1
|
Dugdale HF, Levy Y, Jungbluth H, Oldfors A, Ochala J. Aberrant myonuclear domains and impaired myofiber contractility despite marked hypertrophy in MYMK-related, Carey-Fineman-Ziter Syndrome. Acta Neuropathol Commun 2024; 12:80. [PMID: 38790073 PMCID: PMC11127446 DOI: 10.1186/s40478-024-01783-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/10/2024] [Indexed: 05/26/2024] Open
Abstract
Carey Fineman Ziter Syndrome (CFZS) is a rare autosomal recessive disease caused by mutations in the MYMK locus which encodes the protein, myomaker. Myomaker is essential for fusion and concurrent myonuclei donation of muscle progenitors during growth and development. Strikingly, in humans, MYMK mutations appear to prompt myofiber hypertrophy but paradoxically, induce generalised muscle weakness. As the underlying cellular mechanisms remain unexplored, the present study aimed to gain insights by combining myofiber deep-phenotyping and proteomic profiling. Hence, we isolated individual muscle fibers from CFZS patients and performed mechanical, 3D morphological and proteomic analyses. Myofibers from CFZS patients were ~ 4x larger than controls and possessed ~ 2x more myonuclei than those from healthy subjects, leading to disproportionally larger myonuclear domain volumes. These greater myonuclear domain sizes were accompanied by smaller intrinsic cellular force generating-capacities in myofibers from CFZS patients than in control muscle cells. Our complementary proteomic analyses indicated remodelling in 233 proteins particularly those associated with cellular respiration. Overall, our findings suggest that myomaker is somewhat functional in CFZS patients, but the associated nuclear accretion may ultimately lead to non-functional hypertrophy and altered energy-related mechanisms in CFZS patients. All of these are likely contributors of the muscle weakness experienced by CFZS patients.
Collapse
Affiliation(s)
- Hannah F Dugdale
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Yotam Levy
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Heinz Jungbluth
- Randall Centre for Cell and Molecular Biophysics, Muscle Signalling Section, Faculty of Life Sciences and Medicine (FoLSM), King's College London, London, UK
- Department of Paediatric Neurology, Neuromuscular Service, Evelina Children's Hospital, Guy's and St Thomas' Hospital NHS Foundation Trust, London, UK
| | - Anders Oldfors
- Department of Laboratory Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Julien Ochala
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Galli RA, Borsboom TC, Gineste C, Brocca L, Rossi M, Hwee DT, Malik FI, Bottinelli R, Gondin J, Pellegrino MA, de Winter JM, Ottenheijm CA. Tirasemtiv enhances submaximal muscle tension in an Acta1:p.Asp286Gly mouse model of nemaline myopathy. J Gen Physiol 2024; 156:e202313471. [PMID: 38376469 PMCID: PMC10876480 DOI: 10.1085/jgp.202313471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/01/2023] [Accepted: 01/30/2024] [Indexed: 02/21/2024] Open
Abstract
Nemaline myopathies are the most common form of congenital myopathies. Variants in ACTA1 (NEM3) comprise 15-25% of all nemaline myopathy cases. Patients harboring variants in ACTA1 present with a heterogeneous disease course characterized by stable or progressive muscle weakness and, in severe cases, respiratory failure and death. To date, no specific treatments are available. Since NEM3 is an actin-based thin filament disease, we tested the ability of tirasemtiv, a fast skeletal muscle troponin activator, to improve skeletal muscle function in a mouse model of NEM3, harboring the patient-based p.Asp286Gly variant in Acta1. Acute and long-term tirasemtiv treatment significantly increased muscle contractile capacity at submaximal stimulation frequencies in both fast-twitch extensor digitorum longus and gastrocnemius muscle, and intermediate-twitch diaphragm muscle in vitro and in vivo. Additionally, long-term tirasemtiv treatment in NEM3 mice resulted in a decreased respiratory rate with preserved minute volume, suggesting more efficient respiration. Altogether, our data support the therapeutic potential of fast skeletal muscle troponin activators in alleviating skeletal muscle weakness in a mouse model of NEM3 caused by the Acta1:p.Asp286Gly variant.
Collapse
Affiliation(s)
- Ricardo A. Galli
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Musculoskeletal Health and Tissue Function and Regeneration, Amsterdam, The Netherlands
| | - Tamara C. Borsboom
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, Amsterdam, The Netherlands
| | | | - Lorenza Brocca
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Maira Rossi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Darren T. Hwee
- Research and Early Development, Cytokinetics Inc., South San Francisco, CA, USA
| | - Fady I. Malik
- Research and Early Development, Cytokinetics Inc., South San Francisco, CA, USA
| | - Roberto Bottinelli
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- IRCCS Mondino Foundation, Pavia, Italy
| | - Julien Gondin
- Aix-Marseille University, CNRS, CRMBM, Marseille, France
- Institut NeuroMyoGène, Unité Physiopathologie et Génétique du Neurone et du Muscle, Université Claude Bernard Lyon 1, CNRS UMR 5261, INSERM U1315, Université Lyon, Lyon, France
| | | | - Josine M. de Winter
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, Amsterdam, The Netherlands
- Amsterdam Movement Sciences, Musculoskeletal Health and Tissue Function and Regeneration, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, The Netherlands
| | - Coen A.C. Ottenheijm
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Atherosclerosis, Amsterdam, The Netherlands
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
3
|
Liu Y, Lin W. Morphological and functional alterations of neuromuscular synapses in a mouse model of ACTA1 congenital myopathy. Hum Mol Genet 2024; 33:233-244. [PMID: 37883471 PMCID: PMC10800017 DOI: 10.1093/hmg/ddad183] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023] Open
Abstract
Mutations in skeletal muscle α-actin (Acta1) cause myopathies. In a mouse model of congenital myopathy, heterozygous Acta1 (H40Y) knock-in (Acta1+/Ki) mice exhibit features of human nemaline myopathy, including premature lethality, severe muscle weakness, reduced mobility, and the presence of nemaline rods in muscle fibers. In this study, we investigated the impact of Acta1 (H40Y) mutation on the neuromuscular junction (NMJ). We found that the NMJs were markedly fragmented in Acta1+/Ki mice. Electrophysiological analysis revealed a decrease in amplitude but increase in frequency of miniature end-plate potential (mEPP) at the NMJs in Acta1+/Ki mice, compared with those in wild type (Acta1+/+) mice. Evoked end-plate potential (EPP) remained similar at the NMJs in Acta1+/Ki and Acta1+/+ mice, but quantal content was increased at the NMJs in Acta1+/Ki, compared with Acta1+/+ mice, suggesting a homeostatic compensation at the NMJs in Acta1+/Ki mice to maintain normal levels of neurotransmitter release. Furthermore, short-term synaptic plasticity of the NMJs was compromised in Acta1+/Ki mice. Together, these results demonstrate that skeletal Acta1 H40Y mutation, albeit muscle-origin, leads to both morphological and functional defects at the NMJ.
Collapse
Affiliation(s)
- Yun Liu
- Department of Neuroscience, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390-9111, United States
| | - Weichun Lin
- Department of Neuroscience, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, TX 75390-9111, United States
| |
Collapse
|
4
|
Lindqvist J, Granzier H. Pharmacological Inhibition of Myostatin in a Mouse Model of Typical Nemaline Myopathy Increases Muscle Size and Force. Int J Mol Sci 2023; 24:15124. [PMID: 37894805 PMCID: PMC10606666 DOI: 10.3390/ijms242015124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Nemaline myopathy is one of the most common non-dystrophic congenital myopathies. Individuals affected by this condition experience muscle weakness and muscle smallness, often requiring supportive measures like wheelchairs or respiratory support. A significant proportion of patients, approximately one-third, exhibit compound heterozygous nebulin mutations, which usually give rise to the typical form of the disease. Currently, there are no approved treatments available for nemaline myopathy. Our research explored the modulation of myostatin, a negative regulator of muscle mass, in combating the muscle smallness associated with the disease. To investigate the effect of myostatin inhibition, we employed a mouse model with compound heterozygous nebulin mutations that mimic the typical form of the disease. The mice were treated with mRK35, a myostatin antibody, through weekly intraperitoneal injections of 10 mg/kg mRK35, commencing at two weeks of age and continuing until the mice reached four months of age. The treatment resulted in an increase in body weight and an approximate 20% muscle weight gain across most skeletal muscles, without affecting the heart. The minimum Feret diameter of type IIA and IIB fibers exhibited an increase in compound heterozygous mice, while only type IIB fibers demonstrated an increase in wild-type mice. In vitro mechanical experiments conducted on intact extensor digitorum longus muscle revealed that mRK35 augmented the physiological cross-sectional area of muscle fibers and enhanced absolute tetanic force in both wild-type and compound heterozygous mice. Furthermore, mRK35 administration improved grip strength in treated mice. Collectively, these findings indicate that inhibiting myostatin can mitigate the muscle deficits in nebulin-based typical nemaline myopathy, potentially serving as a much-needed therapeutic option.
Collapse
Affiliation(s)
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, USA;
| |
Collapse
|
5
|
Gartz M, Haberman M, Sutton J, Slick RA, Luttrell SM, Mack DL, Lawlor MW. ACTA1 H40Y mutant iPSC-derived skeletal myocytes display mitochondrial defects in an in vitro model of nemaline myopathy. Exp Cell Res 2023; 424:113507. [PMID: 36796746 PMCID: PMC9993434 DOI: 10.1016/j.yexcr.2023.113507] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023]
Abstract
Nemaline myopathies (NM) are a group of congenital myopathies that lead to muscle weakness and dysfunction. While 13 genes have been identified to cause NM, over 50% of these genetic defects are due to mutations in nebulin (NEB) and skeletal muscle actin (ACTA1), which are genes required for normal assembly and function of the thin filament. NM can be distinguished on muscle biopsies due to the presence of nemaline rods, which are thought to be aggregates of the dysfunctional protein. Mutations in ACTA1 have been associated with more severe clinical disease and muscle weakness. However, the cellular pathogenesis linking ACTA1 gene mutations to muscle weakness are unclear To evaluate cellular disease phenotypes, iPSC-derived skeletal myocytes (iSkM) harboring an ACTA1 H40Y point mutation were used to model NM in skeletal muscle. These were generated by Crispr-Cas9, and include one non-affected healthy control (C) and 2 NM iPSC clone lines, therefore representing isogenic controls. Fully differentiated iSkM were characterized to confirm myogenic status and subject to assays to evaluate nemaline rod formation, mitochondrial membrane potential, mitochondrial permeability transition pore (mPTP) formation, superoxide production, ATP/ADP/phosphate levels and lactate dehydrogenase release. C- and NM-iSkM demonstrated myogenic commitment as evidenced by mRNA expression of Pax3, Pax7, MyoD, Myf5 and Myogenin; and protein expression of Pax4, Pax7, MyoD and MF20. No nemaline rods were observed with immunofluorescent staining of NM-iSkM for ACTA1 or ACTN2, and these mRNA transcript and protein levels were comparable to C-iSkM. Mitochondrial function was altered in NM, as evidenced by decreased cellular ATP levels and altered mitochondrial membrane potential. Oxidative stress induction revealed the mitochondrial phenotype, as evidenced by collapsed mitochondrial membrane potential, early formation of the mPTP and increased superoxide production. Early mPTP formation was rescued with the addition of ATP to media. Together, these findings suggest that mitochondrial dysfunction and oxidative stress are disease phenotypes in the in vitro model of ACTA1 nemaline myopathy, and that modulation of ATP levels was sufficient to protect NM-iSkM mitochondria from stress-induced injury. Importantly, the nemaline rod phenotype was absent in our in vitro model of NM. We conclude that this in vitro model has the potential to recapitulate human NM disease phenotypes, and warrants further study.
Collapse
Affiliation(s)
- Melanie Gartz
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA; Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Margaret Haberman
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA; Diverge Translational Science Laboratory, Milwaukee, WI, USA
| | - Jessica Sutton
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA; Diverge Translational Science Laboratory, Milwaukee, WI, USA
| | - Rebecca A Slick
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Shawn M Luttrell
- Curi Bio Inc., 3000 Western Avenue, Seattle, WA, 98121, USA; Institute for Stem Cell and Regenerative Medicine, UW Medicine, Seattle, WA, USA
| | - David L Mack
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, UW Medicine, Seattle, WA, USA
| | - Michael W Lawlor
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA; Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA; Diverge Translational Science Laboratory, Milwaukee, WI, USA
| |
Collapse
|
6
|
Nemaline Myopathy in Brazilian Patients: Molecular and Clinical Characterization. Int J Mol Sci 2022; 23:ijms231911995. [PMID: 36233295 PMCID: PMC9569467 DOI: 10.3390/ijms231911995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/10/2022] [Accepted: 09/27/2022] [Indexed: 11/07/2022] Open
Abstract
Nemaline myopathy (NM), a structural congenital myopathy, presents a significant clinical and genetic heterogeneity. Here, we compiled molecular and clinical data of 30 Brazilian patients from 25 unrelated families. Next-generation sequencing was able to genetically classify all patients: sixteen families (64%) with mutation in NEB, five (20%) in ACTA1, two (8%) in KLHL40, and one in TPM2 (4%) and TPM3 (4%). In the NEB-related families, 25 different variants, 11 of them novel, were identified; splice site (10/25) and frame shift (9/25) mutations were the most common. Mutation c.24579 G>C was recurrent in three unrelated patients from the same region, suggesting a common ancestor. Clinically, the “typical” form was the more frequent and caused by mutations in the different NM genes. Phenotypic heterogeneity was observed among patients with mutations in the same gene. Respiratory involvement was very common and often out of proportion with limb weakness. Muscle MRI patterns showed variability within the forms and genes, which was related to the severity of the weakness. Considering the high frequency of NEB mutations and the complexity of this gene, NGS tools should be combined with CNV identification, especially in patients with a likely non-identified second mutation.
Collapse
|
7
|
Removal of MuRF1 Increases Muscle Mass in Nemaline Myopathy Models, but Does Not Provide Functional Benefits. Int J Mol Sci 2022; 23:ijms23158113. [PMID: 35897687 PMCID: PMC9331820 DOI: 10.3390/ijms23158113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
Nemaline myopathy (NM) is characterized by skeletal muscle weakness and atrophy. No curative treatments exist for this debilitating disease. NM is caused by mutations in proteins involved in thin-filament function, turnover, and maintenance. Mutations in nebulin, encoded by NEB, are the most common cause. Skeletal muscle atrophy is tightly linked to upregulation of MuRF1, an E3 ligase, that targets proteins for proteasome degradation. Here, we report a large increase in MuRF1 protein levels in both patients with nebulin-based NM, also named NEM2, and in mouse models of the disease. We hypothesized that knocking out MuRF1 in animal models of NM with muscle atrophy would ameliorate the muscle deficits. To test this, we crossed MuRF1 KO mice with two NEM2 mouse models, one with the typical form and the other with the severe form. The crosses were viable, and muscles were studied in mice at 3 months of life. Ultrastructural examination of gastrocnemius muscle lacking MuRF1 and with severe NM revealed a small increase in vacuoles, but no significant change in the myofibrillar fractional area. MuRF1 deficiency led to increased weights of various muscle types in the NM models. However, this increase in muscle size was not associated with increased in vivo or in vitro force production. We conclude that knocking out MuRF1 in NEM2 mice increases muscle size, but does not improve muscle function.
Collapse
|
8
|
Myofibre Hyper-Contractility in Horses Expressing the Myosin Heavy Chain Myopathy Mutation, MYH1E321G. Cells 2021; 10:cells10123428. [PMID: 34943936 PMCID: PMC8699922 DOI: 10.3390/cells10123428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 11/17/2022] Open
Abstract
Myosinopathies are defined as a group of muscle disorders characterized by mutations in genes encoding myosin heavy chains. Their exact molecular and cellular mechanisms remain unclear. In the present study, we have focused our attention on a MYH1-related E321G amino acid substitution within the head region of the type IIx skeletal myosin heavy chain, associated with clinical signs of atrophy, inflammation and/or profound rhabdomyolysis, known as equine myosin heavy chain myopathy. We performed Mant-ATP chase experiments together with force measurements on isolated IIx myofibres from control horses (MYH1E321G−/−) and Quarter Horses homozygous (MYH1E321G+/+) or heterozygous (MYH1E321G+/−) for the E321G mutation. The single residue replacement did not affect the relaxed conformations of myosin molecules. Nevertheless, it significantly increased its active behaviour as proven by the higher maximal force production and Ca2+ sensitivity for MYH1E321G+/+ in comparison with MYH1E321G+/− and MYH1E321G−/− horses. Altogether, these findings indicate that, in the presence of the E321G mutation, a molecular and cellular hyper-contractile phenotype occurs which could contribute to the development of the myosin heavy chain myopathy.
Collapse
|
9
|
Ferrandi PJ, Alway SE, Mohamed JS. The interaction between SARS-CoV-2 and ACE2 may have consequences for skeletal muscle viral susceptibility and myopathies. J Appl Physiol (1985) 2020; 129:864-867. [PMID: 32673162 PMCID: PMC7832004 DOI: 10.1152/japplphysiol.00321.2020] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Peter J Ferrandi
- Laboratory of Muscle and Nerve, Department of Diagnostic and Health Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, Tennessee.,Center for Muscle, Metabolism and Neuropathology, Division of Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Stephen E Alway
- Laboratory of Muscle Biology and Sarcopenia, Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, Tennessee.,Center for Muscle, Metabolism and Neuropathology, Division of Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Junaith S Mohamed
- Laboratory of Muscle and Nerve, Department of Diagnostic and Health Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, Tennessee.,Center for Muscle, Metabolism and Neuropathology, Division of Rehabilitation Sciences, College of Health Professions, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
10
|
Laitila JM, McNamara EL, Wingate CD, Goullee H, Ross JA, Taylor RL, van der Pijl R, Griffiths LM, Harries R, Ravenscroft G, Clayton JS, Sewry C, Lawlor MW, Ottenheijm CAC, Bakker AJ, Ochala J, Laing NG, Wallgren-Pettersson C, Pelin K, Nowak KJ. Nebulin nemaline myopathy recapitulated in a compound heterozygous mouse model with both a missense and a nonsense mutation in Neb. Acta Neuropathol Commun 2020; 8:18. [PMID: 32066503 PMCID: PMC7027239 DOI: 10.1186/s40478-020-0893-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 02/05/2020] [Indexed: 12/31/2022] Open
Abstract
Nemaline myopathy (NM) caused by mutations in the gene encoding nebulin (NEB) accounts for at least 50% of all NM cases worldwide, representing a significant disease burden. Most NEB-NM patients have autosomal recessive disease due to a compound heterozygous genotype. Of the few murine models developed for NEB-NM, most are Neb knockout models rather than harbouring Neb mutations. Additionally, some models have a very severe phenotype that limits their application for evaluating disease progression and potential therapies. No existing murine models possess compound heterozygous Neb mutations that reflect the genotype and resulting phenotype present in most patients. We aimed to develop a murine model that more closely matched the underlying genetics of NEB-NM, which could assist elucidation of the pathogenetic mechanisms underlying the disease. Here, we have characterised a mouse strain with compound heterozygous Neb mutations; one missense (p.Tyr2303His), affecting a conserved actin-binding site and one nonsense mutation (p.Tyr935*), introducing a premature stop codon early in the protein. Our studies reveal that this compound heterozygous model, NebY2303H, Y935X, has striking skeletal muscle pathology including nemaline bodies. In vitro whole muscle and single myofibre physiology studies also demonstrate functional perturbations. However, no reduction in lifespan was noted. Therefore, NebY2303H,Y935X mice recapitulate human NEB-NM and are a much needed addition to the NEB-NM mouse model collection. The moderate phenotype also makes this an appropriate model for studying NEB-NM pathogenesis, and could potentially be suitable for testing therapeutic applications.
Collapse
|
11
|
Pula S, Urankar K, Norman A, Pierre G, Langton-Hewer S, Selby V, Mason F, Vijayakumar K, McFarland R, Taylor RW, Majumdar A. A novel de novo ACTA1 variant in a patient with nemaline myopathy and mitochondrial Complex I deficiency. Neuromuscul Disord 2020; 30:159-164. [PMID: 32005493 DOI: 10.1016/j.nmd.2019.11.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 11/23/2019] [Accepted: 11/28/2019] [Indexed: 12/30/2022]
Abstract
We describe the presentation and follow-up of a three-year-old girl with nemaline myopathy due to a de-novo variant in ACTA1 (encoding skeletal alpha actin) and moderately low enzyme level of Complex I of the mitochondrial respiratory chain. She presented in the neonatal period with hypotonia, followed by weakness in the facial, bulbar, respiratory and neck flexors muscles. A biopsy of her quadriceps muscle at the age of one year showed nemaline rods. Based on her clinical presentation of a congenital myopathy and histopathological features on a muscle biopsy, ACTA1 was sequenced, and this revealed a novel sequence variant, c.760 A>C p. (Asn254His). In addition, mitochondrial respiratory chain enzymatic activity of skeletal muscle biopsy showed a moderately low activity of complex I (nicotinamide adenine dinucleotide (NADH): ubiquinone oxidoreductase). Disturbances of Complex I of the respiratory chain have been reported in patients with nemaline myopathy, although the mechanism remains unclear.
Collapse
Affiliation(s)
- Shpresa Pula
- Department of Paediatric Neurology, University Hospitals Bristol NHS Foundation Trust, 6th Floor Education Centre, Upper Maudlin St, Bristol BS2 8BJ, United Kingdom
| | - Kathryn Urankar
- Department of Neuropathology, North Bristol Hospital NHS Foundation Trust, Bristol, United Kingdom
| | - Andrew Norman
- Department of Clinical Genetics, University Hospitals Bristol NHS Foundation Trust, Bristol, United Kingdom
| | - Germaine Pierre
- Department of Paediatric Neurology, University Hospitals Bristol NHS Foundation Trust, 6th Floor Education Centre, Upper Maudlin St, Bristol BS2 8BJ, United Kingdom
| | - Simon Langton-Hewer
- Department of Paediatric Respiratory Medicine, Bristol Royal Hospital for Children, University Hospitals Bristol NHS Foundation Trust, Bristol, United Kingdom
| | - Victoria Selby
- Department of Paediatric Neurology, University Hospitals Bristol NHS Foundation Trust, 6th Floor Education Centre, Upper Maudlin St, Bristol BS2 8BJ, United Kingdom
| | - Faye Mason
- Department of Paediatric Neurology, University Hospitals Bristol NHS Foundation Trust, 6th Floor Education Centre, Upper Maudlin St, Bristol BS2 8BJ, United Kingdom
| | - Kayal Vijayakumar
- Department of Paediatric Neurology, University Hospitals Bristol NHS Foundation Trust, 6th Floor Education Centre, Upper Maudlin St, Bristol BS2 8BJ, United Kingdom
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Institute of Neurosciences, Newcastle University, Newcastle, United Kingdom
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Institute of Neurosciences, Newcastle University, Newcastle, United Kingdom
| | - Anirban Majumdar
- Department of Paediatric Neurology, University Hospitals Bristol NHS Foundation Trust, 6th Floor Education Centre, Upper Maudlin St, Bristol BS2 8BJ, United Kingdom.
| |
Collapse
|
12
|
Lee EJ, Kolb J, Hwee DT, Malik FI, Granzier HL. Functional Characterization of the Intact Diaphragm in a Nebulin-Based Nemaline Myopathy (NM) Model-Effects of the Fast Skeletal Muscle Troponin Activator tirasemtiv. Int J Mol Sci 2019; 20:E5008. [PMID: 31658633 PMCID: PMC6829460 DOI: 10.3390/ijms20205008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/05/2019] [Accepted: 10/06/2019] [Indexed: 02/08/2023] Open
Abstract
Respiratory failure due to diaphragm dysfunction is considered a main cause of death in nemaline myopathy (NM) and we studied both isometric force and isotonic shortening of diaphragm muscle in a mouse model of nebulin-based NM (Neb cKO). A large contractile deficit was found in nebulin-deficient intact muscle that is frequency dependent, with the largest deficits at low-intermediate stimulation frequencies (e.g., a deficit of 72% at a stimulation frequency of 20 Hz). The effect of the fast skeletal muscle troponin activator (FSTA) tirasemtiv on force was examined. Tirasemtiv had a negligible effect at maximal stimulation frequencies, but greatly reduced the force deficit of the diaphragm at sub-maximal stimulation levels with an effect that was largest in Neb cKO diaphragm. As a result, the force deficit of Neb cKO diaphragm fell (from 72% to 29% at 20 Hz). Similar effects were found in in vivo experiments on the nerve-stimulated gastrocnemius muscle complex. Load-clamp experiments on diaphragm muscle showed that tirasemtiv increased the shortening velocity, and reduced the deficit in mechanical power by 33%. Thus, tirasemtiv significantly improves muscle function in a mouse model of nebulin-based nemaline myopathy.
Collapse
Affiliation(s)
- Eun-Jeong Lee
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA.
| | - Justin Kolb
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA.
| | - Darren T Hwee
- Research and Early Development, Cytokinetics, Inc., South San Francisco, CA 94080, USA.
| | - Fady I Malik
- Research and Early Development, Cytokinetics, Inc., South San Francisco, CA 94080, USA.
| | - Henk L Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA.
- Medical Research Building, RM 325, 1656 E Mabel St, Tucson, AZ 85721, USA.
| |
Collapse
|
13
|
Ross JA, Levy Y, Ripolone M, Kolb JS, Turmaine M, Holt M, Lindqvist J, Claeys KG, Weis J, Monforte M, Tasca G, Moggio M, Figeac N, Zammit PS, Jungbluth H, Fiorillo C, Vissing J, Witting N, Granzier H, Zanoteli E, Hardeman EC, Wallgren-Pettersson C, Ochala J. Impairments in contractility and cytoskeletal organisation cause nuclear defects in nemaline myopathy. Acta Neuropathol 2019; 138:477-495. [PMID: 31218456 PMCID: PMC6689292 DOI: 10.1007/s00401-019-02034-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/28/2019] [Accepted: 06/05/2019] [Indexed: 02/07/2023]
Abstract
Nemaline myopathy (NM) is a skeletal muscle disorder caused by mutations in genes that are generally involved in muscle contraction, in particular those related to the structure and/or regulation of the thin filament. Many pathogenic aspects of this disease remain largely unclear. Here, we report novel pathological defects in skeletal muscle fibres of mouse models and patients with NM: irregular spacing and morphology of nuclei; disrupted nuclear envelope; altered chromatin arrangement; and disorganisation of the cortical cytoskeleton. Impairments in contractility are the primary cause of these nuclear defects. We also establish the role of microtubule organisation in determining nuclear morphology, a phenomenon which is likely to contribute to nuclear alterations in this disease. Our results overlap with findings in diseases caused directly by mutations in nuclear envelope or cytoskeletal proteins. Given the important role of nuclear shape and envelope in regulating gene expression, and the cytoskeleton in maintaining muscle fibre integrity, our findings are likely to explain some of the hallmarks of NM, including contractile filament disarray, altered mechanical properties and broad transcriptional alterations.
Collapse
|
14
|
Abstract
Nemaline myopathy (NM) is among the most common non-dystrophic congenital myopathies (incidence 1:50.000). Hallmark features of NM are skeletal muscle weakness and the presence of nemaline bodies in the muscle fiber. The clinical phenotype of NM patients is quite diverse, ranging from neonatal death to normal lifespan with almost normal motor function. As the respiratory muscles are involved as well, severely affected patients are ventilator-dependent. The mechanisms underlying muscle weakness in NM are currently poorly understood. Therefore, no therapeutic treatment is available yet. Eleven implicated genes have been identified: ten genes encode proteins that are either components of thin filament, or are thought to contribute to stability or turnover of thin filament proteins. The thin filament is a major constituent of the sarcomere, the smallest contractile unit in muscle. It is at this level of contraction – thin-thick filament interaction – where muscle weakness originates in NM patients. This review focusses on how sarcomeric gene mutations directly compromise sarcomere function in NM. Insight into the contribution of sarcomeric dysfunction to muscle weakness in NM, across the genes involved, will direct towards the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
| | - Coen A.C. Ottenheijm
- Correspondence to: Coen Ottenheijm, PhD, Department of Physiology, VU University Medical Center, O|2 building, 12W-51, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands. Tel.: +31 20 4448123; Fax: +31 20 4448124; E-mail:
| |
Collapse
|
15
|
Sewry CA, Laitila JM, Wallgren-Pettersson C. Nemaline myopathies: a current view. J Muscle Res Cell Motil 2019; 40:111-126. [PMID: 31228046 PMCID: PMC6726674 DOI: 10.1007/s10974-019-09519-9] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022]
Abstract
Nemaline myopathies are a heterogenous group of congenital myopathies caused by de novo, dominantly or recessively inherited mutations in at least twelve genes. The genes encoding skeletal α-actin (ACTA1) and nebulin (NEB) are the commonest genetic cause. Most patients have congenital onset characterized by muscle weakness and hypotonia, but the spectrum of clinical phenotypes is broad, ranging from severe neonatal presentations to onset of a milder disorder in childhood. Most patients with adult onset have an autoimmune-related myopathy with a progressive course. The wide application of massively parallel sequencing methods is increasing the number of known causative genes and broadening the range of clinical phenotypes. Nemaline myopathies are identified by the presence of structures that are rod-like or ovoid in shape with electron microscopy, and with light microscopy stain red with the modified Gömöri trichrome technique. These rods or nemaline bodies are derived from Z lines (also known as Z discs or Z disks) and have a similar lattice structure and protein content. Their shape in patients with mutations in KLHL40 and LMOD3 is distinctive and can be useful for diagnosis. The number and distribution of nemaline bodies varies between fibres and different muscles but does not correlate with severity or prognosis. Additional pathological features such as caps, cores and fibre type disproportion are associated with the same genes as those known to cause the presence of rods. Animal models are advancing the understanding of the effects of various mutations in different genes and paving the way for the development of therapies, which at present only manage symptoms and are aimed at maintaining muscle strength, joint mobility, ambulation, respiration and independence in the activities of daily living.
Collapse
Affiliation(s)
- Caroline A Sewry
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health and Great Ormond Street Hospital, 30 Guilford Street, London, WC1N 1EH, UK. .,Wolfson Centre of Inherited Neuromuscular Disorders, RJAH Orthopaedic Hospital, Oswestry, SY10 7AG, UK.
| | - Jenni M Laitila
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Carina Wallgren-Pettersson
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| |
Collapse
|
16
|
Hayashi Y, Ono K, Ono S. Mutations in Caenorhabditis elegans actin, which are equivalent to human cardiomyopathy mutations, cause abnormal actin aggregation in nematode striated muscle. F1000Res 2019; 8:279. [PMID: 30984387 PMCID: PMC6446495 DOI: 10.12688/f1000research.18476.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/08/2019] [Indexed: 01/19/2023] Open
Abstract
Actin is a central component of muscle contractile apparatuses, and a number of actin mutations cause diseases in skeletal, cardiac, and smooth muscles. However, many pathogenic actin mutations have not been characterized at cell biological and physiological levels. In this study, we tested whether the nematode Caenorhabditis elegans could be used to characterize properties of actin mutants in muscle cells in vivo. Two representative actin mutations, E99K and P164A, which cause hypertrophic cardiomyopathy in humans, are introduced in a muscle-specific C. elegans actin ACT-4 as E100K and P165A, respectively. When green fluorescent protein-tagged wild-type ACT-4 (GFP-ACT-4), is transgenically expressed in muscle at low levels as compared with endogenous actin, it is incorporated into sarcomeres without disturbing normal structures. GFP-ACT-4 variants with E100K and P165A are incorporated into sarcomeres, but also accumulated in abnormal aggregates, which have not been reported for equivalent actin mutations in previous studies. Muscle contractility, as determined by worm motility, is not apparently affected by expression of ACT-4 mutants. Our results suggest that C. elegans muscle is a useful model system to characterize abnormalities caused by actin mutations.
Collapse
Affiliation(s)
- Yuriko Hayashi
- Department of Pathology, Emory University, Atlanta, Georgia, 30322, USA
- Department of Cell Biology, Emory University, Atlanta, Georgia, 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, Georgia, 30322, USA
| | - Kanako Ono
- Department of Pathology, Emory University, Atlanta, Georgia, 30322, USA
- Department of Cell Biology, Emory University, Atlanta, Georgia, 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, Georgia, 30322, USA
| | - Shoichiro Ono
- Department of Pathology, Emory University, Atlanta, Georgia, 30322, USA
- Department of Cell Biology, Emory University, Atlanta, Georgia, 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, Georgia, 30322, USA
| |
Collapse
|
17
|
Tinklenberg JA, Siebers EM, Beatka MJ, Meng H, Yang L, Zhang Z, Ross JA, Ochala J, Morris C, Owens JM, Laing NG, Nowak KJ, Lawlor MW. Myostatin inhibition using mRK35 produces skeletal muscle growth and tubular aggregate formation in wild type and TgACTA1D286G nemaline myopathy mice. Hum Mol Genet 2019; 27:638-648. [PMID: 29293963 DOI: 10.1093/hmg/ddx431] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/15/2017] [Indexed: 12/27/2022] Open
Abstract
Nemaline myopathy (NM) is a heterogeneous congenital skeletal muscle disease with cytoplasmic rod-like structures (nemaline bodies) in muscle tissue. While weakness in NM is related to contractile abnormalities, myofiber smallness is an additional abnormality in NM that may be treatable. We evaluated the effects of mRK35 (a myostatin inhibitor developed by Pfizer) treatment in the TgACTA1D286G mouse model of NM. mRK35 induced skeletal muscle growth that led to significant increases in animal bodyweight, forelimb grip strength and muscle fiber force, although it should be noted that animal weight and forelimb grip strength in untreated TgACTA1D286G mice was not different from controls. Treatment was also associated with an increase in the number of tubular aggregates found in skeletal muscle. These findings suggest that myostatin inhibition may be useful in promoting muscle growth and strength in Acta1-mutant muscle, while also further establishing the relationship between low levels of myostatin and tubular aggregate formation.
Collapse
Affiliation(s)
- Jennifer A Tinklenberg
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee 53226, WI, USA
| | - Emily M Siebers
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee 53226, WI, USA
| | - Margaret J Beatka
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee 53226, WI, USA
| | - Hui Meng
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee 53226, WI, USA
| | - Lin Yang
- Department of Biomedical Engineering, University of Florida, Gainesville 32607, FL, USA
| | - Zizhao Zhang
- Department of Biomedical Engineering, University of Florida, Gainesville 32607, FL, USA
| | - Jacob A Ross
- School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Julien Ochala
- School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | | | | | - Nigel G Laing
- Centre for Medical Research, The University of Western Australia, Perth, WA, Australia.,Harry Perkins Institute of Medical Research, Nedlands, WA, Australia
| | - Kristen J Nowak
- Harry Perkins Institute of Medical Research, Nedlands, WA, Australia.,Faculty of Health and Medical Sciences, School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Michael W Lawlor
- Division of Pediatric Pathology, Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee 53226, WI, USA
| |
Collapse
|
18
|
Fan J, Chan C, McNamara EL, Nowak KJ, Iwamoto H, Ochala J. Molecular Consequences of the Myopathy-Related D286G Mutation on Actin Function. Front Physiol 2018; 9:1756. [PMID: 30564146 PMCID: PMC6288369 DOI: 10.3389/fphys.2018.01756] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/20/2018] [Indexed: 01/06/2023] Open
Abstract
Myopathies are notably associated with mutations in genes encoding proteins known to be essential for the force production of skeletal muscle fibers, such as skeletal alpha-actin. The exact molecular mechanisms by which these specific defects induce myopathic phenotypes remain unclear. Hence, in the present study, to better understand actin dysfunction, we conducted a molecular dynamic simulation together with ex vivo experiments of the specific muscle disease-causing actin mutation, D286G located in the actin-actin interface. Our computational study showed that D286G impairs the flexural rigidity of actin filaments. However, upon activation, D286G did not have any direct consequences on actin filament extension. Hence, D286G may alter the structure of actin filaments but, when expressed together with normal actin molecules, it may only have minor effects on the ex vivo mechanics of actin filaments upon skeletal muscle fiber contraction.
Collapse
Affiliation(s)
- Jun Fan
- Department of Physics and Materials Science, The University of Hong Kong, Hong Kong, Hong Kong.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Chun Chan
- Department of Physics and Materials Science, The University of Hong Kong, Hong Kong, Hong Kong
| | - Elyshia L McNamara
- Harry Perkins Institute of Medical Research, QEII Medical Centre, The University of Western Australia, Nedlands, WA, Australia
| | - Kristen J Nowak
- Harry Perkins Institute of Medical Research, QEII Medical Centre, The University of Western Australia, Nedlands, WA, Australia.,Department of Health, Office of Population Health Genomics, Public and Aboriginal Health Division, Government of Western Australia, East Perth, WA, Australia.,School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Hiroyuki Iwamoto
- SPring-8, Japan Synchrotron Radiation Research Institute, Sayo, Japan
| | - Julien Ochala
- School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| |
Collapse
|
19
|
Levy Y, Ross JA, Niglas M, Snetkov VA, Lynham S, Liao CY, Puckelwartz MJ, Hsu YM, McNally EM, Alsheimer M, Harridge SD, Young SG, Fong LG, Español Y, Lopez-Otin C, Kennedy BK, Lowe DA, Ochala J. Prelamin A causes aberrant myonuclear arrangement and results in muscle fiber weakness. JCI Insight 2018; 3:120920. [PMID: 30282816 PMCID: PMC6237469 DOI: 10.1172/jci.insight.120920] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/23/2018] [Indexed: 01/06/2023] Open
Abstract
Physiological and premature aging are frequently associated with an accumulation of prelamin A, a precursor of lamin A, in the nuclear envelope of various cell types. Here, we aimed to underpin the hitherto unknown mechanisms by which prelamin A alters myonuclear organization and muscle fiber function. By experimentally studying membrane-permeabilized myofibers from various transgenic mouse lines, our results indicate that, in the presence of prelamin A, the abundance of nuclei and myosin content is markedly reduced within muscle fibers. This leads to a concept by which the remaining myonuclei are very distant from each other and are pushed to function beyond their maximum cytoplasmic capacity, ultimately inducing muscle fiber weakness.
Collapse
Affiliation(s)
- Yotam Levy
- School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, and
| | - Jacob A Ross
- School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, and
| | - Marili Niglas
- School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, and
| | - Vladimir A Snetkov
- School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, and
| | - Steven Lynham
- Proteomics Facility, Centre of Excellence for Mass Spectrometry, King's College London, London, United Kingdom
| | - Chen-Yu Liao
- Buck Institute for Research on Aging, Novato, California, USA
| | - Megan J Puckelwartz
- Center for Genetic Medicine, Northwestern University, Chicago, Illinois, USA
| | - Yueh-Mei Hsu
- Buck Institute for Research on Aging, Novato, California, USA
| | - Elizabeth M McNally
- Center for Genetic Medicine, Northwestern University, Chicago, Illinois, USA
| | - Manfred Alsheimer
- Department of Cell and Developmental Biology, University of Würzburg, Würzburg, Germany
| | - Stephen Dr Harridge
- School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, and
| | - Stephen G Young
- Department of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Loren G Fong
- Department of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Yaiza Español
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Carlos Lopez-Otin
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Brian K Kennedy
- Buck Institute for Research on Aging, Novato, California, USA.,Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Centre for Healthy Ageing, National University Health System, Singapore.,Singapore Institute for Clinical Sciences, Singapore
| | - Dawn A Lowe
- Divisions of Rehabilitation Science and Physical Therapy, Department of Rehabilitation Medicine, School of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Julien Ochala
- School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, and
| |
Collapse
|
20
|
Ross JA, Levy Y, Svensson K, Philp A, Schenk S, Ochala J. SIRT1 regulates nuclear number and domain size in skeletal muscle fibers. J Cell Physiol 2018; 233:7157-7163. [PMID: 29574748 PMCID: PMC5993587 DOI: 10.1002/jcp.26542] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 02/12/2018] [Indexed: 12/16/2022]
Abstract
Skeletal muscle fibers are giant multinucleated cells wherein individual nuclei govern the protein synthesis in a finite volume of cytoplasm; this is termed the myonuclear domain (MND). The factors that control MND size remain to be defined. In the present study, we studied the contribution of the NAD+‐dependent deacetylase, sirtuin 1 (SIRT1), to the regulation of nuclear number and MND size. For this, we isolated myofibers from mice with tissue‐specific inactivation (mKO) or inducible overexpression (imOX) of SIRT1 and analyzed the 3D organisation of myonuclei. In imOX mice, the number of nuclei was increased whilst the average MND size was decreased as compared to littermate controls. Our findings were the opposite in mKO mice. Muscle stem cell (satellite cell) numbers were reduced in mKO muscles, a possible explanation for the lower density of myonuclei in these mice; however, no change was observed in imOX mice, suggesting that other factors might also be involved, such as the functional regulation of stem cells/muscle precursors. Interestingly, however, the changes in the MND volume did not impact the force‐generating capacity of muscle fibers. Taken together, our results demonstrate that SIRT1 is a key regulator of MND sizes, although the underlying molecular mechanisms and the cause‐effect relationship between MND and muscle function remain to be fully defined.
Collapse
Affiliation(s)
- Jacob A Ross
- School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Yotam Levy
- School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Kristoffer Svensson
- Department of Orthopaedic Surgery, University of California San Diego, La Jolla, California.,Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California
| | - Andrew Philp
- School of Sport and Exercise Sciences, University of Birmingham, Birmingham, UK
| | - Simon Schenk
- Department of Orthopaedic Surgery, University of California San Diego, La Jolla, California.,Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, California
| | - Julien Ochala
- School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
21
|
Joureau B, de Winter JM, Conijn S, Bogaards SJP, Kovacevic I, Kalganov A, Persson M, Lindqvist J, Stienen GJM, Irving TC, Ma W, Yuen M, Clarke NF, Rassier DE, Malfatti E, Romero NB, Beggs AH, Ottenheijm CAC. Dysfunctional sarcomere contractility contributes to muscle weakness in ACTA1-related nemaline myopathy (NEM3). Ann Neurol 2018; 83:269-282. [PMID: 29328520 DOI: 10.1002/ana.25144] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 01/10/2018] [Accepted: 01/10/2018] [Indexed: 01/23/2023]
Abstract
OBJECTIVE Nemaline myopathy (NM) is one of the most common congenital nondystrophic myopathies and is characterized by muscle weakness, often from birth. Mutations in ACTA1 are a frequent cause of NM (ie, NEM3). ACTA1 encodes alpha-actin 1, the main constituent of the sarcomeric thin filament. The mechanisms by which mutations in ACTA1 contribute to muscle weakness in NEM3 are incompletely understood. We hypothesized that sarcomeric dysfunction contributes to muscle weakness in NEM3 patients. METHODS To test this hypothesis, we performed contractility measurements in individual muscle fibers and myofibrils obtained from muscle biopsies of 14 NEM3 patients with different ACTA1 mutations. To identify the structural basis for impaired contractility, low angle X-ray diffraction and stimulated emission-depletion microscopy were applied. RESULTS Our findings reveal that muscle fibers of NEM3 patients display a reduced maximal force-generating capacity, which is caused by dysfunctional sarcomere contractility in the majority of patients, as revealed by contractility measurements in myofibrils. Low angle X-ray diffraction and stimulated emission-depletion microscopy indicate that dysfunctional sarcomere contractility in NEM3 patients involves a lower number of myosin heads binding to actin during muscle activation. This lower number is not the result of reduced thin filament length. Interestingly, the calcium sensitivity of force is unaffected in some patients, but decreased in others. INTERPRETATION Dysfunctional sarcomere contractility is an important contributor to muscle weakness in the majority of NEM3 patients. This information is crucial for patient stratification in future clinical trials. Ann Neurol 2018;83:269-282.
Collapse
Affiliation(s)
- Barbara Joureau
- Department of Physiology, VU University Medical Center Amsterdam, Amsterdam, the Netherlands
| | | | - Stefan Conijn
- Department of Physiology, VU University Medical Center Amsterdam, Amsterdam, the Netherlands
| | - Sylvia J P Bogaards
- Department of Physiology, VU University Medical Center Amsterdam, Amsterdam, the Netherlands
| | - Igor Kovacevic
- Department of Physiology, VU University Medical Center Amsterdam, Amsterdam, the Netherlands
| | - Albert Kalganov
- Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
| | - Malin Persson
- Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada.,Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Johan Lindqvist
- Department of Molecular and Cellular Biology and Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ
| | - Ger J M Stienen
- Department of Physiology, VU University Medical Center Amsterdam, Amsterdam, the Netherlands
| | - Thomas C Irving
- Biophysics Collaborative Access Team, Center for Synchrotron Radiation Research and Instrumentation, and Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL
| | - Weikang Ma
- Biophysics Collaborative Access Team, Center for Synchrotron Radiation Research and Instrumentation, and Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL
| | - Michaela Yuen
- Department of Physiology, VU University Medical Center Amsterdam, Amsterdam, the Netherlands.,Institute for Neuroscience and Muscle Research, Children's Hospital at Westmead, Westmead, New South Wales, Australia.,Discipline of Pediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
| | - Nigel F Clarke
- Institute for Neuroscience and Muscle Research, Children's Hospital at Westmead, Westmead, New South Wales, Australia.,Discipline of Pediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
| | - Dilson E Rassier
- Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
| | - Edoardo Malfatti
- Pierre and Marie Curie University/University of Paris VI, Sorbonne Universities, National Institute of Health and Medical Research UMRS974, National Center for Scientific Research FRE3617, Center for Research in Myology, Pitié-Salpêtrière Hospital Group, Paris, France
| | - Norma B Romero
- Pierre and Marie Curie University/University of Paris VI, Sorbonne Universities, National Institute of Health and Medical Research UMRS974, National Center for Scientific Research FRE3617, Center for Research in Myology, Pitié-Salpêtrière Hospital Group, Paris, France
| | - Alan H Beggs
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Coen A C Ottenheijm
- Department of Physiology, VU University Medical Center Amsterdam, Amsterdam, the Netherlands.,Department of Molecular and Cellular Biology and Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ
| |
Collapse
|
22
|
Mechanical isolation, and measurement of force and myoplasmic free [Ca 2+] in fully intact single skeletal muscle fibers. Nat Protoc 2017; 12:1763-1776. [PMID: 28771237 DOI: 10.1038/nprot.2017.056] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mechanical dissection of single intact mammalian skeletal muscle fibers permits real-time measurement of intracellular properties and contractile function of living fibers. A major advantage of mechanical over enzymatic fiber dissociation is that single fibers can be isolated with their tendons remaining attached, which allows contractile forces (in the normal expected range of 300-450 kN/m2) to be measured during electrical stimulation. Furthermore, the sarcolemma of single fibers remains fully intact after mechanical dissection, and hence the living fibers can be studied with intact intracellular milieu and normal function and metabolic properties, as well as ionic control. Given that Ca2+ is the principal regulator of the contractile force, measurements of myoplasmic free [Ca2+] ([Ca2+]i) can be used to further delineate the intrinsic mechanisms underlying changes in skeletal muscle function. [Ca2+]i measurements are most commonly performed in intact single fibers using ratiometric fluorescent indicators such as indo-1 or fura-2. These Ca2+ indicators are introduced into the fiber by pressure injection or by using the membrane-permeable indo-1 AM, and [Ca2+]i is measured by calculating a ratio of the fluorescence at specific wavelengths emitted for the Ca2+-free and Ca2+-bound forms of the dye. We describe here the procedures for mechanical dissection, and for force and [Ca2+]i measurement in intact single fibers from mouse flexor digitorum brevis (FDB) muscle, which is the most commonly used muscle in studies using intact single fibers. This technique can also be used to isolate intact single fibers from various muscles and from various species. As an alternative to Ca2+ indicators, single fibers can also be loaded with fluorescent indicators to measure, for instance, reactive oxygen species, pH, and [Mg2+], or they can be injected with proteins to change functional properties. The entire protocol, from dissection to the start of an experiment on a single fiber, takes ∼3 h.
Collapse
|
23
|
Ross JA, Pearson A, Levy Y, Cardel B, Handschin C, Ochala J. Exploring the Role of PGC-1α in Defining Nuclear Organisation in Skeletal Muscle Fibres. J Cell Physiol 2016; 232:1270-1274. [PMID: 27861863 DOI: 10.1002/jcp.25678] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 11/03/2016] [Indexed: 12/16/2022]
Abstract
Muscle fibres are multinucleated cells, with each nucleus controlling the protein synthesis in a finite volume of cytoplasm termed the myonuclear domain (MND). What determines MND size remains unclear. In the present study, we aimed to test the hypothesis that the level of expression of the transcriptional coactivator PGC-1α and subsequent activation of the mitochondrial biogenesis are major contributors. Hence, we used two transgenic mouse models with varying expression of PGC-1α in skeletal muscles. We isolated myofibres from the fast twitch extensor digitorum longus (EDL) and slow twitch diaphragm muscles. We then membrane-permeabilised them and analysed the 3D spatial arrangements of myonuclei. In EDL muscles, when PGC-1α is over-expressed, MND volume decreases; whereas, when PGC-1α is lacking, no change occurs. In the diaphragm, no clear difference was noted. This indicates that PGC-1α and the related mitochondrial biogenesis programme are determinants of MND size. PGC-1α may facilitate the addition of new myonuclei in order to reach MND volumes that can support an increased mitochondrial density. J. Cell. Physiol. 232: 1270-1274, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jacob A Ross
- Centre of Human and Aerospace Physiological Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Adam Pearson
- Centre of Human and Aerospace Physiological Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Yotam Levy
- Centre of Human and Aerospace Physiological Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | | | | | - Julien Ochala
- Centre of Human and Aerospace Physiological Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| |
Collapse
|
24
|
Jungbluth H, Ochala J, Treves S, Gautel M. Current and future therapeutic approaches to the congenital myopathies. Semin Cell Dev Biol 2016; 64:191-200. [PMID: 27515125 DOI: 10.1016/j.semcdb.2016.08.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 08/04/2016] [Accepted: 08/08/2016] [Indexed: 12/14/2022]
Abstract
The congenital myopathies - including Central Core Disease (CCD), Multi-minicore Disease (MmD), Centronuclear Myopathy (CNM), Nemaline Myopathy (NM) and Congenital Fibre Type Disproportion (CFTD) - are a genetically heterogeneous group of early-onset neuromuscular conditions characterized by distinct histopathological features, and associated with a substantial individual and societal disease burden. Appropriate supportive management has substantially improved patient morbidity and mortality but there is currently no cure. Recent years have seen an exponential increase in the genetic and molecular understanding of these conditions, leading to the identification of underlying defects in proteins involved in calcium homeostasis and excitation-contraction coupling, thick/thin filament assembly and function, redox regulation, membrane trafficking and/or autophagic pathways. Based on these findings, specific therapies are currently being developed, or are already approaching the clinical trial stage. Despite undeniable progress, therapy development faces considerable challenges, considering the rarity and diversity of specific conditions, and the size and complexity of some of the genes and proteins involved. The present review will summarize the key genetic, histopathological and clinical features of specific congenital myopathies, and outline therapies already available or currently being developed in the context of known pathogenic mechanisms. The relevance of newly discovered molecular mechanisms and novel gene editing strategies for future therapy development will be discussed.
Collapse
Affiliation(s)
- Heinz Jungbluth
- Department of Paediatric Neurology, Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, United Kingdom; Randall Division for Cell and Molecular Biophysics, Muscle Signalling Section Biophysics and Cardiovascular Division, King's College BHF Centre of Research Excellence, United Kingdom; Department of Basic and Clinical Neuroscience, IoPPN, King's College, London, United Kingdom.
| | - Julien Ochala
- Centre of Human and Aerospace Physiological Sciences, King's College London, United Kingdom
| | - Susan Treves
- Departments of Biomedicine and Anaesthesia, Basel University Hospital, 4031 Basel, Switzerland
| | - Mathias Gautel
- Randall Division for Cell and Molecular Biophysics, Muscle Signalling Section Biophysics and Cardiovascular Division, King's College BHF Centre of Research Excellence, United Kingdom
| |
Collapse
|
25
|
Lindqvist J, Levy Y, Pati-Alam A, Hardeman EC, Gregorevic P, Ochala J. Modulating myosin restores muscle function in a mouse model of nemaline myopathy. Ann Neurol 2016; 79:717-725. [PMID: 26891371 PMCID: PMC4950341 DOI: 10.1002/ana.24619] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 02/16/2016] [Accepted: 02/16/2016] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Nemaline myopathy, one of the most common congenital myopathies, is associated with mutations in various genes including ACTA1. This disease is also characterized by various forms/degrees of muscle weakness, with most cases being severe and resulting in death in infancy. Recent findings have provided valuable insight into the underlying pathophysiological mechanisms. Mutations in ACTA1 directly disrupt binding interactions between actin and myosin, and consequently the intrinsic force-generating capacity of muscle fibers. ACTA1 mutations are also associated with variations in myofiber size, the mechanisms of which have been unclear. In the present study, we sought to test the hypotheses that the compromised functional and morphological attributes of skeletal muscles bearing ACTA1 mutations (1) would be directly due to the inefficient actomyosin complex and (2) could be restored by manipulating myosin expression. METHODS We used a knockin mouse model expressing the ACTA1 His40Tyr actin mutation found in human patients. We then performed in vivo intramuscular injections of recombinant adeno-associated viral vectors harboring a myosin transgene known to facilitate muscle contraction. RESULTS We observed that in the presence of the transgene, the intrinsic force-generating capacity was restored and myofiber size was normal. INTERPRETATION This demonstrates a direct link between disrupted attachment of myosin molecules to actin monomers and muscle fiber atrophy. These data also suggest that further therapeutic interventions should primarily target myosin dysfunction to alleviate the pathology of ACTA1-related nemaline myopathy. Ann Neurol 2016;79:717-725.
Collapse
Affiliation(s)
- Johan Lindqvist
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | - Yotam Levy
- Centre of Human and Aerospace Physiological Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Alisha Pati-Alam
- Centre of Human and Aerospace Physiological Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Edna C Hardeman
- Neuromuscular and Regenerative Medicine Unit, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Paul Gregorevic
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia
- Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Neurology, University of Washington School of Medicine, Seattle, WA
| | - Julien Ochala
- Centre of Human and Aerospace Physiological Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| |
Collapse
|
26
|
Chan C, Fan J, Messer AE, Marston SB, Iwamoto H, Ochala J. Myopathy-inducing mutation H40Y in ACTA1 hampers actin filament structure and function. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1453-8. [PMID: 27112274 PMCID: PMC4894126 DOI: 10.1016/j.bbadis.2016.04.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 04/12/2016] [Accepted: 04/20/2016] [Indexed: 11/30/2022]
Abstract
In humans, more than 200 missense mutations have been identified in the ACTA1 gene. The exact molecular mechanisms by which, these particular mutations become toxic and lead to muscle weakness and myopathies remain obscure. To address this, here, we performed a molecular dynamics simulation, and we used a broad range of biophysical assays to determine how the lethal and myopathy-related H40Y amino acid substitution in actin affects the structure, stability, and function of this protein. Interestingly, our results showed that H40Y severely disrupts the DNase I-binding-loop structure and actin filaments. In addition, we observed that normal and mutant actin monomers are likely to form distinctive homopolymers, with mutant filaments being very stiff, and not supporting proper myosin binding. These phenomena underlie the toxicity of H40Y and may be considered as important triggering factors for the contractile dysfunction, muscle weakness and disease phenotype seen in patients. H40Y stiffens the entire actin filament. H40Y partially limits actin filament extensibility upon activation. H40Y disrupts myosin and tropomyosin function.
Collapse
Affiliation(s)
- Chun Chan
- Department of Physics and Materials Science, City University of Hong Kong, Hong Kong
| | - Jun Fan
- Department of Physics and Materials Science, City University of Hong Kong, Hong Kong; City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Andrew E Messer
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Steve B Marston
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Hiroyuki Iwamoto
- Japan Synchrotron Radiation Research Institute, SPring8, Hyogo, Japan
| | - Julien Ochala
- Centre of Human and Aerospace Physiological Sciences, King's College London, London, UK.
| |
Collapse
|
27
|
Treatment with ActRIIB-mFc Produces Myofiber Growth and Improves Lifespan in the Acta1 H40Y Murine Model of Nemaline Myopathy. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1568-81. [PMID: 27102768 DOI: 10.1016/j.ajpath.2016.02.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/04/2016] [Accepted: 02/11/2016] [Indexed: 11/22/2022]
Abstract
Nemaline myopathies (NMs) are a group of congenital muscle diseases caused by mutations in at least 10 genes and associated with a range of clinical symptoms. NM is defined on muscle biopsy by the presence of cytoplasmic rod-like structures (nemaline rods) composed of cytoskeletal material. Myofiber smallness is also found in many cases of NM and may represent a cause of weakness that can be counteracted by treatment. We have used i.p. injection of activin type IIB receptor (ActRIIB)-mFc (an inhibitor of myostatin signaling) to promote hypertrophy and increase strength in our prior murine work; we therefore tested whether ActRIIB-mFc could improve weakness in NM mice through myofiber hypertrophy. We report a study of ActRIIB-mFc treatment in the Acta1 H40Y mouse model of NM. Treatment of Acta1 H40Y mice produced significant increases in body mass, muscle mass, quadriceps myofiber size, and survival, but other measurements of strength (forelimb grip strength, ex vivo measurements of contractile function) did not improve. Our studies also identified that the complications of urethral obstruction are associated with mortality in male hemizygote Acta1 H40Y mice. The incidence of urethral obstruction and histologic evidence of chronic obstruction (inflammation) were significantly lower in Acta1 H40Y mice that had been treated with ActRIIB-mFc. ActRIIB-mFc treatment produces a mild benefit to the disease phenotype in Acta1 H40Y mice.
Collapse
|
28
|
Sexually dimorphic myofilament function in a mouse model of nemaline myopathy. Arch Biochem Biophys 2014; 564:37-42. [PMID: 25261348 DOI: 10.1016/j.abb.2014.09.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 09/07/2014] [Accepted: 09/16/2014] [Indexed: 10/24/2022]
Abstract
Nemaline myopathy, the most common congenital myopathy, is characterized by mutations in genes encoding myofilament proteins such as skeletal α-actin. These mutations are thought to ultimately lead to skeletal muscle weakness. Interestingly, some of the mutations appear to be more potent in males than in females. The underlying mechanisms remain obscure but may be related to sex-specific differences in the myofilament function of both limb and respiratory muscles. To verify this, in the present study, we used skeletal muscles (tibialis anterior and diaphragm) from a transgenic mouse model harbouring the His40Tyr amino acid substitution in skeletal α-actin. In this animal model, 60% of males die by 13weeks of age (the underlying causes of death are obscure but probably due to respiratory insufficiency) whereas females have a normal lifespan. By recording and analysing the mechanics of membrane-permeabilized myofibres, we only observed sex-related differences in the tibialis anterior muscles. Indeed, the concomitant deficits in maximal steady-state isometric force and stiffness of myofibres were less exacerbated in transgenic females than in males, potentially explaining the lower potency in limb muscles. However, the absence of sex-difference in the diaphragm muscles was rather unexpected and suggests that myofilament dysfunction does not solely underlie the sexually dimorphic phenotypes.
Collapse
|