1
|
KAJI N, IWAOKA K, NAKAMURA S, TSUKAMOTO A. Fuzapladib reduces postsurgical inflammation in the intestinal muscularis externa. J Vet Med Sci 2023; 85:1151-1156. [PMID: 37730381 PMCID: PMC10686772 DOI: 10.1292/jvms.23-0257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023] Open
Abstract
Postoperative ileus (POI) is a surgical complication that induces emesis and anorexia. Fuzapladib (FUZ), an inhibitor of leukocyte-function-associated antigen type 1 (LFA-1) activation, a leukocyte adhesion molecule, exerts anti-inflammatory effects by inhibiting leukocyte migration into the inflammatory site. In this study, we examined the prophylactic impact of FUZ on POI in a mouse model. POI model mice were generated by intestinal manipulation, and the effect of FUZ on intestinal transit and the infiltration of inflammatory cells into the ileal muscularis externa was assessed. The increased number of macrophages was significantly suppressed by FUZ, whereas the infiltration of neutrophils into the ileal muscularis externa was not sufficiently inhibited in the POI model mice. Additionally, FUZ did not ameliorate delayed gastrointestinal transit in POI model mice. In conclusion, our results suggest that FUZ does not improve delayed gastrointestinal transit but partially inhibits inflammation in the ileal muscularis externa in POI model mice. FUZ may be a potential anti-inflammatory agent for the management of post-surgical inflammation.
Collapse
Affiliation(s)
- Noriyuki KAJI
- Laboratory of Pharmacology, School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| | - Kosuzu IWAOKA
- Laboratory of Laboratory Animal Science, School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| | - Shinichiro NAKAMURA
- Laboratory of Laboratory Animal Science, School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| | - Atsushi TSUKAMOTO
- Laboratory of Laboratory Animal Science, School of Veterinary Medicine, Azabu University, Kanagawa, Japan
| |
Collapse
|
2
|
Sato H, Yamane C, Higuchi K, Shindo T, Shikama H, Yamada K, Onoue S. Development of stabilized fuzapladib solution for injection: forced degradation study and pharmacokinetic evaluation. Pharm Dev Technol 2022; 27:565-571. [PMID: 35694736 DOI: 10.1080/10837450.2022.2089165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The aim of the present study was to develop and evaluate stabilized injection solutions of fuzapladib sodium hydrate using antioxidants as the stabilizers. To estimate the possible degradation factors and pathways of fuzapladib, forced degradation studies were conducted under thermal, acid, base, oxidative, and light conditions. To select an optimal excipient to stabilize fuzapladib under a solution state, a screening study of antioxidants was carried out to evaluate their effects to inhibit the degradation. The influence of the selected stabilizers on its pharmacokinetic behavior was evaluated in rats after intravenous administration. On the basis of data from the forced degradation study, thermal and oxidative stresses were significant factors accelerating the degradation of fuzapladib. Among eight tested antioxidants, vitamin C (VC) was the most effective stabilizer to suppress the accelerated degradation by heating, as evidenced by 45% inhibition of the degradation. The stabilization effect was enhanced depending on the concentration of VC. After the intravenous administration of fuzapladib (0.5 mg/kg) with or without VC (2.1 mg/kg), there were no significant differences between the pharmacokinetic behaviors of each group. From these findings, VC might be a promising excipient to stabilize the injection solution of fuzapladib without significant influence on its pharmacokinetic behavior.
Collapse
Affiliation(s)
- Hideyuki Sato
- Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Chika Yamane
- Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Koji Higuchi
- Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan.,Ishihara Sangyo Kaisha, Ltd., Kusatsu, Japan
| | | | | | - Kohei Yamada
- Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Satomi Onoue
- Laboratory of Biopharmacy, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
3
|
Apte MV, Pirola RC, Wilson JS. Pancreatic Stellate Cells. STELLATE CELLS IN HEALTH AND DISEASE 2015:271-306. [DOI: 10.1016/b978-0-12-800134-9.00016-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Niina Y, Ito T, Oono T, Nakamura T, Fujimori N, Igarashi H, Sakai Y, Takayanagi R. A sustained prostacyclin analog, ONO-1301, attenuates pancreatic fibrosis in experimental chronic pancreatitis induced by dibutyltin dichloride in rats. Pancreatology 2014; 14:201-10. [PMID: 24854616 DOI: 10.1016/j.pan.2014.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 02/24/2014] [Accepted: 02/26/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND ONO-1301, a novel sustained-release prostacyclin agonist, has an anti-fibrotic effect on the lungs, heart, and kidneys that is partly associated with the induction of hepatocyte growth factor (HGF). This study examined the anti-fibrotic effect of ONO-1301 on chronic pancreatitis (CP) progression. METHODS CP was induced in rats in vivo by dibutyltin dichloride (DBTC). Seven days after DBTC injection (day 7), a slow-release form of ONO-1301 (10 mg/kg; ONO-1301-treated group) or vehicle (DBTC-treated group) was injected. On days 14 and 28, we evaluated the histopathological CP score and mRNA expressions of HGF, cytokines, and collagen in the pancreas by real-time RT-PCR. In vitro, monocytes and pancreatic stellate cells (PSCs) were isolated from normal rat spleen and pancreas, respectively. The cytokine and collagen expressions of monocytes and PSCs were detected by real-time RT-PCR, and PSCs proliferation was examined by BrdU assay. RESULTS Histopathological CP scores in vivo improved in the ONO-1301-treated group compared to the DBTC-treated group, particularly inflammatory cell infiltration on day 14 and interstitial fibrosis on day 28. HGF mRNA increased significantly after ONO-1301 administration, whereas IL-1β, TNF-α, TGF-β, MCP-1, and collagen mRNA decreased significantly. Cytokine expression in monocytes was suppressed in vitro not only by HGF, but also ONO-1301 alone. However, neither ONO-1301 nor HGF affected the proliferation, or cytokine or collagen expression of PSCs. CONCLUSIONS ONO-1301 suppresses pancreatic fibrosis in the DBTC-induced CP model by inhibiting monocyte activity not only with induction of HGF but also by ONO-1301 itself.
Collapse
Affiliation(s)
- Yusuke Niina
- Department of Medicine and Bioregulatory Science, Kyushu University, Fukuoka, Japan
| | - Tetsuhide Ito
- Department of Medicine and Bioregulatory Science, Kyushu University, Fukuoka, Japan.
| | - Takamasa Oono
- Department of Medicine and Bioregulatory Science, Kyushu University, Fukuoka, Japan
| | - Taichi Nakamura
- Department of Medicine and Bioregulatory Science, Kyushu University, Fukuoka, Japan
| | - Nao Fujimori
- Department of Medicine and Bioregulatory Science, Kyushu University, Fukuoka, Japan
| | - Hisato Igarashi
- Department of Medicine and Bioregulatory Science, Kyushu University, Fukuoka, Japan
| | - Yoshiki Sakai
- Ono Pharmaceutical Co., Ltd., Research Headquarters, Osaka, Japan
| | - Ryoichi Takayanagi
- Department of Medicine and Bioregulatory Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
5
|
Reduction of fibrosis in dibutyltin dichloride-induced chronic pancreatitis using rat umbilical mesenchymal stem cells from Wharton's jelly. Pancreas 2013; 42:1291-302. [PMID: 24152954 DOI: 10.1097/mpa.0b013e318296924e] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVES The objective of this study was to investigate the effects of rat umbilical cord mesenchymal stem cells (UCMSCs) from Wharton's jelly on dibutyltin dichloride (DBTC)-induced chronic pancreatitis (CP) and subsequent pancreatic fibrosis in rats. METHODS A rat model of CP induced by DBTC was used. Male Sprague-Dawley rats were randomly divided into 4 groups: the control, DBTC, DBTC + UCMSCs, and control + UCMSC groups. Umbilical cord mesenchymal stem cells were administered intravenously on day 5 after the administration of DBTC. On days 14 and 28, the rats were evaluated morphologically and biochemically. The expression levels of inflammatory cytokines and chemokines in the pancreatic tissues of different groups were evaluated using quantitative real-time polymerase chain reaction. The activation of pancreatic stellate cells was estimated by immunochemistry and Western blot analysis of α-smooth muscle actin. RESULTS Umbilical cord mesenchymal stem cells were detected in inflamed pancreatic tissues. Umbilical cord mesenchymal stem cell treatment improved the histological scores and alleviated the fibrosis of pancreas samples, The expression of cytokines in the DBTC + UCMSC group was significantly lower than that in the DBTC group. Also, pancreatic stellate cell activation was inhibited by UCMSC treatment. CONCLUSIONS Xenogeneic transplantation of UCMSCs is a novel approach for the treatment of CP and subsequent fibrosis. Umbilical cord mesenchymal stem cells may be a promising therapeutic intervention for human CP in the future.
Collapse
|
6
|
Zhou CH, Lin-Li, Zhu XY, Wen-Tang, Hu DM, Dong Y, Li LY, Wang SF. Protective effects of edaravone on experimental chronic pancreatitis induced by dibutyltin dichloride in rats. Pancreatology 2013; 13:125-32. [PMID: 23561970 DOI: 10.1016/j.pan.2013.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 01/27/2013] [Accepted: 01/28/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND/AIMS To investigate the effects of edaravone, a potent free radical scavenger, on dibutyltin dichloride (DBTC)-induced chronic pancreatitis (CP) and pancreatic fibrosis. METHODS Male Sprague-Dawley rats were randomly divided into four groups (n = 16 each): control, DBTC, DBTC + edaravone, and control + edaravone. Edaravone or normal saline at a daily dose of 6 mg/kg body weight was given intraperitoneally from day 5 to day 28 after DBTC administration. On days 14 and 28, the rats were evaluated morphologically and biochemically. The expression of cytokines in pancreas TGF-β, IL-6 and TNF<alpha> was detected using RT-PCR. The activation of nuclear factor (NF)-κB in pancreatic tissue was evaluated by immunostaining and western-blot for NF-κB p65. α-smooth muscle actin (α-SMA) expression was also evaluated by immunostaining and western-blot to investigate the activation of pancreatic stellate cells (PSCs). RESULT Edaravone treatment improved the rats' body weight (p < 0.01) and feed intake levels (p < 0.05), improved the histological scores and alleviated the fibrosis of pancreas samples (p < 0.05), as well as markedly increased superoxide dismutase (SOD) activity and decreased malondialdehyde (MDA) concentrations in pancreatic tissue (p < 0.01 for both). The expression of cytokines TGF-β, IL-6 and TNF<alpha> in pancreas of DBTC group was also down-regulated by edaravone after treatment. Edaravone inhibited the activation of NF-κB and PSCs and exhibited protective effects on pancreatic tissue damage in CP. CONCLUSIONS This antioxidant may be a promising therapeutic intervention for human CP.
Collapse
Affiliation(s)
- Chun-Hua Zhou
- Department of Gastroenterology, The Second Affiliated Hospital of Soochow University, Soochow 215004, Jiangsu Province, China
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Apte MV, Pirola RC, Wilson JS. Pancreatic stellate cells: a starring role in normal and diseased pancreas. Front Physiol 2012; 3:344. [PMID: 22973234 PMCID: PMC3428781 DOI: 10.3389/fphys.2012.00344] [Citation(s) in RCA: 243] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 08/09/2012] [Indexed: 12/12/2022] Open
Abstract
While the morphology and function of cells of the exocrine and endocrine pancreas have been studied over several centuries, one important cell type in the gland, the pancreatic stellate cell (PSC), had remained undiscovered until as recently as 20 years ago. Even after its first description in 1982, it was to be another 16 years before its biology could begin to be studied, because it was only in 1998 that methods were developed to isolate and culture PSCs from rodent and human pancreas. PSCs are now known to play a critical role in pancreatic fibrosis, a consistent histological feature of two major diseases of the pancreas-chronic pancreatitis and pancreatic cancer. In health, PSCs maintain normal tissue architecture via regulation of the synthesis and degradation of extracellular matrix (ECM) proteins. Recent studies have also implied other functions for PSCs as progenitor cells, immune cells or intermediaries in exocrine pancreatic secretion in humans. During pancreatic injury, PSCs transform from their quiescent phase into an activated, myofibroblast-like phenotype that secretes excessive amounts of ECM proteins leading to the fibrosis of chronic pancreatitis and pancreatic cancer. An ever increasing number of factors that stimulate and/or inhibit PSC activation via paracrine and autocrine pathways are being identified and characterized. It is also now established that PSCs interact closely with pancreatic cancer cells to facilitate cancer progression. Based on these findings, several therapeutic strategies have been examined in experimental models of chronic pancreatitis as well as pancreatic cancer, in a bid to inhibit/retard PSC activation and thereby alleviate chronic pancreatitis or reduce tumor growth in pancreatic cancer. The challenge that remains is to translate these pre-clinical developments into clinically applicable treatments for patients with chronic pancreatitis and pancreatic cancer.
Collapse
Affiliation(s)
- Minoti V. Apte
- Pancreatic Research Group, Faculty of Medicine, South Western Sydney Clinical School, University of New South WalesSydney, NSW, Australia
| | | | | |
Collapse
|
8
|
Apte M, Pirola R, Wilson J. The fibrosis of chronic pancreatitis: new insights into the role of pancreatic stellate cells. Antioxid Redox Signal 2011; 15:2711-2722. [PMID: 21728885 DOI: 10.1089/ars.2011.4079] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
SIGNIFICANCE Prominent fibrosis is a major histological feature of chronic pancreatitis, a progressive necroinflammatory condition of the pancreas, most commonly associated with alcohol abuse. Patients with this disease often develop exocrine and endocrine insufficiency characterized by maldigestion and diabetes. Up until just over a decade ago, there was little understanding of the pathogenesis of pancreatic fibrosis in chronic pancreatitis. RECENT ADVANCES In recent times, significant progress has been made in this area, mostly due to the identification, isolation, and characterization of the cells, namely pancreatic stellate cells (PSCs) that are now established as key players in pancreatic fibrogenesis. In health, PSCs maintain normal tissue architecture via regulation of the synthesis and degradation of extracellular matrix (ECM) proteins. During pancreatic injury, PSCs transform into an activated phenotype that secretes excessive amounts of the ECM proteins that comprise fibrous tissue. CRITICAL ISSUES This Review summarizes current knowledge and critical aspects of PSC biology which have been increasingly well characterized over the past few years, particularly with respect to the response of PSCs to factors that stimulate or inhibit their activation and the intracellular signaling pathways governing these processes. Based on this knowledge, several therapeutic strategies have been examined in experimental models of pancreatic fibrosis, demonstrating that pancreatic fibrosis is a potentially reversible condition, at least in early stages. FUTURE DIRECTIONS These will involve translation of the laboratory findings into effective clinical approaches to prevent/inhibit PSC activation so as to prevent, retard, or reverse the fibrotic process in pancreatitis.
Collapse
Affiliation(s)
- Minoti Apte
- Pancreatic Research Group, South Western Sydney Clinical School, University of New South Wales, Sydney, Australia
| | | | | |
Collapse
|
9
|
Fujimori N, Oono T, Igarashi H, Ito T, Nakamura T, Uchida M, Coy DH, Jensen RT, Takayanagi R. Vasoactive intestinal peptide reduces oxidative stress in pancreatic acinar cells through the inhibition of NADPH oxidase. Peptides 2011; 32:2067-2076. [PMID: 21924308 DOI: 10.1016/j.peptides.2011.08.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Revised: 08/31/2011] [Accepted: 08/31/2011] [Indexed: 12/16/2022]
Abstract
Vasoactive intestinal peptide (VIP) attenuates experimental acute pancreatitis (AP) by inhibition of cytokine production from inflammatory cells. It has been suggested that reactive oxygen species (ROS) as well as cytokines play pivotal roles in the early pathophysiology of AP. This study aimed to clarify the effect of VIP on the oxidative condition in pancreas, especially pancreatic acinar cells (acini). Hydrogen peroxide (H(2)O(2))-induced intracellular ROS, assessed with CM-H(2)DCFDA, increased time- and dose-dependently in acini isolated from rats. Cell viability due to ROS-induced cellular damage, evaluated by MTS assay, was decreased with ≥100 μmol/L H(2)O(2). VIP significantly inhibited ROS production from acini and increased cell viability in a dose-dependent manner. Expression of antioxidants including catalase, glutathione reductase, superoxide dismutase (SOD) 1 and glutathione peroxidase was not altered by VIP except for SOD2. Furthermore, Nox1 and Nox2, major components of NADPH oxidase, were expressed in pancreatic acini, and significantly increased after H(2)O(2) treatment. Also, NADPH oxidase activity was provoked by H(2)O(2). VIP decreased NADPH oxidase activity, which was abolished by PKA inhibitor H89. These results suggested that VIP affected the mechanism of ROS production including NADPH oxidase through induction of a cAMP/PKA pathway. In conclusion, VIP reduces oxidative stress in acini through the inhibition of NADPH oxidase. These results combined with findings of our previous study suggest that VIP exerts its protective effect in pancreatic damage, not only through an inhibition of cytokine production, but also through a reduction of the injury caused by oxidative stress.
Collapse
Affiliation(s)
- Nao Fujimori
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Shimaoka Y, Tajima S, Fujimori F, Yamabayashi C, Moriyama H, Terada M, Takada T, Suzuki E, Bando M, Sugiyama Y, Narita I. Effects of IS-741, a synthetic anti-inflammatory agent, on bleomycin-induced lung injury in mice. Lung 2009; 187:331-9. [PMID: 19672658 DOI: 10.1007/s00408-009-9162-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 07/21/2009] [Indexed: 11/28/2022]
Abstract
Bleomycin (BLM)-induced lung injury consists of excessive inflammatory cell infiltration and fibrosis. IS-741 has been reported to be an anti-inflammatory drug through an inhibitory action on cell adhesion. In this study we investigated whether IS-741 could inhibit the progression of pulmonary fibrosis through inflammatory cell infiltration. Lung injury was induced in female C57BL/6 mice by intratracheal instillation of BLM. IS-741 was administered daily intraperitoneally. The hydroxyproline content and fluid content in the lung on Day 28 were significantly lower in the IS-741-treated mice. The histological degree of lung injury or fibrosis was reduced in IS-741-treated mice. Administration of IS-741 caused significant reduction in the absolute number of total cells, monocyte chemoattractant protein (MCP)-1, and cysteinyl leukotriene (cysLTs) levels in bronchoalveolar lavage fluid on Day 7. Furthermore, the hydroxyproline content was significantly lower in IS-741-treated mice even though IS-741 was started on Day 14 after BLM instillation. Treatment with IS-741 had an inhibitory effect on BLM-induced lung injury and fibrosis via the repression of MCP-1 or cysLTs in this murine experimental model.
Collapse
Affiliation(s)
- Yuichi Shimaoka
- Division of Respiratory Medicine, Graduate School of Medical and Dental Sciences, Niigata University, 1-757 Asahimachi-dori, Chuo-ku, Niigata, 951-8510, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Yasuda M, Ito T, Oono T, Kawabe K, Kaku T, Igarashi H, Nakamura T, Takayanagi R. Fractalkine and TGF-β1 levels reflect the severity of chronic pancreatitis in humans. World J Gastroenterol 2008; 14:6488-95. [PMID: 19030200 PMCID: PMC2773334 DOI: 10.3748/wjg.14.6488] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To clarify whether serum chemokine and cytokine levels can become useful biological and functional markers to assess the severity of chronic pancreatitis (CP). This study aimed at clarifying whether serum chemokine and cytokine levels can become useful biological and functional markers to assess the severity of CP.
METHODS: Serum monocyte chemoattractant protein-1 (MCP-1), transforming growth factor beta-1 (TGF-β1), and soluble type fractalkine (s-fractalkine) concentrations were examined in patients with CP (n = 109) and healthy controls (n = 116). Severity of disease was classified in patients with CP by a staging system. Relationships between stage-specific various clinical factors and serum MCP-1, TGF-β1, and s-fractalkine levels were investigated. Furthermore, 57 patients with non-alcoholic CP were similarly evaluated in order to exclude influence of alcohol intake.
RESULTS: Patients with CP showed significant higher levels of serum TGF-β1 and s-fractalkine, but not MCP-1, compared to the controls. Serum TGF-β1 in the severe stage and s-fractalkine in the mild and the severe stage of CP significantly increased compared to those of controls. However, it was observed that both TGF-β1 and s-fractalkine levels were affected by alcohol intake. In patients with non-alcoholic CP, serum TGF-β1 showed significant increase in the moderate stage of CP, and serum s-fractalkine revealed significant increase in the early stage of CP.
CONCLUSION: It is suggested that the measurement of serum F-fractalkine is useful to diagnose early-stage CP. Moreover, the combined determination of both, s-fractalkine and TGF-β1, in human sera may be helpful in evaluating the severity status of CP.
Collapse
|