1
|
Overbeek KA, Cahen DL, Bruno MJ. The role of endoscopic ultrasound in the detection of pancreatic lesions in high-risk individuals. Fam Cancer 2024; 23:279-293. [PMID: 38573399 PMCID: PMC11255057 DOI: 10.1007/s10689-024-00380-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/17/2024] [Indexed: 04/05/2024]
Abstract
Individuals at high risk of developing pancreatic ductal adenocarcinoma are eligible for surveillance within research programs. These programs employ periodic imaging in the form of magnetic resonance imaging/magnetic resonance cholangiopancreatography or endoscopic ultrasound for the detection of early cancer or high-grade precursor lesions. This narrative review discusses the role of endoscopic ultrasound within these surveillance programs. It details its overall strengths and limitations, yield, burden on patients, and how it compares to magnetic resonance imaging. Finally, recommendations are given when and how to incorporate endoscopic ultrasound in the surveillance of high-risk individuals.
Collapse
Affiliation(s)
- Kasper A Overbeek
- Erasmus MC Cancer Institute, Department of Gastroenterology & Hepatology, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Djuna L Cahen
- Erasmus MC Cancer Institute, Department of Gastroenterology & Hepatology, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marco J Bruno
- Erasmus MC Cancer Institute, Department of Gastroenterology & Hepatology, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
2
|
Gao L, Bai Y, Zhou J, Liang C, Dong Y, Han T, Liu Y, Guo J, Wu J, Hu D. S100P facilitates LUAD progression via PKA/c-Jun-mediated tumor-associated macrophage recruitment and polarization. Cell Signal 2024; 120:111179. [PMID: 38640980 DOI: 10.1016/j.cellsig.2024.111179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/28/2024] [Accepted: 04/14/2024] [Indexed: 04/21/2024]
Abstract
S100P, a member of the S100 calcium-binding protein family, is closely associated with abnormal proliferation, invasion, and metastasis of various cancers. However, its role in the lung adenocarcinoma (LUAD) tumor microenvironment (TME) remains unclear. In this study, we observed specific expression of S100P on tumor cells in LUAD patients through tissue immunofluorescence analysis. Furthermore, this expression was strongly correlated with the recruitment and polarization of tumor-associated macrophages (TAMs). Bioinformatics analysis revealed that high S100P expression is associated with poorer overall survival in LUAD patients. Subsequently, a subcutaneous mouse model demonstrated that S100P promotes recruitment and polarization of TAMs towards the M2 type. Finally, in vitro studies on LUAD cells revealed that S100P enhances the secretion of chemokines and polarizing factors by activating the PKA/c-Jun pathway, which is implicated in TAM recruitment and polarization towards the M2 phenotype. Moreover, inhibition of c-Jun expression impedes the ability of TAMs to infiltrate and polarize towards the M2 phenotype. In conclusion, our study demonstrates that S100P facilitates LUAD cells growth by recruiting M2 TAMs through PKA/c-Jun signaling, resulting in the production of various cytokines. Considering these findings, S100P holds promise as an important diagnostic marker and potential therapeutic target for LUAD.
Collapse
Affiliation(s)
- Lu Gao
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Ying Bai
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China.
| | - Jiawei Zhou
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Chao Liang
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Yunjia Dong
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Tao Han
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Yafeng Liu
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Jianqiang Guo
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China
| | - Jing Wu
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China; Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institute, Huainan, Anhui, China; Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui, China.
| | - Dong Hu
- School of Medicine, Anhui University of Science and Technology, Huainan, Anhui, China; Anhui Occupational Health and Safety Engineering Laboratory, Huainan, Anhui, China; Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institute, Huainan, Anhui, China; Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, Anhui, China.
| |
Collapse
|
3
|
Taniguchi T, Ideno N, Araki T, Miura S, Yamamoto M, Nakafusa T, Higashijima N, Yamamoto T, Tamura K, Nakamura S, Abe T, Ikenaga N, Nakata K, Ohuchida K, Oda Y, Ohtsuka T, Nakamura M. MicroRNA-20a in extracellular vesicles derived from duodenal fluid is a possible biomarker for pancreatic ductal adenocarcinoma. DEN OPEN 2024; 4:e333. [PMID: 38434144 PMCID: PMC10908371 DOI: 10.1002/deo2.333] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/27/2023] [Accepted: 12/30/2023] [Indexed: 03/05/2024]
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) has a high mortality rate owing to its late diagnosis and aggression. In addition, there are relatively few minimally invasive screening methods for the early detection of PDAC, making the identification of biomarkers for this disease a critical priority. Recent studies have reported that microRNAs in extracellular vesicles (EV-miRs) from bodily fluids can be useful for the diagnosis of PDACs. Given this, we designed this study to evaluate the utility of cancer EVs extracted from duodenal fluid (DF) and their resident EV-miRs as potential biomarkers for the detection of PDAC. Methods EV-miRs were evaluated and identified in the supernatants of various pancreatic cancer cell lines (Panc-1, SUIT2, and MIAPaca2), human pancreatic duct epithelial cells, and the DF from patients with PDAC and healthy controls. EVs were extracted using ultracentrifugation and the relative expression of EV-miR-20a was quantified. Results We collected a total of 34 DF samples (27 PDAC patients and seven controls) for evaluation and our data suggest that the relative expression levels of EV-miR-20a were significantly higher in patients with PDAC than in controls (p = 0.0025). In addition, EV-miR-20a expression could discriminate PDAC from control patients regardless of the location of the tumor with an area under the curve values of 0.88 and 0.88, respectively. Conclusions We confirmed the presence of EVs in the DF and suggest that the expression of EV-miR-20a in these samples may act as a potential diagnostic biomarker for PDAC.
Collapse
Affiliation(s)
- Takashi Taniguchi
- Department of Surgery and OncologyGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Noboru Ideno
- Department of Surgery and OncologyGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Tomoyuki Araki
- Department of Surgery and OncologyGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Shun Miura
- Department of Surgery and OncologyGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Masahiro Yamamoto
- Department of Surgery and OncologyGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Tomoki Nakafusa
- Department of Surgery and OncologyGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Nobuhiro Higashijima
- Department of Surgery and OncologyGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Takeo Yamamoto
- Department of Anatomic PathologyGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Koji Tamura
- Department of Surgery and OncologyGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - So Nakamura
- Department of Surgery and OncologyGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Toshiya Abe
- Department of Surgery and OncologyGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Naoki Ikenaga
- Department of Surgery and OncologyGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Kohei Nakata
- Department of Surgery and OncologyGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Kenoki Ohuchida
- Department of Surgery and OncologyGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Yoshinao Oda
- Department of Anatomic PathologyGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Takao Ohtsuka
- Department of Digestive SurgeryBreast and Thyroid SurgeryGraduate School of Medical and Dental SciencesKagoshima UniversityKagoshimaJapan
| | - Masafumi Nakamura
- Department of Surgery and OncologyGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| |
Collapse
|
4
|
Ahmed AA, Chen S, Roman-Escorza M, Angell R, Oxenford S, McConville M, Barton N, Sunose M, Neidle D, Haider S, Arshad T, Neidle S. Structure-activity relationships for the G-quadruplex-targeting experimental drug QN-302 and two analogues probed with comparative transcriptome profiling and molecular modeling. Sci Rep 2024; 14:3447. [PMID: 38342953 PMCID: PMC10859377 DOI: 10.1038/s41598-024-54080-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/08/2024] [Indexed: 02/13/2024] Open
Abstract
The tetrasubstituted naphthalene diimide compound QN-302 binds to G-quadruplex (G4) DNA structures. It shows high potency in pancreatic ductal adenocarcinoma (PDAC) cells and inhibits the transcription of cancer-related genes in these cells and in PDAC animal models. It is currently in Phase 1a clinical evaluation as an anticancer drug. A study of structure-activity relationships of QN-302 and two related analogues (CM03 and SOP1247) is reported here. These have been probed using comparisons of transcriptional profiles from whole-genome RNA-seq analyses, together with molecular modelling and molecular dynamics simulations. Compounds CM03 and SOP1247 differ by the presence of a methoxy substituent in the latter: these two compounds have closely similar transcriptional profiles. Whereas QN-302 (with an additional benzyl-pyrrolidine group), although also showing down-regulatory effects in the same cancer-related pathways, has effects on distinct genes, for example in the hedgehog pathway. This distinctive pattern of genes affected by QN-302 is hypothesized to contribute to its superior potency compared to CM03 and SOP1247. Its enhanced ability to stabilize G4 structures has been attributed to its benzyl-pyrrolidine substituent fitting into and filling most of the space in a G4 groove compared to the hydrogen atom in CM03 or the methoxy group substituent in SOP1247.
Collapse
Affiliation(s)
- Ahmed Abdullah Ahmed
- The School of Pharmacy, University College London, London, WC1N 1AX, UK
- Now at Guy's Cancer Centre, Guy's Hospital, London, SE1 9RT, UK
| | - Shuang Chen
- The School of Pharmacy, University College London, London, WC1N 1AX, UK
| | | | - Richard Angell
- The School of Pharmacy, University College London, London, WC1N 1AX, UK
- Now at Medicines Discovery Institute, Cardiff University, Cardiff, CF10 3AT, UK
| | - Sally Oxenford
- The School of Pharmacy, University College London, London, WC1N 1AX, UK
- Now at Artios Ltd, Cambridge, CB22 3FH, UK
| | | | | | - Mihiro Sunose
- Sygnature Discovery Ltd, BioCity, Nottingham, NG1 1GR, UK
| | - Dan Neidle
- Tax Policy Associates, London, EC1R 0ET, UK
| | - Shozeb Haider
- The School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Tariq Arshad
- Qualigen Therapeutics Inc, Carlsbad, CA, 92011, USA
| | - Stephen Neidle
- The School of Pharmacy, University College London, London, WC1N 1AX, UK.
| |
Collapse
|
5
|
Kishi K, Kuwatani M, Ohnishi Y, Kumaki Y, Kumeta H, Hirata H, Takishin Y, Furukawa R, Nagai K, Yonemura H, Nozawa S, Sugiura R, Kawakubo K, Aizawa T, Sakamoto N. Metabolomics of Duodenal Juice for Biliary Tract Cancer Diagnosis. Cancers (Basel) 2023; 15:4370. [PMID: 37686644 PMCID: PMC10486759 DOI: 10.3390/cancers15174370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/03/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
The poor prognosis of malignant biliary diseases is partially caused by their difficult early diagnosis. Therefore, many patients are only diagnosed at advanced stages. This study aimed to improve diagnosis by clarifying the differences in the duodenal juice metabolomes of benign and malignant biliary diseases. From October 2021 to January 2023, duodenal juice was obtained from 67 patients with suspected biliary diseases who required endoscopic ultrasonography and endoscopic retrograde cholangiography for diagnosis/treatment. The samples metabolomes were analyzed via nuclear magnet resonance spectroscopy using an 800-MHz spectrometer. Metabolomes of malignant and benign diseases were then compared, and multivariate analysis was performed to determine the relevant factors for malignancy/benignancy. For benignancy, no significant predictors were observed. For malignancy, acetone was a significant predictor, with higher concentrations in the malignant group than in the benign group. Regarding the receiver operating characteristic curve analysis for biliary tract carcinoma diagnosis, the predictive value of acetone in duodenal juice was comparable with serum CA19-9 levels (area under the curve: 0.7330 vs. 0.691, p = 0.697). In conclusion, duodenal juice metabolomics is a feasible method that is available for differential diagnosis in the biliary disease field.
Collapse
Affiliation(s)
- Kazuma Kishi
- Department of Gastroenterology and Hepatology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, North 15, West 7, Sapporo 060-8648, Hokkaido, Japan; (K.K.); (H.H.); (Y.T.); (R.F.); (K.N.); (H.Y.); (S.N.); (R.S.); (K.K.); (N.S.)
| | - Masaki Kuwatani
- Department of Gastroenterology and Hepatology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, North 15, West 7, Sapporo 060-8648, Hokkaido, Japan; (K.K.); (H.H.); (Y.T.); (R.F.); (K.N.); (H.Y.); (S.N.); (R.S.); (K.K.); (N.S.)
| | - Yuki Ohnishi
- Department of Advanced Transdisciplinary Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan; (Y.O.); (Y.K.); (H.K.); (T.A.)
| | - Yasuhiro Kumaki
- Department of Advanced Transdisciplinary Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan; (Y.O.); (Y.K.); (H.K.); (T.A.)
| | - Hiroyuki Kumeta
- Department of Advanced Transdisciplinary Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan; (Y.O.); (Y.K.); (H.K.); (T.A.)
| | - Hajime Hirata
- Department of Gastroenterology and Hepatology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, North 15, West 7, Sapporo 060-8648, Hokkaido, Japan; (K.K.); (H.H.); (Y.T.); (R.F.); (K.N.); (H.Y.); (S.N.); (R.S.); (K.K.); (N.S.)
| | - Yunosuke Takishin
- Department of Gastroenterology and Hepatology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, North 15, West 7, Sapporo 060-8648, Hokkaido, Japan; (K.K.); (H.H.); (Y.T.); (R.F.); (K.N.); (H.Y.); (S.N.); (R.S.); (K.K.); (N.S.)
| | - Ryutaro Furukawa
- Department of Gastroenterology and Hepatology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, North 15, West 7, Sapporo 060-8648, Hokkaido, Japan; (K.K.); (H.H.); (Y.T.); (R.F.); (K.N.); (H.Y.); (S.N.); (R.S.); (K.K.); (N.S.)
| | - Kosuke Nagai
- Department of Gastroenterology and Hepatology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, North 15, West 7, Sapporo 060-8648, Hokkaido, Japan; (K.K.); (H.H.); (Y.T.); (R.F.); (K.N.); (H.Y.); (S.N.); (R.S.); (K.K.); (N.S.)
| | - Hiroki Yonemura
- Department of Gastroenterology and Hepatology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, North 15, West 7, Sapporo 060-8648, Hokkaido, Japan; (K.K.); (H.H.); (Y.T.); (R.F.); (K.N.); (H.Y.); (S.N.); (R.S.); (K.K.); (N.S.)
| | - Shunichiro Nozawa
- Department of Gastroenterology and Hepatology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, North 15, West 7, Sapporo 060-8648, Hokkaido, Japan; (K.K.); (H.H.); (Y.T.); (R.F.); (K.N.); (H.Y.); (S.N.); (R.S.); (K.K.); (N.S.)
| | - Ryo Sugiura
- Department of Gastroenterology and Hepatology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, North 15, West 7, Sapporo 060-8648, Hokkaido, Japan; (K.K.); (H.H.); (Y.T.); (R.F.); (K.N.); (H.Y.); (S.N.); (R.S.); (K.K.); (N.S.)
| | - Kazumichi Kawakubo
- Department of Gastroenterology and Hepatology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, North 15, West 7, Sapporo 060-8648, Hokkaido, Japan; (K.K.); (H.H.); (Y.T.); (R.F.); (K.N.); (H.Y.); (S.N.); (R.S.); (K.K.); (N.S.)
| | - Tomoyasu Aizawa
- Department of Advanced Transdisciplinary Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan; (Y.O.); (Y.K.); (H.K.); (T.A.)
| | - Naoya Sakamoto
- Department of Gastroenterology and Hepatology, Hokkaido University Faculty of Medicine and Graduate School of Medicine, North 15, West 7, Sapporo 060-8648, Hokkaido, Japan; (K.K.); (H.H.); (Y.T.); (R.F.); (K.N.); (H.Y.); (S.N.); (R.S.); (K.K.); (N.S.)
| |
Collapse
|
6
|
Ahmed AA, Greenhalf W, Palmer DH, Williams N, Worthington J, Arshad T, Haider S, Alexandrou E, Guneri D, Waller ZAE, Neidle S. The Potent G-Quadruplex-Binding Compound QN-302 Downregulates S100P Gene Expression in Cells and in an In Vivo Model of Pancreatic Cancer. Molecules 2023; 28:molecules28062452. [PMID: 36985425 PMCID: PMC10051992 DOI: 10.3390/molecules28062452] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/30/2023] Open
Abstract
The naphthalene diimide compound QN-302, designed to bind to G-quadruplex DNA sequences within the promoter regions of cancer-related genes, has high anti-proliferative activity in pancreatic cancer cell lines and anti-tumor activity in several experimental models for the disease. We show here that QN-302 also causes downregulation of the expression of the S100P gene and the S100P protein in cells and in vivo. This protein is well established as being involved in key proliferation and motility pathways in several human cancers and has been identified as a potential biomarker in pancreatic cancer. The S100P gene contains 60 putative quadruplex-forming sequences, one of which is in the promoter region, 48 nucleotides upstream from the transcription start site. We report biophysical and molecular modeling studies showing that this sequence forms a highly stable G-quadruplex in vitro, which is further stabilized by QN-302. We also report transcriptome analyses showing that S100P expression is highly upregulated in tissues from human pancreatic cancer tumors, compared to normal pancreas material. The extent of upregulation is dependent on the degree of differentiation of tumor cells, with the most poorly differentiated, from more advanced disease, having the highest level of S100P expression. The experimental drug QN-302 is currently in pre-IND development (as of Q1 2023), and its ability to downregulate S100P protein expression supports a role for this protein as a marker of therapeutic response in pancreatic cancer. These results are also consistent with the hypothesis that the S100P promoter G-quadruplex is a potential therapeutic target in pancreatic cancer at the transcriptional level for QN-302.
Collapse
Affiliation(s)
- Ahmed A Ahmed
- The School of Pharmacy, University College London, London WC1N 1AX, UK
- Guy's Cancer Centre, Guy's Hospital, London SE1 9RT, UK
| | - William Greenhalf
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 7BE, UK
| | - Daniel H Palmer
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 7BE, UK
| | | | | | | | - Shozeb Haider
- The School of Pharmacy, University College London, London WC1N 1AX, UK
| | | | - Dilek Guneri
- The School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Zoe A E Waller
- The School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Stephen Neidle
- The School of Pharmacy, University College London, London WC1N 1AX, UK
| |
Collapse
|
7
|
Takano S, Fukasawa M, Enomoto N. Molecular assessment of endoscopically collected pancreatic juice and duodenal fluid from patients with pancreatic diseases. Dig Endosc 2023; 35:19-32. [PMID: 35665966 DOI: 10.1111/den.14371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/01/2022] [Indexed: 01/17/2023]
Abstract
One concern associated with pancreatic diseases is the poor prognosis of pancreatic cancer. Even with advances in diagnostic modalities, risk stratification of premalignant lesions and differentiation of pancreatic cysts are challenging. Pancreatic lesions of concern include intraductal papillary mucinous neoplasms, mucinous cystic neoplasms, serous cystadenomas, pseudocysts, and retention cysts, as well as cystic degeneration of solid tumors such as solid pseudopapillary neoplasms and pancreatic neuroendocrine neoplasms. Pancreatic juice obtained during endoscopic retrograde cholangiopancreatography has previously been used for the detection of KRAS mutation. Recently, duodenal fluid, which can be obtained during the relatively minimally invasive procedures of endoscopic ultrasound (EUS) and esophagogastroduodenoscopy, and cyst fluid collected by EUS-guided fine-needle aspiration (FNA) were used for molecular biological analysis. Furthermore, advanced analytic methods with high sensitivity were used for the detection of single and multiple markers. Early detection of malignant pancreatic tumors and risk stratification of premalignant tumors can be performed using duodenal fluid samples with a single marker with high sensitivity. Technological advances in simultaneous detection of multiple markers allow for the differentiation of cystic pancreatic tumors. One thing to note is that the clinical guidelines do not recommend pancreatic cyst fluid and pancreatic juice (PJ) sampling by EUS-FNA and endoscopic retrograde cholangiopancreatography, respectively, in actual clinical practice, but state that they be performed at experienced facilities, and duodenal fluid sampling is not mentioned in the guidelines. With improved specimen handling and the combination of markers, molecular markers in PJ samples may be used in clinical practice in the near future.
Collapse
Affiliation(s)
- Shinichi Takano
- First Department of Internal Medicine, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Mitsuharu Fukasawa
- First Department of Internal Medicine, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Nobuyuki Enomoto
- First Department of Internal Medicine, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| |
Collapse
|
8
|
Kuwatani M, Sakamoto N. Pathological and molecular diagnoses of early cancer with bile and pancreatic juice. Dig Endosc 2022; 34:1340-1355. [PMID: 35543333 DOI: 10.1111/den.14348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/10/2022] [Indexed: 12/13/2022]
Abstract
The dismal prognosis of pancreaticobiliary malignancies is mainly attributed to the extremely difficult detection of early-stage lesions, including intraepithelial neoplasia. To improve prognosis, several studies on the early detection of cancer have been conducted using bile and pancreatic juices for pathological or molecular analyses. One approach is liquid biopsy that includes information about the tumor, such as circulating tumor cells, circulating tumor DNA, microRNAs, and exosomes released by the tumor. Another approach is proteomics/metabolomics that reflects specific conditions in the tumor. These two approaches lead to artificial intelligence-based multiomics analyses that comprises genomics, proteomics/metabolomics, and transcriptomics. Based on the findings of molecular analysis, pathological analysis using immunohistochemical staining/fluorescence in situ hybridization has also been developed. Moreover, there have been reports of new methods/ingenuities for obtaining appropriate samples for the diagnosis of early-stage cancer. Here we review the knowledge on cutting-edge pathological and molecular analyses of bile and pancreatic juices, introduce some ingenuities in sampling and sample processing to promote effective clinical practice, and provide a basis for future studies.
Collapse
Affiliation(s)
- Masaki Kuwatani
- Department of Gastroenterology and Hepatology, Hokkaido University Hospital, Hokkaido, Japan
| | - Naoya Sakamoto
- Department of Gastroenterology and Hepatology, Hokkaido University Hospital, Hokkaido, Japan
| |
Collapse
|
9
|
Hanada K, Shimizu A, Kurihara K, Ikeda M, Yamamoto T, Okuda Y, Tazuma S. Endoscopic approach in the diagnosis of high-grade pancreatic intraepithelial neoplasia. Dig Endosc 2022; 34:927-937. [PMID: 35165942 DOI: 10.1111/den.14240] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/02/2022] [Accepted: 01/16/2022] [Indexed: 02/08/2023]
Abstract
Early diagnosis of pancreatic ductal adenocarcinoma (PDAC) is essential for improving prognosis; however, diagnosing PDAC at an early stage is challenging. In patients with localized high-grade pancreatic intraepithelial neoplasia (HG-PanIN), whose tumorous lesion is undetectable on cross-sectional images such as computed tomography or magnetic resonance image, long-term survival is expected. Pancreatic cystic lesions or main pancreatic duct (MPD) dilatation are important indirect findings for the initial diagnosis of HG-PanIN. Magnetic resonance cholangiopancreatography (MRCP) and endoscopic ultrasound (EUS) should play important roles in detecting abnormal image findings, such as local irregular MPD stenosis, caliber MPD changes, small cystic lesions, or branch duct dilatation. Additionally, EUS could detect hypoechoic areas around the MPD stenosis in some patients with HG-PanIN. Subsequently, endoscopic retrograde cholangiopancreatography (ERCP) and its associated pancreatic juice cytology, including serial pancreatic juice aspiration cytologic examination (SPACE) after placement of an endoscopic nasopancreatic drainage (ENPD) tube, may have high diagnostic accuracy for confirming the malignancy in HG-PanIN. Although ERCP and its associated pancreatic cytology, including SPACE, may be associated with post-ERCP pancreatitis (PEP), a recent randomized trial suggested that a 4-Fr ENPD tube may reduce the incidence of PEP. In the future, further prospective multicenter studies are required to establish a standard method of SPACE. Additionally, further studies for novel biomarkers could help to establish evolutionary methods with duodenal fluid and pancreatic juice for the early and accurate diagnosis of early-stage PDAC.
Collapse
Affiliation(s)
- Keiji Hanada
- Department of Gastroenterology, Onomichi General Hospital, Hiroshima, Japan
| | - Akihiro Shimizu
- Department of Gastroenterology, Onomichi General Hospital, Hiroshima, Japan
| | - Keisuke Kurihara
- Department of Gastroenterology, Onomichi General Hospital, Hiroshima, Japan
| | - Morito Ikeda
- Department of Gastroenterology, Onomichi General Hospital, Hiroshima, Japan
| | - Takuya Yamamoto
- Department of Gastroenterology, Onomichi General Hospital, Hiroshima, Japan
| | - Yasuhiro Okuda
- Department of Gastroenterology, Onomichi General Hospital, Hiroshima, Japan
| | - Susumu Tazuma
- Department of Gastroenterology, Onomichi General Hospital, Hiroshima, Japan
| |
Collapse
|
10
|
Wu Y, Zhou Q, Guo F, Chen M, Tao X, Dong D. S100 Proteins in Pancreatic Cancer: Current Knowledge and Future Perspectives. Front Oncol 2021; 11:711180. [PMID: 34527585 PMCID: PMC8435722 DOI: 10.3389/fonc.2021.711180] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/12/2021] [Indexed: 12/25/2022] Open
Abstract
Pancreatic cancer (PC) is a highly malignant tumor occurring in the digestive system. Currently, there is a lack of specific and effective interventions for PC; thus, further exploration regarding the pathogenesis of this malignancy is warranted. The S100 protein family, a collection of calcium-binding proteins expressed only in vertebrates, comprises 25 members with high sequence and structural similarity. Dysregulated expression of S100 proteins is a biomarker of cancer progression and prognosis. Functionally, these proteins are associated with the regulation of multiple cellular processes, including proliferation, apoptosis, growth, differentiation, enzyme activation, migration/invasion, Ca2+ homeostasis, and energy metabolism. This review highlights the significance of the S100 family in the diagnosis and prognosis of PC and its vital functions in tumor cell metastasis, invasion and proliferation. A further understanding of S100 proteins will provide potential therapeutic targets for preventing or treating PC.
Collapse
Affiliation(s)
- Yu Wu
- Department of Clinical Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China.,College of Pharmacy, Dalian Medical University, Dalian, China
| | - Qi Zhou
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Fangyue Guo
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University, Dalian, China.,Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Mingming Chen
- Department of Clinical Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China.,College of Pharmacy, Dalian Medical University, Dalian, China
| | - Xufeng Tao
- School of Chemical Engineering, Dalian University of Technology, Dalian, China
| | - Deshi Dong
- Department of Clinical Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
11
|
O'Neill RS, Stoita A. Biomarkers in the diagnosis of pancreatic cancer: Are we closer to finding the golden ticket? World J Gastroenterol 2021; 27:4045-4087. [PMID: 34326612 PMCID: PMC8311531 DOI: 10.3748/wjg.v27.i26.4045] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/24/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) is a leading cause of cancer related mortality on a global scale. The disease itself is associated with a dismal prognosis, partly due to its silent nature resulting in patients presenting with advanced disease at the time of diagnosis. To combat this, there has been an explosion in the last decade of potential candidate biomarkers in the research setting in the hope that a diagnostic biomarker may provide a glimmer of hope in what is otherwise quite a substantial clinical dilemma. Currently, serum carbohydrate antigen 19-9 is utilized in the diagnostic work-up of patients diagnosed with PC however this biomarker lacks the sensitivity and specificity associated with a gold-standard marker. In the search for a biomarker that is both sensitive and specific for the diagnosis of PC, there has been a paradigm shift towards a focus on liquid biopsy and the use of diagnostic panels which has subsequently proved to have efficacy in the diagnosis of PC. Currently, promising developments in the field of early detection on PC using diagnostic biomarkers include the detection of microRNA (miRNA) in serum and circulating tumour cells. Both these modalities, although in their infancy and yet to be widely accepted into routine clinical practice, possess merit in the early detection of PC. We reviewed over 300 biomarkers with the aim to provide an in-depth summary of the current state-of-play regarding diagnostic biomarkers in PC (serum, urinary, salivary, faecal, pancreatic juice and biliary fluid).
Collapse
Affiliation(s)
- Robert S O'Neill
- Department of Gastroenterology, St Vincent's Hospital Sydney, Sydney 2010, Australia
- St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Sydney 2010, Australia
| | - Alina Stoita
- Department of Gastroenterology, St Vincent's Hospital Sydney, Sydney 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney 2010, Australia
| |
Collapse
|
12
|
Ideno N, Mori Y, Nakamura M, Ohtsuka T. Early Detection of Pancreatic Cancer: Role of Biomarkers in Pancreatic Fluid Samples. Diagnostics (Basel) 2020; 10:diagnostics10121056. [PMID: 33291257 PMCID: PMC7762187 DOI: 10.3390/diagnostics10121056] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/28/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer-related deaths worldwide. Most patients with PDAC present with symptomatic, surgically unresectable disease. Therefore, the establishment of strategies for the early detection is urgently needed. Molecular biomarkers might be useful in various phases of a strategy to identify high-risk individuals in the general population and to detect high-risk lesions during intense surveillance programs combined with imaging modalities. However, the low sensitivity and specificity of biomarkers currently available for PDAC, such as carbohydrate 19-9 (CA19-9), contribute to the late diagnosis of this deadly disease. Although almost all classes of biomarker assays have been studied, most of them are used in the context of symptomatic diseases. Compared to other body fluids, pancreatic juice and duodenal fluid are better sources of DNA, RNA, proteins, and exosomes derived from neoplastic cells and have the potential to increase the sensitivity/specificity of these biomarkers. The number of studies using duodenal fluid with or without secretin stimulation for DNA/protein marker tests have been increasing because of the less-invasiveness in comparison to pancreatic juice collection by endoscopic retrograde cholangiopancreatography (ERCP) and endoscopic ultrasound-guided fine needle aspiration (EUS-FNA). Genomic analyses have been very well-studied, and based on PDAC progression model, mutations detected in pancreatic juice/duodenal fluid seem to indicate the presence of microscopic precursors and high-grade dysplasia/invasive cancer. In addition to known proteins overexpressed both in precursors and PDACs, such as CEA and S100P, comprehensive proteomic analysis of pancreatic juice from patients with PDAC identified many proteins which were not previously described. A novel technique to isolate exosomes from pancreatic juice was recently invented and identification of exosomal microRNA’s 21 and 155 could be biomarkers for diagnosis of PDAC. Since many studies have explored biomarkers in fluid samples containing pancreatic juice and reported excellent diagnostic accuracy, we need to discuss how these biomarker assays can be validated and utilized in the strategy of early detection of PDAC.
Collapse
Affiliation(s)
- Noboru Ideno
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (N.I.); (Y.M.); (M.N.)
| | - Yasuhisa Mori
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (N.I.); (Y.M.); (M.N.)
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; (N.I.); (Y.M.); (M.N.)
| | - Takao Ohtsuka
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima 890-8520, Japan
- Correspondence: ; Tel.: +81-99-275-5361
| |
Collapse
|
13
|
Zhou YJ, Lu XF, Meng JL, Wang XY, Ruan XJ, Yang CJ, Wang QW, Chen HM, Gao YJ, Yan FR, Li XB. Qualitative Transcriptional Signature for the Pathological Diagnosis of Pancreatic Cancer. Front Mol Biosci 2020; 7:569842. [PMID: 33173782 PMCID: PMC7538791 DOI: 10.3389/fmolb.2020.569842] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
It is currently difficult for pathologists to diagnose pancreatic cancer (PC) using biopsy specimens because samples may have been from an incorrect site or contain an insufficient amount of tissue. Thus, there is a need to develop a platform-independent molecular classifier that accurately distinguishes benign pancreatic lesions from PC. Here, we developed a robust qualitative messenger RNA signature based on within-sample relative expression orderings (REOs) of genes to discriminate both PC tissues and cancer-adjacent normal tissues from non-PC pancreatitis and healthy pancreatic tissues. A signature comprising 12 gene pairs and 17 genes was built in the training datasets and validated in microarray and RNA-sequencing datasets from biopsy samples and surgically resected samples. Analysis of 1,007 PC tissues and 257 non-tumor samples from nine databases indicated that the geometric mean of sensitivity and specificity was 96.7%, and the area under receiver operating characteristic curve was 0.978 (95% confidence interval, 0.947–0.994). For 20 specimens obtained from endoscopic biopsy, the signature had a diagnostic accuracy of 100%. The REO-based signature described here can aid in the molecular diagnosis of PC and may facilitate objective differentiation between benign and malignant pancreatic lesions.
Collapse
Affiliation(s)
- Yu-Jie Zhou
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Fan Lu
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jia-Lin Meng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xin-Yuan Wang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xin-Jia Ruan
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chang-Jie Yang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qi-Wen Wang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hui-Min Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yun-Jie Gao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fang-Rong Yan
- State Key Laboratory of Natural Medicines, Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiao-Bo Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
14
|
Zhang Z, Gu J, Yin M, Wang D, Ma C, Du J, Lin Z, Hu S, Wang X, Li Y, Tan G, Luo H, Wei G. Establishment and Investigation of a Multiple Gene Expression Signature to Predict Long-Term Survival in Pancreatic Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1570862. [PMID: 33015155 PMCID: PMC7516738 DOI: 10.1155/2020/1570862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 07/01/2020] [Indexed: 11/23/2022]
Abstract
Pancreatic cancer remains a lethal type of cancer with poor prognosis. Molecular classification enables in-depth, precise prognostic assessment. This study is aimed at identifying a robust and simple mRNA signature to predict the overall survival (OS) of pancreatic cancer (PC) patients. Differentially expressed genes (DEGs) between 45 paired pancreatic tumor samples and adjacent healthy tissues were selected. For risk determination, a LASSO Cox regression model with DEGs was used to generate the OS-associated risk score formula for the training cohort containing 177 PC patients. Another five independent datasets were used as the testing cohort to determine the predictive efficiency for further validation. In total, 441 DEGs were selected after considering the enrichment of classical pathways, such as EMT, cell cycle, cell adhesion, and PI3K-AKT. A five-gene signature for risk discrimination was established with high efficacy using LASSO Cox regression in the training group. External validation showed that patients identified by the gene expression signature to be in the high-risk group had poorer prognosis compared with the low-risk patients. Further investigation identified the differential epigenetic modification patterns of the five genes, which indicated their roles in tumor progression and their effect on therapy. In conclusion, we constructed a robust five-gene expression signature that could predict the OS of PC patients, offering a new insight for risk discrimination in daily clinical practice.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jiangning Gu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Menghong Yin
- Department of Sports Medicine, Dalian Municipal Central Hospital, Dalian Medical University, Dalian, Liaoning Province, China
| | - Di Wang
- Department of Scientific Research, Eyes & ENT Hospital of Fudan University, Shanghai, China
| | - Chi Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Jian Du
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Zhikun Lin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Siling Hu
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xuelong Wang
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ying Li
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guang Tan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Haifeng Luo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Gang Wei
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
15
|
Zhang D, Chen X, Xia H, Wang L, Zhao H, Xu B, Zhang A, Zhang W. Promotion of the occurrence of endometrioid carcinoma by S100 calcium binding protein P. BMC Cancer 2020; 20:845. [PMID: 32883230 PMCID: PMC7650527 DOI: 10.1186/s12885-020-07350-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 08/26/2020] [Indexed: 01/07/2023] Open
Abstract
Background Endometrial cancer, one of the most common malignant tumors, is a serious threat to women’s health. Endometrial hyperplasia is a precursor of endometrial cancer. S100 calcium binding protein P (S100P) has been found to play important roles in many types of cancer. The present study aimed to investigate the expression of S100P in endometrial cancer and its precursor lesions, and to explore the possible mechanisms. Methods We collected paraffin sections of normal endometrium, simple and complex non-atypical hyperplasia, atypical hyperplasia, and endometrioid carcinoma. The expression of S100P in endometrial cancer and its precancerous lesions was observed using immunohistochemistry. We also cultured primary endometrial cells and endometrial cancer cell lines (Ishikawa and RL95–2), and observed the expression of S100P in these cells. Laser confocal microscopy was used to observe the co-localization of S100P and its interacting protein Ezrin in RL95–2 cells. We employed lentiviruses to knockdown and overexpress S100P and then detected the F-actin distribution and cell invasion using phalloidin staining and Transwell assays. Results There was a gradual increase in the S100P signal as the disease progressed from normal endometrium and simple non-atypical hyperplasia, to complex non-atypical hyperplasia, atypical hyperplasia, and then to endometrial cancer. S100P was mainly distributed in the cytoplasm and co-localized with Ezrin in endometrial cancer cells. After knocking down S100P, F-actin aggregated in the nucleus or to the local cell membrane. Furthermore, knockdown of S100P in Ishikawa cells decreased their cell invasion capability. Meanwhile, S100P overexpression in endometrial stromal cells increased cell invasion. Conclusions These data suggested that S100P might be involved in the occurrence and development of endometrial cancer via interaction with Ezrin and re-organization of F-actin to promote cell invasion.
Collapse
Affiliation(s)
- Dan Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Postal address: 413 Zhaozhou Road, Shanghai, 200011, China.,Reproductive Medical Center of Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, 197 Ruijin Second Road, Shanghai, 200025, China
| | - Xiuying Chen
- Obstetrics and Gynecology Hospital, Fudan University, Postal address: 413 Zhaozhou Road, Shanghai, 200011, China
| | - Hexia Xia
- Obstetrics and Gynecology Hospital, Fudan University, Postal address: 413 Zhaozhou Road, Shanghai, 200011, China
| | - Lu Wang
- Obstetrics and Gynecology Hospital, Fudan University, Postal address: 413 Zhaozhou Road, Shanghai, 200011, China
| | - Hongbo Zhao
- Obstetrics and Gynecology Hospital, Fudan University, Postal address: 413 Zhaozhou Road, Shanghai, 200011, China
| | - Bufang Xu
- Reproductive Medical Center of Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, 197 Ruijin Second Road, Shanghai, 200025, China
| | - Aijun Zhang
- Reproductive Medical Center of Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, 197 Ruijin Second Road, Shanghai, 200025, China
| | - Wei Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Postal address: 413 Zhaozhou Road, Shanghai, 200011, China.
| |
Collapse
|
16
|
Almeida PP, Cardoso CP, de Freitas LM. PDAC-ANN: an artificial neural network to predict pancreatic ductal adenocarcinoma based on gene expression. BMC Cancer 2020; 20:82. [PMID: 32005189 PMCID: PMC6995241 DOI: 10.1186/s12885-020-6533-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Although the pancreatic ductal adenocarcinoma (PDAC) presents high mortality and metastatic potential, there is a lack of effective therapies and a low survival rate for this disease. This PDAC scenario urges new strategies for diagnosis, drug targets, and treatment. METHODS We performed a gene expression microarray meta-analysis of the tumor against normal tissues in order to identify differentially expressed genes (DEG) shared among all datasets, named core-genes (CG). We confirmed the CG protein expression in pancreatic tissue through The Human Protein Atlas. It was selected five genes with the highest area under the curve (AUC) among these proteins with expression confirmed in the tumor group to train an artificial neural network (ANN) to classify samples. RESULTS This microarray included 461 tumor and 187 normal samples. We identified a CG composed of 40 genes, 39 upregulated, and one downregulated. The upregulated CG included proteins and extracellular matrix receptors linked to actin cytoskeleton reorganization. With the Human Protein Atlas, we verified that fourteen genes of the CG are translated, with high or medium expression in most of the pancreatic tumor samples. To train our ANN, we selected the best genes (AHNAK2, KRT19, LAMB3, LAMC2, and S100P) to classify the samples based on AUC using mRNA expression. The network classified tumor samples with an f1-score of 0.83 for the normal samples and 0.88 for the PDAC samples, with an average of 0.86. The PDAC-ANN could classify the test samples with a sensitivity of 87.6 and specificity of 83.1. CONCLUSION The gene expression meta-analysis and confirmation of the protein expression allow us to select five genes highly expressed PDAC samples. We could build a python script to classify the samples based on RNA expression. This software can be useful in the PDAC diagnosis.
Collapse
Affiliation(s)
- Palloma Porto Almeida
- Núcleo de Biointegração, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, Brazil
| | - Cristina Padre Cardoso
- Núcleo de Biointegração, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, Brazil
- Faculdade Santo Agostinho, Vitória da Conquista, Brazil
| | - Leandro Martins de Freitas
- Núcleo de Biointegração, Instituto Multidisciplinar em Saúde, Universidade Federal da Bahia, Vitória da Conquista, Brazil.
| |
Collapse
|
17
|
Heizmann CW. S100 proteins: Diagnostic and prognostic biomarkers in laboratory medicine. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1197-1206. [DOI: 10.1016/j.bbamcr.2018.10.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/12/2018] [Indexed: 01/04/2023]
|
18
|
Heizmann CW. Ca 2+-Binding Proteins of the EF-Hand Superfamily: Diagnostic and Prognostic Biomarkers and Novel Therapeutic Targets. Methods Mol Biol 2019; 1929:157-186. [PMID: 30710273 DOI: 10.1007/978-1-4939-9030-6_11] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A multitude of Ca2+-sensor proteins containing the specific Ca2+-binding motif (helix-loop-helix, called EF-hand) are of major clinical relevance in a many human diseases. Measurements of troponin, the first intracellular Ca-sensor protein to be discovered, is nowadays the "gold standard" in the diagnosis of patients with acute coronary syndrome (ACS). Mutations have been identified in calmodulin and linked to inherited ventricular tachycardia and in patients affected by severe cardiac arrhythmias. Parvalbumin, when introduced into the diseased heart by gene therapy to increase contraction and relaxation speed, is considered to be a novel therapeutic strategy to combat heart failure. S100 proteins, the largest subgroup with the EF-hand protein family, are closely associated with cardiovascular diseases, various types of cancer, inflammation, and autoimmune pathologies. The intention of this review is to summarize the clinical importance of this protein family and their use as biomarkers and potential drug targets, which could help to improve the diagnosis of human diseases and identification of more selective therapeutic interventions.
Collapse
Affiliation(s)
- Claus W Heizmann
- Department of Pediatrics, Division of Clinical Chemistry and Biochemistry, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
19
|
Clinical assessment of the GNAS mutation status in patients with intraductal papillary mucinous neoplasm of the pancreas. Surg Today 2019; 49:887-893. [PMID: 30879148 DOI: 10.1007/s00595-019-01797-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 02/07/2019] [Indexed: 12/28/2022]
Abstract
Intraductal papillary mucinous neoplasm (IPMN) of the pancreas is characterized by cystic dilation of the pancreatic duct, caused by mucin hypersecretion, with slow progression via the adenoma-carcinoma sequence mechanism. Mutation of GNAS at codon 201 is found exclusively in IPMNs, occurring at a rate of 41-75%. Recent advances in molecular biological techniques have demonstrated that GNAS mutation might play a role in the transformation of IPMNs after the appearance of neoplastic cells, rather than in the tumorigenesis of IPMNs. GNAS mutation is observed frequently in the intestinal subtype of IPMNs with MUC2 expression, and less frequently in IPMNs with concomitant pancreatic ductal adenocarcinoma (PDAC). Research has focused on assessing GNAS mutation status in clinical practice using various samples. In this review, we discuss the clinical application of GNAS mutation assessment to differentiate invasive IPMNs from concomitant PDAC, examine the clonality of recurrent IPMNs in the remnant pancreas using resected specimens, and differentiate pancreatic cystic lesions using cystic fluid collected by endoscopic ultrasound-guided fine needle aspiration (EUS-FNA), duodenal fluid, and serum liquid biopsy samples.
Collapse
|