1
|
Whaley RD, Sill DR, Tekin B, McCarthy MR, Cheville JC, Ebare K, Stanton ML, Reynolds JP, Raghunathan A, Herrera Hernandez LP, Jimenez RE, Sharma V, Boorjian SA, Leibovich BC, Hofich CD, Alvand S, Pujari GP, Kipp BR, Ketterling RP, Geiersbach KB, Greipp PT, Sukov WR, Halling KC, Gupta S. Evaluation of 3,606 renal cell tumors for TFE3 rearrangements and TFEB alterations via fluorescence in situ hybridization, next generation sequencing, and GPNMB immunohistochemistry. Hum Pathol 2025; 159:105797. [PMID: 40381702 DOI: 10.1016/j.humpath.2025.105797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 05/13/2025] [Accepted: 05/13/2025] [Indexed: 05/20/2025]
Abstract
Molecularly defined renal cell carcinomas include TFE3-rearranged renal cell carcinoma (TFE3-RCC) and TFEB-altered renal cell carcinoma (TFEB-RCC). There is significant morphologic and immunophenotypic overlap between these entities and common renal tumors, such that molecular testing is often required to make the diagnosis. Herein, we reviewed our reference laboratory experience pertaining to TFE3 and TFEB FISH testing, targeted next generation RNA sequencing (NGS), and GPNMB immunohistochemistry (IHC). Most FISH testing (2963/3543, 83.6%) was performed on renal tumors. TFE3 FISH showed rearrangements in 449 of 2467 specimens (18.2%), including 281 (of 1887, 14.9%) renal tumors. TFEB FISH identified an abnormality in 107 of 1076 (9.9%) renal tumors, including 52 (of 107, 48.6%) rearrangements, 41 (of 107, 38.3%) amplifications, or 14 (of 107, 13.1%) with both rearrangements and amplifications. More specifically, TFE3-rearranged, TFEB-rearranged, TFEB-amplified, and TFEB-rearranged/amplified renal tumors occurred in females in 54%, 69.6%, 39.1%, and 40% of cases, respectively. The pediatric and young adult population (aged ≤21 years) included 44 (of 121, 36.3%) TFE3-RCC and 9 (of 50, 18%) TFEB-rearranged RCC. TFE3-RCC fusion partners included RBM10, NONO, ASPSCR1, FUBP1, SFPQ, MAPK1IP1L, and PRCC. TFEB-rearranged RCC fusion partners SYNRG and BYSL were identified. Diffuse GPNMB expression was seen in 92% of TFE3-RCC (24/26; median H-score 275), 100% of TFEB-rearranged RCC (19/19; median H-score 300), and 100% of TFEB-amplified RCC (17/17; 240). Finally, our cohort included 5 eosinophilic TFEB-amplified RCCs with non-focal keratin 20 expression. This large series of TFE3-RCC and TFEB-RCC provides population data regarding these rare tumors and demonstrates the clinical value of targeted FISH strategies. Our results suggest that GPNMB IHC is an effective screen for TFE3-RCC and TFEB-RCC. Additionally, we report a RCC harboring a novel SYNRG::TFEB fusion.
Collapse
Affiliation(s)
- Rumeal D Whaley
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| | - Daniel R Sill
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| | - Burak Tekin
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| | - Micheal R McCarthy
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| | - John C Cheville
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| | - Kingsley Ebare
- The Department of Laboratory Medicine and Pathology, Mayo Clinic, Phoenix, AZ, USA.
| | - Melissa L Stanton
- The Department of Laboratory Medicine and Pathology, Mayo Clinic, Phoenix, AZ, USA.
| | - Jordan P Reynolds
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL, USA.
| | - Aditya Raghunathan
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| | | | - Rafael E Jimenez
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| | - Vidit Sharma
- The Department of Urology, Mayo Clinic, Rochester, MN, USA.
| | | | | | - Christopher D Hofich
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| | - Saba Alvand
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| | - Ganesh P Pujari
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| | - Benjamin R Kipp
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| | - Rhett P Ketterling
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| | | | - Patricia T Greipp
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| | - William R Sukov
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| | - Kevin C Halling
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| | - Sounak Gupta
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
2
|
Somers GR, L'Herminé-Coulomb A, Matoso A, O'Sullivan MJ. Paediatric renal tumours: an update on challenges and recent developments. Virchows Arch 2025; 486:49-64. [PMID: 39786574 DOI: 10.1007/s00428-024-04017-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/12/2025]
Abstract
Paediatric renal tumours include a broad range of neoplasms which largely differ, but also overlap to a smaller extent, with adult kidney cancer. These include the embryonal tumour nephroblastoma, which accounts for the majority of cases of kidney cancer in the first decade of life and, despite boasting a cure in ~ 90% cases, still presents clinical challenges in a small proportion of cases. A variety of less common mesenchymal tumours, including the mostly indolent congenital mesoblastic nephroma, clear cell sarcoma of kidney which continues to be associated with poor outcomes for higher stage disease, and the typically lethal malignant rhabdoid tumour, form the bulk of the remaining presentations in the first decade. All three of these represent the intrarenal form of a wider 'family' of genetically related and histologically overlapping entities occurring in soft tissue and other anatomical locations. The latter two are examples of aggressive 'epigenetic' tumours driven by dysregulation of chromatin. In the second decade of life, renal cell carcinoma dominates, and with molecular characterisation many distinct subtypes are now described. Herein we discuss the developments in relation to diagnostic categorisation of paediatric renal cancers and how deeper understanding of the underlying biology is already providing therapeutic opportunity, while also focussing on the challenges that remain for the pathologist.
Collapse
Affiliation(s)
- Gino R Somers
- Department of Paediatric Laboratory Medicine, Hospital for Sick Children, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Aurore L'Herminé-Coulomb
- Pathology Department, Hôpital Armand Trousseau-Sorbonne Université-Assistance Publique Hôpitaux de Paris, Paris, France
| | - Andres Matoso
- Genitourinary Pathology Division, The Johns Hopkins Hospital, Baltimore, MD, 21231-2410, USA
| | - Maureen J O'Sullivan
- Histology Laboratory, Children's Health Ireland, Dublin, Ireland.
- Histopathology Department, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
3
|
Bellal S, Kammerer-Jacquet SF, Rioux-Leclercq N. [2022 WHO classification of renal cell carcinomas: Focus on papillary renal cell carcinoma]. Ann Pathol 2024; 44:314-322. [PMID: 38729793 DOI: 10.1016/j.annpat.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/10/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024]
Abstract
Renal cell carcinomas (RCC) represent a group of heterogeneous tumors whose classification has greatly evolved since 1981. The latest update in 2022 classifies all renal cell carcinomas into six categories according to their morphology or the detection of specific molecular alterations. Molecular disassembly of renal cell carcinomas with papillary features has enabled the identification of new entities characterized by a specific molecular alteration, such as Fumarate Hydratase (FH) deficient RCC, TFE3-rearranged RCC or TFEB-altered RCC. This new classification allows for a more accurate diagnosis but requires a thorough knowledge of the genomic alterations to search for with immunohistochemical or molecular biology techniques. According to the new WHO 2022 classification, papillary renal cell carcinoma (PRC) type 1 or type 2 classification is no longer recommended. A classification based on nucleolar ISUP grade must be preferred: low-grade PRC (ISUP 1-2) or high-grade PRC (ISUP 3-4). The other prognostic factors remain the same: the pTNM stage, lymphovascular invasion, and the presence or absence of dedifferentiated areas referring to sarcomatoid or rhabdoid features. Of note, the presence of necrosis is not currently recognized as a poor prognostic element for this type of carcinoma. The diagnosis of high-grade PRC is from now on a diagnosis of exclusion. It can only be sustained after having ruled out TFE3-rearranged RCC, TFEB-altered RCC, and FH-deficient RCC. For clinicians, the diagnosis of PRC implies suggesting an oncogenetic consultation to screen for an associated genetic tumor syndrome regardless of the patient's age.
Collapse
Affiliation(s)
- Sarah Bellal
- Département de pathologie cellulaire et tissulaire, CHU d'Angers, 4, rue Larrey, 49933 Angers cedex 9, France
| | - Solène-Florence Kammerer-Jacquet
- Service d'anatomie et cytologie pathologiques, CHU de Rennes-Hôpital Pontchaillou, 2, rue Henri-Le-Guilloux, 35033 Rennes cedex 9, France
| | - Nathalie Rioux-Leclercq
- Service d'anatomie et cytologie pathologiques, CHU de Rennes-Hôpital Pontchaillou, 2, rue Henri-Le-Guilloux, 35033 Rennes cedex 9, France.
| |
Collapse
|
4
|
Riddle N, Parkash V, Guo CC, Shen SS, Perincheri S, Ramirez AS, Auerbach A, Belchis D, Humphrey PA. Recent Advances in Genitourinary Tumors: Updates From the 5th Edition of the World Health Organization Blue Book Series. Arch Pathol Lab Med 2024; 148:952-964. [PMID: 38031818 DOI: 10.5858/arpa.2022-0509-ra] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 12/01/2023]
Abstract
CONTEXT.— Urinary and Male Genital Tumours is the 8th volume of the World Health Organization Classification of Tumours series, 5th edition. Released in hard copy in September 2022, it presents an update to the classification of male genital and urinary tumors in the molecular age. Building upon previous volumes in this series, significant effort has been made to harmonize terminology across organ systems for biologically similar tumors (eg, neuroendocrine tumors). Genomic terminology has been standardized and genetic syndromes covered more comprehensively. This review presents a concise summary of this volume, highlighting new entities, notable modifications relative to the 4th edition, and elements of relevance to routine clinical practice. OBJECTIVE.— To provide a comprehensive update on the World Health Organization classification of urinary and male genital tumors, highlighting updated diagnostic criteria and terminology. DATA SOURCES.— The 4th and 5th editions of the World Health Organization Classification of Tumours: Urinary and Male Genital Tumours. CONCLUSIONS.— The World Health Organization has made several changes in the 5th edition of the update on urinary and male genital tumors that pathologists need to be aware of for up-to-date clinical practice.
Collapse
Affiliation(s)
- Nicole Riddle
- From the Department of Pathology, Tampa General Hospital, Tampa, Florida (Riddle)
- Pathology and Laboratory Medicine, Ruffolo, Hooper, and Associates, University of South Florida Health, Tampa (Riddle)
| | - Vinita Parkash
- the Department of Pathology, Yale University School of Medicine, New Haven, Connecticut (Parkash, Perincheri, Humphrey)
| | - Charles C Guo
- the Department of Pathology, University of Texas MD Anderson Cancer Center, Houston (Guo)
| | - Steven S Shen
- the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Shen)
| | - Sudhir Perincheri
- the Department of Pathology, Yale University School of Medicine, New Haven, Connecticut (Parkash, Perincheri, Humphrey)
| | | | - Aaron Auerbach
- the Department of Hematopathology, The Joint Pathology Center, Silver Spring, Maryland (Auerbach)
| | - Deborah Belchis
- the Department of Pathology, Luminis Health, Baltimore, Maryland (Belchis)
| | - Peter A Humphrey
- the Department of Pathology, Yale University School of Medicine, New Haven, Connecticut (Parkash, Perincheri, Humphrey)
| |
Collapse
|
5
|
Wu J, Cao CZ, Cui HL, Du G, Shi HZ, Liang J, Guo L, Wang YC, Zhang J, Zhou AP, Li CL, Zheng S, Shou JZ. Prognosis and Clinicopathological Characters of Adult TFEB-Altered Renal Cell Carcinoma: A Single Center Experience of 18 Cases. Clin Genitourin Cancer 2024; 22:261-268.e3. [PMID: 38104031 DOI: 10.1016/j.clgc.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023]
Abstract
INTRODUCTION TFEB-altered renal cell carcinoma (RCC) is a rare entity characterized by the rearrangement of the TFEB gene or TFEB amplified. The therapeutic implications and long-term survival of TFEB-altered RCC remain unclear, especially for metastatic cases. MATERIALS AND METHODS The current study initially enrolled 7604 consecutive RCC patients at our center and a total of 248 patients were selected for FISH and immunohistochemistry (IHC) analysis. Eventually, eighteen TFEB-altered RCC patients were identified. We then reported the clinical, morphological, IHC, and radiological features of these cases. RESULTS The median age at initial diagnosis was 45 years, ranging from 18 years to 66 years. The majority of the TFEB-altered RCC patients were male (61.1%), with localized disease (T1-2N0M0, 77.8%). The median split TFEB fluorescent signal was 24%, ranging from 15%-80%. The morphological characteristics of TFEB-altered RCC were variable, with acinar, papillary, solid, or nest patterns. IHC and magnetic resonance imaging features of TFEB-altered RCC were nonspecific. Nine patients with localized disease received partial nephrectomy and five patients with localized disease received radical nephrectomy. During the median follow-up of 67 months, no signs of recurrence or metastasis were found in these patients. Two patients had distant metastasis and received axitinib plus PD-1 immunotherapy. One of them died at 40-month follow-up and another still alive at 88-month follow-up. CONCLUSION TFEB-altered RCC is an extremely rare variant, exhibited mixed morphological characteristics. The radiological feature lack specificity, resembling clear cell RCC or papillary RCC. Genetic analyses including FISH analysis is crucial in the diagnosis of TFEB-altered RCC. For localized TFEB-altered RCC, both radical nephrectomy and partial nephrectomy conferred satisfactory prognosis. For metastatic TFEB-altered RCC, immunotherapy-based drug combinations could be a promising treatment strategy.
Collapse
Affiliation(s)
- Jie Wu
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chuan-Zhen Cao
- Department of Urology, China-Japan Friendship Hospital, Beijing, China
| | - Hong-Lei Cui
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gan Du
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong-Zhe Shi
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Liang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Guo
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi-Cheng Wang
- Department of Imaging, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jin Zhang
- Department of Imaging, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ai-Ping Zhou
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chang-Ling Li
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shan Zheng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jian-Zhong Shou
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
6
|
Kamanda S, Huanca-Amesquita L, Milla E, Argani P, Epstein JI. Clinicopathologic Classification of Renal Cell Carcinoma in Patients ≤40 Years Old From Peru. Int J Surg Pathol 2024; 32:35-45. [PMID: 37062985 PMCID: PMC10577151 DOI: 10.1177/10668969231167539] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
INTRODUCTION There are scant data on renal cell carcinoma (RCC) from relatively younger patients in South America using contemporary classification. METHODS Fifty-nine consecutively treated patients with RCC (≤40 years old) were assessed from the National Institute of Neoplastic Diseases in Peru from 2008 to 2020 (34 males; 25 females), age range of 13 to 40 years. RESULTS Most common presenting symptoms were flank pain (n = 40), hematuria (n = 19), and weight loss (n = 12). Associated conditions included 4 patients with proven or presumed tuberous sclerosis and 1 patient with von Hippel Lindau syndrome, all with clear cell RCC. Tumor histopathology was clear cell RCC in 32 of 59 (54%), chromophobe RCC in 6 of 59 (10%), and 5 of 59 (8%) each of papillary RCC and MiT family translocation-associated RCC. Four of 59 (7%) were FH-deficient RCC and 2 of 59 (3%) remained unclassified. The remaining tumors were isolated examples of clear cell papillary renal cell tumor, eosinophilic solid and cystic RCC (ESC RCC), RCC with fibromyomatous stroma, sarcomatoid RCC, and sarcomatoid clear cell RCC. Of the 4 FH-deficient RCCs, none had the classic morphology. The 5 MiT family translocation RCCs had variable morphology. There were 41 tumors without recurrence or metastases, 3 tumors with local recurrence only, 8 tumors with metastases only, and 7 tumors with both local recurrence and metastases. CONCLUSIONS The current study demonstrates the importance of special studies in accurately classifying RCC in younger individuals. The distribution of RCC subtypes in younger individuals is similar between 2 representative large institutions of the United States and Peru.
Collapse
Affiliation(s)
- Sonia Kamanda
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | | | - Esperanza Milla
- Department of Pathology, National Institute of Neoplastic Diseases, Lima, Peru
| | - Pedram Argani
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Jonathan I. Epstein
- Department of Pathology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Departments of Urology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Departments of Oncology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| |
Collapse
|
7
|
Hu JH, Li SY, Yu LH, Guan ZR, Jiang YP, Hu D, Wang HJ, Zhao LP, Zhou ZH, Yan YX, Xie T, Huang ZH, Lou JS. TFEB: a double-edged sword for tumor metastasis. J Mol Med (Berl) 2023; 101:917-929. [PMID: 37328669 DOI: 10.1007/s00109-023-02337-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/14/2023] [Accepted: 05/31/2023] [Indexed: 06/18/2023]
Abstract
Transcription factor EB, a member of the microphthalmia-associated transcription factor (MiTF/TFE) family, is a master regulator of autophagy, lysosome biogenesis, and TAMs. Metastasis is one of the main reasons for the failure of tumor therapy. Studies on the relationship between TFEB and tumor metastasis are contradictory. On the positive side, TFEB mainly affects tumor cell metastasis via five aspects, including autophagy, epithelial-mesenchymal transition (EMT), lysosomal biogenesis, lipid metabolism, and oncogenic signaling pathways; on the negative side, TFEB mainly affects tumor cell metastasis in two aspects, including tumor-associated macrophages (TAMs) and EMT. In this review, we described the detailed mechanism of TFEB-mediated regulation of metastasis. In addition, we also described the activation and inactivation of TFEB in several aspects, including the mTORC1 and Rag GTPase systems, ERK2, and AKT. However, the exact process by which TFEB regulates tumor metastasis remains unclear in some pathways, which requires further studies.
Collapse
Affiliation(s)
- Jun-Hu Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Shou-Ye Li
- College of Pharmacy, Hangzhou Medical College, Hangzhou, Zhejiang, 311300, China
- Zhejiang Eyoung Pharmaceutical Research and Development Center, Hangzhou, Zhejiang, 311258, China
| | - Li-Hua Yu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Zhen-Rong Guan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Ya-Ping Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Die Hu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Hao-Jie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Li-Ping Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Zhao-Huang Zhou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Ya-Xin Yan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Zhi-Hui Huang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| | - Jian-Shu Lou
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
8
|
TFEB Rearranged Renal Cell Carcinoma: Pathological and Molecular Characterization of 10 Cases, with Novel Clinical Implications: A Single Center 10-Year Experience. Biomedicines 2023; 11:biomedicines11020245. [PMID: 36830782 PMCID: PMC9952947 DOI: 10.3390/biomedicines11020245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
To report our experience with the cases of TFEB rearranged RCC, with particular attention to the clinicopathological, immunohistochemical and molecular features of these tumors and to their predictive markers of response to therapy. We have retrieved the archives of 9749 renal cell carcinomas in the Institute of Urology, Peking University and found 96 rearranged RCCs between 2013 and 2022. Among these renal tumors, ten cases meet the morphologic, immunohistochemical and FISH characterization for TFEB rearranged RCC. The 10 patients' mean and median age is 34.9 and 34 years, respectively (range 23-55 years old), and the male to female ratio is 1:1.5. Macroscopically, these tumors generally have a round shape and clear boundary. They present with variegated, grayish yellow and grayish brown cut surface. The average maximum diameter of the tumor is 8.5 cm and the median 7.7 (ranged from 3.4 to 16) cm. Microscopically, the tumor is surrounded by a thick local discontinuous pseudocapsule. All tumors exhibit two types of cells: voluminous, clear and eosinophilic cytoplasm cells arranged in solid sheet, tubular growth pattern with local cystic changes, and papillary, pseudopapillary and compact nested structures are also seen in a few cases. Non-neoplastic renal tubules are entrapped in the tumor. A biphasic "rosette-like" pattern, psammomatous calcifications, cytoplasmic vacuolization, multinucleated giant cells and rhabdomyoid phenotype can be observed in some tumors. A few tumors may be accompanied by significant pigmentation or hemorrhage and necrosis. The nucleoli are equivalent to the WHO/ISUP grades 2-4. All tumors are moderately to strongly positive for Melan-A, TFEB, Vimentin and SDHB, and negative for CK7, CAIX, CD117, EMA, SMA, Desmin and Actin. CK20 and CK8/18 are weakly positive. In addition, AE1/AE3, P504s, HMB45 and CD10 are weakly moderately positive. TFE3 is moderately expressed in half of the cases. PAX8 can be negative, weakly positive or moderately-strongly positive. The therapy predictive marker for PD-L1 (SP263) is moderately to strongly positive membranous staining in all cases. All ten tumors demonstrate a medium frequency of split TFEB fluorescent signals ranging from 30 to 50% (mean 38%). In two tumors, the coincidence of the TFEB gene copy number gains are observed (3-5 fluorescent signals per neoplastic nuclei). Follow-up is available for all patients, ranging from 4 to 108 months (mean 44.8 and median 43.4 months). All patients are alive, without tumor recurrences or metastases. We described a group of TFEB rearranged RCC identified retrospectively in a large comprehensive Grade III hospital in China. The incidence rate was about 10.4% of rearranged RCCs and 0.1% of all the RCCs that were received in our lab during the ten-year period. The gross morphology, histological features, and immunohistochemistry of TFEB rearranged RCC overlapped with other types of RCC such as TFE3 rearranged RCC, eosinophilic cystic solid RCC, or epithelioid angiomyolipoma, making the differential diagnosis challenging. The diagnosis was based on TFEB fluorescence in situ hybridization. At present, most of the cases reported in the literature have an indolent clinical behavior, and only a small number of reported cases are aggressive. For this small subset of aggressive cases, it is not clear how to plan treatment strategies, or which predictive markers could be used to assess upfront responses to therapies. Between the possible options, immunotherapy currently seems a promising strategy, worthy of further exploration. In conclusion, we described a group of TFEB rearranged RCC identified in a large, comprehensive Grade III hospital in China, in the last 10 years.
Collapse
|
9
|
Tang J, Baba M. MiT/TFE Family Renal Cell Carcinoma. Genes (Basel) 2023; 14:genes14010151. [PMID: 36672892 PMCID: PMC9859458 DOI: 10.3390/genes14010151] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/09/2023] Open
Abstract
The microphthalmia-associated transcription factor/transcription factor E (MiT/TFE) family of transcription factors are evolutionarily conserved, basic helix-loop-helix leucine zipper (bHLH-Zip) transcription factors, consisting of MITF, TFEB, TFE3, and TFEC. MiT/TFE proteins, with the exception of TFEC, are involved in the development of renal cell carcinoma (RCC). Most of the MiT/TFE transcription factor alterations seen in sporadic RCC cases of MiT family translocation renal cell carcinoma (tRCC) are chimeric proteins generated by chromosomal rearrangements. These chimeric MiT/TFE proteins retain the bHLH-Zip structures and act as oncogenic transcription factors. The germline variant of MITF p.E318K has been reported as a risk factor for RCC. E 318 is present at the SUMOylation consensus site of MITF. The p.E318K variant abrogates SUMOylation on K 316, which results in alteration of MITF transcriptional activity. Only a few cases of MITF p.E318K RCC have been reported, and their clinical features have not yet been fully described. It would be important for clinicians to recognize MITF p.E318K RCC and consider MITF germline testing for undiagnosed familial RCC cases. This review outlines the involvement of the MiT/TFE transcription factors in RCC, both in sporadic and hereditary cases. Further elucidation of the molecular function of the MiT/TFE family is necessary for better diagnosis and treatment of these rare diseases.
Collapse
|
10
|
Zhu Y, Xia C, Ou Y, Zhang C, Li L, Yang D. TFEB-associated renal cell carcinoma: A case report and literature review. Medicine (Baltimore) 2022; 101:e31870. [PMID: 36550835 PMCID: PMC9771232 DOI: 10.1097/md.0000000000031870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
RATIONALE TFEB-associated renal cell carcinoma is very rare and belongs to the microphthalmia - associated transcription family translocation renal cell carcinoma. PATIENT CONCERNS Hospitalized for fever, a 29-year-old male patient had a left kidney lesion without any additional discomfort. DIAGNOSES Histopathological and immunohistochemical results were corresponding with TFEB renall cell carcinoma features. INTERVENTIONS Surgical resection of the tumor was performed. OUTCOMES After 8 months of follow-up, no tumor recurrence was observed. LESSONS TFEB-associated renal cell carcinoma is rare. The diagnosis is explicit. However, the optimal treatment needs to be further explored.
Collapse
Affiliation(s)
- Yong Zhu
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Chengxing Xia
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yitian Ou
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Chao Zhang
- Department of Oncology, Qujing First People’s Hospital, Qujing, Yunnan, China
| | - Lin Li
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Delin Yang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- * Correspondence: Delin Yang, Department of Urology, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Kunming, Yunnan 650101, China (e-mail: )
| |
Collapse
|
11
|
Onal B, Gultekin MH, Simsekoglu MF, Selcuk B, Gurbuz A. Biomarkers in Urological Cancers. Biomark Med 2022. [DOI: 10.2174/9789815040463122010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Urological tumours have become one of the most common cancers in the
last decade. It is important to apply an approach that evaluates many factors related to
the patient and the disease carefully to minimize cancer-associated morbidity and
mortality. The clinical use of cancer biomarkers is a valuable part of the clinical
management of urological cancers. These biomarkers may lead to optimized detection,
treatment, and follow-up of urological cancers. With the development of molecular
research, newly developed biomarkers and next-generation sequencing have also
contributed to patient management. In this chapter, we will present biomarkers in the
most common urological cancers under subheadings of bladder cancer, prostate cancer,
kidney cancer, and testicular cancer. Additionally, due to the development that
occurred in the next-generation sequencing (NGS), all the above-mentioned
malignancies are evaluated with regard to NGS.
Collapse
Affiliation(s)
- Bulent Onal
- Department of Urology, Cerrahpasa School of Medicine, Istanbul University - Cerrahpasa,
Istanbul, Turkey
| | - Mehmet Hamza Gultekin
- Department of Urology, Cerrahpasa School of Medicine, Istanbul University - Cerrahpasa,
Istanbul, Turkey
| | - Muhammed Fatih Simsekoglu
- Department of Urology, Cerrahpasa School of Medicine, Istanbul University - Cerrahpasa,
Istanbul, Turkey
| | - Berin Selcuk
- Department of Urology, Cerrahpasa School of Medicine, Istanbul University - Cerrahpasa,
Istanbul, Turkey
| | - Ahmet Gurbuz
- Department of Urology, Cerrahpasa School of Medicine, Istanbul University - Cerrahpasa,
Istanbul, Turkey
| |
Collapse
|
12
|
Wang Y, Xu G, Yang H, Zhou X, Wen H. Renal Cell Carcinoma Associated with t (6;11) Translocation/TFEB Gene Fusion: A Case Report and Review of Literature. Clin Genitourin Cancer 2022; 21:309-313. [PMID: 36153295 DOI: 10.1016/j.clgc.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Yiming Wang
- Department of Urology, Zhejiang University Mingzhou Hospital, Ningbo, Zhejiang, China
| | - Guangjun Xu
- Department of Urology, Zhejiang University Mingzhou Hospital, Ningbo, Zhejiang, China
| | - Haitao Yang
- Department of Pathology, Zhejiang University Mingzhou Hospital, Ningbo, Zhejiang, China
| | - Xiaolong Zhou
- Department of Pathology, Zhejiang University Mingzhou Hospital, Ningbo, Zhejiang, China
| | - Haitao Wen
- Department of Urology, Zhejiang University Mingzhou Hospital, Ningbo, Zhejiang, China.
| |
Collapse
|
13
|
Simonaggio A, Ambrosetti D, Verkarre V, Auvray M, Oudard S, Vano YA. MiTF/TFE Translocation Renal Cell Carcinomas: From Clinical Entities to Molecular Insights. Int J Mol Sci 2022; 23:ijms23147649. [PMID: 35886994 PMCID: PMC9324307 DOI: 10.3390/ijms23147649] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 12/30/2022] Open
Abstract
MiTF/TFE translocation renal cell carcinoma (tRCC) is a rare and aggressive subtype of RCC representing the most prevalent RCC in the pediatric population (up to 40%) and making up 4% of all RCCs in adults. It is characterized by translocations involving either TFE3 (TFE3-tRCC), TFEB (TFEB-tRCC) or MITF, all members of the MIT family (microphthalmia-associated transcriptional factor). TFE3-tRCC was first recognized in the World Health Organization (WHO) classification of kidney cancers in 2004. In contrast to TFEB-tRCC, TFE3-tRCC is associated with many partners that can be detected by RNA or exome sequencing. Both diagnoses of TFE3 and TFEB-tRCC are performed on morphological and immunohistochemical features, but, to date, TFE break-apart fluorescent in situ hybridization (FISH) remains the gold standard for diagnosis. The clinical behavior of tRCC is heterogeneous and more aggressive in adults. Management of metastatic tRCC is challenging, especially in the younger population, and data are scarce. Efficacy of the standard of care-targeted therapies and immune checkpoint inhibitors remains low. Recent integrative exome and RNA sequencing analyses have provided a better understanding of the biological heterogeneity, which can contribute to a better therapeutic approach. We describe the clinico-pathological entities, the response to systemic therapy and the molecular features and techniques used to diagnose tRCC.
Collapse
Affiliation(s)
- Audrey Simonaggio
- Department of Medical Oncology, Hôpital Européen Georges Pompidou, Institut du Cancer Paris CARPEM, AP-HP. Centre—Université Paris-Cité, F-75015 Paris, France; (A.S.); (M.A.); (S.O.)
| | - Damien Ambrosetti
- Department of Pathology, CHU Nice, Université Côte d’Azur, F-06107 Nice, France;
- Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, INSERM U1081, University Côte d’Azur, F-06107 Nice, France
| | - Virginie Verkarre
- Department of Pathology, Hôpital Européen Georges Pompidou, Institut du Cancer Paris CARPEM, AP-HP. Centre—Université Paris-Cité, F-75015 Paris, France;
- INSERM UMR-970, PARCC, Université Paris-Cité, F-75015 Paris, France
| | - Marie Auvray
- Department of Medical Oncology, Hôpital Européen Georges Pompidou, Institut du Cancer Paris CARPEM, AP-HP. Centre—Université Paris-Cité, F-75015 Paris, France; (A.S.); (M.A.); (S.O.)
| | - Stéphane Oudard
- Department of Medical Oncology, Hôpital Européen Georges Pompidou, Institut du Cancer Paris CARPEM, AP-HP. Centre—Université Paris-Cité, F-75015 Paris, France; (A.S.); (M.A.); (S.O.)
- INSERM UMR-970, PARCC, Université Paris-Cité, F-75015 Paris, France
| | - Yann-Alexandre Vano
- Department of Medical Oncology, Hôpital Européen Georges Pompidou, Institut du Cancer Paris CARPEM, AP-HP. Centre—Université Paris-Cité, F-75015 Paris, France; (A.S.); (M.A.); (S.O.)
- INSERM UMR-970, PARCC, Université Paris-Cité, F-75015 Paris, France
- Centre de Recherche des Cordeliers, INSERM, Université Paris-Cité, Sorbonne Université, F-75006 Paris, France
- Correspondence: ; Tel.: +33-624281311
| |
Collapse
|
14
|
Lobo J, Rechsteiner M, Helmchen BM, Rupp NJ, Weber A, Moch H. Eosinophilic solid and cystic renal cell carcinoma and renal cell carcinomas with TFEB alterations: a comparative study. Histopathology 2022; 81:32-43. [PMID: 35403742 DOI: 10.1111/his.14663] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/23/2022] [Accepted: 04/10/2022] [Indexed: 11/27/2022]
Abstract
AIMS Eosinophilic solid and cystic renal cell carcinoma (ESC RCC) is a recently described renal tumour entity with frequent CK20 positivity, commonly harbouring TSC mutations. In contrast, frequency of CK20 expression and presence of TSC mutations are unclear in TFEB-amplified RCC and TFEB-translocated RCC, which frequently express Melan A. Herein, we provide a comparative analysis of 6 ESC RCC with 4 TFEB-amplified/translocated RCC. METHODS AND RESULTS We assessed the frequency of CK20 and Melan A expression by immunohistochemistry, and of TSC mutations by next generation sequencing. TFEB alterations were confirmed by fluorescence in situ hybridization (FISH). All tumours showed voluminous eosinophilic cells with granular cytoplasm, prominent nucleoli, and most showed admixture of solid and cystic areas. CK20 expression was found in all 6 ESC RCC and in all RCCs with TFEB alterations. Melan A positivity was identified in 5/6 ESC RCC and 4/4 RCC with TFEB alterations. We found TSC mutations in 2 ESC RCCs, including in one case also harbouring a CIC fusion, and identified a TSC mutation in one TFEB-amplified RCC. CONCLUSIONS ESC RCC represents an emerging renal tumour entity with some histological, immunohistochemical and molecular overlap to TFEB-amplified/translocated RCC. FISH for TFEB aids in this differential diagnosis in challenging cases.
Collapse
Affiliation(s)
- João Lobo
- Department of Pathology, Portuguese Oncology Institute of Porto (IPOP), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto) & Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513, Porto, Portugal
| | - Markus Rechsteiner
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Schmelzbergstrasse 12, CH 8091, Zurich, Switzerland
| | - Birgit M Helmchen
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Schmelzbergstrasse 12, CH 8091, Zurich, Switzerland
| | - Niels J Rupp
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Schmelzbergstrasse 12, CH 8091, Zurich, Switzerland.,Faculty of Medicine, University of Zurich, Rämistrasse 71, 8006, Zurich, Switzerland
| | - Achim Weber
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Schmelzbergstrasse 12, CH 8091, Zurich, Switzerland
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Schmelzbergstrasse 12, CH 8091, Zurich, Switzerland.,Faculty of Medicine, University of Zurich, Rämistrasse 71, 8006, Zurich, Switzerland
| |
Collapse
|
15
|
Dawsey SJ, Gupta S. Hereditary Renal Cell Carcinoma. KIDNEY CANCER 2022. [DOI: 10.3233/kca-210008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Hereditary renal cell carcinoma (RCC) is a complex and rapidly evolving topic as there is a growing body of literature regarding inherited syndromes and mutations associated with an increased risk of RCC. OBJECTIVES: We sought to systematically review 13 hereditary syndromes associated with RCC; von Hippel-Lindau Disease associated RCC (VHLRCC), BAP-1 associated clear cell RCC (BAPccRCC), Familial non-von Hippel Lindau clear cell RCC (FccRCC), Tuberous Sclerosis Complex associated RCC (TSCRCC), Birt-Hogg-Dub e ´ Syndrome associated RCC (BHDRCC), PTEN Hamartoma Tumor Syndrome associated RCC (PHTSRCC), Microphthalmia-associated Transcription Family translocation RCC (MiTFtRCC), RCC with Chromosome 6p Amplification (TFEBRCC), Autosomal Dominant Polycystic Kidney Disease Associated RCC (ADPKDRCC), Hereditary Leiomyomatosis associated RCC (HLRCC), Succinate Dehydrogenase RCC (SDHRCC), Hereditary Papillary RCC (HPRCC), and ALK-Rearrangement RCC (ALKRCC). RESULTS: Hereditary RCC is generally associated with early age of onset, multifocal and/or bilateral lesions, and aggressive disease course. VHLRCC, BAPccRCC, FccRCC, and certain mutations resulting in SDHRCC are associated with clear cell RCC (ccRCC). HPRCC is associated with Type 1 papillary RCC. HLRCC is associated with type 2 papillary RCC. BHDRCC is associated with Chromophobe RCC. TSCRCC, PHTSRCC, MiTFtRCC, TFEBRCC, ADPKDRCC, certain SDHRCC and ALKRCC have variable histology. CONCLUSIONS: There has been tremendous advancement in our understanding of the pathophysiology of hereditary RCC. Ongoing research will refine our understanding of hereditary RCC and its therapeutic targets.
Collapse
Affiliation(s)
- Scott J. Dawsey
- Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Shilpa Gupta
- Taussig Cancer Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
16
|
Wei S, Testa JR, Argani P. A review of neoplasms with MITF/MiT family translocations. Histol Histopathol 2022; 37:311-321. [PMID: 35107169 DOI: 10.14670/hh-18-426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Microphthalmia-associated transcription factor (MITF/MiT) family is a group of basic helix-loop-helix leucine zipper (bHLH-LZ) transcription factors including TFE3 (TFEA), TFEB, TFEC and MITF. The first renal neoplasms involving MITF family translocation were renal cell carcinomas with chromosome translocations involving ASPL-TFE3/t(X;17)(p11.23;q25) or MALAT1-TFEB/t(6;11)(p21.1;q12), and now it is known as MiT family translocation RCC in 2016 WHO classification. Translocations involving MITF family genes also are found in other tumor types, such as perivascular epithelioid cell neoplasm (PEComa), Alveolar soft part sarcoma (ASPS), epithelioid hemangioendothelioma, ossifying fibromyxoid tumor (OFMT), and clear cell tumor with melanocytic differentiation and ACTIN-MITF translocation. In this review, we summarize the features of different types of neoplasms with MITF family translocations.
Collapse
Affiliation(s)
- Shuanzeng Wei
- Department of Pathology, Fox Chase Cancer Center, Philadelphia, PA, USA.
| | - Joseph R Testa
- Cancer Signaling and Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Pedram Argani
- Department of Pathology, The Johns Hopkins University School of Medicine, The Johns Hopkins Hospital, Baltimore, Maryland, USA
| |
Collapse
|
17
|
Wang XT, Xia QY, Fang R, Zhang RS, Ye SB, Li R, Wang X, Lu ZF, Ma HH, Zhou XJ, He HY, Zhao M, Rao Q. Clinicopathological and Molecular Characterization of Biphasic Hyalinizing Psammomatous Renal Cell Carcinoma (BHP RCC): Further Support for the Newly Proposed Entity. Hum Pathol 2022; 123:102-112. [DOI: 10.1016/j.humpath.2022.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/11/2022] [Indexed: 12/23/2022]
|
18
|
Salles DC, Asrani K, Woo J, Vidotto T, Liu HB, Vidal I, Matoso A, Netto GJ, Argani P, Lotan TL. GPNMB
expression identifies
TSC1
/2/
mTOR
‐associated and
MiT
family translocation‐driven renal neoplasms. J Pathol 2022; 257:158-171. [PMID: 35072947 PMCID: PMC9310781 DOI: 10.1002/path.5875] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/21/2021] [Accepted: 01/22/2022] [Indexed: 11/20/2022]
Abstract
GPNMB (glycoprotein nonmetastatic B) and other TFE3/TFEB transcriptional targets have been proposed as markers for microphthalmia (MiT) translocation renal cell carcinomas (tRCCs). We recently demonstrated that constitutive mTORC1 activation via TSC1/2 loss leads to increased activity of TFE3/TFEB, suggesting that the pathogenesis and molecular markers for tRCCs and TSC1/2‐associated tumors may be overlapping. We examined GPNMB expression in human kidney and angiomyolipoma (AML) cell lines with TSC2 and/or TFE3/TFEB loss produced using CRISPR–Cas9 genome editing as well as in a mouse model of Tsc2 inactivation‐driven renal tumorigenesis. Using an automated immunohistochemistry (IHC) assay for GPNMB, digital image analysis was employed to quantitatively score expression in clear cell RCC (ccRCC, n = 87), papillary RCC (papRCC, n = 53), chromophobe RCC (chRCC, n = 34), oncocytoma (n = 4), TFE3‐ or TFEB‐driven tRCC (n = 56), eosinophilic solid and cystic RCC (ESC, n = 6), eosinophilic vacuolated tumor (EVT, n = 4), and low‐grade oncocytic tumor (LOT, n = 3), as well as AML (n = 29) and perivascular epithelioid cell tumors (PEComas, n = 8). In cell lines, GPNMB was upregulated following TSC2 loss in a MiT/TFE‐ and mTORC1‐dependent fashion. Renal tumors in Tsc2+/− A/J mice showed upregulation of GPNMB compared with normal kidney. Mean GPNMB expression was significantly higher in tRCC than in ccRCC (p < 0.0001), papRCC (p < 0.0001), and chRCC (p < 0.0001). GPNMB expression in TSC1/2/MTOR alteration‐associated renal tumors (including ESC, LOT, AML, and PEComa) was comparable to that in tRCC. The immunophenotype of tRCC and TSC1/2/MTOR alteration‐associated renal tumors is highly overlapping, likely due to the increased activity of TFE3/TFEB in both, revealing an important caveat regarding the use of TFE3/TFEB‐transcriptional targets as diagnostic markers. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Daniela C. Salles
- Department of Pathology Johns Hopkins University School of Medicine Baltimore MD USA
| | - Kaushal Asrani
- Department of Pathology Johns Hopkins University School of Medicine Baltimore MD USA
| | - Juhyung Woo
- Department of Pathology Johns Hopkins University School of Medicine Baltimore MD USA
| | - Thiago Vidotto
- Department of Pathology Johns Hopkins University School of Medicine Baltimore MD USA
| | - Hans B. Liu
- Department of Pathology Johns Hopkins University School of Medicine Baltimore MD USA
| | - Igor Vidal
- Department of Pathology Johns Hopkins University School of Medicine Baltimore MD USA
| | - Andres Matoso
- Department of Pathology Johns Hopkins University School of Medicine Baltimore MD USA
| | - George J. Netto
- Department of Pathology University of Alabama Birmingham Alabama USA
| | - Pedram Argani
- Department of Pathology Johns Hopkins University School of Medicine Baltimore MD USA
| | - Tamara L. Lotan
- Department of Pathology Johns Hopkins University School of Medicine Baltimore MD USA
- Department of Urology Johns Hopkins University School of Medicine Baltimore MD USA
- Department of Oncology Johns Hopkins University School of Medicine Baltimore MD USA
| |
Collapse
|
19
|
Alaghehbandan R, Limani R, Ali L, Rogala J, Vanecek T, Steiner P, Hajkova V, Kuthi L, Slisarenko M, Michalova K, Pivovarcikova K, Hora M, Pitra T, Michal M, Hes O. Clear cell renal cell carcinoma with prominent microvascular hyperplasia: Morphologic, immunohistochemical and molecular-genetic analysis of 7 sporadic cases. Ann Diagn Pathol 2021; 56:151871. [PMID: 34847388 DOI: 10.1016/j.anndiagpath.2021.151871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/01/2022]
Abstract
Clear cell renal cell carcinoma (CCRCC) is well known for intratumor heterogeneity. An accurate mapping of the tumor is crucial for assessing prognosis, and perhaps this can be linked to potential success/failure of targeted therapies. We assembled a cohort of 7 CCRCCs with prominent vasculature and microvascular hyperplasia (ccRCCPV), resembling those seen in high grade gliomas. A control group of classic CCRCC with no variant morphologies was also included. Both groups were analyzed for clinicopathologic, morphologic, immunohistochemical, and molecular genetic features. No statistically significant differences in mRNA expression of studied genes between the two groups were found. Using NGS panel Trusight Oncology 500 (TSO500), only one clinically significant gene mutation, VHL c.263G > A, p. (Trp88Ter), was found. TMB (Tumor Mutation Burden) and MSI (MicroSatellite Instability) were low, and no copy number variations (CNVs) were detected in the study cohort. Prominent microvascular hyperplasia in CCRCC is a rare phenomenon. From molecular genetic point of view, these tumors do not appear to be different from classic CCRCC. Prognostically, they also demonstrated similar clinical behaviors.
Collapse
Affiliation(s)
- Reza Alaghehbandan
- Department of Pathology, Faculty of Medicine, University of British Columbia, Royal Columbian Hospital, Vancouver, BC, Canada
| | - Rinë Limani
- Institute of Pathology, Faculty of Medicine, Hospital and University Clinical Services of Kosovo, Pristina, Kosovo
| | - Leila Ali
- Department of Pathology, 'Carol Davila' University of Medicine and Pharmacy, Bucharest, Romania
| | - Joanna Rogala
- Department of Pathology, Charles University in Prague, Faculty of Medicine in Plzen, Plzen, Czech Republic; Department of Pathology, Regional Specialist Hospital, Wroclaw, Poland
| | - Tomas Vanecek
- Department of Pathology, Charles University in Prague, Faculty of Medicine in Plzen, Plzen, Czech Republic
| | - Petr Steiner
- Bioptic Laboratory, Ltd, Molecular Pathology Laboratory, Plzen, Czech Republic
| | - Veronika Hajkova
- Bioptic Laboratory, Ltd, Molecular Pathology Laboratory, Plzen, Czech Republic
| | - Levente Kuthi
- Department of Pathology, University Hospital Szeged, Szeged, Hungary
| | - Maryna Slisarenko
- Department of Pathology, Charles University in Prague, Faculty of Medicine in Plzen, Plzen, Czech Republic
| | - Kvetoslava Michalova
- Department of Pathology, Charles University in Prague, Faculty of Medicine in Plzen, Plzen, Czech Republic
| | - Kristyna Pivovarcikova
- Department of Pathology, Charles University in Prague, Faculty of Medicine in Plzen, Plzen, Czech Republic
| | - Milan Hora
- Department of Urology, Charles University in Prague, Faculty of Medicine in Plzen, Plzen, Czech Republic
| | - Tomas Pitra
- Department of Urology, Charles University in Prague, Faculty of Medicine in Plzen, Plzen, Czech Republic
| | - Michal Michal
- Department of Pathology, Charles University in Prague, Faculty of Medicine in Plzen, Plzen, Czech Republic
| | - Ondrej Hes
- Department of Pathology, Charles University in Prague, Faculty of Medicine in Plzen, Plzen, Czech Republic.
| |
Collapse
|
20
|
Argani P. Translocation carcinomas of the kidney. Genes Chromosomes Cancer 2021; 61:219-227. [PMID: 34704642 DOI: 10.1002/gcc.23007] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/24/2021] [Indexed: 01/19/2023] Open
Abstract
The MiT subfamily of transcription factors includes TFE3, TFEB, TFEC, and MITF. Gene fusions involving two of these transcription factors have been well-characterized in renal cell carcinoma (RCC). The TFE3-rearranged RCC (also known as Xp11 translocation RCC) was first officially recognized in the 2004 World Health Organization (WHO) renal tumor classification. The TFEB-rearranged RCC, which typically harbor a t(6;11)(p21;q12) translocation which results in a MALAT1-TFEB gene fusion, were first officially recognized in the 2016 WHO renal tumor classification. These two subtypes of translocation RCC have many similarities. Both disproportionately involve young patients, although adult translocation RCC overall outnumber pediatric cases. Both often have unusual and distinctive morphologies; the TFE3-rearranged RCCs frequently have clear cells with papillary architecture and abundant psammoma bodies, while the TFEB-rearranged RCCs frequently have a biphasic appearance with both small and large epithelioid cells and nodules of basement membrane material. However, the morphology of these two neoplasms can overlap, with one mimicking the other or other more common renal neoplasms. Both of these RCC underexpress epithelial immunohistochemical markers, such as cytokeratin and epithelial membrane antigen, relative to most other RCC. Unlike other RCC, both frequently express the cysteine protease cathepsin k and often express melanocytic markers like HMB45 and Melan A. Finally, TFE3 and TFEB have overlapping functional activity as these two transcription factors frequently heterodimerize and bind to the same targets. Therefore, these two neoplasms are now grouped together under the heading of "MiT family translocation RCC." Approximately 50 renal cell carcinomas with gene fusions involving the anaplastic lymphoma kinase (ALK) gene have now been reported. While those with a Vinculin-ALK fusion have distinctive features (predilection to affect children with sickle cell trait and to show solid architecture with striking cytoplasmic vacuolization), other ALK-fusion RCCs have more varied clinical presentations and pathologic features. This review summarizes our current knowledge of these recently described RCC.
Collapse
Affiliation(s)
- Pedram Argani
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Departments of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
21
|
Baniak N, Barletta JA, Hirsch MS. Key Renal Neoplasms With a Female Predominance. Adv Anat Pathol 2021; 28:228-250. [PMID: 34009777 DOI: 10.1097/pap.0000000000000301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Renal neoplasms largely favor male patients; however, there is a growing list of tumors that are more frequently diagnosed in females. These tumors include metanephric adenoma, mixed epithelial and stromal tumor, juxtaglomerular cell tumor, mucinous tubular and spindle cell carcinoma, Xp11.2 (TFE3) translocation-associated renal cell carcinoma, and tuberous sclerosis complex (somatic or germline) associated renal neoplasms. The latter category is a heterogenous group with entities still being delineated. Eosinophilic solid and cystic renal cell carcinoma is the best-described entity, whereas, eosinophilic vacuolated tumor is a proposed entity, and the remaining tumors are currently grouped together under the umbrella of tuberous sclerosis complex/mammalian target of rapamycin-related renal neoplasms. The entities described in this review are often diagnostic considerations when evaluating renal mass tissue on biopsy or resection. For example, Xp11.2 translocation renal cell carcinoma is in the differential when a tumor has clear cell cytology and papillary architecture and occurs in a young or middle-aged patient. In contrast, tuberous sclerosis complex-related neoplasms often enter the differential for tumors with eosinophilic cytology. This review provides an overview of the clinical, gross, microscopic, immunohistochemical, genetic, and molecular alterations in key renal neoplasms occurring more commonly in females; differential diagnoses are also discussed regardless of sex predilection.
Collapse
Affiliation(s)
- Nicholas Baniak
- Department of Pathology and Laboratory Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Justine A Barletta
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Michelle S Hirsch
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
22
|
New developments in existing WHO entities and evolving molecular concepts: The Genitourinary Pathology Society (GUPS) update on renal neoplasia. Mod Pathol 2021; 34:1392-1424. [PMID: 33664427 DOI: 10.1038/s41379-021-00779-w] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/11/2021] [Accepted: 02/11/2021] [Indexed: 12/28/2022]
Abstract
The Genitourinary Pathology Society (GUPS) reviewed recent advances in renal neoplasia, particularly post-2016 World Health Organization (WHO) classification, to provide an update on existing entities, including diagnostic criteria, molecular correlates, and updated nomenclature. Key prognostic features for clear cell renal cell carcinoma (RCC) remain WHO/ISUP grade, AJCC/pTNM stage, coagulative necrosis, and rhabdoid and sarcomatoid differentiation. Accrual of subclonal genetic alterations in clear cell RCC including SETD2, PBRM1, BAP1, loss of chromosome 14q and 9p are associated with variable prognosis, patterns of metastasis, and vulnerability to therapies. Recent National Comprehensive Cancer Network (NCCN) guidelines increasingly adopt immunotherapeutic agents in advanced RCC, including RCC with rhabdoid and sarcomatoid changes. Papillary RCC subtyping is no longer recommended, as WHO/ISUP grade and tumor architecture better predict outcome. New papillary RCC variants/patterns include biphasic, solid, Warthin-like, and papillary renal neoplasm with reverse polarity. For tumors with 'borderline' features between oncocytoma and chromophobe RCC, a term "oncocytic renal neoplasm of low malignant potential, not further classified" is proposed. Clear cell papillary RCC may warrant reclassification as a tumor of low malignant potential. Tubulocystic RCC should only be diagnosed when morphologically pure. MiTF family translocation RCCs exhibit varied morphologic patterns and fusion partners. TFEB-amplified RCC occurs in older patients and is associated with more aggressive behavior. Acquired cystic disease (ACD) RCC-like cysts are likely precursors of ACD-RCC. The diagnosis of renal medullary carcinoma requires a negative SMARCB1 (INI-1) expression and sickle cell trait/disease. Mucinous tubular and spindle cell carcinoma (MTSCC) can be distinguished from papillary RCC with overlapping morphology by losses of chromosomes 1, 4, 6, 8, 9, 13, 14, 15, and 22. MTSCC with adverse histologic features shows frequent CDKN2A/2B (9p) deletions. BRAF mutations unify the metanephric family of tumors. The term "fumarate hydratase deficient RCC" ("FH-deficient RCC") is preferred over "hereditary leiomyomatosis and RCC syndrome-associated RCC". A low threshold for FH, 2SC, and SDHB immunohistochemistry is recommended in difficult to classify RCCs, particularly those with eosinophilic morphology, occurring in younger patients. Current evidence does not support existence of a unique tumor subtype occurring after chemotherapy/radiation in early childhood.
Collapse
|
23
|
Solano C, Thapa S, Chisti MM. Adult Xp11.2 translocation renal cell carcinoma managed effectively with pazopanib. BMJ Case Rep 2021; 14:14/6/e243058. [PMID: 34172479 DOI: 10.1136/bcr-2021-243058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Xp11.2 translocation renal cell carcinoma (TRCC) is a rare and aggressive variant of renal cell carcinoma (RCC) when presenting in adults. We report a case of a man in his early 40s who was diagnosed with stage III Xp11.2 TRCC and underwent radical nephrectomy. Seven months following the surgery, an adrenal nodule and bilateral pulmonary nodules were discovered. He underwent cryoablation of the adrenal nodule and systemic treatment with daily pazopanib. He displayed stable disease for approximately 6 years. Following this period, multiple hospitalisations interrupted daily pazopanib therapy resulting in progression of disease. His regimen was then changed to ipilimumab and nivolumab, followed by current daily therapy with axitinib. The patient now shows stable disease in his 10th year after diagnosis. This case study demonstrates the efficacy of pazopanib for metastatic Xp11.2 TRCC and warrants further investigation to supplement the guidelines regarding the use of targeted therapy for TRCC.
Collapse
Affiliation(s)
- Cristian Solano
- William Beaumont School of Medicine, Oakland University, Rochester, Michigan, USA
| | - Shrinjaya Thapa
- Internal Medicine, Beaumont Hospital, Royal Oak, Michigan, USA
| | - Mohammad Muhsin Chisti
- Hematology and Medical Oncology, William Beaumont School of Medicine, Oakland University, Troy, Michigan, USA
| |
Collapse
|
24
|
Non-clear cell renal carcinomas: Review of new molecular insights and recent clinical data. Cancer Treat Rev 2021; 97:102191. [PMID: 34015728 DOI: 10.1016/j.ctrv.2021.102191] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 01/19/2023]
Abstract
Non-clear cell renal cell carcinomas (nccRCC) represent a highly heterogeneous group of kidney tumors, consisting of the following subtypes: papillary carcinomas, chromophobe renal cell carcinoma, so-called unclassified carcinomas or aggressive uncommon carcinomas such as Bellini carcinoma, renal cell carcinoma (RCC) with ALK rearrangement or fumarate hydratase-deficient RCC. Although non-clear cell cancers account for only 15 to 30% of renal tumors, they are often misclassified and accurate diagnosis continues to be an issue in clinical practice. Current therapeutic strategy of metastatic nccRCC is based primarily on guidelines established for clear cell tumors, the most common subtype, however this approach remains poorly defined. To date, published clinical trials for all histological nccRCC subtypes have been collectively characterized into one group, in contrast to clear cell RCC, and given the small numbers of cases, the interpretation of study results continues to be challenging. This review summarizes the available literature for each nccRCC subtype and highlights the lack of supportive evidence from prospective clinical trials and retrospective studies. Future trials should evaluate treatment approaches which focus on a specific histological subtype and progress in treating nccRCC will be contingent on understanding the unique biology of their individual histologies.
Collapse
|
25
|
Shiyanbola O, Hardin H, Hu R, Eickhoff JC, Lloyd RV. Long Noncoding RNA Expression in Adrenal Cortical Neoplasms. Endocr Pathol 2020; 31:385-391. [PMID: 32725507 DOI: 10.1007/s12022-020-09642-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/22/2020] [Indexed: 12/29/2022]
Abstract
Long noncoding RNAs (lncRNAs) consist of nucleic acid molecules that are greater than 200 nucleotides in length and they do not code for specific proteins. A growing body of evidence indicates that these lncRNAs have important roles in tumorigenesis. Separating adrenal cortical adenomas from carcinomas is often a difficult problem for the surgical pathologist. This is especially true when only small needle biopsies are available for examination. We used in situ hybridization (ISH) analysis to study normal adrenal cortical tissues and adrenal cortical tumors to determine the role of specific lncRNAs in tumor development and classification. The lncRNAS studied included metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), psoriasis susceptibility-related RNA gene induced by stress (PRINS), and HOX antisense intergenic RNA myeloid 1 (HAM1). We constructed a tissue microarray (TMA) for the studies and also analyzed a subset of cases by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). Two 1-mm duplicate cores of normal adrenal cortex (NAC) (n = 23), adrenal cortical adenomas (ACAs) (n = 95), and adrenal cortical carcinomas (ACCs), (n = 20) were used on the TMA. The results of ISH were analyzed by image analysis. ISH showed predominantly nuclear expression of lncRNAs in adrenal cortical tissues. MALAT1 showed more expression in ACCs than in NAC and ACA (p < 0.05). PRINS had higher expression in NACs and ACAs than in ACCs. The lncRNAs MALAT1, PRINS, and HAM1 are all expressed in normal and neoplastic adrenal cortical tissues. MALAT1 had the highest expression in ACC compared to ACAs and may have a role in ACC development.
Collapse
Affiliation(s)
- Oyewale Shiyanbola
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Heather Hardin
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Rong Hu
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Jens C Eickhoff
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Ricardo V Lloyd
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
26
|
Biphasic Hyalinizing Psammomatous Renal Cell Carcinoma (BHP RCC): A Distinctive Neoplasm Associated With Somatic NF2 Mutations. Am J Surg Pathol 2020; 44:901-916. [PMID: 32217839 DOI: 10.1097/pas.0000000000001467] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We report 8 cases of a distinctive, previously undescribed renal cell carcinoma associated with somatic mutations in the neurofibromin 2 (NF2) gene. All patients were adults, ranging from 51 to 78 years of age and of cases of known sex 6 of 7 were males. The carcinomas were predominantly unencapsulated, and all had a rounded, nodular interface with the native kidney. The neoplasms were all solid with papillary architecture evident in most cases (7/8), while 1 was only tubular. All cases were biphasic, characterized by larger and smaller carcinoma cells. The smaller cells clustered around basement membrane material similar to the characteristic pattern of the t(6;11) renal cell carcinoma associated with TFEB gene fusions. In 6 of 8 carcinomas, branching nodules of small cells clustered around basement membrane material within larger acini yielding a distinctive glomeruloid pattern. In 6 of 8 carcinomas, the small cells were focally spindle-shaped and unassociated with the basement membrane material. The stroma was sclerotic in all 8 carcinomas, and all 8 contained psammoma bodies that were abundant in 2. In some carcinomas, focal or predominant areas had a less distinctive appearance; 2 had areas that resembled clear cell renal cell carcinoma, 2 had high-grade eosinophilic areas, while 1 had branching tubular architecture that resembled mucinous tubular and spindle cell carcinoma. Two carcinomas demonstrated cellular necrosis. Although we have minimal clinical follow-up, 1 case presented with distant metastasis, progressed and resulted in patient death. While NF2 mutations may be found in other established renal cell carcinoma subtypes (often as secondary genetic alterations), they are potentially the genetic driver of this distinctive entity.
Collapse
|
27
|
Sharma AE, Parilla M, Wanjari P, Segal JP, Antic T. A Tale of 2 Morphologies: Diagnostic Pitfalls in TFEB-Associated Renal Cell Carcinomas, Including a Novel NEAT1-TFEB Fusion. Int J Surg Pathol 2020; 29:21-29. [PMID: 32886007 DOI: 10.1177/1066896920956272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AIMS Translocation-associated renal cell carcinomas (RCCs) have been extensively subcharacterized in recent years, such that each is largely recognized by the 2016 World Health Organization as categorical neoplastic entities in the genitourinary tract. Those belonging to the t(6;11) family of tumors classically have a fusion between TFEB and MALAT1/α, and display a particular histomorphology. Specifically, they show a biphasic population of both small and large epithelioid cells, the smaller component of which surrounds basement membrane-type material. Despite this apt description, the tumors have variable morphology and mimic other RCCs including those with TFE3 translocations. Therefore, a high degree of suspicion is required to make the correct diagnosis. METHODS The 2 cases described in this article were of strikingly different appearance, and initially considered consistent with other non-translocation-associated renal tumors. These included clear cell RCC (CCRCC), perivascular epithelioid cell tumor (PEComa), and other eosinophilic RCCs (mainly papillary RCC type 2). RESULTS Using RNA sequencing techniques, they were found to harbor distinct pathogenic rearrangements involving the TFEB gene, namely, fusions with CLTC and NEAT1 (the latter partnering heretofore never reported). CONCLUSIONS These alterations manifested in 2 notably dissimilar lesions, underscoring the importance of including this family of carcinomas in the differential of any renal neoplasm that does not display immunophenotypic characteristics consistent with its morphology.
Collapse
Affiliation(s)
| | - Megan Parilla
- University of Chicago Medical Center, Chicago, IL, USA
| | | | | | - Tatjana Antic
- University of Chicago Medical Center, Chicago, IL, USA
| |
Collapse
|
28
|
Tretiakova MS. Renal Cell Tumors: Molecular Findings Reshaping Clinico-pathological Practice. Arch Med Res 2020; 51:799-816. [PMID: 32839003 DOI: 10.1016/j.arcmed.2020.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023]
Abstract
Over the past 20 years, the number of subtypes of renal epithelial cell neoplasia has grown. This growth has resulted from detailed histological and immunohistochemical characterization of these tumors and their correlation with clinical outcomes. Distinctive molecular phenotypes have validated the unique nature of many of these tumors. This growth of unique renal neoplasms has continued after the 2016 World Health Organization (WHO) Classification of Tumours. A consequence is that both the pathologists who diagnose the tumors and the clinicians who care for these patients are confronted with a bewildering array of renal cell carcinoma variants. Many of these variants have important clinical features, i.e. familial or syndromic associations, genomics alterations that can be targeted with systemic therapy, and benignancy of tumors previously classified as carcinomas. Our goal in the review is to provide a practical guide to help recognize these variants, based on small and distinct sets of histological features and limited numbers of immunohistochemical stains, supplemented, as necessary, with molecular features.
Collapse
Affiliation(s)
- Maria S Tretiakova
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
29
|
Clinicopathologic and Molecular Analysis of the TFEB Fusion Variant Reveals New Members of TFEB Translocation Renal Cell Carcinomas (RCCs): Expanding the Genomic Spectrum. Am J Surg Pathol 2020; 44:477-489. [PMID: 31764220 DOI: 10.1097/pas.0000000000001408] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Xp11 renal cell carcinoma (RCC) with different gene fusions may have different clinicopathologic features. We sought to identify variant fusions in TFEB translocation RCC. A total of 31 cases of TFEB RCCs were selected for the current study; MALAT1-TFEB fusion was identified in 25 cases (81%, 25/31) using fusion probes. The remaining 6 cases (19%, 6/31) were further analyzed by RNA sequencing and 5 of them were detected with TFEB-associated gene fusions, including 2 ACTB-TFEB, 1 EWSR1-TFEB, 1 CLTC-TFEB, and 1 potential PPP1R10-TFEB (a paracentric inversion of the TFEB gene, consistent with "negative" TFEB split FISH result, and advising a potential diagnostic pitfall in detecting TFEB gene rearrangement). Four of the 5 fusion transcripts were successfully validated by reverse transcription-polymerase chain reaction and Sanger sequencing. Morphologically, approximately one third (29%, 9/31) of TFEB RCCs showed typical biphasic morphology. The remaining two thirds of the cases (71%, 22/31) exhibited nonspecific morphology, with nested, sheet-like, or papillary architecture, resembling other types of renal neoplasms, such as clear cell RCC, Xp11 RCC, perivascular epithelioid cell tumor (PEComa), or papillary RCC. Although cases bearing a MALAT1-TFEB fusion demonstrated variable morphologies, all 9 cases featuring typical biphasic morphology were associated with MALAT1-TFEB genotype. Accordingly, typical biphasic morphology suggests MALAT1-TFEB fusion, whereas atypical morphology did not suggest the specific type of fusion. Isolated or clustered eosinophilic cells were a common feature in TFEB RCCs, which may be a useful morphology diagnostic clue for TFEB RCCs. Clinicopathologic variables assessment showed that necrosis was the only morphologic feature that correlated with the aggressive behavior of TFEB RCC (P=0.004). In summary, our study expands the genomic spectrum and the clinicopathologic features of TFEB RCCs, and highlights the challenges of diagnosis and the importance of subtyping of this tumor by combining morphology and multiple molecular techniques.
Collapse
|
30
|
Williamson SR, Gill AJ, Argani P, Chen YB, Egevad L, Kristiansen G, Grignon DJ, Hes O. Report From the International Society of Urological Pathology (ISUP) Consultation Conference on Molecular Pathology of Urogenital Cancers: III: Molecular Pathology of Kidney Cancer. Am J Surg Pathol 2020; 44:e47-e65. [PMID: 32251007 PMCID: PMC7289677 DOI: 10.1097/pas.0000000000001476] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Renal cell carcinoma (RCC) subtypes are increasingly being discerned via their molecular underpinnings. Frequently this can be correlated to histologic and immunohistochemical surrogates, such that only simple targeted molecular assays, or none at all, are needed for diagnostic confirmation. In clear cell RCC, VHL mutation and 3p loss are well known; however, other genes with emerging important roles include SETD2, BAP1, and PBRM1, among others. Papillary RCC type 2 is now known to include likely several different molecular entities, such as fumarate hydratase (FH) deficient RCC. In MIT family translocation RCC, an increasing number of gene fusions are now described. Some TFE3 fusion partners, such as NONO, GRIPAP1, RBMX, and RBM10 may show a deceptive fluorescence in situ hybridization result due to the proximity of the genes on the same chromosome. FH and succinate dehydrogenase deficient RCC have implications for patient counseling due to heritable syndromes and the aggressiveness of FH-deficient RCC. Immunohistochemistry is increasingly available and helpful for recognizing both. Emerging tumor types with strong evidence for distinct diagnostic entities include eosinophilic solid and cystic RCC and TFEB/VEGFA/6p21 amplified RCC. Other emerging entities that are less clearly understood include TCEB1 mutated RCC, RCC with ALK rearrangement, renal neoplasms with mutations of TSC2 or MTOR, and RCC with fibromuscular stroma. In metastatic RCC, the role of molecular studies is not entirely defined at present, although there may be an increasing role for genomic analysis related to specific therapy pathways, such as for tyrosine kinase or MTOR inhibitors.
Collapse
MESH Headings
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Renal Cell/diagnosis
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- Humans
- Immunohistochemistry
- In Situ Hybridization, Fluorescence
- Kidney Neoplasms/diagnosis
- Kidney Neoplasms/genetics
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/pathology
- Mutation
- Neoplasm Metastasis
- Neoplastic Syndromes, Hereditary/diagnosis
- Neoplastic Syndromes, Hereditary/genetics
- Neoplastic Syndromes, Hereditary/metabolism
- Neoplastic Syndromes, Hereditary/pathology
- Pathology, Clinical
- Pathology, Molecular
- Prognosis
- Societies, Medical
- Urology
Collapse
Affiliation(s)
- Sean R Williamson
- Department of Pathology and Laboratory Medicine and Henry Ford Cancer Institute, Henry Ford Health System
- Department of Pathology, Wayne State University School of Medicine, Detroit, MI
| | - Anthony J Gill
- NSW Health Pathology, Department of Anatomical Pathology
- Cancer Diagnosis and Pathology Research Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Pedram Argani
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ying-Bei Chen
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Lars Egevad
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | - David J Grignon
- Department of Pathology, Indiana University School of Medicine, Indianapolis, IN
| | - Ondrej Hes
- Department of Pathology, Charles University, Medical Faculty and Charles University Hospital Plzen, Pilsen, Czechia
| |
Collapse
|
31
|
Abstract
TFEB is overexpressed in TFEB-rearranged renal cell carcinomas as well as in renal tumors with amplifications of TFEB at 6p21.1. As recent literature suggests that renal tumors with 6p21.1 amplification behave more aggressively than those with rearrangements of TFEB, we compared relative TFEB gene expression in these tumors. This study included 37 TFEB-altered tumors: 15 6p21.1-amplified and 22 TFEB-rearranged (including 5 cases from The Cancer Genome Atlas data set). TFEB status was verified using a combination of fluorescent in situ hybridization (n=27) or comprehensive molecular profiling (n=13) and digital droplet polymerase chain reaction was used to quantify TFEB mRNA expression in 6p21.1-amplified (n=9) and TFEB-rearranged renal tumors (n=19). These results were correlated with TFEB immunohistochemistry. TFEB-altered tumors had higher TFEB expression when normalized to B2M (mean: 168.9%, n=28), compared with non-TFEB-altered controls (mean: 7%, n=18, P=0.005). Interestingly, TFEB expression in tumors with rearrangements (mean: 224.7%, n=19) was higher compared with 6p21.1-amplified tumors (mean: 51.2%, n=9; P=0.06). Of note, classic biphasic morphology was only seen in TFEB-rearranged tumors and when present correlated with 6.8-fold higher TFEB expression (P=0.00004). Our results suggest that 6p21.1 amplified renal tumors show increased TFEB gene expression but not as much as t(6;11) renal tumors. These findings correlate with the less consistent/diffuse expression of downstream markers of TFEB activation (cathepsin K, melan A, HMB45) seen in the amplified neoplasms. This suggests that the aggressive biological behavior of 6p21.1 amplified renal tumors might be secondary to other genes at the 6p21.1 locus that are co-amplified, such as VEGFA and CCND3, or other genetic alterations.
Collapse
|
32
|
Ooms AH, Vujanić GM, D’Hooghe E, Collini P, L’Herminé-Coulomb A, Vokuhl C, Graf N, van den Heuvel-Eibrink MM, de Krijger RR. Renal Tumors of Childhood-A Histopathologic Pattern-Based Diagnostic Approach. Cancers (Basel) 2020; 12:cancers12030729. [PMID: 32204536 PMCID: PMC7140051 DOI: 10.3390/cancers12030729] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/04/2020] [Accepted: 03/07/2020] [Indexed: 12/15/2022] Open
Abstract
Renal tumors comprise approximately 7% of all malignant pediatric tumors. This is a highly heterogeneous group of tumors, each with its own therapeutic management, outcome, and association with germline predispositions. Histopathology is the key in establishing the correct diagnosis, and therefore pathologists with expertise in pediatric oncology are needed for dealing with these rare tumors. While each tumor shows different histologic features, they do have considerable overlap in cell type and histologic pattern, making the diagnosis difficult to establish, if based on routine histology alone. To this end, ancillary techniques, such as immunohistochemistry and molecular analysis, can be of great importance for the correct diagnosis, resulting in appropriate treatment. To use ancillary techniques cost-effectively, we propose a pattern-based approach and provide recommendations to aid in deciding which panel of antibodies, supplemented by molecular characterization of a subset of genes, are required.
Collapse
Affiliation(s)
- Ariadne H.A.G. Ooms
- Princess Máxima Center for pediatric oncology, 3584 CS Utrecht, The Netherlands (M.M.v.d.H.-E.)
- Pathan B.V., 3045 PM Rotterdam, The Netherlands
| | | | - Ellen D’Hooghe
- Department of Pathology, Oslo University Hospital, Rikshospitalet, 0372 Oslo, Norway;
| | - Paola Collini
- Department of Diagnostic Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy;
| | - Aurore L’Herminé-Coulomb
- Sorbonne Université, Department of Pathology, Hôpital Armand Trousseau, Hopitaux Universitaires Est Parisien, 75012 Paris, France;
| | - Christian Vokuhl
- Section of Pediatric Pathology, Department of Pathology, University Hospital Bonn, 53127 Bonn, Germany;
| | - Norbert Graf
- Department of Pediatric Oncology & Hematology, Saarland University, D-66421 Homburg, Germany;
| | | | - Ronald R. de Krijger
- Princess Máxima Center for pediatric oncology, 3584 CS Utrecht, The Netherlands (M.M.v.d.H.-E.)
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Correspondence: ; Tel.: +31-088-9727272
| |
Collapse
|
33
|
Diagnosis of uncommon renal epithelial neoplasms: performances of fluorescence in situ hybridization. Hum Pathol 2019; 92:81-90. [DOI: 10.1016/j.humpath.2019.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 11/21/2022]
|
34
|
Gandhi JS, Malik F, Amin MB, Argani P, Bahrami A. MiT family translocation renal cell carcinomas: A 15th anniversary update. Histol Histopathol 2019; 35:125-136. [PMID: 31489603 DOI: 10.14670/hh-18-159] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Microphthalmia (MiT) family translocation renal cell carcinomas (RCCs) are a heterogeneous category of renal tumors which all express MiT transcription factors, typically from chromosomal translocation and rarely from gene amplification. This tumor family has two major subtypes [i.e., Xp11 translocation RCC and t(6;11) RCC] and several related neoplasms (i.e., TFEB amplification RCC and melanotic Xp11 translocation renal cancers). Increased understanding of the clinical, pathological, molecular and prognostic heterogeneity of these tumors, since their official recognition in 2004, provides the opportunity to identify prognostic biomarkers and to understand the reasons for tumor aggression. We will review the literature from the past 15 years and highlight the need for a greater understanding of the molecular mechanisms underpinning heterogeneous tumor behavior.
Collapse
Affiliation(s)
- Jatin S Gandhi
- Department of Pathology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Faizan Malik
- Department of Pathology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Mahul B Amin
- Department of Pathology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Pedram Argani
- Department of Pathology, John Hopkins University, Baltimore, MD, USA
| | - Armita Bahrami
- Department of Pathology, University of Tennessee Health Science Center, Memphis, TN, USA.,Departments of Pathology and Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
35
|
Caliò A, Segala D, Munari E, Brunelli M, Martignoni G. MiT Family Translocation Renal Cell Carcinoma: from the Early Descriptions to the Current Knowledge. Cancers (Basel) 2019; 11:E1110. [PMID: 31382581 PMCID: PMC6721505 DOI: 10.3390/cancers11081110] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 12/27/2022] Open
Abstract
The new category of MiT family translocation renal cell carcinoma has been included into the World Health Organization (WHO) classification in 2016. The MiT family translocation renal cell carcinoma comprises Xp11 translocation renal cell carcinoma harboring TFE3 gene fusions and t(6;11) renal cell carcinoma harboring TFEB gene fusion. At the beginning, they were recognized in childhood; nevertheless, it has been demonstrated that these neoplasms can occur in adults as well. In the nineties, among Xp11 renal cell carcinoma, ASPL, PRCC, and SFPQ (PSF) were the first genes recognized as partners in TFE3 rearrangement. Recently, many other genes have been identified, and a wide spectrum of morphologies has been described. For this reason, the diagnosis may be challenging based on the histology, and the differential diagnosis includes the most common renal cell neoplasms and pure epithelioid PEComa/epithelioid angiomyolipoma of the kidney. During the last decades, many efforts have been made to identify immunohistochemical markers to reach the right diagnosis. To date, staining for PAX8, cathepsin K, and melanogenesis markers are the most useful identifiers. However, the diagnosis requires the demonstration of the chromosomal rearrangement, and fluorescent in situ hybridization (FISH) is considered the gold standard. The outcome of Xp11 translocation renal cell carcinoma is highly variable, with some patients surviving decades with indolent disease and others dying rapidly of progressive disease. Despite most instances of t(6;11) renal cell carcinoma having an indolent clinical course, a few published cases demonstrate aggressive behavior. Recently, renal cell carcinomas with TFEB amplification have been described in connection with t(6;11) renal cell carcinoma. Those tumors appear to be associated with a more aggressive clinical course. For the aggressive cases of MiT family translocation carcinoma, the optimal therapy remains to be determined; however, new target therapies seem to be promising, and the search for predictive markers is mandatory.
Collapse
Affiliation(s)
- Anna Caliò
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, Verona 37134, Italy
| | - Diego Segala
- Department of Pathology, Pederzoli Hospital, Peschiera del Garda 37019, Italy
| | - Enrico Munari
- Department of Pathology, Sacro Cuore Hospital, Negrar 37024, Italy
| | - Matteo Brunelli
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, Verona 37134, Italy
| | - Guido Martignoni
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, Verona 37134, Italy.
- Department of Pathology, Pederzoli Hospital, Peschiera del Garda 37019, Italy.
| |
Collapse
|
36
|
Zhou L, Xu H, Zhou Y, Zhou J, Zhang P, Yang X, Wang C. Biphasic squamoid alveolar renal carcinoma with positive CD57 expression: A clinicopathologic study of three cases. Pathol Int 2019; 69:519-525. [PMID: 31369187 DOI: 10.1111/pin.12844] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/13/2019] [Indexed: 01/30/2023]
Abstract
Biphasic squamoid alveolar renal cell carcinoma (BSARCC) is a rare and recently characterized form of papillary renal cell carcinoma (PRCC). Herein, we describe three cases of BSARCC that were CD57+. Among a total of 90 cases of PRCC, three cases were found to be consistent with a diagnosis of BSARCC. In addition to reviewing these cases, we reviewed the relevant literature pertaining to this form of cancer and assessed the immunohistochemical staining for CD57 on the available tumor samples. The three BSARCC cases in the present study were composed of two primary populations of cells. Tumors stained positive for CK, PAX8, CK7, CK19, AMACR, EMA, and vimentin. Larger cells expressed detectable levels of cyclin D1, and expression of CD57 was limited to the larger cells. All three patients were alive and free of disease during the most recent follow-up. Our results suggest that the CD57 positivity of at least a subset of cases should necessitate their differentiation from cases of metanephric adenoma.
Collapse
Affiliation(s)
- Luting Zhou
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Haimin Xu
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yangfan Zhou
- Department of Pathology, The Second People's Hospital of Guangdong Province, Guangdong, China
| | - Jun Zhou
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Peipei Zhang
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoqun Yang
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chaofu Wang
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
37
|
Magers MJ, Cheng L. Practical Molecular Testing in a Clinical Genitourinary Service. Arch Pathol Lab Med 2019; 144:277-289. [PMID: 31373513 DOI: 10.5858/arpa.2019-0134-ra] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT.— Molecular testing is increasingly playing a key role in the diagnosis, prognosis, and treatment of neoplasms of the genitourinary system. OBJECTIVE.— To provide a general overview of the clinically relevant molecular tests available for neoplasms of the genitourinary tract. DATA SOURCES.— Relevant medical literature indexed on PubMed. CONCLUSIONS.— Understanding of the molecular oncology of genitourinary neoplasms is rapidly advancing, and the pathologist must be aware of the practical implications of molecular testing. While many genomic abnormalities are not yet clinically relevant, there is an increasing library of ancillary tests that may guide diagnosis, prognosis, and/or treatment of many neoplasms. Recurrent genomic abnormalities have been identified in many types of renal cell carcinoma, and some types of renal cell carcinoma are specifically defined by the molecular abnormality. Two major routes of developing urothelial carcinoma have been molecularly described. Recurrent translocations involving ETS family genes are found in approximately half of prostate cancer cases. Testicular germ cell tumors typically harbor i(12p). Penile neoplasms are often high-risk human papillomavirus-driven cancers. Nonetheless, even as genitourinary neoplasms are increasingly better understood at the molecular level, further research with eventual clinical validation is needed for optimal diagnosis, prognosis, and treatment of aggressive malignancies in the genitourinary tract.
Collapse
Affiliation(s)
- Martin J Magers
- From the Departments of Pathology and Laboratory Medicine (Drs Magers and Cheng) and Urology (Dr Cheng), Indiana University School of Medicine, Indianapolis, Indiana
| | - Liang Cheng
- From the Departments of Pathology and Laboratory Medicine (Drs Magers and Cheng) and Urology (Dr Cheng), Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
38
|
Xie L, Zhang Y, Wu CL. Microphthalmia family of transcription factors associated renal cell carcinoma. Asian J Urol 2019; 6:312-320. [PMID: 31768316 PMCID: PMC6872788 DOI: 10.1016/j.ajur.2019.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 09/25/2018] [Accepted: 11/06/2018] [Indexed: 12/11/2022] Open
Abstract
The microphthalmia (MiT) subfamily of transcription factors includes TFE3, TFEB, TFEC, and MITF. In the 2016 World Health Organization classification, MiT family translocation renal cell carcinoma (tRCC) including Xp11 tRCC and t(6;11) RCC, was newly defined as an RCC subtype. Xp11 and t(6;11) RCC are characterized by the rearrangement of the MiT transcription factors TFE3 and TFEB, respectively. Recent studies identified the fusion partner-dependent clinicopathological and immunohistochemical features in TFE3-rearranged RCC. Furthermore, RCC with TFEB amplification, melanotic MiT family translocation neoplasms, was identified may as a unique subtype of MiT family associated renal neoplasms, along with MITF associated RCC. In this review, we will collect available literature of these newly-described RCCs, analyze their clinicopathological and immunohistochemical features, and summarize their molecular and genetic evidences. We expect this review would be beneficial for the understanding of these rare subtypes of RCCs, and eventually promote clinical management strategies.
Collapse
Affiliation(s)
- Ling Xie
- Department of Pathology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Department of Pathology and Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yifen Zhang
- Department of Pathology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Chin-Lee Wu
- Department of Pathology and Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
39
|
Caliò A, Brunelli M, Segala D, Pedron S, Doglioni C, Argani P, Martignoni G. VEGFA amplification/increased gene copy number and VEGFA mRNA expression in renal cell carcinoma with TFEB gene alterations. Mod Pathol 2019; 32:258-268. [PMID: 30206412 DOI: 10.1038/s41379-018-0128-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/21/2018] [Accepted: 07/28/2018] [Indexed: 12/20/2022]
Abstract
Amplification of vascular endothelial growth factor A (VEGFA) has been recently reported in TFEB-amplified renal cell carcinomas regardless the level of TFEB amplification. We sought to determine VEGFA amplification by fluorescent in situ hybridization (FISH) and VEGFA mRNA expression by in situ hybridization (RNAscope 2.5) in a series of 10 renal cell carcinomas with TFEB gene alterations, either amplification and/or rearrangement (t(6;11) renal cell carcinoma). TFEB gene rearrangement was demonstrated in eight cases, whereas the remaining two cases showed a high level of TFEB (> 10 copies of fluorescent signals) gene amplification without evidence of rearrangement. Among the eight t(6;11) renal cell carcinomas (TFEB-rearranged cases), one case displayed a high level of TFEB gene amplification and two showed increased TFEB gene copy number (3-4 copies of fluorescent signals). Those three cases behaved aggressively. By FISH, VEGFA was amplified in all three cases with TFEB amplification and increased VEGFA gene copy number was observed in the two aggressive cases t(6;11) renal cell carcinomas with an overlapping increased number of TFEB fluorescent signals. Overall, VEGFA mRNA expression was observed in 8 of 10 cases (80%); of these 8 cases, 3 cases showed high-level TFEB amplification, one case showed TFEB rearrangement with increased TFEB gene copy number, whereas four showed TFEB gene rearrangement without increased copy number. In summary, VEGFA amplification/increased gene copy number and VEGFA mRNA expression occur in TFEB-amplified renal cell carcinoma, but also in a subset of t(6;11) renal cell carcinoma demonstrating aggressive behavior, and in unamplified conventional t(6;11) renal cell carcinoma suggesting VEGFA as potential therapeutic target in these neoplasms even in the absence of TFEB amplification. We finally propose that all the renal tumors showing morphological characteristics suggesting t(6;11) renal cell carcinoma and all unclassified renal cell carcinomas, either high grade or low grade, should immunohistochemically be evaluated for cathepsin K and/or Melan-A and if one of them is positive, tested for TFEB gene alteration and VEGFA gene amplification.
Collapse
Affiliation(s)
- Anna Caliò
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | - Matteo Brunelli
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | - Diego Segala
- Department of Pathology, Pederzoli Hospital, Peschiera del Garda, Verona, Italy
| | - Serena Pedron
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | | | - Pedram Argani
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Guido Martignoni
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, Verona, Italy. .,Department of Pathology, Pederzoli Hospital, Peschiera del Garda, Verona, Italy.
| |
Collapse
|
40
|
Wyvekens N, Rechsteiner M, Fritz C, Wagner U, Tchinda J, Wenzel C, Kuithan F, Horn LC, Moch H. Histological and molecular characterization of TFEB-rearranged renal cell carcinomas. Virchows Arch 2019; 474:625-631. [PMID: 30706129 DOI: 10.1007/s00428-019-02526-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/27/2018] [Accepted: 01/14/2019] [Indexed: 01/07/2023]
Abstract
The 2016 WHO Classification of Tumors of the Urinary System recognizes microphthalmia transcription factor (MiT) family translocation carcinomas as a separate entity among renal cell carcinomas. TFE3 and transcription factor EB (TFEB) are members of the MiT family for which chromosomal rearrangements have been associated with renal cell carcinoma formation. TFEB translocation renal cell carcinoma is a rare tumor harboring a t(6;11)(p21;q12) translocation. Recently, renal cell carcinomas with TFEB amplification have been identified. TFEB amplified renal cell carcinomas have to be distinguished from TFEB-translocated renal cancer, because they may demonstrate a more aggressive behavior. Herein, we present a TFEB-translocated and a TFEB-amplified carcinoma cases and describe their distinct histological, immunohistochemical, and molecular characteristics. In addition, we review conventional morphology, immunophenotype, genetic background, and clinical outcome of TFEB-rearranged RCCs in the literature, with a special emphasis on important differential diagnoses and the diagnostic approach.
Collapse
Affiliation(s)
- Nicolas Wyvekens
- Department of Pathology and Molecular Pathology, University Hospital and University Zurich, Schmelzbergstrasse 12, 8091, Zurich, Switzerland
| | - Markus Rechsteiner
- Department of Pathology and Molecular Pathology, University Hospital and University Zurich, Schmelzbergstrasse 12, 8091, Zurich, Switzerland
| | - Christine Fritz
- Department of Pathology and Molecular Pathology, University Hospital and University Zurich, Schmelzbergstrasse 12, 8091, Zurich, Switzerland
| | - Ulrich Wagner
- Department of Pathology and Molecular Pathology, University Hospital and University Zurich, Schmelzbergstrasse 12, 8091, Zurich, Switzerland
| | - Joëlle Tchinda
- Department of Oncology, University Children's Hospital Zurich, Zurich, Switzerland
| | - Carina Wenzel
- Department of Pathology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Friederike Kuithan
- Department of Pathology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | - Holger Moch
- Department of Pathology and Molecular Pathology, University Hospital and University Zurich, Schmelzbergstrasse 12, 8091, Zurich, Switzerland.
| |
Collapse
|
41
|
Sirohi D, Smith SC, Agarwal N, Maughan BL. Unclassified renal cell carcinoma: diagnostic difficulties and treatment modalities. Res Rep Urol 2018; 10:205-217. [PMID: 30510921 PMCID: PMC6248403 DOI: 10.2147/rru.s154932] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Over the past few decades, the classification system of renal cell carcinoma (RCC) variants has witnessed tremendous and ongoing refinement driven by genomic profiling and morphological correlation that have provided valuable insights into tumor biology and characterization of this heterogeneous subset of tumors. The importance of accurate classification cannot be understated given the downstream impact on treatment decisions, risk stratification, and need for genetic testing. While the morphologic heterogeneity across these tumors is increasingly being recognized, all non-clear-cell RCCs are commonly categorized under one therapeutic category with management strategies that largely derive from clear-cell RCCs. As research in metastatic RCC progresses, there is a growing focus on rare subtypes and unclassified tumors, which is rapidly changing the treatment paradigm for non-clear-cell RCC. This review focuses on the histomorphologic diagnostic challenges of unclassified RCCs discussing the utility of contemporary diagnostic tools. It further discusses the current state of knowledge and guidelines for management of this class of tumors.
Collapse
Affiliation(s)
- Deepika Sirohi
- Department of Pathology, University of Utah and ARUP Laboratories, Salt Lake City, UT, USA,
| | - Steven C Smith
- Department of Pathology, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.,Department of Urology, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Neeraj Agarwal
- Division of Medical Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Benjamin L Maughan
- Division of Medical Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
42
|
Chen Q, Cheng L, Li Q. The molecular characterization and therapeutic strategies of papillary renal cell carcinoma. Expert Rev Anticancer Ther 2018; 19:169-175. [PMID: 30474436 DOI: 10.1080/14737140.2019.1548939] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Introduction: Papillary renal cell carcinoma (pRCC) is an important subtype of kidney cancer with a problematic pathological classification and highly variable clinical behavior. In this review, we summarize the current progression on pRCC in molecular level. Our findings highlight the need for molecular markers to accurately subtype pRCC and may lead to the development of more targeted agents and better patient stratification in clinical trials for pRCC. Areas covered: This review highlights the need for molecular markers to accurately subtype PRCC and may lead to the development of more targeted agents and better patient stratification in clinical trials for pRCC. Expert commentary: There are mainly two subtypes of pRCC based on histology. However, little is known about the genetic characterization of the sporadic forms of pRCC and there are currently no standard forms of therapy for patients with advanced disease. Both MET inhibitors and immunotherapy may be effective in advanced pRCC treatment. Therefore, understanding the molecular basis of pRCC and identifying the main goal of treatment is crucial for the selection of the best strategy.
Collapse
Affiliation(s)
- Qiwei Chen
- a Department of Urology , First Affiliated Hospital of Dalian Medical University , Dalian , China
| | - Liang Cheng
- b Department of Pathology and Laboratory Medicine , Indiana University School of Medicine , Indianapolis , IN , USA
| | - Quanlin Li
- a Department of Urology , First Affiliated Hospital of Dalian Medical University , Dalian , China
| |
Collapse
|
43
|
Dahl DM, Simeone JF, Iliopoulos O, Saylor PJ, Wu CL. Case 36-2018: A 29-Year-Old Man with an Incidentally Discovered Renal Mass. N Engl J Med 2018; 379:2064-2072. [PMID: 30462933 DOI: 10.1056/nejmcpc1802832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Douglas M Dahl
- From the Departments of Urology (D.M.D.), Radiology (J.F.S.), Medicine (O.I., P.J.S.), and Pathology (C.-L.W.), Massachusetts General Hospital, and the Departments of Surgery (D.M.D.), Radiology (J.F.S.), Medicine (O.I., P.J.S.), and Pathology (C.-L.W.), Harvard Medical School - both in Boston
| | - Joseph F Simeone
- From the Departments of Urology (D.M.D.), Radiology (J.F.S.), Medicine (O.I., P.J.S.), and Pathology (C.-L.W.), Massachusetts General Hospital, and the Departments of Surgery (D.M.D.), Radiology (J.F.S.), Medicine (O.I., P.J.S.), and Pathology (C.-L.W.), Harvard Medical School - both in Boston
| | - Othon Iliopoulos
- From the Departments of Urology (D.M.D.), Radiology (J.F.S.), Medicine (O.I., P.J.S.), and Pathology (C.-L.W.), Massachusetts General Hospital, and the Departments of Surgery (D.M.D.), Radiology (J.F.S.), Medicine (O.I., P.J.S.), and Pathology (C.-L.W.), Harvard Medical School - both in Boston
| | - Philip J Saylor
- From the Departments of Urology (D.M.D.), Radiology (J.F.S.), Medicine (O.I., P.J.S.), and Pathology (C.-L.W.), Massachusetts General Hospital, and the Departments of Surgery (D.M.D.), Radiology (J.F.S.), Medicine (O.I., P.J.S.), and Pathology (C.-L.W.), Harvard Medical School - both in Boston
| | - Chin-Lee Wu
- From the Departments of Urology (D.M.D.), Radiology (J.F.S.), Medicine (O.I., P.J.S.), and Pathology (C.-L.W.), Massachusetts General Hospital, and the Departments of Surgery (D.M.D.), Radiology (J.F.S.), Medicine (O.I., P.J.S.), and Pathology (C.-L.W.), Harvard Medical School - both in Boston
| |
Collapse
|
44
|
He H, Trpkov K, Martinek P, Isikci OT, Maggi-Galuzzi C, Alaghehbandan R, Gill AJ, Tretiakova M, Lopez JI, Williamson SR, Montiel DP, Sperga M, Comperat E, Brimo F, Yilmaz A, Pivovarcikova K, Michalova K, Slouka D, Prochazkova K, Hora M, Bonert M, Michal M, Hes O. "High-grade oncocytic renal tumor": morphologic, immunohistochemical, and molecular genetic study of 14 cases. Virchows Arch 2018; 473:725-738. [PMID: 30232607 DOI: 10.1007/s00428-018-2456-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/29/2018] [Accepted: 09/10/2018] [Indexed: 12/20/2022]
Abstract
The spectrum of the renal oncocytic tumors has been expanded in recent years to include several novel and emerging entities. We describe a cohort of novel, hitherto unrecognized and morphologically distinct high-grade oncocytic tumors (HOT), currently diagnosed as "unclassified" in the WHO classification. We identified 14 HOT by searching multiple institutional archives. Morphologic, immunohistochemical (IHC), molecular genetic, and molecular karyotyping studies were performed to investigate these tumors. The patients included 3 men and 11 women, with age range from 25 to 73 years (median 50, mean 49 years). Tumor size ranged from 1.5 to 7.0 cm in the greatest dimension (median 3, mean 3.4 cm). The tumors were all pT1 stage. Microscopically, they showed nested to solid growth, and focal tubulocystic architecture. The neoplastic cells were uniform with voluminous oncocytic cytoplasm. Prominent intracytoplasmic vacuoles were frequently seen, but no irregular (raisinoid) nuclei or perinuclear halos were present. All tumors demonstrated prominent nucleoli (WHO/ISUP grade 3 equivalent). Nine of 14 cases were positive for CD117 and cytokeratin (CK) 7 was either negative or only focally positive in of 6/14 cases. All tumors were positive for AE1-AE3, CK18, PAX 8, antimitochondrial antigen, and SDHB. Cathepsin K was positive in 13/14 cases and CD10 was positive in 12/13 cases. All cases were negative for TFE3, HMB45, Melan-A. No TFEB and TFE3 genes rearrangement was found in analyzable cases. By array CGH, complete chromosomal losses or gains were not found in any of the cases, and 3/9 cases showed absence of any abnormalities. Chromosomal losses were detected on chromosome 19 (4/9), 3 with losses of the short arm (p) and 1 with losses of both arms (p and q). Loss of chromosome 1 was found in 3/9 cases; gain of 5q was found in 1/9 cases. On molecular karyotyping, 3/3 evaluated cases showed loss of heterozygosity (LOH) on 16p11.2-11.1 and 2/3 cases showed LOH at 7q31.31. Copy number (CN) losses were found at 7q11.21 (3/3), Xp11.21 (3/3), Xp11.22-11.21 (3/3), and Xq24-25 (2/3). CN gains were found at 13q34 (2/3). Ten patients with available follow up information were alive and without disease progression, after a mean follow-up of 28 months (1 to 112 months). HOT is a tumor with unique morphology and its IHC profile appears mostly consistent. HOT should be considered as an emerging renal entity because it does not meet the diagnostic criteria for other recognized eosinophilic renal tumors, such as oncocytoma, chromophobe renal cell carcinoma (RCC), TFE3 and TFEB RCC, SDH-deficient RCC, and eosinophilic solid and cystic RCC.
Collapse
Affiliation(s)
- Huiying He
- Department of Pathology, Health Science Center, Peking University, Beijing, China
| | - Kiril Trpkov
- Department of Pathology and Laboratory Medicine, Calgary Laboratory Services and University of Calgary, Calgary, AB, Canada
| | - Petr Martinek
- Department of Pathology, Medical Faculty and Charles University Hospital Plzen, Alej Svobody 80, 304 60, Pilsen, Czech Republic
| | - Ozlem Tanas Isikci
- Department of Pathology, Ankara Education and Research Hospital, Ankara, Turkey
| | - Cristina Maggi-Galuzzi
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Reza Alaghehbandan
- Department of Pathology, Faculty of Medicine, University of British Columbia, Royal Columbian Hospital, Vancouver, BC, Canada
| | - Anthony J Gill
- Cancer Diagnosis and Pathology Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia.,University of Sydney, Sydney, NSW, 2006, Australia.,NSW Health Pathology Department of Anatomical Pathology, Royal North Shore Hospital, St Leonards, NSW, 2065, Australia
| | - Maria Tretiakova
- Department of Anatomic Pathology, Harborview Medical Center, Seattle, WA, USA
| | - Jose Ignacio Lopez
- BioCruces Institute, Cruces University Hospital, University of the Basque Country (UPV/EHU), Barakaldo, Bizkaia, Spain
| | | | - Delia Perez Montiel
- Department of Pathology, Instituto Nacional de Cancerologia, Mexico City, Mexico
| | - Maris Sperga
- Department of Pathology, Riga Stradin's University, Riga, Latvia
| | - Eva Comperat
- Sorbonne Université Service d'Anatomie et Cytologie Pathologiques Hôpital Tenon, HUEP, Paris, France
| | - Fadi Brimo
- Department of Pathology, McGill University, Montreal, QC, Canada
| | - Ali Yilmaz
- Department of Pathology and Laboratory Medicine, Calgary Laboratory Services and University of Calgary, Calgary, AB, Canada
| | - Kristyna Pivovarcikova
- Department of Pathology, Medical Faculty and Charles University Hospital Plzen, Alej Svobody 80, 304 60, Pilsen, Czech Republic
| | - Kveta Michalova
- Department of Pathology, Medical Faculty and Charles University Hospital Plzen, Alej Svobody 80, 304 60, Pilsen, Czech Republic
| | - David Slouka
- Biomedicine Center, Charles University, Medical Faculty and Charles University Hospital Plzen, Prague, Czech Republic
| | - Kristyna Prochazkova
- Department of Urology, Charles University, Medical Faculty and Charles University Hospital Plzen, Prague, Czech Republic
| | - Milan Hora
- Department of Urology, Charles University, Medical Faculty and Charles University Hospital Plzen, Prague, Czech Republic
| | - Michael Bonert
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Michal Michal
- Department of Pathology, Medical Faculty and Charles University Hospital Plzen, Alej Svobody 80, 304 60, Pilsen, Czech Republic
| | - Ondrej Hes
- Department of Pathology, Medical Faculty and Charles University Hospital Plzen, Alej Svobody 80, 304 60, Pilsen, Czech Republic.
| |
Collapse
|
45
|
Cytogenetic and immunohistochemical study of 42 pigmented microcystic chromophobe renal cell carcinoma (PMChRCC). Virchows Arch 2018; 473:209-217. [DOI: 10.1007/s00428-018-2389-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 05/12/2018] [Accepted: 06/11/2018] [Indexed: 01/25/2023]
|
46
|
Cajaiba MM, Dyer LM, Geller JI, Jennings LJ, George D, Kirschmann D, Rohan SM, Cost NG, Khanna G, Mullen EA, Dome JS, Fernandez CV, Perlman EJ. The classification of pediatric and young adult renal cell carcinomas registered on the children's oncology group (COG) protocol AREN03B2 after focused genetic testing. Cancer 2018; 124:3381-3389. [PMID: 29905933 DOI: 10.1002/cncr.31578] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/30/2018] [Accepted: 05/07/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Renal cell carcinomas (RCCs) are rare in young patients. Knowledge of their pathologic and molecular spectrum remains limited, and no prospective studies have been performed to date in this population. This study analyzes patients diagnosed with RCC who were prospectively enrolled in the AREN03B2 Children's Oncology Group (COG). The objective was to classify these tumors with the aid of focused genetic testing and to characterize their features. METHODS All tumors registered as RCC by central review were retrospectively re-reviewed and underwent additional ancillary studies. Tumors were classified according to the 2016 World Health Organization classification system when possible. RESULTS In total, 212 tumors were identified, and these were classified as microphthalmia transcription factor (MiT) translocation RCC (MiT-RCC) (41.5%), papillary RCC (16.5%), renal medullary carcinoma (12.3%), chromophobe RCC (6.6%), clear cell RCC (3.3%), fumarate hydratase-deficient RCC (1.4%), and succinate dehydrogenase-deficient RCC (0.5%). Other subtypes included tuberous sclerosis-associated RCC (4.2%), anaplastic lymphoma kinase (ALK)-rearranged RCC (3.8%), thyroid-like RCC (1.4%), myoepithelial carcinoma (0.9%), and unclassified (7.5%). MiT-RCCs were classified as either transcription factor E3 (TFE3) (93.2%) or EB (TFEB) (6.8%) translocations, and characterization of fusion partners was possible in most tumors. CONCLUSIONS The current study delineates the frequency of distinct RCC subtypes in a large prospective series of young patients and contributes knowledge to the diagnostic, clinical, and genetic features of MiT-RCC, the most common subtype among this age group. The identification of rare subtypes expands the spectrum of RCC in young patients, supporting the need for a thorough diagnostic workup. These studies may aid in the introduction of specific therapies for different RCC subtypes in the future. Cancer 2018. © 2018 American Cancer Society.
Collapse
Affiliation(s)
- Mariana M Cajaiba
- Department of Pathology and Laboratory Medicine, Ann and Robert H. Lurie Children's Hospital of Chicago,`, Chicago, Illinois
| | - Lisa M Dyer
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - James I Geller
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Lawrence J Jennings
- Department of Pathology and Laboratory Medicine, Ann and Robert H. Lurie Children's Hospital of Chicago,`, Chicago, Illinois
| | - David George
- Department of Pathology and Laboratory Medicine, Ann and Robert H. Lurie Children's Hospital of Chicago,`, Chicago, Illinois
| | - Dawn Kirschmann
- Department of Pathology and Laboratory Medicine, Ann and Robert H. Lurie Children's Hospital of Chicago,`, Chicago, Illinois
| | - Stephen M Rohan
- Department of Pathology, Colorado Pathology Consultants, Denver, Colorado
| | - Nicholas G Cost
- Department of Surgery, University of Colorado, Denver, Colorado
| | - Geetika Khanna
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri
| | - Elizabeth A Mullen
- Department of Pediatric Oncology, Children's Hospital, Boston, Massachusetts
| | - Jeffrey S Dome
- Division of Oncology, Children's National Medical Center, Washington, District of Columbia
| | | | - Elizabeth J Perlman
- Department of Pathology and Laboratory Medicine, Ann and Robert H. Lurie Children's Hospital of Chicago,`, Chicago, Illinois
| |
Collapse
|
47
|
Caliò A, Brunelli M, Segala D, Pedron S, Tardanico R, Remo A, Gobbo S, Meneghelli E, Doglioni C, Hes O, Zampini C, Argani P, Martignoni G. t(6;11) renal cell carcinoma: a study of seven cases including two with aggressive behavior, and utility of CD68 (PG-M1) in the differential diagnosis with pure epithelioid PEComa/epithelioid angiomyolipoma. Mod Pathol 2018; 31:474-487. [PMID: 29052596 DOI: 10.1038/modpathol.2017.144] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 09/10/2017] [Accepted: 09/11/2017] [Indexed: 01/21/2023]
Abstract
Renal cell carcinomas with t(6;11) chromosome translocation involving the TFEB gene are indolent neoplasms which often occur in young patients. In this study, we report seven cases of renal cell carcinoma with TFEB rearrangement, two of whom had histologically proven metastasis. Patients (4F, 3M) ranged in age from 19 to 55 years (mean 37). One patient developed paratracheal and pleural metastases 24 months after surgery and died of disease after 46 months; another one recurred with neoplastic nodules in the perinephric fat and pelvic soft tissue. Histologically, either cytological or architectural appearance was peculiar in each case whereas one tumor displayed the typical biphasic morphology. By immunohistochemistry, all tumors labelled for cathepsin K, Melan-A and CD68 (KP1 clone). HMB45 and PAX8 staining were detected in six of seven tumors. All tumors were negative for CD68 (PG-M1 clone), CKAE1-AE3, CK7, CAIX, and AMACR. Seven pure epithelioid PEComa/epithelioid angiomyolipomas, used as control, were positive for cathepsin K, melanocytic markers, and CD68 (PG-M1 and KP1) and negative for PAX8. Fluorescence in situ hybridization results showed the presence of TFEB gene translocation in all t(6;11) renal cell carcinomas with a high frequency of split TFEB fluorescent signals (mean 74%). In the primary and metastatic samples of the two aggressive tumors, increased gene copy number was observed (3-5 fluorescent signals per neoplastic nuclei) with a concomitant increased number of CEP6. Review of the literature revealed older age and larger tumor size as correlating with aggressive behavior in these neoplasms. In conclusion, we present the clinical, morphological and molecular features of seven t(6;11) renal cell carcinomas, two with histologically demonstrated metastasis. We report the high frequency of split signals by FISH in tumors with t(6;11) chromosomal rearrangement and the occurrence of TFEB gene copy number gains in the aggressive cases, analyzing either the primary or metastatic tumor. Finally, we demonstrate the usefulness of CD68 (PG-M1) immunohistochemical staining in distinguishing t(6;11) renal cell carcinoma from pure epithelioid PEComa/epithelioid angiomyolipoma.
Collapse
Affiliation(s)
- Anna Caliò
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | - Matteo Brunelli
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | - Diego Segala
- Department of Pathology, Pederzoli Hospital, Peschiera del Garda, Italy
| | - Serena Pedron
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | | | - Andrea Remo
- Department of Pathology, Hospital 'Mater Salutis', Legnago, Italy
| | - Stefano Gobbo
- Department of Pathology, Pederzoli Hospital, Peschiera del Garda, Italy
| | - Emanuela Meneghelli
- Department of Life and Reproduction Sciences, Clinical Biochemistry Laboratory, University of Verona, Verona, Italy
| | | | - Ondrej Hes
- Department of Pathology, Charles University Hospital Plzen, Plzen, Czech Republic
| | - Claudia Zampini
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, Verona, Italy
| | - Pedram Argani
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, USA
| | - Guido Martignoni
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, Verona, Italy.,Department of Pathology, Pederzoli Hospital, Peschiera del Garda, Italy
| |
Collapse
|
48
|
Zhan HQ, Li ST, Shu Y, Liu MM, Qin R, Li YL, Gan L. Alpha gene upregulates TFEB expression in renal cell carcinoma with t(6;11) translocation, which promotes cell canceration. Int J Oncol 2018; 52:933-944. [DOI: 10.3892/ijo.2018.4239] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/20/2017] [Indexed: 11/06/2022] Open
Affiliation(s)
- He-qin Zhan
- Department of Pathology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Shu-ting Li
- Department of Pathology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yan Shu
- Department of Pathology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Meng-meng Liu
- Department of Pathology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Rong Qin
- Department of Pathology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yan-li Li
- Department of Pathology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Lin Gan
- Institute of Clinical Virology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
49
|
Detection of 6 TFEB-amplified renal cell carcinomas and 25 renal cell carcinomas with MITF translocations: systematic morphologic analysis of 85 cases evaluated by clinical TFE3 and TFEB FISH assays. Mod Pathol 2018; 31:179-197. [PMID: 28840857 DOI: 10.1038/modpathol.2017.99] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/16/2017] [Accepted: 06/29/2017] [Indexed: 01/14/2023]
Abstract
Renal cell carcinomas with MITF aberrations demonstrate a wide morphologic spectrum, highlighting the need to consider these entities within the differential diagnosis of renal tumors encountered in clinical practice. Herein, we describe our experience with application of clinical fluorescence in situ hybridization (FISH) assays for detection of TFE3 and TFEB gene aberrations from 85 consecutive renal cell carcinoma cases submitted to our genitourinary FISH service. Results from 170 FISH assays performed on these tumors were correlated with available clinicopathologic findings. Ninety-eight percent of renal tumors submitted for FISH evaluation were from adult patients. Thirty-one (37%) tumors were confirmed to demonstrate MITF aberrations (21 TFE3 translocation, 4 TFEB translocation, and 6 TFEB amplification cases). Overall, renal cell carcinomas with MITF aberrations demonstrated morphologic features overlapping with clear cell, papillary, or clear cell papillary renal cell carcinomas. Renal cell carcinomas with MITF aberrations were significantly more likely to demonstrate dual (eosinophilic and clear) cytoplasmic tones (P=0.030), biphasic TFEB translocation renal cell carcinoma-like morphology (P=0.002), psammomatous calcifications (P=0.002), and nuclear pseudoinclusions (P=0.001) than renal cell carcinomas without MITF aberrations. Notably, 7/9 (78%) renal cell carcinomas exhibiting subnuclear clearing and linear nuclear array (6 of which showed high World Health Organization/International Society of Urological Pathology nucleolar grade) demonstrated TFE3 translocation, an association that was statistically significant when compared with renal cell carcinomas without MITF aberrations (P=0.009). In this cohort comprising consecutive cases, TFEB-amplified renal cell carcinomas were more commonly identified than renal cell carcinomas with TFEB translocations, and four (67%) of these previously unreported TFEB-amplified renal cell carcinomas demonstrated oncocytic and papillary features with a high World Health Organization/International Society of Urological Pathology nucleolar grade. In summary, TFE3 and TFEB FISH evaluation aids in identification and accurate classification of renal cell carcinomas with MITF aberrations, including TFEB-amplified renal cell carcinoma, which may demonstrate aggressive behavior.
Collapse
|
50
|
Mendel L, Ambrosetti D, Bodokh Y, Ngo-Mai M, Durand M, Simbsler-Michel C, Delhorbe M, Amiel J, Pedeutour F. Comprehensive study of three novel cases of TFEB
-amplified renal cell carcinoma and review of the literature: Evidence for a specific entity with poor outcome. Genes Chromosomes Cancer 2017; 57:99-113. [DOI: 10.1002/gcc.22513] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/07/2017] [Accepted: 11/09/2017] [Indexed: 12/17/2022] Open
Affiliation(s)
- Lionel Mendel
- Laboratory of Solid Tumor Genetics; Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284/INSERM U1081; Nice France
- Department of Urology; Nice University Hospital affiliated to University of Nice Côte d'Azur; Nice France
| | - Damien Ambrosetti
- Laboratory of Solid Tumor Genetics; Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284/INSERM U1081; Nice France
- Central Laboratory of Pathology; Nice University Hospital affiliated to University of Nice Côte d'Azur; Nice France
| | - Yohan Bodokh
- Laboratory of Solid Tumor Genetics; Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284/INSERM U1081; Nice France
- Department of Urology; Nice University Hospital affiliated to University of Nice Côte d'Azur; Nice France
| | - Mélanie Ngo-Mai
- Laboratory of Solid Tumor Genetics; Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284/INSERM U1081; Nice France
- Central Laboratory of Pathology; Nice University Hospital affiliated to University of Nice Côte d'Azur; Nice France
| | - Matthieu Durand
- Laboratory of Solid Tumor Genetics; Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284/INSERM U1081; Nice France
- Department of Urology; Nice University Hospital affiliated to University of Nice Côte d'Azur; Nice France
| | | | - Mickael Delhorbe
- Laboratory of Solid Tumor Genetics; Nice University Hospital affiliated to University of Nice Côte d'Azur; Nice France
| | - Jean Amiel
- Laboratory of Solid Tumor Genetics; Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284/INSERM U1081; Nice France
- Department of Urology; Nice University Hospital affiliated to University of Nice Côte d'Azur; Nice France
| | - Florence Pedeutour
- Laboratory of Solid Tumor Genetics; Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284/INSERM U1081; Nice France
- Laboratory of Solid Tumor Genetics; Nice University Hospital affiliated to University of Nice Côte d'Azur; Nice France
| |
Collapse
|