1
|
Rafatpanah H, Golizadeh M, Mahdifar M, Mahdavi S, Iranshahi M, Rassouli FB. Conferone, a coumarin from Ferula flabelliloba, induced toxic effects on adult T-cell leukemia/lymphoma cells. Int J Immunopathol Pharmacol 2023; 37:3946320231197592. [PMID: 37688389 PMCID: PMC10493046 DOI: 10.1177/03946320231197592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Adult T-cell leukemia/lymphoma (ATL) is a lymphoid malignancy caused by HTLV-1 infection, with distinct geographical distribution. Despite advances in cancer treatment, the average survival rate of ATL is low. Conferone is a natural coumarin extracted from Ferula species with a wide range of pharmaceutical effects. In search for a novel chemotherapeutic agent, we investigated the cytotoxicity of conferone on ATL cells. METHODS To obtain conferone, the methanolic extract of the roots of F. flabelliloba was subjected to silica gel column chromatography, followed by 1H- and 13C-NMR to confirm its structure. For cytotoxicity assay, MT-2 cells were treated with different concentrations of conferone (2.5, 5, 10, 20, and 40 µM) for 24, 48, and 72 h, and viability was evaluated by a colorimetric assay using alamarBlue. Cell cycle was analyzed by PI staining and flow cytometry, and qPCR was used to study the expression of candidate genes. RESULTS AND CONCLUSION Obtained findings indicated that conferone induced considerable cytotoxic effects on MT-2 cells in a time- and dose-dependent manner. In addition, accumulation of cells in the sub-G1 phase of the cell cycle was detected upon conferone administration. Moreover, conferone reduced the expression of CDK6, c-MYC, CFLIPL, and NF-κB (Rel-A) in MT-2 cells. Accordingly, conferone could be considered as a potent agent against ATL, although complementary investigations are required to define more precisely its mechanism of action.
Collapse
Affiliation(s)
- Houshang Rafatpanah
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marziyeh Golizadeh
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Mahdifar
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shakiba Mahdavi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh B Rassouli
- Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
2
|
Baig MH, Yousuf M, Khan MI, Khan I, Ahmad I, Alshahrani MY, Hassan MI, Dong JJ. Investigating the Mechanism of Inhibition of Cyclin-Dependent Kinase 6 Inhibitory Potential by Selonsertib: Newer Insights Into Drug Repurposing. Front Oncol 2022; 12:865454. [PMID: 35720007 PMCID: PMC9204300 DOI: 10.3389/fonc.2022.865454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/06/2022] [Indexed: 12/23/2022] Open
Abstract
Cyclin-dependent kinases (CDKs) play significant roles in numerous physiological, and are considered an attractive drug target for cancer, neurodegenerative, and inflammatory diseases. In the present study, we have aimed to investigate the binding affinity and inhibitory potential of selonsertib toward CDK6. Using the drug repurposing approach, we performed molecular docking of selonsertib with CDK6 and observed a significant binding affinity. To ascertain, we further performed essential dynamics analysis and free energy calculation, which suggested the formation of a stable selonsertib-CDK6 complex. The in-silico findings were further experimentally validated. The recombinant CDK6 was expressed, purified, and treated with selonsertib. The binding affinity of selonsertib to CDK6 was estimated by fluorescence binding studies and enzyme inhibition assay. The results indicated an appreciable binding of selonsertib against CDK6, which subsequently inhibits its activity with a commendable IC50 value (9.8 μM). We concluded that targeting CDK6 by selonsertib can be an efficient therapeutic approach to cancer and other CDK6-related diseases. These observations provide a promising opportunity to utilize selonsertib to address CDK6-related human pathologies.
Collapse
Affiliation(s)
- Mohammad Hassan Baig
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Mohd. Yousuf
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Mohd. Imran Khan
- Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Imran Khan
- Department of Molecular Biology, Beykoz Institute of Life Sciences and Biotechnology, BezmialemVakif University, Istanbul, Turkey
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Y. Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Jae-June Dong
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
3
|
Gailllard B, Cornillet-Lefebvre P, Le QH, Maloum K, Pannetier M, Lecoq-Lafon C, Grange B, Jondreville L, Michaux L, Nadal N, Ittel A, Luquet I, Struski S, Lefebvre C, Gaillard JB, Lafage-Pochitaloff M, Balducci E, Penther D, Barin C, Collonge-Rame MA, Jimenez-Poquet M, Richebourg S, Lemaire P, Defasque S, Radford-Weiss I, Bidet A, Susin SA, Nguyen-Khac F, Chapiro E. Clinical and biological features of B-cell neoplasms with CDK6 translocations: an association with a subgroup of splenic marginal zone lymphomas displaying frequent CD5 expression, prolymphocytic cells, and TP53 abnormalities. Br J Haematol 2020; 193:72-82. [PMID: 33314017 DOI: 10.1111/bjh.17141] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 01/16/2023]
Abstract
A translocation involving the cyclin-dependent kinase 6 (CDK6) gene [t(CDK6)] is a rare but recurrent abnormality in B-cell neoplasms. To further characterise this aberration, we studied 57 cases; the largest series reported to date. Fluorescence in situ hybridisation analysis confirmed the involvement of CDK6 in all cases, including t(2;7)(p11;q21) immunoglobulin kappa locus (IGK)/CDK6 (n = 51), t(7;14)(q21;q32) CDK6/immunoglobulin heavy locus (IGH) (n = 2) and the previously undescribed t(7;14)(q21;q11) CDK6/T-cell receptor alpha locus (TRA)/T-cell receptor delta locus (TRD) (n = 4). In total, 10 patients were diagnosed with chronic lymphocytic leukaemia, monoclonal B-cell lymphocytosis or small lymphocytic lymphoma, and 47 had small B-cell lymphoma (SmBL) including 36 cases of marginal zone lymphoma (MZL; 34 splenic MZLs, one nodal MZL and one bronchus-associated lymphoid tissue lymphoma). In all, 18 of the 26 cytologically reviewed cases of MZL (69%) had an atypical aspect with prolymphocytic cells. Among the 47 patients with MZL/SmBL, CD5 expression was found in 26 (55%) and the tumour protein p53 (TP53) deletion in 22 (47%). The TP53 gene was mutated in 10/30 (33%); the 7q deletion was detected in only one case, and no Notch receptor 2 (NOTCH2) mutations were found. Immunoglobulin heavy-chain variable-region (IGHV) locus sequencing revealed that none harboured an IGHV1-02*04 gene. Overall survival was 82% at 10 years and not influenced by TP53 aberration. Our present findings suggest that most t(CDK6)+ neoplasms correspond to a particular subgroup of indolent marginal zone B-cell lymphomas with distinctive features.
Collapse
Affiliation(s)
| | | | - Quoc-Hung Le
- Service d'Hématologie Clinique, Hôpital Robert Debré, Reims, France
| | - Karim Maloum
- Service d'Hématologie Biologique, Hôpital Pitié-Salpêtrière, Assistance Publique - Hôpitaux de Paris (APHP), Paris, France
| | - Mélanie Pannetier
- Laboratoire d'Hématologie, Centre Hospitalo-Universitaire, Rennes, France
| | | | - Béatrice Grange
- Service d'Hématologie Biologique, Hospices Civils de Lyon, Lyon, France
| | - Ludovic Jondreville
- Centre de Recherche des Cordeliers, INSERM UMRS_1138, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Paris, France
| | - Lucienne Michaux
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Nathalie Nadal
- Service de génétique chromosomique et moléculaire, CHU Dijon, France
| | - Antoine Ittel
- Laboratoire de Cytogénétique Hématologique, CHU de Strasbourg, Strasbourg, France
| | - Isabelle Luquet
- Laboratoire d'Hématologie, Institut Universitaire du Cancer de Toulouse, Toulouse, France
| | - Stéphanie Struski
- Laboratoire d'Hématologie, Institut Universitaire du Cancer de Toulouse, Toulouse, France
| | | | | | - Marina Lafage-Pochitaloff
- Laboratoire de Cytogénétique Onco-Hématologique, Hôpital de la Timone, AP-HM, Aix-Marseille Université, Marseille, France
| | - Estelle Balducci
- Laboratoire d'Hématologie, Hôpital Paul Brousse, APHP, Villejuif, France
| | - Dominique Penther
- Laboratoire de Génétique Oncologique, CLCC Henri Becquerel and INSERM U1245, Rouen, France
| | - Carole Barin
- Laboratoire de Cytogénétique hématologique, Service de Génétique, CHRU Bretonneau, Tours, France
| | | | | | - Steven Richebourg
- Laboratoire de Cytogénétique Onco-Hématologique, CHU de Québec - Université Laval, Québec, Canada
| | - Pierre Lemaire
- Laboratoire d'Hématologie, Hôpital Saint-Louis, APHP, Paris, France
| | - Sabine Defasque
- Secteur cytogénétique hématologique, Laboratoire CERBA, Saint-Ouen l'Aumône, France
| | | | - Audrey Bidet
- Laboratoire d'Hématologie, CHU Bordeaux-Haut Lévêque, Bordeaux, France
| | - Santos A Susin
- Centre de Recherche des Cordeliers, INSERM UMRS_1138, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Paris, France.,Sorbonne Université, Paris, France
| | - Florence Nguyen-Khac
- Service d'Hématologie Biologique, Hôpital Pitié-Salpêtrière, Assistance Publique - Hôpitaux de Paris (APHP), Paris, France.,Centre de Recherche des Cordeliers, INSERM UMRS_1138, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Paris, France.,Sorbonne Université, Paris, France
| | - Elise Chapiro
- Service d'Hématologie Biologique, Hôpital Pitié-Salpêtrière, Assistance Publique - Hôpitaux de Paris (APHP), Paris, France.,Centre de Recherche des Cordeliers, INSERM UMRS_1138, Cell Death and Drug Resistance in Lymphoproliferative Disorders Team, Paris, France.,Sorbonne Université, Paris, France
| | | |
Collapse
|
4
|
Nebenfuehr S, Kollmann K, Sexl V. The role of CDK6 in cancer. Int J Cancer 2020; 147:2988-2995. [PMID: 32406095 PMCID: PMC7586846 DOI: 10.1002/ijc.33054] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 12/27/2022]
Abstract
The regulation and function of cyclin‐dependent kinase 6 (CDK6)‐ and cyclin‐dependent kinase 4 (CDK4)‐cyclin complexes are commonly altered with enhanced kinase activity found in hematopoietic malignancies, breast cancer and melanoma making CDK4 and CDK6 attractive targets for therapeutic interference. Although dual CDK4/6 inhibitors have revolutionized treatment of breast cancer patients and reveal promising results in several solid tumors and hematological malignancies, there is a need for novel compounds targeting the versatile kinase‐independent functions of CDK6 to improve cancer treatment. The following review summarizes the latest findings on CDK6 in cancer development and discusses novel therapeutic approaches to selectively inhibit CDK6s function as a transcriptional regulator.
Collapse
Affiliation(s)
- Sofie Nebenfuehr
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Karoline Kollmann
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
5
|
Uras IZ, Sexl V, Kollmann K. CDK6 Inhibition: A Novel Approach in AML Management. Int J Mol Sci 2020; 21:ijms21072528. [PMID: 32260549 PMCID: PMC7178035 DOI: 10.3390/ijms21072528] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/29/2020] [Accepted: 04/02/2020] [Indexed: 02/01/2023] Open
Abstract
Acute myeloid leukemia (AML) is a complex disease with an aggressive clinical course and high mortality rate. The standard of care for patients has only changed minimally over the past 40 years. However, potentially useful agents have moved from bench to bedside with the potential to revolutionize therapeutic strategies. As such, cell-cycle inhibitors have been discussed as alternative treatment options for AML. In this review, we focus on cyclin-dependent kinase 6 (CDK6) emerging as a key molecule with distinct functions in different subsets of AML. CDK6 exerts its effects in a kinase-dependent and -independent manner which is of clinical significance as current inhibitors only target the enzymatic activity.
Collapse
Affiliation(s)
- Iris Z. Uras
- Department of Pharmacology, Center of Physiology and Pharmacology & Comprehensive Cancer Center (CCC), Medical University of Vienna, 1090 Vienna, Austria;
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Karoline Kollmann
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria;
- Correspondence: ; Tel.: + 43-1-25077-2917
| |
Collapse
|
6
|
CDK6 coordinates JAK2 V617F mutant MPN via NF-κB and apoptotic networks. Blood 2019; 133:1677-1690. [PMID: 30635286 DOI: 10.1182/blood-2018-08-872648] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/07/2019] [Indexed: 01/27/2023] Open
Abstract
Over 80% of patients with myeloproliferative neoplasms (MPNs) harbor the acquired somatic JAK2 V617F mutation. JAK inhibition is not curative and fails to induce a persistent response in most patients, illustrating the need for the development of novel therapeutic approaches. We describe a critical role for CDK6 in MPN evolution. The absence of Cdk6 ameliorates clinical symptoms and prolongs survival. The CDK6 protein interferes with 3 hallmarks of disease: besides regulating malignant stem cell quiescence, it promotes nuclear factor κB (NF-κB) signaling and contributes to cytokine production while inhibiting apoptosis. The effects are not mirrored by palbociclib, showing that the functions of CDK6 in MPN pathogenesis are largely kinase independent. Our findings thus provide a rationale for targeting CDK6 in MPN.
Collapse
|
7
|
Hezaveh K, Kloetgen A, Bernhart SH, Mahapatra KD, Lenze D, Richter J, Haake A, Bergmann AK, Brors B, Burkhardt B, Claviez A, Drexler HG, Eils R, Haas S, Hoffmann S, Karsch D, Klapper W, Kleinheinz K, Korbel J, Kretzmer H, Kreuz M, Küppers R, Lawerenz C, Leich E, Loeffler M, Mantovani-Loeffler L, López C, McHardy AC, Möller P, Rohde M, Rosenstiel P, Rosenwald A, Schilhabel M, Schlesner M, Scholz I, Stadler PF, Stilgenbauer S, Sungalee S, Szczepanowski M, Trümper L, Weniger MA, Siebert R, Borkhardt A, Hummel M, Hoell JI. Alterations of microRNA and microRNA-regulated messenger RNA expression in germinal center B-cell lymphomas determined by integrative sequencing analysis. Haematologica 2016; 101:1380-1389. [PMID: 27390358 DOI: 10.3324/haematol.2016.143891] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 07/01/2016] [Indexed: 12/22/2022] Open
Abstract
MicroRNA are well-established players in post-transcriptional gene regulation. However, information on the effects of microRNA deregulation mainly relies on bioinformatic prediction of potential targets, whereas proof of the direct physical microRNA/target messenger RNA interaction is mostly lacking. Within the International Cancer Genome Consortium Project "Determining Molecular Mechanisms in Malignant Lymphoma by Sequencing", we performed miRnome sequencing from 16 Burkitt lymphomas, 19 diffuse large B-cell lymphomas, and 21 follicular lymphomas. Twenty-two miRNA separated Burkitt lymphomas from diffuse large B-cell lymphomas/follicular lymphomas, of which 13 have shown regulation by MYC. Moreover, we found expression of three hitherto unreported microRNA. Additionally, we detected recurrent mutations of hsa-miR-142 in diffuse large B-cell lymphomas and follicular lymphomas, and editing of the hsa-miR-376 cluster, providing evidence for microRNA editing in lymphomagenesis. To interrogate the direct physical interactions of microRNA with messenger RNA, we performed Argonaute-2 photoactivatable ribonucleoside-enhanced cross-linking and immunoprecipitation experiments. MicroRNA directly targeted 208 messsenger RNA in the Burkitt lymphomas and 328 messenger RNA in the non-Burkitt lymphoma models. This integrative analysis discovered several regulatory pathways of relevance in lymphomagenesis including Ras, PI3K-Akt and MAPK signaling pathways, also recurrently deregulated in lymphomas by mutations. Our dataset reveals that messenger RNA deregulation through microRNA is a highly relevant mechanism in lymphomagenesis.
Collapse
Affiliation(s)
- Kebria Hezaveh
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich-Heine-University, Medical Faculty, Düsseldorf, Germany
| | - Andreas Kloetgen
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich-Heine-University, Medical Faculty, Düsseldorf, Germany.,Department of Algorithmic Bioinformatics, Heinrich-Heine University, Duesseldorf, Germany
| | - Stephan H Bernhart
- Transcriptome Bioinformatics Group, LIFE Research Center for Civilization Diseases, University of Leipzig, Germany.,Bioinformatics Group, Department of Computer Science, University of Leipzig, Germany.,Interdisciplinary Center for Bioinformatics, University of Leipzig, Germany
| | - Kunal Das Mahapatra
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich-Heine-University, Medical Faculty, Düsseldorf, Germany
| | - Dido Lenze
- Institute of Pathology, Charité - University Medicine Berlin, Germany
| | - Julia Richter
- Institute of Human Genetics, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts University Kiel, Germany
| | - Andrea Haake
- Institute of Human Genetics, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts University Kiel, Germany
| | - Anke K Bergmann
- Institute of Human Genetics, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts University Kiel, Germany
| | - Benedikt Brors
- Division Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Birgit Burkhardt
- Department of Pediatric Hematology and Oncology, University Hospital Münster, Germany
| | - Alexander Claviez
- Department of Pediatrics, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Hans G Drexler
- Department of Human and Animal Cell Cultures, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Roland Eils
- Division of Theoretical Bioinformatics (B080), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Bioinformatics and Functional Genomics, Institute for Pharmacy and Molecular Biotechnology and Bioquant, Heidelberg University, Germany
| | - Siegfried Haas
- Friedrich-Ebert Hospital Neumünster, Clinics for Hematology, Oncology and Nephrology, Neumünster, Germany
| | - Steve Hoffmann
- Transcriptome Bioinformatics Group, LIFE Research Center for Civilization Diseases, University of Leipzig, Germany.,Bioinformatics Group, Department of Computer Science, University of Leipzig, Germany
| | - Dennis Karsch
- Department of Internal Medicine II: Hematology and Oncology, University Medical Centre, Campus Kiel, Germany
| | - Wolfram Klapper
- Hematopathology Section, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts University Kiel, Germany
| | - Kortine Kleinheinz
- Division of Theoretical Bioinformatics (B080), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan Korbel
- EMBL Heidelberg, Genome Biology, Heidelberg, Germany
| | - Helene Kretzmer
- Transcriptome Bioinformatics Group, LIFE Research Center for Civilization Diseases, University of Leipzig, Germany.,Bioinformatics Group, Department of Computer Science, University of Leipzig, Germany
| | - Markus Kreuz
- Institute for Medical Informatics Statistics and Epidemiology, Leipzig, Germany
| | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| | - Chris Lawerenz
- Division of Theoretical Bioinformatics (B080), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ellen Leich
- Institute of Pathology, University of Würzburg, and Comprehensive Cancer Center Mainfranken, Würzburg, Germany
| | - Markus Loeffler
- Institute for Medical Informatics Statistics and Epidemiology, Leipzig, Germany
| | | | - Cristina López
- Institute of Human Genetics, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts University Kiel, Germany
| | - Alice C McHardy
- Department of Algorithmic Bioinformatics, Heinrich-Heine University, Duesseldorf, Germany.,Computational Biology of Infection Research, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Peter Möller
- Institute of Pathology, Medical Faculty of the Ulm University, Germany
| | - Marius Rohde
- Department of Pediatric Hematology and Oncology University Hospital Giessen, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts University Kiel, Germany
| | - Andreas Rosenwald
- Institute of Pathology, University of Würzburg, and Comprehensive Cancer Center Mainfranken, Würzburg, Germany
| | - Markus Schilhabel
- Institute of Clinical Molecular Biology, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts University Kiel, Germany
| | - Matthias Schlesner
- Division of Theoretical Bioinformatics (B080), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ingrid Scholz
- Division of Theoretical Bioinformatics (B080), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter F Stadler
- Transcriptome Bioinformatics Group, LIFE Research Center for Civilization Diseases, University of Leipzig, Germany.,Bioinformatics Group, Department of Computer Science, University of Leipzig, Germany.,Interdisciplinary Center for Bioinformatics, University of Leipzig, Germany.,RNomics Group, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany.,Max-Planck-Institute for Mathematics in Sciences, Leipzig, Germany.,Santa Fe Institute, NM, USA
| | | | | | - Monika Szczepanowski
- Hematopathology Section, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts University Kiel, Germany
| | - Lorenz Trümper
- Department of Hematology and Oncology, Georg-August-University of Göttingen, Germany
| | - Marc A Weniger
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| | - Reiner Siebert
- Institute of Human Genetics, University Hospital Schleswig-Holstein Campus Kiel/Christian-Albrechts University Kiel, Germany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Heinrich-Heine-University, Medical Faculty, Düsseldorf, Germany
| | - Michael Hummel
- Institute of Pathology, Charité - University Medicine Berlin, Germany
| | | | | |
Collapse
|
8
|
Palbociclib treatment of FLT3-ITD+ AML cells uncovers a kinase-dependent transcriptional regulation of FLT3 and PIM1 by CDK6. Blood 2016; 127:2890-902. [PMID: 27099147 DOI: 10.1182/blood-2015-11-683581] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 04/11/2016] [Indexed: 12/21/2022] Open
Abstract
Up to 30% of patients with acute myeloid leukemia have constitutively activating internal tandem duplications (ITDs) of the FLT3 receptor tyrosine kinase. Such mutations are associated with a poor prognosis and a high propensity to relapse after remission. FLT3 inhibitors are being developed as targeted therapy for FLT3-ITD(+) acute myeloid leukemia; however, their use is complicated by rapid development of resistance, which illustrates the need for additional therapeutic targets. We show that the US Food and Drug Administration-approved CDK4/6 kinase inhibitor palbociclib induces apoptosis of FLT3-ITD leukemic cells. The effect is specific for FLT3-mutant cells and is ascribed to the transcriptional activity of CDK6: CDK6 but not its functional homolog CDK4 is found at the promoters of the FLT3 and PIM1 genes, another important leukemogenic driver. There CDK6 regulates transcription in a kinase-dependent manner. Of potential clinical relevance, combined treatment with palbociclib and FLT3 inhibitors results in synergistic cytotoxicity. Simultaneously targeting two critical signaling nodes in leukemogenesis could represent a therapeutic breakthrough, leading to complete remission and overcoming resistance to FLT3 inhibitors.
Collapse
|
9
|
CDK6-a review of the past and a glimpse into the future: from cell-cycle control to transcriptional regulation. Oncogene 2015; 35:3083-91. [PMID: 26500059 DOI: 10.1038/onc.2015.407] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/22/2015] [Accepted: 09/22/2015] [Indexed: 12/19/2022]
Abstract
The G1 cell-cycle kinase CDK6 has long been thought of as a redundant homolog of CDK4. Although the two kinases have very similar roles in cell-cycle progression, it has recently become apparent that they differ in tissue-specific functions and contribute differently to tumor development. CDK6 is directly involved in transcription in tumor cells and in hematopoietic stem cells. These functions point to a role of CDK6 in tissue homeostasis and differentiation that is partially independent of CDK6's kinase activity and is not shared with CDK4. We review the literature on the contribution of CDK6 to transcription in an attempt to link the new findings on CDK6's transcriptional activity to cell-cycle progression. Finally, we note that anticancer therapies based on the inhibition of CDK6 kinase activity fail to take into account its kinase-independent role in tumor development.
Collapse
|
10
|
Li CF, Fang FM, Lan J, Wang JW, Kung HJ, Chen LT, Chen TJ, Li SH, Wang YH, Tai HC, Yu SC, Huang HY. AMACR amplification in myxofibrosarcomas: a mechanism of overexpression that promotes cell proliferation with therapeutic relevance. Clin Cancer Res 2014; 20:6141-6152. [PMID: 25384383 DOI: 10.1158/1078-0432.ccr-14-1182] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Myxofibrosarcomas frequently display arm-level gains on 5p. We characterized the pathogenetic and therapeutic relevance of the α-methylacyl coenzyme A racemase (AMACR) at 5p13.3. EXPERIMENTAL DESIGN AMACR mRNA expression in myxofibrosarcomas was analyzed using the public transcriptome and laser-microdissected sarcoma cells. We performed florescence in situ hybridization (FISH) and immunohistochemistry in independent samples for clinical correlates. In AMACR-overexpressing myxofibrosarcoma cells and xenografts, we elucidated the biologic function of AMACR using RNA interference and explored the therapeutic effect and mechanism of an AMACR inhibitor, ebselen oxide. RESULTS AMACR protein overexpression and gene amplification were significantly associated with each other (P < 0.001), with higher tumor grades (both P ≤ 0.002), and univariately with worse metastasis-free survival (MFS; both P < 0.0001) and disease-specific survival (DSS; P = 0.0002 for overexpression; P = 0.0062 for amplification). AMACR protein overexpression also independently portended adverse outcome (DSS, P = 0.007; MFS, P = 0.001). However, 39% of AMACR-overexpression cases did not show gene amplification, implying alternative regulatory mechanisms. In myxofibrosarcoma cell lines, stable AMACR knockdown suppressed cell proliferation, anchorage-independent growth, and expression of cyclin D1 and cyclin T2. These growth-promoting attributes of AMACR were corroborated in the AMACR-silenced xenograft model and AMACR-underexpressed myxofibrosarcomas, showing decreased labeling for cyclin D1, cyclin T2, and Ki-67. Compared with fibroblasts, AMACR-expressing myxofibrosarcoma cells were more susceptible to ebselen oxide, which not only decreased viable cells, promoted proteasome-mediated degradation of AMACR protein, and induced cellular apoptosis in vitro, but also dose-dependently suppressed xenografted tumor growth in vivo. CONCLUSIONS Overexpressed AMACR in myxofibrosarcomas can be amplification-driven, associated with tumor aggressiveness, and may be relevant as a druggable target.
Collapse
Affiliation(s)
- Chien-Feng Li
- Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan. Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan. Department of Biotechnology, Southern Taiwan University, Tainan, Taiwan
| | - Fu-Min Fang
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jui Lan
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Jun-Wen Wang
- Department of Orthopedic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hsing-Jien Kung
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Tainan, Taiwan
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Tzu-Ju Chen
- Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan
| | - Shau-Hsuan Li
- Division of Oncology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yu-Hui Wang
- Institute of Biosignal Transduction, National Cheng Kung University, Tainan, Taiwan
| | - Hui-Chun Tai
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan
| | - Shih-Chen Yu
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hsuan-Ying Huang
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| |
Collapse
|
11
|
Brohl AS, Stinson JR, Su HC, Badgett T, Jennings CD, Sukumar G, Sindiri S, Wang W, Kardava L, Moir S, Dalgard CL, Moscow JA, Khan J, Snow AL. Germline CARD11 Mutation in a Patient with Severe Congenital B Cell Lymphocytosis. J Clin Immunol 2014; 35:32-46. [PMID: 25352053 DOI: 10.1007/s10875-014-0106-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 09/30/2014] [Indexed: 01/03/2023]
Abstract
PURPOSE Activating germline mutations in CARD11 have recently been linked to a rare genetic disorder associated with congenital B cell lymphocytosis. We describe a patient with a similar clinical phenotype who had a de novo germline G123D CARD11 mutation. METHODS Whole exome sequencing was performed on DNA from the patient and his biological parents. Laboratory studies examined characteristics of the patient's B and T lymphocytes. A CARD11 cDNA containing the mutation was transfected into a lymphocyte cell line to gain an understanding of its function. RNA sequencing was performed on samples from the patient and from patients with alternate germline CARD11 mutations and differential gene expression analysis was performed. RESULTS The patient had a decade-long history of severe polyclonal B lymphocytosis in the 20,000-90,000 lymphocytes/mm(3) range, which was markedly exacerbated by EBV infection and splenectomy at different times. He had a heterozygous germline CARD11 mutation causing a G123D amino acid substitution, which was demonstrated to induce NF-κB activation in unstimulated lymphocytes. In contrast to previous patients with CARD11 mutations, this patient's B cells exhibited higher expression of several cell cycle progression genes, as well as enhanced proliferation and improved survival following B cell receptor stimulation. CONCLUSIONS This is the third reported germline and first de novo CARD11 mutation shown to cause congenital B cell lymphocytosis. The mutation was associated with a dramatically greater lymphocytosis than in previously described cases, disproportionate to the level of constitutive NF-κB activation. However, comparative review of the patient's clinical history, combined with additional genomic and functional analyses, underscore other important variables that may affect pathophysiology or regulate mutant CARD11 function in B cell proliferation and disease. We now refer to these patients as having BENTA disease (B cell Expansion with NF-κB and T cell Anergy).
Collapse
Affiliation(s)
- Andrew S Brohl
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Building 37, Room 2016B, Bethesda, MD, 20892, USA
| | - Jeffrey R Stinson
- Department of Pharmacology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD, 20814, USA
| | - Helen C Su
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD, USA
| | - Thomas Badgett
- Department of Pediatrics and Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Chester D Jennings
- Department of Pathology, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Gauthaman Sukumar
- Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Sivasish Sindiri
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Building 37, Room 2016B, Bethesda, MD, 20892, USA
| | - Wei Wang
- Immunopathogenesis Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Lela Kardava
- Immunopathogenesis Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Susan Moir
- Immunopathogenesis Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Clifton L Dalgard
- Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Jeffrey A Moscow
- Department of Pediatrics and Markey Cancer Center, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Javed Khan
- Oncogenomics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Building 37, Room 2016B, Bethesda, MD, 20892, USA.
| | - Andrew L Snow
- Department of Pharmacology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd., Bethesda, MD, 20814, USA.
| |
Collapse
|
12
|
Xochelli A, Baliakas P, Moore S, Sole F, Wickham N, Salido M, Athanasiadou A, Oscier D, Stamatopoulos K. Translocation t(2;7)(p11.2;q21.2): a rare genetic aberration associated with B-cell lymphoproliferative disorders of marginal-zone origin. Cancer Genet 2014; 207:281-3. [DOI: 10.1016/j.cancergen.2014.06.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/10/2014] [Accepted: 06/19/2014] [Indexed: 12/22/2022]
|
13
|
Douet-Guilbert N, Tous C, Le Flahec G, Bovo C, Le Bris MJ, Basinko A, Morel F, De Braekeleer M. Translocation t(2;7)(p11;q21) associated with the CDK6/IGK rearrangement is a rare but recurrent abnormality in B-cell lymphoproliferative malignancies. Cancer Genet 2014; 207:83-6. [PMID: 24726269 DOI: 10.1016/j.cancergen.2014.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 02/21/2014] [Accepted: 02/24/2014] [Indexed: 01/22/2023]
Abstract
Structural abnormalities of chromosome 7q have been regularly reported in chronic B-cell lymphoproliferative disorders. They include chromosomal translocations involving 7q21, leading to overexpression of the CDK6 gene. Three different translocations, t(7;14)(q21;q32), t(7;22)(q21;q11), and t(2;7)(p11;q21), leading to the juxtaposition of the CDK6 gene with a immunoglobulin gene enhancer during B-cell differentiation, have been described. In the past 2 years, we identified three patients with lymphoproliferative malignancy associated with a t(2;7)(p11;q21). Fluorescent in situ hybridization using an IGK probe and a library of bacterial artificial chromosome (BAC) clones located in bands 7q21.2 and 7q21.3, containing CDK6, revealed that the telomeric part of the IGK probe was translocated on the der(7) within a 51-kb region upstream of the transcriptional start site of CDK6. A total of 23 patients with indolent B-cell lymphoproliferative disorders and juxtaposition of the IG and CDK6 genes, including 20 with IGK and CDK6 juxtaposition, have been reported thus far. This rearrangement leads to the overexpression of CDK6, which encodes a cyclin-dependent protein kinase involved in cell cycle G1 phase progression and G1/S transition.
Collapse
Affiliation(s)
- Nathalie Douet-Guilbert
- Laboratory of Histology, Embryology and Cytogenetics, Faculty of Medicine and Health Sciences, Université de Bretagne Occidentale, Brest, France; National Institute of Health and Medical Research (INSERM), Brest, France; Department of Cytogenetics and Reproductive Biology, Morvan Hospital, Brest University and Regional Hospital, Brest, France
| | - Corinne Tous
- Department of Cytogenetics and Reproductive Biology, Morvan Hospital, Brest University and Regional Hospital, Brest, France
| | - Glen Le Flahec
- Department of Cytogenetics and Reproductive Biology, Morvan Hospital, Brest University and Regional Hospital, Brest, France
| | - Clément Bovo
- Laboratory of Histology, Embryology and Cytogenetics, Faculty of Medicine and Health Sciences, Université de Bretagne Occidentale, Brest, France; National Institute of Health and Medical Research (INSERM), Brest, France
| | - Marie-Josée Le Bris
- Department of Cytogenetics and Reproductive Biology, Morvan Hospital, Brest University and Regional Hospital, Brest, France
| | - Audrey Basinko
- Department of Cytogenetics and Reproductive Biology, Morvan Hospital, Brest University and Regional Hospital, Brest, France
| | - Frédéric Morel
- Laboratory of Histology, Embryology and Cytogenetics, Faculty of Medicine and Health Sciences, Université de Bretagne Occidentale, Brest, France; National Institute of Health and Medical Research (INSERM), Brest, France; Department of Cytogenetics and Reproductive Biology, Morvan Hospital, Brest University and Regional Hospital, Brest, France
| | - Marc De Braekeleer
- Laboratory of Histology, Embryology and Cytogenetics, Faculty of Medicine and Health Sciences, Université de Bretagne Occidentale, Brest, France; National Institute of Health and Medical Research (INSERM), Brest, France; Department of Cytogenetics and Reproductive Biology, Morvan Hospital, Brest University and Regional Hospital, Brest, France.
| |
Collapse
|
14
|
Kollmann K, Heller G, Schneckenleithner C, Warsch W, Scheicher R, Ott R, Schäfer M, Fajmann S, Schlederer M, Schiefer AI, Reichart U, Mayerhofer M, Hoeller C, Zöchbauer-Müller S, Kerjaschki D, Bock C, Kenner L, Hoefler G, Freissmuth M, Green A, Moriggl R, Busslinger M, Malumbres M, Sexl V. A kinase-independent function of CDK6 links the cell cycle to tumor angiogenesis. Cancer Cell 2013; 24:167-81. [PMID: 23948297 PMCID: PMC3743049 DOI: 10.1016/j.ccr.2013.07.012] [Citation(s) in RCA: 215] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 05/17/2013] [Accepted: 07/22/2013] [Indexed: 12/20/2022]
Abstract
In contrast to its close homolog CDK4, the cell cycle kinase CDK6 is expressed at high levels in lymphoid malignancies. In a model for p185BCR-ABL+ B-acute lymphoid leukemia, we show that CDK6 is part of a transcription complex that induces the expression of the tumor suppressor p16INK4a and the pro-angiogenic factor VEGF-A. This function is independent of CDK6's kinase activity. High CDK6 expression thus suppresses proliferation by upregulating p16INK4a, providing an internal safeguard. However, in the absence of p16INK4a, CDK6 can exert its full tumor-promoting function by enhancing proliferation and stimulating angiogenesis. The finding that CDK6 connects cell-cycle progression to angiogenesis confirms CDK6's central role in hematopoietic malignancies and could underlie the selection pressure to upregulate CDK6 and silence p16INK4a.
Collapse
Affiliation(s)
- Karoline Kollmann
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Gerwin Heller
- Clinical Division of Oncology, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Wolfgang Warsch
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Ruth Scheicher
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Rene G. Ott
- Institute of Pharmacology, Center of Biomolecular Medicine and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Markus Schäfer
- Research Institute of Molecular Pathology, Vienna Biocenter, 1030 Vienna, Austria
| | - Sabine Fajmann
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Michaela Schlederer
- Department of Clinical Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Ana-Iris Schiefer
- Department of Clinical Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Ursula Reichart
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Matthias Mayerhofer
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Christoph Hoeller
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Sabine Zöchbauer-Müller
- Clinical Division of Oncology, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Dontscho Kerjaschki
- Department of Clinical Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Lukas Kenner
- Ludwig Boltzmann Institute for Cancer Research, 1090 Vienna, Austria
| | - Gerald Hoefler
- Department of Pathology, Medical University of Graz, 8036 Graz, Austria
| | - Michael Freissmuth
- Institute of Pharmacology, Center of Biomolecular Medicine and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Anthony R. Green
- Cambridge Institute for Medical Research and Wellcome Trust/MRC Stem Cell Institute, University of Cambridge, Cambridge CB2 0XY, UK
- Department of Hematology, University of Cambridge, Cambridge CB2 0XY, UK
- Department of Hematology, Addenbrooke’s Hospital, Cambridge CB2 0XY, UK
| | - Richard Moriggl
- Ludwig Boltzmann Institute for Cancer Research, 1090 Vienna, Austria
| | - Meinrad Busslinger
- Institute of Pharmacology, Center of Biomolecular Medicine and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Marcos Malumbres
- Cell Division and Cancer Group, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas (CNIO), 28029 Madrid, Spain
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- Corresponding author
| |
Collapse
|
15
|
Parker EPK, Siebert R, Oo TH, Schneider D, Hayette S, Wang C. Sequencing of t(2;7) translocations reveals a consistent breakpoint linking CDK6 to the IGK locus in indolent B-cell neoplasia. J Mol Diagn 2012; 15:101-9. [PMID: 23127611 DOI: 10.1016/j.jmoldx.2012.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Revised: 07/09/2012] [Accepted: 07/13/2012] [Indexed: 01/30/2023] Open
Abstract
The translocation t(2;7)(p11;q21) has repeatedly been documented in association with indolent B-cell lymphoproliferative disorders (BLPDs). However, the chromosomal breakpoints associated with this recurrent translocation have rarely been characterized. Using an approach based on long-range PCR, we mapped the t(2;7) breakpoints in five patients presenting with indolent B-cell neoplasia. The sequencing of these rearrangements revealed several striking parallels across the t(2;7) breakpoints. The junction sites on 2p11 consistently mapped to the heptamer recombination signal sequence (RSS) of an immunoglobulin kappa variable gene (IGK) within the Vκ3 family, while the breakpoints on 7q21 each localized to within 4 bp of an RSS-like element located approximately 0.5 kb upstream of the transcription start site of the cyclin-dependent kinase 6 gene (CDK6). These findings confirm the significant genetic overlap arising in BLPD-associated t(2;7) translocations, and implicate the deregulated expression of CDK6 as a common molecular mechanism involved in the emergence of clonal B-cell proliferations presenting with this recurrent abnormality. In addition, the successful mapping of the t(2;7) translocations in each of five patients using a simple PCR-based protocol highlights the potential diagnostic utility of this approach during characterization of cases harboring analogous rearrangements.
Collapse
Affiliation(s)
- Edward P K Parker
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
16
|
Venkatesan N, Krishnakumar S, Deepa PR, Deepa M, Khetan V, Reddy MA. Molecular deregulation induced by silencing of the high mobility group protein A2 gene in retinoblastoma cells. Mol Vis 2012; 18:2420-37. [PMID: 23077401 PMCID: PMC3472926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Accepted: 10/01/2012] [Indexed: 11/03/2022] Open
Abstract
AIM To explore the molecular mechanisms deregulated by high mobility group protein A2 (HMGA2) gene silencing in retinoblastoma (RB) cells. METHODS Synthetic anti-HMGA2 short interfering RNA (siRNA) was used to silence the HMGA2 gene in cultured Y79 RB cells that were subjected to whole genome microarray analysis. The expression of differentially regulated key genes was confirmed with quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) in post-silenced RB cell lines (Y79 and WERI Rb1). These deregulated genes were compared for their constitutive expression in primary RB tumors (n=10). Zymographic determination of matrix metalloproteinase (MMP) activity was performed in RB cells. A cell cycle assay and a proliferation assay were performed in post-transfected RB cells. RESULTS HMGA2 gene silencing in cultured RB cells results in reduced cell proliferation and transition in the G1/S phase. The whole genome microarray analysis of HMGA2 silenced Y79 cells revealed overall upregulation of 1,132 genes (≥ 1.0 fold) and downregulation of 1,562 genes (≤ -1.0 fold). Specific quantitative pathway analysis of the deregulated genes (using Biointerpreter) revealed 150 upregulated genes and 77 downregulated genes (≥ 1.0 fold) involved in vital pathways, namely, mitogen-activated protein kinase, Janus kinase/signal transducers and activators of transcription, Ras pathway, Ras-induced extracellular signal-regulated protein kinases 1 and 2, and tumor protein p53. The differential expression of genes obtained from microarray analysis (Homo sapiens ELK1, member of ETS oncogene family [ELK1], Homo sapiens cyclin-dependent kinase 6 [CDK6], Homo sapiens E2F transcription factor 4, p107/p130-binding [E2F4], Homo sapiens G-2 and S-phase expressed 1 [GTSE1], Damage-regulated autophagy modulator [DRAM], Homo sapiens cadherin 1, type 1,E-cadherin (epithelial) [CDH1], Homo sapiens snail homolog 1 (Drosophila) [SNAI1], Homo sapiens matrix metallopeptidase 2 [MMP2], and Homo sapiens matrix metallopeptidase 9 [MMP9]) was confirmed with quantitative reverse-transcriptase polymerase chain reaction in post-silenced RB cells. Zymographic analysis revealed that the increase in MMP mRNA expression in the post-silenced RB cells did not correlate with corresponding enzyme activity. CONCLUSIONS Our study revealed molecular regulatory changes induced by HMGA2 silencing in RB cancer cells, offering mechanistic insights into the anticancer potential. HMGA2 may be considered a promising candidate for gene silencing therapy in RB.
Collapse
Affiliation(s)
- Nalini Venkatesan
- Department of Ocular pathology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| | | | - Perinkulam Ravi Deepa
- Department of Biological Sciences, PhD student, Birla Institute of Technology and Science (BITS), Pilani, India
| | - Murali Deepa
- Department of Ocular pathology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| | - Vikas Khetan
- Department of Vitreoretinal and Ocular Oncology, Medical Research Foundation, Sankara Nethralaya, Chennai, India
| | - M. Ashwin Reddy
- Department of Ophthalmology, Barts Health, London, England,Department of Pediatric Ophthalmology, Moorfields Eye Hospital, London, England
| |
Collapse
|
17
|
Uranbileg B, Yamamoto H, Park JH, Mohanty AR, Arakawa-Takeuchi S, Jinno S, Okayama H. Cdc6 protein activates p27KIP1-bound Cdk2 protein only after the bound p27 protein undergoes C-terminal phosphorylation. J Biol Chem 2012; 287:6275-83. [PMID: 22223646 DOI: 10.1074/jbc.m111.318295] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In mammalian cells Cdk2 activity during the G(1)-S transition is mainly controlled by p27(KIP1). Although the amount and subcellular localization of p27 influence Cdk2 activity, how Cdk2 activity is regulated during this phase transition still remains virtually unknown. Here we report an entirely new mechanism for this regulation. Cdc6 the AAA+ ATPase, known to assemble prereplicative complexes on chromosomal replication origins and activate p21(CIP1)-bound Cdk2, also activated p27-bound Cdk2 in its ATPase and cyclin binding motif-dependent manner but only after the p27 bound to the Cdk2 was phosphorylated at the C terminus. ROCK, which mediates a signal for cell anchorage to the extracellular matrix and activates the mTORC1 cascade as well as controls cytoskeleton assembly, was partly responsible for C-terminal phosphorylation of the p27. In vitro reconstitution demonstrated ROCK (Rho-associated kinase)-mediated phosphorylation of Cdk2-bound p27 at the C terminus and subsequent activation of the Cdk2 by Cdc6.
Collapse
Affiliation(s)
- Baasanjav Uranbileg
- Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Parker E, Macdonald JR, Wang C. Molecular characterization of a t(2;7) translocation linking CDK6 to the IGK locus in CD5(-) monoclonal B-cell lymphocytosis. Cancer Genet 2011; 204:260-4. [PMID: 21665179 DOI: 10.1016/j.cancergen.2011.03.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 03/01/2011] [Accepted: 03/15/2011] [Indexed: 12/19/2022]
Abstract
The term monoclonal B-cell lymphocytosis (MBL) is used to characterize individuals with a circulating population of clonal B-cells and no other features of a lymphoproliferative disorder. Although several recent studies have examined the molecular basis of this condition, the subgroup of MBL lacking CD5 expression has been largely overlooked. In this study, we sequenced a t(2;7) in a patient with persistent but non-progressing CD5(-) MBL. This revealed a breakpoint at 2p11.2 localized to the recombination signal sequence (RSS) of the immunoglobulin κ (IGK) variable gene IGKV3-15, and a breakpoint at 7q21.2 located 520 base pairs (bp) upstream of the transcription start site of cyclin-dependent kinase 6 (CDK6 ). The 7q breakpoint showed perfect sequence homology to the immunoglobulin RSS heptamer, and was located within 3 bp of a t(2;7) junction previously characterized in splenic marginal zone lymphoma (SMZL). These findings highlight a genetic link between CD5(-) MBL and SMZL, and implicate the dysregulation of CDK6 in the emergence of this preclinical disorder.
Collapse
Affiliation(s)
- Edward Parker
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, University of Toronto, ON, Canada
| | | | | |
Collapse
|
19
|
Kollmann K, Heller G, Ott RG, Scheicher R, Zebedin-Brandl E, Schneckenleithner C, Simma O, Warsch W, Eckelhart E, Hoelbl A, Bilban M, Zöchbauer-Müller S, Malumbres M, Sexl V. c-JUN promotes BCR-ABL-induced lymphoid leukemia by inhibiting methylation of the 5' region of Cdk6. Blood 2011; 117:4065-75. [PMID: 21300982 DOI: 10.1182/blood-2010-07-299644] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The transcription factor c-JUN and its upstream kinase JNK1 have been implicated in BCR-ABL-induced leukemogenesis. JNK1 has been shown to regulate BCL2 expression, thereby altering leukemogenesis, but the impact of c-JUN remained unclear. In this study, we show that JNK1 and c-JUN promote leukemogenesis via separate pathways, because lack of c-JUN impairs proliferation of p185(BCR-ABL)-transformed cells without affecting their viability. The decreased proliferation of c-Jun(Δ/Δ) cells is associated with the loss of cyclin-dependent kinase 6 (CDK6) expression. In c-Jun(Δ/Δ) cells, CDK6 expression becomes down-regulated upon BCR-ABL-induced transformation, which correlates with CpG island methylation within the 5' region of Cdk6. We verified the impact of Cdk6 deficiency using Cdk6(-/-) mice that developed BCR-ABL-induced B-lymphoid leukemia with significantly increased latency and an attenuated disease phenotype. In addition, we show that reexpression of CDK6 in BCR-ABL-transformed c-Jun(Δ/Δ) cells reconstitutes proliferation and tumor formation in Nu/Nu mice. In summary, our study reveals a novel function for the activating protein 1 (AP-1) transcription factor c-JUN in leukemogenesis by antagonizing promoter methylation. Moreover, we identify CDK6 as relevant and critical target of AP-1-regulated DNA methylation on BCR-ABL-induced transformation, thereby accelerating leukemogenesis.
Collapse
Affiliation(s)
- Karoline Kollmann
- Institute of Pharmacology, Center of Biomolecular Medicine and Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Dufresne SD, Felgar RE, Sargent RL, Surti U, Gollin SM, McPhail ED, Cook JR, Swerdlow SH. Defining the borders of splenic marginal zone lymphoma: a multiparameter study. Hum Pathol 2010; 41:540-51. [PMID: 20004934 PMCID: PMC2879876 DOI: 10.1016/j.humpath.2009.09.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 09/12/2009] [Accepted: 09/18/2009] [Indexed: 10/20/2022]
Abstract
Classic splenic marginal zone lymphomas are CD5-, CD10-, CD23-, CD43-, and usually IgD+ with biphasic white pulp nodules. However, the 2008 World Health Organization classification accepts splenic marginal zone lymphomas with monophasic marginal zone-like white pulp nodules and recognizes a group of unclassifiable splenic small B-cell lymphomas. To explore the relationship of classic splenic marginal zone lymphomas to these other less well-defined splenic lymphomas, a multiparameter study of 47 splenic marginal zone lymphomas and unclassifiable splenic small B-cell lymphomas was performed. Seventeen of 31 splenic marginal zone lymphomas were biphasic, and 14 were monophasic (90%-100% marginal zone-like white pulp nodules). Sixteen cases were unclassifiable splenic small B-cell lymphomas, most lacking a marginal zone-type component. There were many clinical similarities between the 3 groups, including similar survivals. Monophasic and unclassifiable cases were less likely to have a typical splenic marginal zone lymphoma phenotype (28.6%, 23.1%) compared with biphasic cases (86.7%), usually because of IgD negativity (P < .003). Thirty-four of 42 (81%) cases had cytogenetic abnormalities by fluorescence in situ hybridization; and 17 of 20 (85%), by classical cytogenetics. The most frequent fluorescence in situ hybridization abnormalities among the splenic marginal zone lymphomas were del(7)(q31) (26%), +12 (25%), and +3q27 (27%); and among the unclassifiable cases, +12 (50%) and +3q27 (36%). Five of 6 unclassifiable cases with exclusively small non-marginal zone-like lymphocytes involving both white and red pulp had +12 compared with 9 of 34 other cases (P < .02). CDK6 (2 cases) and BCL3 (1 case) rearrangements were only seen in the unclassifiable group. These results support including both biphasic and monophasic cases as splenic marginal zone lymphomas, but suggest that the lack of a non-marginal zone-like population in the monophasic group is associated with some biologic differences. They also demonstrate a relatively large proportion of unclassifiable cases, including a group with frequent +12.
Collapse
Affiliation(s)
- Scott D Dufresne
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
New developments in the pathology of malignant lymphoma: a review of the literature published from January to August 2009. J Hematop 2009; 2:171-83. [PMID: 20309425 PMCID: PMC2766446 DOI: 10.1007/s12308-009-0046-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|