1
|
Moysi E, Del Rio Estrada PM, Torres-Ruiz F, Reyes-Terán G, Koup RA, Petrovas C. In Situ Characterization of Human Lymphoid Tissue Immune Cells by Multispectral Confocal Imaging and Quantitative Image Analysis; Implications for HIV Reservoir Characterization. Front Immunol 2021; 12:683396. [PMID: 34177929 PMCID: PMC8221112 DOI: 10.3389/fimmu.2021.683396] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/13/2021] [Indexed: 11/13/2022] Open
Abstract
CD4 T cells are key mediators of adaptive immune responses during infection and vaccination. Within secondary lymphoid organs, helper CD4 T cells, particularly those residing in germinal centers known as follicular helper T cells (Tfh), provide critical help to B-cells to promote their survival, isotype switching and selection of high affinity memory B-cells. On the other hand, the important role of Tfh cells for the maintenance of HIV reservoir is well documented. Thus, interrogating and better understanding the tissue specific micro-environment and immune subsets that contribute to optimal Tfh cell differentiation and function is important for designing successful prevention and cure strategies. Here, we describe the development and optimization of eight multispectral confocal microscopy immunofluorescence panels designed for in depth characterization and immune-profiling of relevant immune cells in formalin-fixed paraffin-embedded human lymphoid tissue samples. We provide a comprehensive library of antibodies to use for the characterization of CD4+ T-cells -including Tfh and regulatory T-cells- as well as CD8 T-cells, B-cells, macrophages and dendritic cells and discuss how the resulting multispectral confocal datasets can be quantitatively dissected using the HistoCytometry pipeline to collect information about relative frequencies and immune cell spatial distributions. Cells harboring actively transcribed virus are analyzed using an in-situ hybridization assay for the characterization of HIV mRNA positive cells in combination with additional protein markers (multispectral RNAscope). The application of this methodology to lymphoid tissues offers a means to interrogate multiple relevant immune cell targets simultaneously at increased resolution in a reproducible manner to guide CD4 T-cell studies in infection and vaccination.
Collapse
Affiliation(s)
- Eirini Moysi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Perla M Del Rio Estrada
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Fernanda Torres-Ruiz
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Gustavo Reyes-Terán
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico.,Comisión Coordinadora de Institutos Nacionales de Salud y Hospitales de Alta Especialidad, Secretaría de Salud, Mexico City, Mexico
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Constantinos Petrovas
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States.,Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
2
|
Tomescu C, Colon K, Smith P, Taylor M, Azzoni L, Metzger DS, Montaner LJ. Persons who inject drugs (PWID) retain functional NK cells, dendritic cell stimulation, and adaptive immune recall responses despite prolonged opioid use. J Leukoc Biol 2020; 110:10.1002/JLB.5A0920-604R. [PMID: 33289158 PMCID: PMC8244827 DOI: 10.1002/jlb.5a0920-604r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/22/2020] [Accepted: 06/11/2020] [Indexed: 01/28/2023] Open
Abstract
Previous literature suggests that acute opioid use results in the functional impairment of the immune response, thereby decreasing resistance to viral infection. Here, we assessed if innate and adaptive immune responses are compromised ex vivo in persons who inject drugs (PWID) and whether long-term injection drug use may impact host susceptibility to in vitro HIV infection. We measured the frequency, activation state, and functional profile of NK cells, dendritic cells, and CD4+ and CD8+ T cells in low-risk PWID who do not share needles, high-risk needle-sharing PWID, and control donors who did not inject drugs. We also assessed plasma levels of inflammatory markers and CD4+ T cell susceptibility to HIV infection. We observed a significant increase in the amount of sCD14 (P = 0.0023, n = 16) and sCD163 (P = 0.0001, n = 16) in the plasma of PWID compared to controls. Evidence of constitutive activation was noted in PWID as compared to controls with increased CD69 expression in CD56dim NK cells (P = 0.0103, n = 26) and increased CD38 and HLA-DR expression in CD4+ T cells (P = 0.0355, n = 23). However, no innate or adaptive functional differences were detected between PWID and controls, including: NK cell direct or antibody-dependent cellular cytotoxicity poly-functional response, TLR-stimulated dendritic cell/NK crosstalk, CD8+ T cell response to Staphylococcal enterotoxin B or CMV/EBV/FLU peptides, or constitutive or anti-CD3/CD28-stimulated CD4+ T cell infectivity with CCR5-tropic or CXCR4-tropic HIV-1 isolates. Our data indicate that PWID who utilize opioids over as prolonged time frame can retain a functional ex vivo immune response without a measurable increase in CD4+ T cell infectivity suggesting that leukocytes from PWID are not intrinsically more susceptibility to infection with HIV than non-PWID controls.
Collapse
Affiliation(s)
- Costin Tomescu
- The Wistar Institute, HIV Immunopathogenesis Laboratory, Philadelphia, PA 19104
| | - Krystal Colon
- The Wistar Institute, HIV Immunopathogenesis Laboratory, Philadelphia, PA 19104
| | - Peter Smith
- The University of Pennsylvania, Department of Psychiatry, HIV Prevention Division, Philadelphia, PA, 19104
| | - Mack Taylor
- The University of Pennsylvania, Department of Psychiatry, HIV Prevention Division, Philadelphia, PA, 19104
| | - Livio Azzoni
- The Wistar Institute, HIV Immunopathogenesis Laboratory, Philadelphia, PA 19104
| | - David S. Metzger
- The University of Pennsylvania, Department of Psychiatry, HIV Prevention Division, Philadelphia, PA, 19104
| | - Luis J. Montaner
- The Wistar Institute, HIV Immunopathogenesis Laboratory, Philadelphia, PA 19104
| |
Collapse
|
3
|
Abstract
Lymph nodes play a central role in the development of adaptive immunity against pathogens and particularly the generation of antigen-specific B cell responses in specialized areas called germinal centers (GCs). Lymph node (LN) pathology was recognized as an important consequence of human immunodeficiency virus (HIV) infection since the beginning of the HIV epidemic. Investigation into the structural and functional alterations induced by HIV and Simian immunodeficiency virus (SIV) has further cemented the central role that lymphoid tissue plays in HIV/SIV pathogenesis. The coexistence of constant local inflammation, altered tissue architecture, and relative exclusion of virus-specific CD8 T cells from the GCs creates a unique environment for the virus evolution and establishment of viral reservoir in specific GC cells, namely T follicular helper CD4 T cells (Tfh). A better understanding of the biology of immune cells in HIV-infected lymph nodes is a prerequisite to attaining the ultimate goal of complete viral eradication.
Collapse
Affiliation(s)
- Yiannis Dimopoulos
- Tissue Analysis Core, Vaccine Research Center, NIAID, NIH, 40 Convent Drive, MSC 3022, Building 40, Room 3612B, Bethesda, MD, 20892, USA
| | - Eirini Moysi
- Tissue Analysis Core, Vaccine Research Center, NIAID, NIH, 40 Convent Drive, MSC 3022, Building 40, Room 3612B, Bethesda, MD, 20892, USA
| | - Constantinos Petrovas
- Tissue Analysis Core, Vaccine Research Center, NIAID, NIH, 40 Convent Drive, MSC 3022, Building 40, Room 3612B, Bethesda, MD, 20892, USA.
| |
Collapse
|
4
|
Ruffin N, Hani L, Seddiki N. From dendritic cells to B cells dysfunctions during HIV-1 infection: T follicular helper cells at the crossroads. Immunology 2017; 151:137-145. [PMID: 28231392 DOI: 10.1111/imm.12730] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/10/2017] [Accepted: 02/14/2017] [Indexed: 12/12/2022] Open
Abstract
T follicular helper (Tfh) cells are essential for B-cell differentiation and the subsequent antibody responses. Their numbers and functions are altered during human and simian immunodeficiency virus (HIV/SIV) infections. In lymphoid tissues, Tfh cells are present in germinal centre, where they are the main source of replicative HIV-1 and represent a major reservoir. Paradoxically, Tfh cell numbers are increased in chronically infected individuals. Understanding the fate of Tfh cells in the course of HIV-1 infection is essential for the design of efficient strategies toward a protective HIV vaccine or a cure. The purpose of this review is to summarize the recent advance in our understanding of Tfh cell dynamics during HIV/SIV infection. In particular, to explore the possible causes of their expansion in lymphoid tissues by discussing the impact of HIV-1 infection on dendritic cells, to identify the molecular players rendering Tfh cells highly susceptible to HIV-1 infection, and to consider the contribution of regulatory follicular T cells in shaping Tfh cell functions.
Collapse
Affiliation(s)
- Nicolas Ruffin
- Institut Curie, INSERM U932, PSL Research University, Paris, France
| | - Lylia Hani
- Vaccine Research Institute (VRI), Faculté de médecine, INSERM U955, Université Paris Est, Créteil Cedex, France
| | - Nabila Seddiki
- Vaccine Research Institute (VRI), Faculté de médecine, INSERM U955, Université Paris Est, Créteil Cedex, France
| |
Collapse
|
5
|
Ma J, Yu H, Yin X, Cheng M, Shi Q, Yin Z, Nie X, Shouli W, Zhang L. E2-2, a novel immunohistochemical marker for both human and monkey plasmacytoid dendritic cells. BIOPHYSICS REPORTS 2015; 1:139-147. [PMID: 27340692 PMCID: PMC4871903 DOI: 10.1007/s41048-016-0023-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 11/18/2015] [Indexed: 11/29/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) play important roles in initiating and regulating immune responses. pDC infiltration has been documented in multiple pathological lesions including infections, tumors, and autoimmune diseases, and the severity of pDC infiltration correlates with disease progression. However, a specific antibody for identifying pDCs by immunohistochemical staining on paraffin-embedded tissue sections is still lacking. Here, we developed a novel antibody targeted E2-2, a transcription factor preferentially expressed in pDCs. The antibody stains the nuclei of pDCs specifically in immunohistochemical analysis of various tissues from both human and rhesus monkey. This novel antibody will serve as a beneficial tool for pDC-related basic research and clinical investigation.
Collapse
Affiliation(s)
- Jianping Ma
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China.,University of Chinese Academy of Sciences, Beijing, 100080 China
| | - Haisheng Yu
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China.,University of Chinese Academy of Sciences, Beijing, 100080 China
| | - Xiangyun Yin
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China.,University of Chinese Academy of Sciences, Beijing, 100080 China
| | - Menglan Cheng
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China.,University of Chinese Academy of Sciences, Beijing, 100080 China
| | - Quanxing Shi
- Department of Cardiology, 306th Hospital of PLA, Beijing, 100101 China
| | - Zhao Yin
- Department of Cardiology, 306th Hospital of PLA, Beijing, 100101 China
| | - Xiaohua Nie
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Wang Shouli
- Department of Cardiology, 306th Hospital of PLA, Beijing, 100101 China
| | - Liguo Zhang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
6
|
Furuya AKM, Sharifi HJ, de Noronha CMC. The Curious Case of Type I IFN and MxA: Tipping the Immune Balance in AIDS. Front Immunol 2014; 5:419. [PMID: 25228901 PMCID: PMC4151092 DOI: 10.3389/fimmu.2014.00419] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 08/18/2014] [Indexed: 01/30/2023] Open
Affiliation(s)
| | - Hamayun J Sharifi
- Albany Medical Center, Center for Immunology and Microbial Disease , Albany, NY , USA
| | - Carlos M C de Noronha
- Albany Medical Center, Center for Immunology and Microbial Disease , Albany, NY , USA
| |
Collapse
|
7
|
Tomescu C, Liu Q, Ross BN, Yin X, Lynn K, Mounzer KC, Kostman JR, Montaner LJ. A correlate of HIV-1 control consisting of both innate and adaptive immune parameters best predicts viral load by multivariable analysis in HIV-1 infected viremic controllers and chronically-infected non-controllers. PLoS One 2014; 9:e103209. [PMID: 25078947 PMCID: PMC4117509 DOI: 10.1371/journal.pone.0103209] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/30/2014] [Indexed: 12/12/2022] Open
Abstract
HIV-1 infected viremic controllers maintain durable viral suppression below 2000 copies viral RNA/ml without anti-retroviral therapy (ART), and the immunological factor(s) associated with host control in presence of low but detectable viral replication are of considerable interest. Here, we utilized a multivariable analysis to identify which innate and adaptive immune parameters best correlated with viral control utilizing a cohort of viremic controllers (median 704 viral RNA/ml) and non-controllers (median 21,932 viral RNA/ml) that were matched for similar CD4+ T cell counts in the absence of ART. We observed that HIV-1 Gag-specific CD8+ T cell responses were preferentially targeted over Pol-specific responses in viremic controllers (p = 0.0137), while Pol-specific responses were positively associated with viral load (rho = 0.7753, p = 0.0001, n = 23). Viremic controllers exhibited significantly higher NK and plasmacytoid dendritic cells (pDC) frequency as well as retained expression of the NK CD16 receptor and strong target cell-induced NK cell IFN-gamma production compared to non-controllers (p<0.05). Despite differences in innate and adaptive immune function however, both viremic controllers (p<0.05) and non-controller subjects (p<0.001) exhibited significantly increased CD8+ T cell activation and spontaneous NK cell degranulation compared to uninfected donors. Overall, we identified that a combination of innate (pDC frequency) and adaptive (Pol-specific CD8+ T cell responses) immune parameters best predicted viral load (R2 = 0.5864, p = 0.0021, n = 17) by a multivariable analysis. Together, this data indicates that preferential Gag-specific over Pol-specific CD8+ T cell responses along with a retention of functional innate subsets best predict host control over viral replication in HIV-1 infected viremic controllers compared to chronically-infected non-controllers.
Collapse
Affiliation(s)
- Costin Tomescu
- The Wistar Institute, HIV Immunopathogenesis Laboratory, Philadelphia, Pennsylvania, United States of America
| | - Qin Liu
- The Wistar Institute, Biostatistics Laboratory, Philadelphia, Pennsylvania, United States of America
| | - Brian N. Ross
- The Wistar Institute, HIV Immunopathogenesis Laboratory, Philadelphia, Pennsylvania, United States of America
| | - Xiangfan Yin
- The Wistar Institute, Biostatistics Laboratory, Philadelphia, Pennsylvania, United States of America
| | - Kenneth Lynn
- UPENN-Presbyterian Medical Center, Philadelphia, Pennsylvania, United States of America
| | - Karam C. Mounzer
- Philadelphia FIGHT, The Jonathan Lax Treatment Center, Philadelphia, Pennsylvania, United States of America
| | - Jay R. Kostman
- UPENN-Presbyterian Medical Center, Philadelphia, Pennsylvania, United States of America
| | - Luis J. Montaner
- The Wistar Institute, HIV Immunopathogenesis Laboratory, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
8
|
Rollins-Raval MA, Marafioti T, Swerdlow SH, Roth CG. The number and growth pattern of plasmacytoid dendritic cells vary in different types of reactive lymph nodes: an immunohistochemical study. Hum Pathol 2013; 44:1003-10. [DOI: 10.1016/j.humpath.2012.08.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 08/24/2012] [Accepted: 08/29/2012] [Indexed: 10/27/2022]
|