Dauphin
- Division of Pediatric Clinical Research, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States
| | - James D Wilkinson
- Division of Pediatric Clinical Research, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
27
|
Banasik M, Boratyńska M, Kościelska-Kasprzak K, Mazanowska O, Krajewska M, Zabińska M, Bartoszek D, Myszka M, Nowakowska B, Dawiskiba T, Lepiesza A, Chudoba P, Klinger M. The impact of de novo donor-specific anti-human leukocyte antigen antibodies on 5-year renal transplant outcome. Transplant Proc 2013; 45:1449-52. [PMID: 23726594 DOI: 10.1016/j.transproceed.2012.12.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 12/31/2012] [Indexed: 02/08/2023]
Abstract
Numerous studies have shown that circulating donor-specific antibodies targeting human leukocyte antigen (HLA) are associated with accelerated renal transplant failure, but many patients with these antibodies have good graft function. The aim of our study was to investigate the long-term graft function and survival in patients with de novo post-transplant donor-specific anti-HLA antibodies (DSA). Our prospective study included 78 consecutive recipients with a negative crossmatch before transplantation. Recipient serum samples were assayed for DSA in week 2 and 1, 3, 6, 9, 12 months after transplantation using a complement-dependent lymphocytotoxic technique with donor lymphocytes. Additionally, patients with DSA and stable renal function in the first year were tested with a more sensitive flow-panel-reactive antibody. DSA were present in 34 (44%) of our patients during the first 12 months after transplantation. Biopsy-proved acute rejection occurred in 11 DSA-positive and 10 DSA-negative patients. Seven DSA-positive patients had antibody-mediated rejection and no DSA-negative ones developed humoral rejection. The serum creatinine level in DSA-positive patients was significantly higher (2.48 vs 1.43 mg/dL) in year 5. The 13 (38%) DSA-positive patients with good graft function in month 12 were stable during a 5-year follow-up: their serum creatinine was 1.46 ± 0.4 in year 1 and 1.56 ± 0.4 mg/dL in year 5 and nobody lost their allograft. One- and 5- year graft survivals were appropriately 85% and 59% in DSA-positive patients compared to 93% and 93% in DSA-negative patients. To sum up, post-transplant DSA had a significant influence on kidney function and graft survival but in 38% of patients the presence of DSA did not decrease a 5-year renal function. A good renal allograft function in the presence of DSA in the first year after transplantation and cessation of their production in the subsequent years may be a good prognostic marker for a long-term allograft function and survival.
Collapse
Affiliation(s)
- M Banasik
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Wroclaw, Poland.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
|
29
|
Amirzargar MA, Amirzargar A, Basiri A, Hajilooi M, Roshanaei G, Rajabi G, Mohammadiazar S, Solgi G. Early post-transplant immune monitoring can predict long-term kidney graft survival: soluble CD30 levels, anti-HLA antibodies and IgA-anti-Fab autoantibodies. Hum Immunol 2013; 75:47-58. [PMID: 24055694 DOI: 10.1016/j.humimm.2013.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 08/25/2013] [Accepted: 09/11/2013] [Indexed: 12/01/2022]
Abstract
This study aimed to investigate the predictive power of anti-HLA antibodies, sCD30 levels and IgA-anti-Fab autoantibody before and early after transplantation in relation to long-term kidney allograft survival. Pre- and post-transplant sera samples of 59 living-unrelated donor kidney recipients were tested for above risk factors by enzyme-linked immunoabsorbent assay. 15 out of 59 cases experienced rejection episodes (failure group). Pre- and post-transplant high sCD30 levels were significantly associated with graft failure (P=0.02 and P=0.004) and decreased 4 year graft survival (P = 0.009 and P = 0.001). Higher frequency of post-transplant HLA class-II antibody in the absence of class-I antibody was observed in failure group (P=0.007). Patients with post-transplant HLA class-I and class-II antibodies either alone or in combination showed significant lower 4 year graft survival. Recipients with high sCD30 levels in the presence of HLA class-I or class-II antibodies within 2 weeks post-transplant had poor graft survival (P = 0.004 and P = 0.002, respectively). High levels of post-transplant IgA-anti-Fab antibody was more frequent in functioning-graft patients (P = 0.00001), correlated with decreased serum creatinine levels (P = 0.01) and associated with improved graft survival (P = 0.008). Our findings indicate the deleterious effect of early post-transplant HLA antibodies and increased sCD30 levels dependently and protective effect of IgA-anti-Fab antibodies on long-term renal graft outcomes.
Collapse
Affiliation(s)
- Mohammad Ali Amirzargar
- Department of Urology, Medical School, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Aliakbar Amirzargar
- Molecular Immunology Research Center, Medical School, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Basiri
- Urology Research Center, Labbafinejad Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Hajilooi
- Immunology Department, Medical School, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ghodratollah Roshanaei
- Research Center for Health Science, Department of Biostatistics and Epidemiology, School of Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Gholamreza Rajabi
- Department of Urology, Medical School, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sina Mohammadiazar
- Department of Urology, Medical School, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ghasem Solgi
- Immunology Department, Medical School, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
30
|
Current world literature. Curr Opin Organ Transplant 2013; 18:111-30. [PMID: 23299306 DOI: 10.1097/mot.0b013e32835daf68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Mas VR, Dumur CI, Scian MJ, Gehrau RC, Maluf DG. MicroRNAs as biomarkers in solid organ transplantation. Am J Transplant 2013; 13:11-9. [PMID: 23136949 PMCID: PMC3927320 DOI: 10.1111/j.1600-6143.2012.04313.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 09/08/2012] [Accepted: 09/23/2012] [Indexed: 01/25/2023]
Abstract
Important progress has been made in improving short-term outcomes in solid organ transplantation. However, long-term outcomes have not improved during the last decades. There is a critical need for biomarkers of donor quality, early diagnosis of graft injury and treatment response. MicroRNAs (miRNAs) are a class of small single-stranded noncoding RNAs that function through translational repression of specific target mRNAs. MiRNA expression has been associated with different diseases and physiological conditions. Moreover, miRNAs have been detected in different biological fluids and these circulating miRNAs can distinguish diseased individuals from healthy controls. The noninvasive nature of circulating miRNA detection, their disease specificity and the availability of accurate techniques for detecting and monitoring these molecules has encouraged a pursuit of miRNA biomarker research and the evaluation of specific applications in the transplant field. miRNA expression might develop as excellent biomarkers of allograft injury and function. In this minireview, we summarize the main accomplishments of recently published reports focused on the identification of miRNAs as biomarkers in organ quality, ischemia-reperfusion injury, acute rejection, tolerance and chronic allograft dysfunction emphasizing their mechanistic and clinical potential applications and describing their methodological limitations.
Collapse
Affiliation(s)
- Valeria R Mas
- Translational Genomics Transplant Laboratory, Transplant Division, Department of Surgery, University of Virginia; 1300 Jefferson Park Ave, Barringer 5, Room 5417, Charlottesville, VA 22908-0709,Corresponding author: Valeria R Mas, PhD, Associate Professor Research Surgery, Co-Director, Transplant Research, Director, Translational Genomics Transplant Laboratory, 1300 Jefferson Park Ave, Barringer 5, Room 5417, Charlottesville, VA 22908-0709, Phone: 434-243-1181, Fax: 434-924-5539,
| | - Catherine I. Dumur
- Molecular Diagnostic Laboratory, Virginia Commonwealth University, Department of Pathology, 1101 E. Marshall Street Richmond, VA 23298-0662
| | - Mariano J Scian
- Translational Genomics Transplant Laboratory, Transplant Division, Department of Surgery, University of Virginia; 1300 Jefferson Park Ave, Barringer 5, Room 5417, Charlottesville, VA 22908-0709
| | - Ricardo C. Gehrau
- Translational Genomics Transplant Laboratory, Transplant Division, Department of Surgery, University of Virginia; 1300 Jefferson Park Ave, Barringer 5, Room 5417, Charlottesville, VA 22908-0709
| | - Daniel G Maluf
- Translational Genomics Transplant Laboratory, Transplant Division, Department of Surgery, University of Virginia; 1300 Jefferson Park Ave, Barringer 5, Room 5417, Charlottesville, VA 22908-0709
| |
Collapse
|