1
|
Swan KZ, Madsen SH, Bonnema SJ, Nielsen VE, Jespersen ML. Preoperative BRAF V600E mutation detection in thyroid carcinoma by immunocytochemistry. APMIS 2022; 130:627-636. [PMID: 35951496 PMCID: PMC9804421 DOI: 10.1111/apm.13267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/09/2022] [Indexed: 01/05/2023]
Abstract
The BRAFV600E (BRAF) mutation is present in 40-50% of papillary thyroid carcinomas (PTC) and has been associated with more aggressive clinicopathological characteristics of PTC. The aim of this study was to evaluate different methods for preoperative identification of the BRAF mutation in PTC using cytological and histological specimens. Prospectively collected preoperative cytological clots from patients with suspected PTC were tested with BRAF immunocytochemistry (ICC) and the Cobas Test (PCR). In addition, histological specimens were tested with BRAF immunohistochemistry (IHC) and the Cobas Test. All nodules were histologically examined. Fifty-three patients were included in the study. Complete mutation testing was available in 32 patients. The main reason for exclusion was insufficient cell content in the cytological specimen. Twenty-seven nodules were histologically diagnosed as PTC, and 41% (n = 11) of PTCs were BRAF ICC positive. All non-PTC nodules were negative by BRAF ICC. In 26 nodules, all four BRAF tests were concordant, while discordant test results were found in six nodules. ICC was in accordance with the consensus BRAF status in five of these nodules, while BRAF status was undetermined in one nodule. BRAF ICC showed high concordance with the Cobas Test and a low rate of false negative stain. These results indicate that BRAF ICC may be a feasible method for preoperative detection of the BRAFV600E mutation in patients with PTC.
Collapse
Affiliation(s)
- Kristine Zøylner Swan
- Department of Otorhinolaryngology Head & Neck SurgeryAarhus University HospitalAarhusDenmark
| | | | | | | | | |
Collapse
|
2
|
Papadakis G, Pantazis AK, Fikas N, Chatziioannidou S, Tsiakalou V, Michaelidou K, Pogka V, Megariti M, Vardaki M, Giarentis K, Heaney J, Nastouli E, Karamitros T, Mentis A, Zafiropoulos A, Sourvinos G, Agelaki S, Gizeli E. Portable real-time colorimetric LAMP-device for rapid quantitative detection of nucleic acids in crude samples. Sci Rep 2022; 12:3775. [PMID: 35260588 PMCID: PMC8904468 DOI: 10.1038/s41598-022-06632-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/27/2022] [Indexed: 02/08/2023] Open
Abstract
Loop-mediated isothermal amplification is known for its high sensitivity, specificity and tolerance to inhibiting-substances. In this work, we developed a device for performing real-time colorimetric LAMP combining the accuracy of lab-based quantitative analysis with the simplicity of point-of-care testing. The device innovation lies on the use of a plastic tube anchored vertically on a hot surface while the side walls are exposed to a mini camera able to take snapshots of the colour change in real time during LAMP amplification. Competitive features are the rapid analysis (< 30 min), quantification over 9 log-units, crude sample-compatibility (saliva, tissue, swabs), low detection limit (< 5 copies/reaction), smartphone-operation, fast prototyping (3D-printing) and ability to select the dye of interest (Phenol red, HNB). The device’s clinical utility is demonstrated in cancer mutations-analysis during the detection of 0.01% of BRAF-V600E-to-wild-type molecules from tissue samples and COVID-19 testing with 97% (Ct < 36.8) and 98% (Ct < 30) sensitivity when using extracted RNA and nasopharyngeal-swabs, respectively. The device high technology-readiness-level makes it a suitable platform for performing any colorimetric LAMP assay; moreover, its simple and inexpensive fabrication holds promise for fast deployment and application in global diagnostics.
Collapse
Affiliation(s)
- G Papadakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 100 N. Plastira Str., 70013, Heraklion, Greece. .,BIOPIX DNA TECHNOLOGY PC, Science and Technology Park of Crete, 100 N. Plastira Str., 70013, Heraklion, Greece.
| | - A K Pantazis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 100 N. Plastira Str., 70013, Heraklion, Greece.,BIOPIX DNA TECHNOLOGY PC, Science and Technology Park of Crete, 100 N. Plastira Str., 70013, Heraklion, Greece
| | - N Fikas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 100 N. Plastira Str., 70013, Heraklion, Greece.,BIOPIX DNA TECHNOLOGY PC, Science and Technology Park of Crete, 100 N. Plastira Str., 70013, Heraklion, Greece
| | - S Chatziioannidou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 100 N. Plastira Str., 70013, Heraklion, Greece.,BIOPIX DNA TECHNOLOGY PC, Science and Technology Park of Crete, 100 N. Plastira Str., 70013, Heraklion, Greece.,Department of Biology, University of Crete, 70013, Voutes, Heraklion, Greece
| | - V Tsiakalou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 100 N. Plastira Str., 70013, Heraklion, Greece
| | - K Michaelidou
- Laboratory of Translational Oncology, School of Medicine, University of Crete, 71500, Heraklion, Greece
| | - V Pogka
- National SARS-CoV-2 Reference Laboratory, Hellenic Pasteur Institute, 127 Vas. Sofias Ave., 11521, Athens, Greece
| | - M Megariti
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 100 N. Plastira Str., 70013, Heraklion, Greece
| | - M Vardaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 100 N. Plastira Str., 70013, Heraklion, Greece.,Department of Biology, University of Crete, 70013, Voutes, Heraklion, Greece
| | - K Giarentis
- Department of Biology, University of Crete, 70013, Voutes, Heraklion, Greece
| | - J Heaney
- Advanced Pathogens Diagnostics Unit, University College London Hospitals NHS Trust, London, WC1H 9AX, UK.,UCL Great Ormond Street Institute of Child Health, London, UK
| | - E Nastouli
- Advanced Pathogens Diagnostics Unit, University College London Hospitals NHS Trust, London, WC1H 9AX, UK.,UCL Great Ormond Street Institute of Child Health, London, UK
| | - T Karamitros
- National SARS-CoV-2 Reference Laboratory, Hellenic Pasteur Institute, 127 Vas. Sofias Ave., 11521, Athens, Greece
| | - A Mentis
- National SARS-CoV-2 Reference Laboratory, Hellenic Pasteur Institute, 127 Vas. Sofias Ave., 11521, Athens, Greece
| | - A Zafiropoulos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71500, Heraklion, Greece
| | - G Sourvinos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71500, Heraklion, Greece
| | - S Agelaki
- Department of Biology, University of Crete, 70013, Voutes, Heraklion, Greece.,Department of Medical Oncology, University General Hospital, 71110, Heraklion, Greece
| | - E Gizeli
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 100 N. Plastira Str., 70013, Heraklion, Greece. .,Department of Biology, University of Crete, 70013, Voutes, Heraklion, Greece.
| |
Collapse
|
3
|
Scatena C, Murtas D, Tomei S. Cutaneous Melanoma Classification: The Importance of High-Throughput Genomic Technologies. Front Oncol 2021; 11:635488. [PMID: 34123788 PMCID: PMC8193952 DOI: 10.3389/fonc.2021.635488] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Cutaneous melanoma is an aggressive tumor responsible for 90% of mortality related to skin cancer. In the recent years, the discovery of driving mutations in melanoma has led to better treatment approaches. The last decade has seen a genomic revolution in the field of cancer. Such genomic revolution has led to the production of an unprecedented mole of data. High-throughput genomic technologies have facilitated the genomic, transcriptomic and epigenomic profiling of several cancers, including melanoma. Nevertheless, there are a number of newer genomic technologies that have not yet been employed in large studies. In this article we describe the current classification of cutaneous melanoma, we review the current knowledge of the main genetic alterations of cutaneous melanoma and their related impact on targeted therapies, and we describe the most recent high-throughput genomic technologies, highlighting their advantages and disadvantages. We hope that the current review will also help scientists to identify the most suitable technology to address melanoma-related relevant questions. The translation of this knowledge and all actual advancements into the clinical practice will be helpful in better defining the different molecular subsets of melanoma patients and provide new tools to address relevant questions on disease management. Genomic technologies might indeed allow to better predict the biological - and, subsequently, clinical - behavior for each subset of melanoma patients as well as to even identify all molecular changes in tumor cell populations during disease evolution toward a real achievement of a personalized medicine.
Collapse
Affiliation(s)
- Cristian Scatena
- Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Daniela Murtas
- Department of Biomedical Sciences, Section of Cytomorphology, University of Cagliari, Cagliari, Italy
| | - Sara Tomei
- Omics Core, Integrated Genomics Services, Research Department, Sidra Medicine, Doha, Qatar
| |
Collapse
|
4
|
Duan J, Yang Y, Yin L, Zhang X, Tang Y, Zhang S, Gong H, Xiao M, Li M, Li Q, Li X, Yang L, Fan Q, Wang Y. Preliminary Study on the Identification of BRAF V600E Mutation in Colorectal Cancer by Near-Infrared Spectroscopy. Onco Targets Ther 2020; 13:13077-13085. [PMID: 33376356 PMCID: PMC7764696 DOI: 10.2147/ott.s287814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
Introduction In metastatic colorectal cancer (mCRC), the B-type Raf kinase (BRAF)V600E mutation is a molecular biomarker of poor prognosis and is of great importance to drug target. Currently, the commonly used methods for detecting BRAFV600E mutation include immunohistochemistry (IHC) and gene sequencing, but both present certain limitations. Near-infrared (NIR) spectroscopy is a spectroscopy technology that takes advantage of the electromagnetic wavelength between visible light and mid-infrared light. Methods IHC was used to detect the expression of BRAFV600E protein with the BRAFV600E (VE1) antibody in 42 cases of paraffin-embedded (FFPE) mCRC tissue sections. The NIR-discriminant analysis model (NIRS-DA) was established using 6 cases of wild-type and 6 cases of mutant-type BRAF specimens. Results IHC detection results revealed 13 cases of weakly positive (+), 1 case of moderately positive (++), and 28 cases of negative (-) CRC. Compared with the next-generation sequencing (NGS) results, the positive rate was 66.7%. The classification accuracy of calibration (CAC) was 100% compared with the results of NGS, demonstrating that the BRAFV600E mutant NIRS-DA model, verified by 2 cases of wild-type and 2 cases of mutant-type CRC samples was established. The NIRS-DA model was used to predict gene mutation in the CRC samples, 7 cases were positive (+), and 35 cases were negative (-), and the classification accuracy of prediction (CAP) was 83.3% (35/42). Discussion The NIRS-DA model-predicted results were in high agreement with the detection results of NGS, and the difference in IHC is not statistically significant (P>0.05). However, this study is a preliminary discussion on a methodology due to its small sample size.
Collapse
Affiliation(s)
- Jiale Duan
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yanping Yang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Lei Yin
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xue Zhang
- School of Pharmacy, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yi Tang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Shuxian Zhang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Hanjuan Gong
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Ming Xiao
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Ming Li
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Qingshu Li
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xian Li
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Lian Yang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Qi Fan
- School of Pharmacy, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yalan Wang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, People's Republic of China
| |
Collapse
|
5
|
Abstract
Currently, several targeted therapy regimens are approved as first-line treatment in V600E/K-mutant advanced and metastatic melanoma. Patients with the third most common pathologic variant in the BRAF gene, V600R, were not included in BRAF/MEK inhibitors clinical trials, so there is lack of information about the clinical characteristics and predictive value of this mutation in systemic therapy of unresectable disease. We retrospectively reviewed clinical BRAF mutation testing results and the records of melanoma patients at the University of Iowa Hospitals and Clinics from 2011 to 2017. DNA from formalin-fixed, paraffin-embedded tumor specimens were sequenced using a next-generation sequencing panel or dye terminator sequencing covering exon 15 of the BRAF gene. The study protocol was approved by the University of Iowa Institutional Review Board. Nine patients (5.3% of 168 cases with BRAF mutation) were found to have the V600R mutation. We report our experience in treatment of seven patients with V600R-mutant melanoma, whose clinical records were available for review. Four patients in our cohort received BRAF inhibitors. Three patients demonstrated partial objective response to BRAF/MEK targeted therapy. V600R-mutant melanoma accounts for a significant number of cases even in single-institution practices. We believe that testing for BRAF-mutation status should include rare variants of this mutation. From our experience, the high rate of ulceration, male predominance and advanced age at diagnosis are features of melanoma with V600R mutation, which are similar to those reported for V600K mutation. We observed objective response to BRAF/MEK inhibitors in three cases with V600R variant.
Collapse
|
6
|
Owsley J, Stein MK, Porter J, In GK, Salem M, O'Day S, Elliott A, Poorman K, Gibney G, VanderWalde A. Prevalence of class I-III BRAF mutations among 114,662 cancer patients in a large genomic database. Exp Biol Med (Maywood) 2020; 246:31-39. [PMID: 33019809 DOI: 10.1177/1535370220959657] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
IMPACT STATEMENT These data represent the largest aggregation of BRAF mutations within a single clinical database to our knowledge. The relative proportions of both BRAF V600 mutations and non-V600 mutations are informative in all cancers and by malignancy, and can serve as a definitive gold-standard for BRAF mutation cancer incidence by malignancy. The rate of BRAF mutation in human cancer in a real-world large database is lower than previously reported likely representing testing more broadly across tumor types. The relative percentages of Class II and Class III BRAF mutations are higher than previously reported, representing almost 35% of BRAF mutations in cancer. These findings provide support for the development of effective treatments for non-V600 BRAF mutations in cancer.
Collapse
Affiliation(s)
- Jeff Owsley
- Division of Hematology/Oncology, University of Tennessee Health Science Center, Germantown, TN 38138, USA
| | - Matthew K Stein
- Division of Hematology/Oncology, University of Tennessee Health Science Center, Germantown, TN 38138, USA
| | | | - Gino K In
- Division of Hematology/Oncology, University of Southern California, Los Angeles, CA 90089, USA
| | | | - Steven O'Day
- John Wayne Cancer Institute, Santa Monica, CA 90404, USA
| | | | | | - Geoffrey Gibney
- Division of Hematology/Oncology, Georgetown University, Washington, DC 20007, USA
| | - Ari VanderWalde
- Division of Hematology/Oncology, University of Tennessee Health Science Center, Germantown, TN 38138, USA.,West Cancer Center, Germantown, TN 38138, USA
| |
Collapse
|
7
|
Pavelić SK, Markova-Car E, Klobučar M, Sappe L, Spaventi R. Technological Advances in Preclinical Drug Evaluation: The Role of -Omics Methods. Curr Med Chem 2020; 27:1337-1349. [PMID: 31296156 DOI: 10.2174/0929867326666190711122819] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 06/03/2019] [Accepted: 06/11/2019] [Indexed: 12/11/2022]
Abstract
Preclinical drug development is an essential step in the drug development process where the evaluation of new chemical entities occurs. In particular, preclinical drug development phases include deep analysis of drug candidates' interactions with biomolecules/targets, their safety, toxicity, pharmacokinetics, metabolism by use of assays in vitro and in vivo animal assays. Legal aspects of the required procedures are well-established. Herein, we present a comprehensive summary of current state-of-the art approaches and techniques used in preclinical studies. In particular, we will review the potential of new, -omics methods and platforms for mechanistic evaluation of drug candidates and speed-up of the preclinical evaluation steps.
Collapse
Affiliation(s)
- Sandra Kraljević Pavelić
- Department of Biotechnology, Centre for High-Throughput Technologies, University of Rijeka, 51000 Rijeka, Croatia
| | - Elitza Markova-Car
- Department of Biotechnology, Centre for High-Throughput Technologies, University of Rijeka, 51000 Rijeka, Croatia
| | - Marko Klobučar
- Department of Biotechnology, Centre for High-Throughput Technologies, University of Rijeka, 51000 Rijeka, Croatia
| | - Lana Sappe
- Department of Biotechnology, Centre for High-Throughput Technologies, University of Rijeka, 51000 Rijeka, Croatia.,Novartis Oncology Region Europe Headquarter, Largo Umberto Boccioni 1, 21040 Origgio, Italia
| | - Radan Spaventi
- Triadelta Partners d.o.o., Međimurska 19/2, Zagreb, Croatia
| |
Collapse
|
8
|
Pang SW, Awi NJ, Armon S, Lim WWD, Low JSH, Peh KB, Peh SC, Teow SY. Current Update of Laboratory Molecular Diagnostics Advancement in Management of Colorectal Cancer (CRC). Diagnostics (Basel) 2019; 10:E9. [PMID: 31877940 PMCID: PMC7168209 DOI: 10.3390/diagnostics10010009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/11/2019] [Accepted: 11/23/2019] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) continues to be one of the most common cancers globally. The incidence has increased in developing countries in the past few decades, this could be partly attributed to aging populations and unhealthy lifestyles. While the treatment of CRC has seen significant improvement since the advent of target-specific therapies and personalized medicine, CRC is oftentimes detected at late or advanced stages, thereby reducing the efficacy of treatment. Hence, screening for early detection is still the key to combat CRC and to increase overall survival (OS). Considering that the field of medical diagnostics is moving towards molecular diagnostics, CRC can now be effectively screened and diagnosed with high accuracy and sensitivity. Depending on the tumor genotype and genetic profile of the individual, personalized treatments including tyrosine kinase inhibitor therapy and immunotherapy can be administered. Notably, there can be no one single treatment that is effective for all CRC patients due to the variation in tumor genetics, which highlights the importance of molecular diagnostics. This review provides insights on therapeutic modalities, molecular biomarkers, advancement of diagnostic technologies, and current challenges in managing CRC.
Collapse
Affiliation(s)
- Siew-Wai Pang
- Department of Medical Sciences, School of Healthcare and Medical Sciences, Sunway University, Jalan Universiti, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Noel Jacques Awi
- Department of Medical Sciences, School of Healthcare and Medical Sciences, Sunway University, Jalan Universiti, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Subasri Armon
- Pathology Department, Hospital Kuala Lumpur, Jalan Pahang, Kuala Lumpur 50588, Malaysia
| | - Wendy Wan-Dee Lim
- Sunway Medical Centre, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - John Seng-Hooi Low
- Sunway Medical Centre, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Kaik-Boo Peh
- Mahkota Medical Centre, Mahkota Melaka, Jalan Merdeka, Melaka 75000, Malaysia
| | - Suat-Cheng Peh
- Department of Medical Sciences, School of Healthcare and Medical Sciences, Sunway University, Jalan Universiti, Bandar Sunway, Subang Jaya 47500, Malaysia
- Sunway Medical Centre, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Sin-Yeang Teow
- Department of Medical Sciences, School of Healthcare and Medical Sciences, Sunway University, Jalan Universiti, Bandar Sunway, Subang Jaya 47500, Malaysia
| |
Collapse
|
9
|
Lokhandwala PM, Tseng LH, Rodriguez E, Zheng G, Pallavajjalla A, Gocke CD, Eshleman JR, Lin MT. Clinical mutational profiling and categorization of BRAF mutations in melanomas using next generation sequencing. BMC Cancer 2019; 19:665. [PMID: 31277584 PMCID: PMC6612071 DOI: 10.1186/s12885-019-5864-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 06/20/2019] [Indexed: 12/18/2022] Open
Abstract
Background Analysis of melanomas for actionable mutations has become the standard of care. Recently, a classification scheme has been proposed that categorizes BRAF mutations based on their mechanisms for activation of the MAPK pathway. Methods In this analysis BRAF, KIT, NRAS, and PIK3CA mutations were examined by next generation sequencing (NGS) in 446 melanomas in a clinical diagnostic setting. KRAS and HRAS were also analyzed to elucidate coexisting BRAF and RAS mutations. BRAF mutations were categorized into class-1 (kinase-activated, codon 600), class-2 (kinase-activated, non-codon 600) and class-3 (kinase-impaired), based on the newly proposed classification scheme. Results NGS demonstrated high analytic sensitivity. Among 355 mutations detected, variant allele frequencies were 2–5% in 21 (5.9%) mutations and 2–10% in 47 (13%) mutations. Mutations were detected in BRAF (42%), NRAS (25%), KIT (4.9%) and PIK3CA (2.7%). The incidence of class-1, class-2 and class-3 mutations were 33% (26% p.V600E and 6.1% p.V600K), 3.1 and 4.9% respectively. With a broader reportable range of NGS, class-1, class-2 and class-3 mutations accounted for 77, 7.4 and 12% of all BRAF mutations. Class-3 mutations, commonly affecting codons 594, 466 and 467, showed a higher incidence of coexisting RAS mutations, consistent with their RAS-dependent signaling. Significant association with old age and primary tumors of head/neck/upper back suggest chronic solar damage as a contributing factor for melanomas harboring BRAF p.V600K or class-3 mutations. Conclusion This study categorizes the range, frequency, coexisting driver mutations and clinical characteristics of the three classes of BRAF mutations in a large cohort of melanomas in a clinical diagnostic setting. Further prospective studies are warranted to elucidate the clinical outcomes and benefits of newly developed targeted therapy in melanoma patients carrying each class of BRAF mutation. Electronic supplementary material The online version of this article (10.1186/s12885-019-5864-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Parvez M Lokhandwala
- Department of Pathology, Johns Hopkins University School of Medicine, Johns Hopkins University School of Medicine, 1812 Ashland Ave, Suite 200, Baltimore, MD, 21205, USA.
| | - Li-Hui Tseng
- Department of Pathology, Johns Hopkins University School of Medicine, Johns Hopkins University School of Medicine, 1812 Ashland Ave, Suite 200, Baltimore, MD, 21205, USA.,Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Erika Rodriguez
- Department of Pathology, Johns Hopkins University School of Medicine, Johns Hopkins University School of Medicine, 1812 Ashland Ave, Suite 200, Baltimore, MD, 21205, USA
| | - Gang Zheng
- Department of Pathology, Johns Hopkins University School of Medicine, Johns Hopkins University School of Medicine, 1812 Ashland Ave, Suite 200, Baltimore, MD, 21205, USA
| | - Aparna Pallavajjalla
- Department of Pathology, Johns Hopkins University School of Medicine, Johns Hopkins University School of Medicine, 1812 Ashland Ave, Suite 200, Baltimore, MD, 21205, USA
| | - Christopher D Gocke
- Department of Pathology, Johns Hopkins University School of Medicine, Johns Hopkins University School of Medicine, 1812 Ashland Ave, Suite 200, Baltimore, MD, 21205, USA.,Departments of Oncology, Johns Hopkins University School of Medicine, Johns Hopkins Hospital, Baltimore, MD, USA
| | - James R Eshleman
- Department of Pathology, Johns Hopkins University School of Medicine, Johns Hopkins University School of Medicine, 1812 Ashland Ave, Suite 200, Baltimore, MD, 21205, USA.,Departments of Oncology, Johns Hopkins University School of Medicine, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Ming-Tseh Lin
- Department of Pathology, Johns Hopkins University School of Medicine, Johns Hopkins University School of Medicine, 1812 Ashland Ave, Suite 200, Baltimore, MD, 21205, USA.
| |
Collapse
|
10
|
Iliescu FS, Poenar DP, Yu F, Ni M, Chan KH, Cima I, Taylor HK, Cima I, Iliescu C. Recent advances in microfluidic methods in cancer liquid biopsy. BIOMICROFLUIDICS 2019; 13:041503. [PMID: 31431816 PMCID: PMC6697033 DOI: 10.1063/1.5087690] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 06/24/2019] [Indexed: 05/04/2023]
Abstract
Early cancer detection, its monitoring, and therapeutical prediction are highly valuable, though extremely challenging targets in oncology. Significant progress has been made recently, resulting in a group of devices and techniques that are now capable of successfully detecting, interpreting, and monitoring cancer biomarkers in body fluids. Precise information about malignancies can be obtained from liquid biopsies by isolating and analyzing circulating tumor cells (CTCs) or nucleic acids, tumor-derived vesicles or proteins, and metabolites. The current work provides a general overview of the latest on-chip technological developments for cancer liquid biopsy. Current challenges for their translation and their application in various clinical settings are discussed. Microfluidic solutions for each set of biomarkers are compared, and a global overview of the major trends and ongoing research challenges is given. A detailed analysis of the microfluidic isolation of CTCs with recent efforts that aimed at increasing purity and capture efficiency is provided as well. Although CTCs have been the focus of a vast microfluidic research effort as the key element for obtaining relevant information, important clinical insights can also be achieved from alternative biomarkers, such as classical protein biomarkers, exosomes, or circulating-free nucleic acids. Finally, while most work has been devoted to the analysis of blood-based biomarkers, we highlight the less explored potential of urine as an ideal source of molecular cancer biomarkers for point-of-care lab-on-chip devices.
Collapse
Affiliation(s)
- Florina S. Iliescu
- School of Applied Science, Republic Polytechnic, Singapore 738964, Singapore
| | - Daniel P. Poenar
- VALENS-Centre for Bio Devices and Signal Analysis, School of EEE, Nanyang Technological University, Singapore 639798, Singapore
| | - Fang Yu
- Singapore Institute of Manufacturing Technology, A*STAR, Singapore 138634, Singapore
| | - Ming Ni
- School of Biological Sciences and Engineering, Yachay Technological University, San Miguel de Urcuquí 100105, Ecuador
| | - Kiat Hwa Chan
- Division of Science, Yale-NUS College, Singapore 138527, Singapore
| | | | - Hayden K. Taylor
- Department of Mechanical Engineering, University of California, Berkeley, California 94720, USA
| | - Igor Cima
- DKFZ-Division of Translational Oncology/Neurooncology, German Cancer Consortium (DKTK), Heidelberg and University Hospital Essen, Essen 45147, Germany
| | | |
Collapse
|
11
|
Iliescu FS, Vrtačnik D, Neuzil P, Iliescu C. Microfluidic Technology for Clinical Applications of Exosomes. MICROMACHINES 2019; 10:mi10060392. [PMID: 31212754 PMCID: PMC6631586 DOI: 10.3390/mi10060392] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 02/07/2023]
Abstract
Exosomes, a type of nanovesicle, are distinct cellular entities specifically capable of carrying various cargos between cells. It has been hypothesized that exosomes, as an enriched source of biomolecules, may serve as biomarkers for various diseases. This review introduces general aspects of exosomes, presents the challenges in exosome research, discusses the potential of exosomes as biomarkers, and describes the contribution of microfluidic technology to enable their isolation and analysis for diagnostic and disease monitoring. Additionally, clinical applications of exosomes for diagnostic purposes are also summarized.
Collapse
Affiliation(s)
- Florina S Iliescu
- School of Applied Science, Republic Polytechnic Singapore, Singapore 738964, Singapore.
| | - Danilo Vrtačnik
- Laboratory of Microsensor Structures and Electronics, Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia.
| | - Pavel Neuzil
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
- Central European Institute of Technology, Brno University of Technology, Brno 613 00, Czech Republic.
- Department of Microelectronics, Faculty of Electrical Engineering, Brno University of Technology, Technická 3058/10, 61600 Brno, Czech Republic.
| | - Ciprian Iliescu
- Biomedical Institute for Global Health Research and Technology (BIGHEART), National University of Singapore, Singapore 117599, Singapore.
- Academy of Romanian Scientists, Bucharest 050094, Romania.
| |
Collapse
|
12
|
Dey S, Koo KM, Wang Z, Sina AAI, Wuethrich A, Trau M. An integrated multi-molecular sensor for simultaneous BRAF V600E protein and DNA single point mutation detection in circulating tumour cells. LAB ON A CHIP 2019; 19:738-748. [PMID: 30624446 DOI: 10.1039/c8lc00991k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The analysis of circulating cancer biomarkers in the form of liquid biopsies confers several potential benefits as compared to traditional surgical tissue sampling. As a common key anomaly strongly implicated across several cancer types, the BRAFV600E mutation is one of the most valuable oncogenic biomarkers available in liquid biopsies. Crucially, BRAFV600E is also an actionable mutation which could be arrested by clinically beneficial drug inhibitors. Yet, as is true for most single base disease mutations, current BRAFV600E detection in either its DNA or protein molecular state is still liable to false positive/negative outcomes, thus impacting patient treatment benefit. Here we present an integrated multi-molecular sensor (IMMS) for an entire sample-to-answer workflow from melanoma cell capture to simultaneous quantification of both intracellular BRAFV600E DNA and protein levels on a single platform. The IMMS combines (i) specific capture and release of circulating melanoma cells; (ii) electric field-induced cell lysis; (iii) simultaneous quantification of BRAFV600E DNA and protein levels. We investigated the IMMS system's analytical performance in cell capture, release and lysis, and intracellular BRAFV600E detection by ligase-mediated DNA amplification and antibody-based protein hybridization. As a proof-of-concept, we successfully demonstrated circulating BRAFV600E detection at both DNA and protein molecular levels in simulated melanoma plasma samples. With its capabilities in integrated and miniaturized analysis, the IMMS could lead the emergence of a new generation of multi-molecular lab-on-chip biosensors for enabling more accurate and extensive analysis of powerful circulating biomarkers in patient liquid biopsies.
Collapse
Affiliation(s)
- Shuvashis Dey
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, QLD 4072, Australia.
| | | | | | | | | | | |
Collapse
|
13
|
Rapid BRAF mutation tests in patients with advanced melanoma: comparison of immunohistochemistry, Droplet Digital PCR, and the Idylla Mutation Platform. Melanoma Res 2019; 28:96-104. [PMID: 29232304 PMCID: PMC5844592 DOI: 10.1097/cmr.0000000000000421] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Supplemental Digital Content is available in the text. BRAF mutational testing has become a common practice in the diagnostic process of patients with advanced melanoma. Although time-consuming, DNA sequencing techniques are the current gold standard for mutational testing. However, in certain clinical situations, a rapid test result is required. In this study, the performance of three rapid BRAF mutation tests was compared. Thirty-nine formalin-fixed paraffin-embedded melanoma tissue samples collected between 2007 and 2014 at a single center were included. These samples were analyzed by immunohistochemistry using the anti-BRAF-V600E (VE1) mouse monocolonal antibody (BRAF-VE1 IHC), a V600E-specific Droplet Digital PCR Test, and the Idylla BRAF- Mutation Test (Idylla). Results were compared with the results of conventional BRAF mutation testing, performed using high-resolution melting analysis followed by Sanger sequencing. Next-generation sequencing was performed on samples with discordant results. The Idylla test and Droplet Digital PCR Test correctly identified all mutated and wild-type samples. BRAF-VE1 IHC showed one discordant result. The Idylla test could identify BRAF-V600 mutations other than BRAF-V600E and was the fastest and least laborious test. The Idylla Mutation Test is the most suitable test for rapid BRAF testing in clinical situations on the basis of the broad coverage of treatment-responsive mutations and the fast procedure without the need to perform a DNA isolation step.
Collapse
|
14
|
Chat-Uthai N, Vejvisithsakul P, Udommethaporn S, Meesiri P, Danthanawanit C, Wongchai Y, Teerapakpinyo C, Shuangshoti S, Poungvarin N. Development of ultra-short PCR assay to reveal BRAF V600 mutation status in Thai colorectal cancer tissues. PLoS One 2018; 13:e0198795. [PMID: 29879227 PMCID: PMC5991739 DOI: 10.1371/journal.pone.0198795] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 05/25/2018] [Indexed: 02/06/2023] Open
Abstract
The protein kinase BRAF is one of the key players in regulating cellular responses to extracellular signals. Somatic mutations of the BRAF gene, causing constitutive activation of BRAF, have been found in various types of human cancers such as malignant melanoma, and colorectal cancer. BRAF V600E and V600K, most commonly observed mutations in these cancers, may predict response to targeted therapies. Many techniques suffer from a lack of diagnostic sensitivity in mutation analysis in clinical samples with a low cancer cell percentage or poor-quality fragmented DNA. Here we present allele-specific real-time PCR assay for amplifying 35- to 45-base target sequences in BRAF gene. Forward primer designed for BRAF V600E detection is capable of recognizing both types of BRAF V600E mutation, i.e. V600E1 (c.1799T>A) and V600E2 (c.1799_1800delTGinsAA), as well as complex tandem mutation caused by nucleotide changes in codons 600 and 601. We utilized this assay to analyze Thai formalin-fixed paraffin-embedded tissues. Forty-eight percent of 178 Thai colorectal cancer tissues has KRAS mutation detected by highly sensitive commercial assays. Although these DNA samples contain low overall yield of amplifiable DNA, our newly-developed assay successfully revealed BRAF V600 mutations in 6 of 93 formalin-fixed paraffin-embedded colorectal cancer tissues which KRAS mutation was not detected. Ultra-short PCR assay with forward mutation-specific primers is potentially useful to detect BRAF V600 mutations in highly fragmented DNA specimens from cancer patients.
Collapse
Affiliation(s)
- Nunthawut Chat-Uthai
- Research Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Sutthirat Udommethaporn
- Clinical Molecular Pathology Laboratory, Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Puttarakun Meesiri
- Clinical Molecular Pathology Laboratory, Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chetiya Danthanawanit
- Clinical Molecular Pathology Laboratory, Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Yannawan Wongchai
- Research Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chinachote Teerapakpinyo
- Chulalongkorn GenePRO Center, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Shanop Shuangshoti
- Chulalongkorn GenePRO Center, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Naravat Poungvarin
- Clinical Molecular Pathology Laboratory, Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
15
|
Armengot-Carbó M, Nagore E, García-Casado Z, Botella-Estrada R. The association between dermoscopic features and BRAF mutational status in cutaneous melanoma: Significance of the blue-white veil. J Am Acad Dermatol 2018; 78:920-926.e4. [DOI: 10.1016/j.jaad.2017.12.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 12/20/2017] [Accepted: 12/24/2017] [Indexed: 10/18/2022]
|
16
|
Nielsen LB, Dabrosin N, Sloth K, Bønnelykke-Behrndtz ML, Steiniche T, Lade-Keller J. Concordance in BRAF V600E status over time in malignant melanoma and corresponding metastases. Histopathology 2018; 72:814-825. [PMID: 29119584 DOI: 10.1111/his.13431] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/01/2017] [Accepted: 11/02/2017] [Indexed: 01/07/2023]
Abstract
AIMS The aims of the present study were to analyse the usability of an immunohistochemical (IHC) analysis as compared with a frequently used mutation detection analysis, and to examine the extent of intratumour and intertumour heterogeneity of BRAF V600E in primary tumours and their corresponding metastases. In the development of intertumour heterogeneity between the primary tumour and the corresponding metastases, time as a factor was also investigated. METHODS AND RESULTS In total, 227 samples from 224 melanoma patients were analysed with both the Cobas 4800 BRAF V600 Mutation Test and IHC anti-BRAF V600E staining. In 82 primary tumours and 224 corresponding metastases, the extents of intertumour and intratumour heterogeneity were investigated with IHC staining. In 15 cases, disagreement between IHC analysis and the Cobas test was seen. In all but one of the examined patients, homogeneity between the primary tumour and the corresponding metastasis was found. Except for this one case, no heterogeneity developed over longer periods. CONCLUSION IHC analysis can be safely used as a BRAF pretreatment screening tool, and no additional test is needed when staining is positive. However, if stains are negative, additional tests are essential for detection of other BRAF mutations. We suggest that using primary melanoma tissues is just as safe as using metastatic tissue for detection of BRAF V600E, as BRAF intertumour heterogeneity is extremely rare. In addition, the time between diagnosis of the primary tumour and diagnosis of the corresponding metastasis seems not to increase the risk of intertumour heterogeneity.
Collapse
Affiliation(s)
- Line B Nielsen
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Nina Dabrosin
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | - Karen Sloth
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Torben Steiniche
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| | | |
Collapse
|
17
|
Gu LQ, Gates KS, Wang MX, Li G. What is the potential of nanolock- and nanocross-nanopore technology in cancer diagnosis? Expert Rev Mol Diagn 2017; 18:113-117. [PMID: 29171309 DOI: 10.1080/14737159.2018.1410060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Li-Qun Gu
- a Department of Bioengineering and Dalton Cardiovascular Research Center , University of Missouri , Columbia , MO , USA
| | - Kent S Gates
- b Department of Chemistry and Department of Biochemistry , University of Missouri , Columbia , MO , USA
| | - Michael X Wang
- c Department of Pathology and Immunology , Washington University School of Medicine , St. Louis , MO , USA
| | - Guangfu Li
- d Department of Surgery and Ellis Fischel Cancer Center , University of Missouri , Columbia , MO , USA
| |
Collapse
|
18
|
Huebner C, Weber R, Lloydd R. A HRM assay for identification of low level BRAF V600E and V600K mutations using the CADMA principle in FFPE specimens. Pathology 2017; 49:776-783. [PMID: 29100713 DOI: 10.1016/j.pathol.2017.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 08/09/2017] [Accepted: 08/15/2017] [Indexed: 12/25/2022]
Abstract
Melanoma patients with BRAF V600E and V600K mutations show complete or partial response to vemurafenib. Detection assays often scan for the common V600E mutation rather than the rare V600K variant, although this mutation can be found in a high proportion of melanoma patients in the South Pacific. Herein, we describe a BRAF high resolution melting (HRM) assay that can differentiate low level of V600E and V600K mutations using formalin fixed, paraffin embedded (FFPE) reference standards for assay validation. The assay is based on the competitive amplification of differentially melting amplicons (CADMA principle) and has a limit of detection of 0.8% mutant allele for V600K and 1.4% mutant allele for V600E. A differentiation between the two mutations based on the melting profile is possible even at low mutation level. Sixty FFPE specimens were scanned and mutations could be scored correctly as confirmed by castPCR. In summary, the developed HRM assay is suitable for detection of V600K and V600E mutations and proved to be reliable and cost effective in a diagnostic environment.
Collapse
Affiliation(s)
- Claudia Huebner
- Department of Anatomical Pathology, Labtests Auckland Limited, New Zealand.
| | - Remeny Weber
- Department of Anatomical Pathology, Labtests Auckland Limited, New Zealand
| | - Richard Lloydd
- Department of Anatomical Pathology, Labtests Auckland Limited, New Zealand
| |
Collapse
|
19
|
Grzywa TM, Paskal W, Włodarski PK. Intratumor and Intertumor Heterogeneity in Melanoma. Transl Oncol 2017; 10:956-975. [PMID: 29078205 PMCID: PMC5671412 DOI: 10.1016/j.tranon.2017.09.007] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/14/2017] [Accepted: 09/17/2017] [Indexed: 12/25/2022] Open
Abstract
Melanoma is a cancer that exhibits one of the most aggressive and heterogeneous features. The incidence rate escalates. A high number of clones harboring various mutations contribute to an exceptional level of intratumor heterogeneity of melanoma. It also refers to metastases which may originate from different subclones of primary lesion. Such component of the neoplasm biology is termed intertumor and intratumor heterogeneity. These levels of tumor heterogeneity hinder accurate diagnosis and effective treatment. The increasing number of research on the topic reflects the need for understanding limitation or failure of contemporary therapies. Majority of analyses concentrate on mutations in cancer-related genes. Novel high-throughput techniques reveal even higher degree of variations within a lesion. Consolidation of theories and researches indicates new routes for treatment options such as targets for immunotherapy. The demand for personalized approach in melanoma treatment requires extensive knowledge on intratumor and intertumor heterogeneity on the level of genome, transcriptome/proteome, and epigenome. Thus, achievements in exploration of melanoma variety are described in details. Particularly, the issue of tumor heterogeneity or homogeneity given BRAF mutations is discussed.
Collapse
Affiliation(s)
- Tomasz M Grzywa
- The Department of Histology and Embryology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-091 Warsaw, Poland
| | - Wiktor Paskal
- The Department of Histology and Embryology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-091 Warsaw, Poland
| | - Paweł K Włodarski
- The Department of Histology and Embryology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-091 Warsaw, Poland.
| |
Collapse
|
20
|
Abstract
The rising demand to use genetic data for research goes hand in hand with an increased awareness of privacy issues related to its use. Using human genetic data in a legally compliant way requires an examination of the legal basis as well as an assessment of potential disclosure risks. Focusing on the relevant legal framework in the European Union, we discuss open questions and uncertainties around the handling of genetic data in research, which can result in the introduction of unnecessary hurdles for data sharing. First, we discuss defining features and relative disclosure risks of some DNA-related biomarkers, distinguishing between the risk for disclosure of (1) the identity of an individual, (2) information about an individual's health and behavior, including previously unknown phenotypes, and (3) information about an individual's blood relatives. Second, we discuss the European legal framework applicable to the use of DNA-related biomarkers in research, the implications of including both inherited and acquired traits in the legal definition, as well as the issue of “genetic exceptionalism”—the notion that genetic information has inherent characteristics that require different considerations than other health and medical information. Finally, by mapping the legal to specific technical definitions, we draw some initial conclusions concerning how sensitive different types of “genetic data” may actually be. We argue that whole genome sequences may justifiably be considered “exceptional” and require special protection, whereas other genetic data that do not fulfill the same criteria should be treated in a similar manner to other clinical data. This kind of differentiation should be reflected by the law and/or other governance frameworks as well as agreed Codes of Conduct when using the term “genetic data.”
Collapse
Affiliation(s)
- Murat Sariyar
- 1 Institute of Medical Informatics, Bern University of Applied Sciences , Bienne, Switzerland
| | | | - Irene Schlünder
- 3 TMF-Technologie- und Methodenplattform e.V. , Berlin, Germany .,4 BBMRI-ERIC , Graz, Austria
| |
Collapse
|
21
|
Addressing the challenges of applying precision oncology. NPJ Precis Oncol 2017; 1:28. [PMID: 29872710 PMCID: PMC5871855 DOI: 10.1038/s41698-017-0032-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 02/07/2023] Open
Abstract
Precision oncology is described as the matching of the most accurate and effective treatments with the individual cancer patient. Identification of important gene mutations, such as BRCA1/2 that drive carcinogenesis, helped pave the way for precision diagnosis in cancer. Oncoproteins and their signaling pathways have been extensively studied, leading to the development of target-based precision therapies against several types of cancers. Although many challenges exist that could hinder the success of precision oncology, cutting-edge tools for precision diagnosis and precision therapy will assist in overcoming many of these difficulties. Based on the continued rapid progression of genomic analysis, drug development, and clinical trial design, precision oncology will ultimately become the standard of care in cancer therapeutics.
Collapse
|
22
|
Adler NR, Wolfe R, Kelly JW, Haydon A, McArthur GA, McLean CA, Mar VJ. Tumour mutation status and sites of metastasis in patients with cutaneous melanoma. Br J Cancer 2017; 117:1026-1035. [PMID: 28787433 PMCID: PMC5625668 DOI: 10.1038/bjc.2017.254] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/13/2017] [Accepted: 07/07/2017] [Indexed: 11/23/2022] Open
Abstract
Background: Cutaneous melanoma can metastasise haematogenously and/or lymphogenously to form satellite/in-transit, lymph node or distant metastasis. This study aimed to determine if BRAF and NRAS mutant and wild-type tumours differ in their site of first tumour metastasis and anatomical metastatic pathway. Methods: Prospective cohort of patients with a histologically confirmed primary cutaneous melanoma at three tertiary referral centres in Melbourne, Australia from 2010 to 2015. Multinomial regression determined clinical, histological and mutational factors associated with the site of first metastasis and metastatic pathway. Results: Of 1048 patients, 306 (29%) developed metastasis over a median 4.7 year follow-up period. 73 (24%), 192 (63%) and 41 (13%) developed distant, regional lymph node and satellite/in-transit metastasis as the first site of metastasis, respectively. BRAF mutation was associated with lymph node metastasis (adjusted RRR 2.46 95% CI 1.07–5.69, P=0.04) and sentinel lymph node positivity (adjusted odds ratio [aOR] OR 1.55, 95% CI 1.14–2.10, P=0.005). BRAF mutation and NRAS mutation were associated with increased odds of developing liver metastasis (aOR 3.09, 95% CI 1.49–6.42, P=0.003; aOR 3.17, 95% CI 1.32–7.58, P=0.01) and central nervous system (CNS) metastasis (aOR 4.65, 95% CI 2.23–9.69, P<0.001; aOR 4.03, 95% CI 1.72–9.44, P=0.001). NRAS mutation was associated with lung metastasis (aOR 2.44, 95% CI 1.21–4.93, P=0.01). Conclusions: BRAF mutation was found to be associated with lymph node metastasis as first metastasis and sentinel lymph node positivity. BRAF and NRAS mutations were associated with CNS and liver metastasis and NRAS mutation with lung metastasis. If these findings are validated in additional prospective studies, a role for heightened visceral organ surveillance may be warranted in patients with tumours harbouring these somatic mutations.
Collapse
Affiliation(s)
- Nikki R Adler
- Victorian Melanoma Service, Alfred Hospital, Melbourne, Victoria 3004, Australia.,School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria 3004, Australia
| | - Rory Wolfe
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria 3004, Australia
| | - John W Kelly
- Victorian Melanoma Service, Alfred Hospital, Melbourne, Victoria 3004, Australia
| | - Andrew Haydon
- Victorian Melanoma Service, Alfred Hospital, Melbourne, Victoria 3004, Australia.,Department of Medical Oncology, Alfred Hospital, Melbourne, Victoria 3004, Australia
| | - Grant A McArthur
- Divisions of Research and Cancer Medicine, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Victoria 3000, Australia
| | - Catriona A McLean
- Victorian Melanoma Service, Alfred Hospital, Melbourne, Victoria 3004, Australia.,Department of Anatomical Pathology, Alfred Hospital, Melbourne, Victoria 3004, Australia
| | - Victoria J Mar
- Victorian Melanoma Service, Alfred Hospital, Melbourne, Victoria 3004, Australia.,School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria 3004, Australia.,Skin and Cancer Foundation, Carlton, Victoria 3053, Australia
| |
Collapse
|
23
|
Wang Y, Tian K, Shi R, Gu A, Pennella M, Alberts L, Gates KS, Li G, Fan H, Wang MX, Gu LQ. Nanolock-Nanopore Facilitated Digital Diagnostics of Cancer Driver Mutation in Tumor Tissue. ACS Sens 2017; 2:975-981. [PMID: 28750524 DOI: 10.1021/acssensors.7b00235] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cancer driver mutations are clinically significant biomarkers. In precision medicine, accurate detection of these oncogenic changes in patients would enable early diagnostics of cancer, individually tailored targeted therapy, and precise monitoring of treatment response. Here we investigated a novel nanolock-nanopore method for single-molecule detection of a serine/threonine protein kinase gene BRAF V600E mutation in tumor tissues of thyroid cancer patients. The method lies in a noncovalent, mutation sequence-specific nanolock. We found that the nanolock formed on the mutant allele/probe duplex can separate the duplex dehybridization procedure into two sequential steps in the nanopore. Remarkably, this stepwise unzipping kinetics can produce a unique nanopore electric marker, with which a single DNA molecule of the cancer mutant allele can be unmistakably identified in various backgrounds of the normal wild-type allele. The single-molecule sensitivity for mutant allele enables both binary diagnostics and quantitative analysis of mutation occurrence. In the current configuration, the method can detect the BRAF V600E mutant DNA lower than 1% in the tumor tissues. The nanolock-nanopore method can be adapted to detect a broad spectrum of both transversion and transition DNA mutations, with applications from diagnostics to targeted therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hongxin Fan
- Department
of Pathology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, United States
| | | | | |
Collapse
|
24
|
Zippel D, Markel G, Shapira-Frommer R, Ben-Betzalel G, Goitein D, Ben-Ami E, Nissan A, Schachter J, Schneebaum S. Perioperative BRAF inhibitors in locally advanced stage III melanoma. J Surg Oncol 2017. [PMID: 28650570 DOI: 10.1002/jso.24744] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND AND OBJECTIVES Stage III malignant melanoma is a heterogeneous disease where those cases deemed marginally resectable or irresecatble are frequently incurable by surgery alone. Targeted therapy takes advantage of the high incidence of BRAF mutations in melanomas, most notably the V600E mutation. These agents have rarely been used in a neoadjuvant setting prior to surgery. METHODS Thirteen consecutive patients with confirmed BRAFV600E regionally advanced melanoma deemed marginally resectable or irrresectable, were treated with BRAF inhibiting agents, prior to undergoing surgery. The primary outcome measures were a successful resection and pathological response. Disease-free survival was a secondary outcome measure. RESULTS Overall, 12/13 patients showed a marked clinical responsiveness to medical treatment, enabling a macroscopically successful resection in all cases. Four patients had a complete pathological response with no viable tumor evident in the resected specimens and eight patients showed evidence of minimally residual tumor with extensive tumoral necrosis and fibrosis. One patient progressed and died before surgery. At a median follow up of 20 months, 10 patients remain free of disease. CONCLUSIONS Perioperative treatment with BRAF inhibiting agents in BRAFV600E mutated Stage III melanoma patients facilitates surgical resection and affords satisfactory disease free survival.
Collapse
Affiliation(s)
- Douglas Zippel
- Department of Surgery C, Chaim Sheba Medical Center, Ramat Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gal Markel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Oncology, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Roni Shapira-Frommer
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Oncology, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Guy Ben-Betzalel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Oncology, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - David Goitein
- Department of Surgery C, Chaim Sheba Medical Center, Ramat Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eytan Ben-Ami
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Oncology, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Aviram Nissan
- Department of Surgery C, Chaim Sheba Medical Center, Ramat Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jacob Schachter
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Oncology, Chaim Sheba Medical Center, Ramat Gan, Israel
| | - Schlomo Schneebaum
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| |
Collapse
|
25
|
Wang H, Kang X, Zhou S, Chen R, Liu Z, Han M, Chen C, Gong Y. Rapid and reliable screening of HLA-B*15:02 in four Chinese populations using single-tube multiplex real-time PCR assay. Pharmacogenomics 2017; 18:853-963. [PMID: 28594280 DOI: 10.2217/pgs-2017-0041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM HLA-B*15:02 screening should be performed to prevent antiepileptic drug induced severe cutaneous adverse reactions in populations of Asian origin. This study aimed to develop fast and reliable HLA-B*15:02 genotyping method and to investigate the distribution of HLA-B*15:02 in different Chinese ethnicities. MATERIALS & METHODS A single-tube multiplex real-time PCR assay for HLA-B*15:02 genotyping was established by combining allele-specific primers with TaqMan probes. RESULTS The HLA-B*15:02 genotyping results in Bouyei (n = 100) by the established assay were completely consistent with the corresponding PCR sequence-based typing findings. The percentage of HLA-B*15:02 carrier in Bouyei (19%; n = 100) was significantly higher than those of Han (1%; n = 100), Tibetan (0%; n = 100) and Uyghur (0%; n = 50) populations (p < 0.001). CONCLUSION The novel method provides rapid, reliable and cost-effective detection of HLA-B*15:02 allele in clinical applications.
Collapse
Affiliation(s)
- Huijuan Wang
- The National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, China.,Key Laboratory of Synthetic & Natural Function Molecular Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, China
| | - Xing Kang
- The National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, China
| | - Shaohe Zhou
- The National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, China
| | - Rong Chen
- The National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, China
| | - Zhengbin Liu
- The National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, China
| | - Min Han
- The National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, China
| | - Chao Chen
- The National Engineering Research Center for Miniaturized Detection Systems, College of Life Science, Northwest University, Xi'an, China
| | - Yongkuan Gong
- Key Laboratory of Synthetic & Natural Function Molecular Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, China
| |
Collapse
|
26
|
Mungan S, Ersoz S, Saygin I, Sagnak Z, Cobanoglu U. Nuclear morphometric findings in undetermined cytology: A possible clue for prediction of BRAF mutation in papillary thyroid carcinomas. Endocr Res 2017; 42:138-144. [PMID: 27911099 DOI: 10.1080/07435800.2016.1255895] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE To investigate the possible relationship between the nuclear morphometric characteristics (nuclear perimeter, roundness, nuclear area, and nuclear shape) and BRAF mutation status in papillary thyroid carcinoma cases with a prior diagnosis of undetermined cytology. MATERIALS AND METHODS Total thyroidectomy specimens obtained from 48 patients with papillary thyroid carcinoma with a prior diagnosis of undetermined cytology were included. Morphometric analysis under light microscopy included measurements of the perimeter, shape factor, nuclear area, and roundness of thyrocyte nuclei from the cytological smear preparations. Mutational analysis, including immunohistochemistry and polymerase chain reaction, was performed in formalin fixed paraffin embedded tissue blocks. RESULTS BRAF V600E mutation was detected in 7 of 48 cases (14.5%). The nuclear perimeter and nuclear area in mutated cases were significantly higher than the wild type (p = 0.005). Shape factor (p = 0.681) and roundness (p = 0.752) values did not significantly differ between the wild-type and mutant groups. No significant relationship was evident between BRAF expression and BRAF point mutation. CONCLUSION In cases with positivity for BRAF mutation, the nuclear perimeter and nuclear area were significantly increased. These findings suggest that morphometric variables are predictive markers for papillary thyroid carcinoma cases with positivity for BRAF mutation. However, further trials on larger series are warranted to understand the significance and predictive value of nuclear morphometric analysis in these circumstances.
Collapse
Affiliation(s)
- Sevdegul Mungan
- a Department of Pathology, Faculty of Medicine , Karadeniz Technical University , Trabzon , Turkey
| | - Safak Ersoz
- a Department of Pathology, Faculty of Medicine , Karadeniz Technical University , Trabzon , Turkey
| | - Ismail Saygin
- a Department of Pathology, Faculty of Medicine , Karadeniz Technical University , Trabzon , Turkey
| | - Zeynep Sagnak
- a Department of Pathology, Faculty of Medicine , Karadeniz Technical University , Trabzon , Turkey
| | - Umit Cobanoglu
- a Department of Pathology, Faculty of Medicine , Karadeniz Technical University , Trabzon , Turkey
| |
Collapse
|
27
|
O'Brien O, Lyons T, Murphy S, Feeley L, Power D, Heffron CCBB. BRAF V600 mutation detection in melanoma: a comparison of two laboratory testing methods. J Clin Pathol 2017; 70:935-940. [DOI: 10.1136/jclinpath-2017-204367] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/24/2017] [Indexed: 12/19/2022]
Abstract
AimsThe assessment of B-raf proto-oncogene, serine/threonine kinase (BRAF) gene status is now standard practice in patients diagnosed with metastatic melanoma with its presence predicting a clinical response to treatment with BRAF inhibitors. The gold standard in determining BRAF status is currently by DNA-based methods. More recently, a BRAF V600E antibody has been developed. We aim to investigate whether immunohistochemical detection of BRAF mutation is a suitable alternative to molecular testing by polymerase chain reaction (PCR).MethodsWe assessed the incidence of BRAF mutation in our cohort of 132 patients, as determined by PCR, as well as examining clinical and histopathological features. We investigated the sensitivity and specificity of the anti-BRAF V600E VE1 clone antibody in detecting the presence of the BRAF V600E mutation in 122 cases deemed suitable for testing.ResultsThe incidence of BRAF mutation in our cohort was 28.8% (38/132). Patients with the BRAF mutation were found to be significantly younger at age of diagnosis. BRAF-mutated melanomas tended to be thinner and more mitotically active. The antibody showed a sensitivity of 86.1% with a specificity of 96.9%. The positive predictive value was 96.9%; the negative predictive value was 94.4%. The concordance rate between PCR and immunohistochemical BRAF status was 95.1% (116/122).ConclusionsThe rate of BRAF mutation in our cohort (28.8%) was lower than international published rates of 40%–60%. This may reflect ethnic or geographic differences within population cohorts. The high concordance rate of PCR and immunohistochemical methods in determining BRAF status suggests that immunohistochemistry is potentially a viable, cost-effective alternative to PCR testing and suitable as a screening test for the BRAF mutation.
Collapse
|
28
|
Zhang T, Suryawanshi YR, Woyczesczyk HM, Essani K. Targeting Melanoma with Cancer-Killing Viruses. Open Virol J 2017; 11:28-47. [PMID: 28567163 PMCID: PMC5420172 DOI: 10.2174/1874357901711010028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/05/2017] [Accepted: 01/17/2017] [Indexed: 12/20/2022] Open
Abstract
Melanoma is the deadliest skin cancer with ever-increasing incidence. Despite the development in diagnostics and therapies, metastatic melanoma is still associated with significant morbidity and mortality. Oncolytic viruses (OVs) represent a class of novel therapeutic agents for cancer by possessing two closely related properties for tumor reduction: virus-induced lysis of tumor cells and induction of host anti-tumor immune responses. A variety of viruses, either in "natural" or in genetically modified forms, have exhibited a remarkable therapeutic efficacy in regressing melanoma in experimental and/or clinical studies. This review provides a comprehensive summary of the molecular and cellular mechanisms of action of these viruses, which involve manipulating and targeting the abnormalities of melanoma, and can be categorized as enhancing viral tropism, targeting the tumor microenvironment and increasing the innate and adaptive antitumor responses. Additionally, this review describes the "biomarkers" and deregulated pathways of melanoma that are responsible for melanoma initiation, progression and metastasis. Advances in understanding these abnormalities of melanoma have resulted in effective targeted and immuno-therapies, and could potentially be applied for engineering OVs with enhanced oncolytic activity in future.
Collapse
Affiliation(s)
- Tiantian Zhang
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, U.S.A
| | - Yogesh R. Suryawanshi
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, U.S.A
| | - Helene M. Woyczesczyk
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, U.S.A
| | - Karim Essani
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, U.S.A
| |
Collapse
|
29
|
Acosta AM, Kadkol SS. Mitogen-Activated Protein Kinase Signaling Pathway in Cutaneous Melanoma: An Updated Review. Arch Pathol Lab Med 2017; 140:1290-1296. [PMID: 27788045 DOI: 10.5858/arpa.2015-0475-rs] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The mitogen-activated protein kinase (MAPK) signaling pathway is a cascade of protein kinases that act in a sequential and predominantly linear fashion, albeit displaying some cross talk with other signaling cascades. Mutations in proteins integral to the MAPK signaling pathway are present in more than 50% of cutaneous melanomas. The most frequently mutated protein is v-raf murine sarcoma viral oncogene homolog B (BRAF), followed by neuroblastoma Ras viral oncogene homolog (NRAS). Recently, the development of targeted drugs for the treatment of BRAF-mutant melanoma has led to the widespread implementation of molecular assays for the detection of specific BRAF mutations. There have been some attempts to standardize testing of BRAF mutations, but this has not been achieved so far. Here we provide an updated review on the role of the MAPK signaling pathway in the pathogenesis of cutaneous melanoma, focusing on several different BRAF mutations and their diagnostic and therapeutic implications.
Collapse
Affiliation(s)
- Andres Martin Acosta
- From the Department of Pathology, University of Illinois at Chicago Hospital and Health Sciences System, Chicago
| | | |
Collapse
|
30
|
Comparison of Five Different Assays for the Detection of BRAF Mutations in Formalin-Fixed Paraffin Embedded Tissues of Patients with Metastatic Melanoma. Mol Diagn Ther 2017; 21:209-216. [DOI: 10.1007/s40291-017-0258-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
31
|
Sener E, Yildirim P, Tan A, Gokoz O, Tezel GG. Investigation of BRAF mutation analysis with different technical platforms in metastatic melanoma. Pathol Res Pract 2017; 213:522-530. [PMID: 28216139 DOI: 10.1016/j.prp.2017.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 01/12/2017] [Indexed: 01/29/2023]
Abstract
In metastatic melanoma, the detection of somatic mutations in the BRAF gene is crucial regarding patient selection for targeted therapy. Several screening methods have been developed to identify BRAF gene mutations. In this study, our objective was to evaluate the detection of the BRAF V600 mutations using two molecular methods, real-time polymerase chain (real-time PCR) assay and pyrosequencing, and immunohistochemistry (IHC), and to compare the results of these different technical platforms. This study included 98 patients diagnosed with metastatic melanoma at the Hacettepe University, Department of Pathology between 2002 and 2014. BRAF mutation analysis was tested with real-time PCR, pyrosequencing and IHC methods. The results of all three tests were compared with a reference test, and the sensitivity, specificity rates and kappa coefficient values were analysed for each test. We successfully analysed BRAF mutations using all three methods in 92 patients. According to our findings, the pyrosequencing method had the highest kappa value regarding the determination of BRAF V600 mutations. The kappa values were at almost perfect agreement levels in pyrosequencing and real-time PCR assay (kappa coefficient for pyrosequencing=0.895 (95% CI: 0.795-0.995); kappa coefficient for real-time PCR=0.871 (95% CI: 0.761-0.981). The kappa value was at a substantial agreement level in the IHC analysis (kappa coefficient=0.776 (95% CI: 0.629-0.923). According to our results, we found that real-time PCR and pyrosequencing methods were equally excellent in determination of BRAF V600 mutations. The IHC method, which is commonly used in routine pathology practice, can also be safely used as a screening test for determination of BRAF V600 mutations.
Collapse
Affiliation(s)
- Ebru Sener
- Erzurum Regional Training and Research Hospital, Department of Pathology, Erzurum, Turkey
| | - Pinar Yildirim
- Yildirim Beyazit University Yenimahalle Training and Research Hospital, Department of Pathology, Ankara, Turkey
| | - Ayca Tan
- Celal Bayar University, Faculty of Medicine, Department of Pathology, Manisa, Turkey
| | - Ozay Gokoz
- Hacettepe University, Faculty of Medicine, Department of Pathology, Ankara, Turkey
| | - Gaye Guler Tezel
- Hacettepe University, Faculty of Medicine, Department of Pathology, Ankara, Turkey.
| |
Collapse
|
32
|
Orue A, Rieber M. Optimized Multiplex Detection of 7 KRAS Mutations by Taqman Allele-Specific qPCR. PLoS One 2016; 11:e0163070. [PMID: 27632281 PMCID: PMC5025196 DOI: 10.1371/journal.pone.0163070] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/01/2016] [Indexed: 12/23/2022] Open
Abstract
UNLABELLED Establishing the KRAS mutational status of tumor samples is essential to manage patients with colorectal or lung cancer, since these mutations preclude treatment with monoclonal anti-epidermal growth factor receptor (EGFR) antibodies. We report an inexpensive, rapid multiplex allele-specific qPCR method detecting the 7 most clinically relevant KRAS somatic mutations with concomitant amplification of non-mutated KRAS in tumor cells and tissues from CRC patients. Positive samples evidenced in the multiplex assay were further subjected to individual allele-specific analysis, to define the specific mutation. Reference human cancer DNA harbouring either G12A, G12C, G12D, G12R, G12S, G12V and G13D confirmed assay specificity with ≤1% sensitivity of mutant alleles. KRAS multiplex mutation analysis usefulness was also demonstrated with formalin-fixed paraffin embedded (FFPE) from CRC biopsies. CONCLUSION Co-amplification of non-mutated DNA avoided false negatives from degraded samples. Moreover, this cost effective assay is compatible with mutation detection by DNA sequencing in FFPE tissues, but with a greater sensitivity when mutant DNA concentrations are limiting.
Collapse
Affiliation(s)
- Andrea Orue
- IVIC, Tumor Cell Biology Laboratory, Apartado 21827, Caracas, 1020A, Venezuela
| | - Manuel Rieber
- IVIC, Tumor Cell Biology Laboratory, Apartado 21827, Caracas, 1020A, Venezuela
- * E-mail:
| |
Collapse
|
33
|
Huber F, Lang HP, Glatz K, Rimoldi D, Meyer E, Gerber C. Fast Diagnostics of BRAF Mutations in Biopsies from Malignant Melanoma. NANO LETTERS 2016; 16:5373-5377. [PMID: 27490749 DOI: 10.1021/acs.nanolett.6b01513] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
According to the American skin cancer foundation, there are more new cases of skin cancer than the combined incidence of cancers of the breast, prostate, lung, and colon each year, and malignant melanoma represents its deadliest form. About 50% of all cases are characterized by a particular mutation BRAF(V600E) in the BRAF (Rapid Acceleration of Fibrosarcoma gene B) gene. Recently developed highly specific drugs are able to fight BRAF(V600E) mutated tumors but require diagnostic tools for fast and reliable mutation detection to warrant treatment efficiency. We completed a preliminary clinical trial applying cantilever array sensors to demonstrate identification of a BRAF(V600E) single-point mutation using total RNA obtained from biopsies of metastatic melanoma of diverse sources (surgical material either frozen or fixated with formalin and embedded in paraffin). The method is faster than the standard Sanger or pyrosequencing methods and comparably sensitive as next-generation sequencing. Processing time from biopsy to diagnosis is below 1 day and does not require PCR amplification, sequencing, and labels.
Collapse
Affiliation(s)
- François Huber
- Swiss Nanoscience Institute, Department of Physics, University of Basel , CH-4056 Basel, Switzerland
| | - Hans Peter Lang
- Swiss Nanoscience Institute, Department of Physics, University of Basel , CH-4056 Basel, Switzerland
| | - Katharina Glatz
- Institute of Pathology, University Hospital Basel , CH-4031 Basel, Switzerland
| | - Donata Rimoldi
- Ludwig Center for Cancer Research, University of Lausanne , CH-1066 Epalinges, Switzerland
| | - Ernst Meyer
- Swiss Nanoscience Institute, Department of Physics, University of Basel , CH-4056 Basel, Switzerland
| | - Christoph Gerber
- Swiss Nanoscience Institute, Department of Physics, University of Basel , CH-4056 Basel, Switzerland
| |
Collapse
|
34
|
Molecular Diagnostics for Precision Medicine in Colorectal Cancer: Current Status and Future Perspective. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9850690. [PMID: 27699178 PMCID: PMC5028795 DOI: 10.1155/2016/9850690] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/10/2016] [Indexed: 02/08/2023]
Abstract
Precision medicine, a concept that has recently emerged and has been widely discussed, emphasizes tailoring medical care to individuals largely based on information acquired from molecular diagnostic testing. As a vital aspect of precision cancer medicine, targeted therapy has been proven to be efficacious and less toxic for cancer treatment. Colorectal cancer (CRC) is one of the most common cancers and among the leading causes for cancer related deaths in the United States and worldwide. By far, CRC has been one of the most successful examples in the field of precision cancer medicine, applying molecular tests to guide targeted therapy. In this review, we summarize the current guidelines for anti-EGFR therapy, revisit the roles of pathologists in an era of precision cancer medicine, demonstrate the transition from traditional “one test-one drug” assays to multiplex assays, especially by using next-generation sequencing platforms in the clinical diagnostic laboratories, and discuss the future perspectives of tumor heterogeneity associated with anti-EGFR resistance and immune checkpoint blockage therapy in CRC.
Collapse
|
35
|
Payne DA, Baluchova K, Peoc'h KH, van Schaik RHN, Chan KCA, Maekawa M, Mamotte C, Russomando G, Rousseau F, Ahmad-Nejad P. Pre-examination factors affecting molecular diagnostic test results and interpretation: A case-based approach. Clin Chim Acta 2016; 467:59-69. [PMID: 27321365 DOI: 10.1016/j.cca.2016.06.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 06/13/2016] [Accepted: 06/15/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Multiple organizations produce guidance documents that provide opportunities to harmonize quality practices for diagnostic testing. The International Organization for Standardization ISO 15189 standard addresses requirements for quality in management and technical aspects of the clinical laboratory. One technical aspect addresses the complexities of the pre-examination phase prior to diagnostic testing. METHODS The Committee for Molecular Diagnostics of the International Federation for Clinical Chemistry and Laboratory Medicine (also known as, IFCC C-MD) conducted a survey of international molecular laboratories and determined ISO 15189 to be the most referenced guidance document. In this review, the IFCC C-MD provides case-based examples illustrating the value of select pre-examination processes as these processes relate to molecular diagnostic testing. Case-based examples in infectious disease, oncology, inherited disease and pharmacogenomics address the utility of: 1) providing information to patients and users, 2) designing requisition forms, 3) obtaining informed consent and 4) maintaining sample integrity prior to testing. CONCLUSIONS The pre-examination phase requires extensive and consistent communication between the laboratory, the healthcare provider and the end user. The clinical vignettes presented in this paper illustrate the value of applying select ISO 15189 recommendations for general laboratory to the more specialized area of Molecular Diagnostics.
Collapse
Affiliation(s)
- Deborah A Payne
- Molecular Services, APP-UniPath LLC, American Pathology Partners-UniPath, 6116 East Warren Ave., Denver, CO, USA.
| | - Katarina Baluchova
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Biomedical Center Martin, Division of Oncology, Mala Hora 4C, 036 01 Martin, Slovakia; Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Department of Molecular Biology, Mala Hora 4C, 036 01 Martin, Slovakia
| | - Katell H Peoc'h
- AP-HP Hôpital Beaujon, Service de Biochimie clinique, Clichy F-92118, France; Université Paris Diderot, UFR de Médecine site Bichat, INSERM UMRs-1149, Paris, France
| | - Ron H N van Schaik
- Department Clinical Chemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - K C Allen Chan
- Department of Chemical Pathology, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong
| | - Masato Maekawa
- Department of Laboratory Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Cyril Mamotte
- School of Biomedical Sciences and CHIRI Biosciences, Curtin University, Perth, Australia
| | - Graciela Russomando
- Molecular Biology and Biotechnology Department, Instituto de Investigaciones en Ciencias de la Salud, Universidad Nacional de Asunción, Paraguay
| | - François Rousseau
- Department of Medical Biology, Direction médicale des services hospitaliers, CHU de Québec - Université Laval, Québec City, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Faculty of Medicine, Université Laval, Québec City, Canada
| | - Parviz Ahmad-Nejad
- Institute for Medical Laboratory Diagnostics, Centre for Clinical and Translational Research (CCTR), HELIOS Hospital, Heusnerstraße 40, 42283 Wuppertal, Witten/Herdecke University, Germany
| |
Collapse
|
36
|
Zheng G, Tsai H, Tseng LH, Illei P, Gocke CD, Eshleman JR, Netto G, Lin MT. Test Feasibility of Next-Generation Sequencing Assays in Clinical Mutation Detection of Small Biopsy and Fine Needle Aspiration Specimens. Am J Clin Pathol 2016; 145:696-702. [PMID: 27247373 DOI: 10.1093/ajcp/aqw043] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES To evaluate preanalytic factors contributing to failure of next-generation sequencing (NGS) assays. METHODS AmpliSeq Cancer Hotspot Panel was conducted in 1,121 of 1,152 formalin-fixed paraffin-embedded tissues submitted to a clinical laboratory, including 493 small biopsy or fine needle aspiration (FNA) specimens (44%) and 25 metastatic bone specimens (2.2%). RESULTS Single nucleotide mutations and/or insertion/deletion mutations were detected in 702 specimens. Thirty-eight specimens (3.4%) were reported as "no results" due to NGS assay failure. Higher failure rates were observed in specimens submitted for lung cancer panel and melanoma panel (3.1% and 3.7% vs 1.0% colorectal cancer panel), metastatic bone specimens (36% vs 2.6% nonbone specimens), referred specimens (5.0% vs 1.8% in-house specimens), and small biopsy and FNA specimens (5.8% and 3.1% vs 0.7% resection/excision specimens). Test feasibility was higher in in-house specimens than referred specimens (99.1% vs 96.9% in resection specimens, 94.4% vs 87.3% in small biopsy specimens, and 94.3% vs 58.8% in FNA specimens). CONCLUSIONS NGS assays demonstrated clinical utility in solid tumor specimens, including those taken by biopsy or FNA. Preanalytic factors identified by this study that may contribute to NGS assay failure highlight the need for pathologists to revisit tissue processing protocols in order to better optimize cancer mutational profiling.
Collapse
Affiliation(s)
| | | | - Li-Hui Tseng
- From the Departments of Pathology and Department of Medical Genetics, National Taiwan University Hospital, Taipei
| | | | - Christopher D Gocke
- From the Departments of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - James R Eshleman
- From the Departments of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | | |
Collapse
|
37
|
Roscoe DM, Hu YF, Philip R. Companion diagnostics: a regulatory perspective from the last 5 years of molecular companion diagnostic approvals. Expert Rev Mol Diagn 2016; 15:869-80. [PMID: 26109316 DOI: 10.1586/14737159.2015.1045490] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Companion diagnostics are essential for the safe and effective use of the corresponding therapeutic products. The US FDA has approved a number of companion diagnostics used to select cancer patients for treatment with contemporaneously approved novel therapeutics. The processes of co-development and co-approval of a therapeutic product and its companion diagnostic have been a learning experience that continues to evolve. Using several companion diagnostics as examples, this article describes the challenges associated with the scientific, clinical and regulatory hurdles faced by FDA and industry alike. Taken together, this discussion is intended to assist manufacturers toward a successful companion diagnostics development plan.
Collapse
Affiliation(s)
- Donna M Roscoe
- Division of Molecular Genetics and Pathology, Office of In Vitro Diagnostics and Radiological Health (OIR), CDRH, US FDA, 10903 New Hampshire Ave, Silver Spring, MD 20993-0002, USA
| | | | | |
Collapse
|
38
|
Kong BY, Carlino MS, Menzies AM. Biology and treatment of BRAF mutant metastatic melanoma. Melanoma Manag 2016; 3:33-45. [PMID: 30190871 DOI: 10.2217/mmt.15.38] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 10/12/2015] [Indexed: 12/31/2022] Open
Abstract
BRAF inhibitors were among the first systemic therapies to show clinical benefit in metastatic melanoma. Here, we review the spectrum of BRAF mutations in melanoma, their role in oncogenesis, clinicopathological associations and response to treatment. The differing biology and clinical features of V600E- and V600K-mutated melanoma are outlined. The molecular changes associated with BRAF fusion genes and their response to targeted therapies, as well as the role of immunotherapy in treatment sequencing with targeted therapies are discussed.
Collapse
Affiliation(s)
- Benjamin Y Kong
- Crown Princess Mary Cancer Care Centre, Westmead, Sydney, NSW 2145, Australia.,Crown Princess Mary Cancer Care Centre, Westmead, Sydney, NSW 2145, Australia
| | - Matteo S Carlino
- Crown Princess Mary Cancer Care Centre, Westmead, Sydney, NSW 2145, Australia.,Melanoma Institute Australia, North Sydney, NSW 2060, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia.,Crown Princess Mary Cancer Care Centre, Westmead, Sydney, NSW 2145, Australia.,Melanoma Institute Australia, North Sydney, NSW 2060, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| | - Alexander M Menzies
- Melanoma Institute Australia, North Sydney, NSW 2060, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia.,Royal North Shore Hospital, Sydney, NSW 2065, Australia.,Melanoma Institute Australia, North Sydney, NSW 2060, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia.,Royal North Shore Hospital, Sydney, NSW 2065, Australia
| |
Collapse
|
39
|
Akabane H, Sullivan RJ. The Future of Molecular Analysis in Melanoma: Diagnostics to Direct Molecularly Targeted Therapy. Am J Clin Dermatol 2016; 17:1-10. [PMID: 26518880 DOI: 10.1007/s40257-015-0159-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Melanoma is a malignancy of pigment-producing cells that is driven by a variety of genetic mutations and aberrations. In most cases, this leads to upregulation of the mitogen-activated protein kinase (MAPK) pathway through activating mutations of upstream mediators of the pathway including BRAF and NRAS. With the advent of effective MAPK pathway inhibitors, including the US FDA-approved BRAF inhibitors vemurafenib and dabrafenib and MEK inhibitor trametinib, molecular analysis has become an integral part of the care of patients with metastatic melanoma. In this article, the key molecular targets and strategies to inhibit these targets therapeutically are presented, and the techniques of identifying these targets, in both tissue and blood, are discussed.
Collapse
Affiliation(s)
- Hugo Akabane
- Department of Medicine, Metrowest Medical Center, Framingham, MA, USA
| | - Ryan J Sullivan
- Center for Melanoma, Massachusetts General Hospital Cancer Center, 55 Fruit Street, Boston, MA, 02114, USA.
| |
Collapse
|
40
|
|
41
|
Bidshahri R, Attali D, Fakhfakh K, McNeil K, Karsan A, Won JR, Wolber R, Bryan J, Hughesman C, Haynes C. Quantitative Detection and Resolution of BRAF V600 Status in Colorectal Cancer Using Droplet Digital PCR and a Novel Wild-Type Negative Assay. J Mol Diagn 2016; 18:190-204. [PMID: 26762843 DOI: 10.1016/j.jmoldx.2015.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 08/25/2015] [Accepted: 09/17/2015] [Indexed: 12/21/2022] Open
Abstract
A need exists for robust and cost-effective assays to detect a single or small set of actionable point mutations, or a complete set of clinically informative mutant alleles. Knowledge of these mutations can be used to alert the clinician to a rare mutation that might necessitate more aggressive clinical monitoring or a personalized course of treatment. An example is BRAF, a (proto)oncogene susceptible to either common or rare mutations in codon V600 and adjacent codons. We report a diagnostic technology that leverages the unique capabilities of droplet digital PCR to achieve not only accurate and sensitive detection of BRAF(V600E) but also all known somatic point mutations within the BRAF V600 codon. The simple and inexpensive two-well droplet digital PCR assay uses a chimeric locked nucleic acid/DNA probe against wild-type BRAF and a novel wild-type-negative screening paradigm. The assay shows complete diagnostic accuracy when applied to formalin-fixed, paraffin-embedded tumor specimens from metastatic colorectal cancer patients deficient for Mut L homologue-1.
Collapse
Affiliation(s)
- Roza Bidshahri
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dean Attali
- Department of Statistics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kareem Fakhfakh
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kelly McNeil
- Department of Genetics and Molecular Diagnostics, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Aly Karsan
- Department of Genetics and Molecular Diagnostics, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Jennifer R Won
- Canadian Immunohistochemistry Quality Control Unit, Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert Wolber
- Department of Pathology, Lion's Gate Hospital, North Vancouver, British Columbia, Canada
| | - Jennifer Bryan
- Department of Statistics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Curtis Hughesman
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Charles Haynes
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
42
|
Intra- and Inter-Tumoral Homogeneity of BRAF V600E Mutations in Melanoma Tumors. J Invest Dermatol 2015; 135:3078-3085. [DOI: 10.1038/jid.2015.229] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 05/12/2015] [Accepted: 05/26/2015] [Indexed: 12/24/2022]
|
43
|
|
44
|
Lubitz CC, Parangi S, Holm TM, Bernasconi MJ, Schalck AP, Suh H, Economopoulos KP, Gunda V, Donovan SE, Sadow PM, Wirth LJ, Sullivan RJ, Panka DJ. Detection of Circulating BRAF(V600E) in Patients with Papillary Thyroid Carcinoma. J Mol Diagn 2015; 18:100-8. [PMID: 26631873 DOI: 10.1016/j.jmoldx.2015.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 07/14/2015] [Accepted: 08/13/2015] [Indexed: 12/16/2022] Open
Abstract
BRAF(V600E) is a common mutation in papillary thyroid carcinoma (PTC) correlated with aggressive features. Our objective was to assess the feasibility and accuracy of a novel RNA-based blood assay to identify individuals with a high-risk tumor mutation in patients with PTC. Patients with benign or malignant thyroid disorders were included between September 2013 and July 2014 before either thyroidectomy (n = 62) or treatment of recurrent or metastatic PTC (n = 8). RNA was isolated from peripheral blood lymphocytes and reverse transcribed and followed by two rounds of nested PCR amplification with a restriction digest specific for wild-type BRAF. BRAF(V600E) levels were quantified with standardization curves. Circulating BRAF(V600E) levels were compared with BRAF mutation status from surgical pathologic DNA-based tissue assays. Testing characteristics and receiving-operator curve using tissue results as the gold standard were assessed. Matched blood and tissue assays for BRAF(V600E) were performed on 70 patients with PTC (stages I to IV, n = 48) or other (n = 22) thyroid tumors. Sixty-three percent of PTC patients tested positive for BRAF(V600E) with conventional tissue assays on surgical specimens. The correlation between the RNA-based blood assay and tissue BRAF status was 0.71. PTC patients harbor detectable BRAF(V600E) circulating tumor cells. This blood assay is feasible and has potential as a biomarker for prognosis, surveillance, clinical decision making, and assessment of treatment response to BRAF-targeted therapies.
Collapse
Affiliation(s)
- Carrie C Lubitz
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts; Institute for Technology Assessment, Massachusetts General Hospital, Boston, Massachusetts.
| | - Sareh Parangi
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Tammy M Holm
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Aislyn P Schalck
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Hyunsuk Suh
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Konstantinos P Economopoulos
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts; Institute for Technology Assessment, Massachusetts General Hospital, Boston, Massachusetts
| | - Viswanath Gunda
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Samuel E Donovan
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Peter M Sadow
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Lori J Wirth
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Ryan J Sullivan
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - David J Panka
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| |
Collapse
|
45
|
MacLeod AK, McLaughlin LA, Henderson CJ, Wolf CR. Activation status of the pregnane X receptor influences vemurafenib availability in humanized mouse models. Cancer Res 2015; 75:4573-81. [PMID: 26363009 PMCID: PMC4634205 DOI: 10.1158/0008-5472.can-15-1454] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/04/2015] [Indexed: 12/20/2022]
Abstract
Vemurafenib is a revolutionary treatment for melanoma, but the magnitude of therapeutic response is highly variable, and the rapid acquisition of resistance is frequent. Here, we examine how vemurafenib disposition, particularly through cytochrome P450-mediated oxidation pathways, could potentially influence these outcomes using a panel of knockout and transgenic humanized mouse models. We identified CYP3A4 as the major enzyme involved in the metabolism of vemurafenib in in vitro assays with human liver microsomes. However, mice expressing human CYP3A4 did not process vemurafenib to a greater extent than CYP3A4-null animals, suggesting that other pregnane X receptor (PXR)-regulated pathways may contribute more significantly to vemurafenib metabolism in vivo. Activation of PXR, but not of the closely related constitutive androstane receptor, profoundly reduced circulating levels of vemurafenib in humanized mice. This effect was independent of CYP3A4 and was negated by cotreatment with the drug efflux transporter inhibitor elacridar. Finally, vemurafenib strongly induced PXR activity in vitro, but only weakly induced PXR in vivo. Taken together, our findings demonstrate that vemurafenib is unlikely to exhibit a clinically significant interaction with CYP3A4, but that modulation of bioavailability through PXR-mediated regulation of drug transporters (e.g., by other drugs) has the potential to markedly influence systemic exposure and thereby therapeutic outcomes.
Collapse
Affiliation(s)
- A Kenneth MacLeod
- Division of Cancer, School of Medicine, Jacqui Wood Cancer Centre, University of Dundee, Ninewells Hospital, Dundee, DD1 9SY, United Kingdom
| | - Lesley A McLaughlin
- Division of Cancer, School of Medicine, Jacqui Wood Cancer Centre, University of Dundee, Ninewells Hospital, Dundee, DD1 9SY, United Kingdom
| | - Colin J Henderson
- Division of Cancer, School of Medicine, Jacqui Wood Cancer Centre, University of Dundee, Ninewells Hospital, Dundee, DD1 9SY, United Kingdom
| | - C Roland Wolf
- Division of Cancer, School of Medicine, Jacqui Wood Cancer Centre, University of Dundee, Ninewells Hospital, Dundee, DD1 9SY, United Kingdom.
| |
Collapse
|
46
|
Weyant GW, Wisotzkey JD, Benko FA, Donaldson KJ. BRAF mutation testing in solid tumors: a methodological comparison. J Mol Diagn 2015; 16:481-5. [PMID: 25132480 DOI: 10.1016/j.jmoldx.2014.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 05/05/2014] [Accepted: 05/12/2014] [Indexed: 02/07/2023] Open
Abstract
Solid tumor genotyping has become standard of care for the characterization of proto-oncogene mutational status, which has traditionally been accomplished with Sanger sequencing. However, companion diagnostic assays and comparable laboratory-developed tests are becoming increasingly popular, such as the cobas 4800 BRAF V600 Mutation Test and the INFINITI KRAS-BRAF assay, respectively. This study evaluates and validates the analytical performance of the INFINITI KRAS-BRAF assay and compares concordance of BRAF status with two reference assays, the cobas test and Sanger sequencing. DNA extraction from FFPE tissue specimens was performed followed by multiplex PCR amplification and fluorescent label incorporation using allele-specific primer extension. Hybridization to a microarray, signal detection, and analysis were then performed. The limits of detection were determined by testing dilutions of mutant BRAF alleles within wild-type background DNA, and accuracy was calculated based on these results. The INFINITI KRAS-BRAF assay produced 100% concordance with the cobas test and Sanger sequencing and had sensitivity equivalent to the cobas assay. The INFINITI assay is repeatable with at least 95% accuracy in the detection of mutant and wild-type BRAF alleles. These results confirm that the INFINITI KRAS-BRAF assay is comparable to traditional sequencing and the Food and Drug Administration-approved companion diagnostic assay for the detection of BRAF mutations.
Collapse
Affiliation(s)
- Grace W Weyant
- Department of Pathology, Penn State College of Medicine-Hershey Medical Center, Hershey, Pennsylvania.
| | | | - Floyd A Benko
- Department of Pathology, Penn State College of Medicine-Hershey Medical Center, Hershey, Pennsylvania
| | - Keri J Donaldson
- Department of Pathology, Penn State College of Medicine-Hershey Medical Center, Hershey, Pennsylvania
| |
Collapse
|
47
|
Haley L, Tseng LH, Zheng G, Dudley J, Anderson DA, Azad NS, Gocke CD, Eshleman JR, Lin MT. Performance characteristics of next-generation sequencing in clinical mutation detection of colorectal cancers. Mod Pathol 2015; 28:1390-9. [PMID: 26226847 PMCID: PMC4618462 DOI: 10.1038/modpathol.2015.86] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 06/02/2015] [Accepted: 06/05/2015] [Indexed: 02/07/2023]
Abstract
Activating mutations in downstream genes of the epidermal growth factor receptor (EGFR) pathway may cause anti-EGFR resistance in patients with colorectal cancers. We present performance characteristics of a next-generation sequencing assay designed to detect such mutations. In this retrospective quality assessment study, we analyzed mutation detected in the KRAS, NRAS, BRAF, and PIK3CA genes by a clinically validated next-generation sequencing assay in 310 colorectal cancer specimens. Tumor cellularity and mutant allele frequency were analyzed to identify tumor heterogeneity and mutant allele-specific imbalance. Next-generation sequencing showed precise measurement of mutant allele frequencies and detected 23% of mutations with 2-20% mutant allele frequencies. Of the KRAS mutations detected, 17% were outside of codons 12 and 13. Among PIK3CA mutations, 48% were outside of codons 542, 545, and 1047. The percentage of tumors with predicted resistance to anti-EGFR therapy increased from 40% when testing for only mutations in KRAS exon 2 to 47% when testing for KRAS exons 2-4, 48% when testing for KRAS and NRAS exons 2-4, 58% when including BRAF codon 600 mutations, and 59% when adding PIK3CA exon 20 mutations. Right-sided colorectal cancers carried a higher risk of predicted anti-EGFR resistance. A concomitant KRAS mutation was detected in 51% of PIK3CA, 23% of NRAS, and 33% of kinase-impaired BRAF-mutated tumors. Lower than expected mutant allele frequency indicated tumor heterogeneity, while higher than expected mutant allele frequency indicated mutant allele-specific imbalance. Two paired neuroendocrine carcinomas and adjacent adenomas showed identical KRAS mutations, but only PIK3CA mutations in neuroendocrine carcinomas. Next-generation sequencing is a robust tool for mutation detection in clinical laboratories. It demonstrates high analytic sensitivity and broad reportable range, and it provides simultaneous detection of concomitant mutations and a quantitative measurement of mutant allele frequencies to predict tumor heterogeneity and mutant allele-specific imbalance.
Collapse
Affiliation(s)
- Lisa Haley
- Department of Pathology, Johns Hopkins University School of Medicine, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Li-Hui Tseng
- Department of Pathology, Johns Hopkins University School of Medicine, Johns Hopkins Hospital, Baltimore, MD, USA,Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan
| | - Gang Zheng
- Department of Pathology, Johns Hopkins University School of Medicine, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Jonathan Dudley
- Department of Pathology, Johns Hopkins University School of Medicine, Johns Hopkins Hospital, Baltimore, MD, USA,Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Derek A Anderson
- Department of Pathology, Johns Hopkins University School of Medicine, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Nilofer S Azad
- Department of Oncology, Johns Hopkins University School of Medicine, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Christopher D Gocke
- Department of Pathology, Johns Hopkins University School of Medicine, Johns Hopkins Hospital, Baltimore, MD, USA,Department of Oncology, Johns Hopkins University School of Medicine, Johns Hopkins Hospital, Baltimore, MD, USA
| | - James R Eshleman
- Department of Pathology, Johns Hopkins University School of Medicine, Johns Hopkins Hospital, Baltimore, MD, USA,Department of Oncology, Johns Hopkins University School of Medicine, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Ming-Tseh Lin
- Department of Pathology, Johns Hopkins University School of Medicine, Johns Hopkins Hospital, Baltimore, MD, USA
| |
Collapse
|
48
|
Carter J, Tseng LH, Zheng G, Dudley J, Illei P, Gocke CD, Eshleman JR, Lin MT. Non-p.V600E BRAF Mutations Are Common Using a More Sensitive and Broad Detection Tool. Am J Clin Pathol 2015; 144:620-8. [PMID: 26386083 DOI: 10.1309/ajcp85atmjozoudj] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES To assess the performance of a next-generation sequencing (NGS) platform for the clinical detection of BRAF mutations. METHODS In this retrospective quality assessment of an NGS assay, we analyzed BRAF mutations within parts of exons 11 and 15 in 835 neoplastic tissues submitted to our molecular diagnostics laboratory. RESULTS The NGS assays detected a BRAF mutation in 5.9% of lung adenocarcinomas, 13% of colorectal cancers, and 44% of melanomas. Mutant allele frequencies were less than 20% in 28% of 88 BRAF-mutated specimens. Two lymph node specimens with subcapsular or infiltrative metastasis showed 1% to 2% mutant alleles. There were 26 unique BRAF mutations in exons 11 and 15, including three novel mutations. Mutations were located outside codon 600 in 39% of BRAF-mutated tumors. Lung adenocarcinomas showed significantly higher non-p.V600E mutations (86%) than did colorectal cancers (23%) and melanomas (34%). The three most common BRAF mutations in lung cancers accounted for only 41% of the observed BRAF mutations (p.D594G [18%], p.V600E [14%], and p.G469A [9%]). CONCLUSIONS The NGS assay demonstrated a high analytic sensitivity and a broad reportable range for clinical detection of BRAF mutations. Elucidating the spectrum of non-p. V600E BRAF mutations in different malignancies is a first step toward understanding their clinical significance.
Collapse
Affiliation(s)
- Jamal Carter
- Departments of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Li-Hui Tseng
- Departments of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Medical Genetics, National Taiwan University Hospital, Taipei
| | - Gang Zheng
- Departments of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jonathan Dudley
- Departments of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Pathology, Massachusetts General Hospital, Boston
| | - Peter Illei
- Departments of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Christopher D. Gocke
- Departments of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD
- Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - James R. Eshleman
- Departments of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD
- Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ming-Tseh Lin
- Departments of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
49
|
Prasad CP, Mohapatra P, Andersson T. Therapy for BRAFi-Resistant Melanomas: Is WNT5A the Answer? Cancers (Basel) 2015; 7:1900-24. [PMID: 26393652 PMCID: PMC4586801 DOI: 10.3390/cancers7030868] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/09/2015] [Accepted: 09/14/2015] [Indexed: 12/18/2022] Open
Abstract
In recent years, scientists have advocated the use of targeted therapies in the form of drugs that modulate genes and proteins that are directly associated with cancer progression and metastasis. Malignant melanoma is a dreadful cancer type that has been associated with the rapid dissemination of primary tumors to multiple sites, including bone, brain, liver and lungs. The discovery that approximately 40%–50% of malignant melanomas contain a mutation in BRAF at codon 600 gave scientists a new approach to tackle this disease. However, clinical studies on patients have shown that although BRAFi (BRAF inhibitors) trigger early anti-tumor responses, the majority of patients later develop resistance to the therapy. Recent studies have shown that WNT5A plays a key role in enhancing the resistance of melanoma cells to BRAFi. The focus of the current review will be on melanoma development, signaling pathways important to acquired resistance to BRAFi, and why WNT5A inhibitors are attractive candidates to be included in combinatorial therapies for melanoma.
Collapse
Affiliation(s)
- Chandra Prakash Prasad
- Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Clinical Research Centre, Skåne University Hospital, Malmö SE-20502, Sweden.
| | - Purusottam Mohapatra
- Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Clinical Research Centre, Skåne University Hospital, Malmö SE-20502, Sweden.
| | - Tommy Andersson
- Cell and Experimental Pathology, Department of Translational Medicine, Lund University, Clinical Research Centre, Skåne University Hospital, Malmö SE-20502, Sweden.
| |
Collapse
|
50
|
Abstract
Ultraviolet radiation is a risk factor for BRAF V600 mutations frequently found in melanomas that cause constitutive BRAF activation. Primary sites of melanoma and the frequency of BRAF mutations might differ between races. Melanoma is rare in Japan (1500–2000 cases/year compared with 132 000/year worldwide) and the frequency and distribution of BRAF V600 mutations are unknown. We aimed to investigate the frequency of BRAF V600 mutations in a cohort of Japanese patients with melanoma and determine the relationship between mutations and clinical/pathologic features. DNA was extracted from 80 formalin-fixed, paraffin-embedded tumours from individuals diagnosed with melanoma. BRAF V600 mutations were detected using the Cobas 4800 System with z480 Analyzer and Cobas 4800 BRAF V600 Mutation Test reagents. BRAF V600 mutations were detected in 41.8% of tested tumours, with an invalid rate of 1.3%. The mutation rate was more than 60% in patients aged less than 60 years and more than 36% in patients with stage III/IV disease. No sex difference in the mutation rate was observed. BRAF V600 mutations were detected in 18.8% of acral lentiginous melanomas (ALMs), 64.7% of superficial spreading melanomas, 50.0% of lentigo maligna melanomas and 20.0% of nodular melanomas. Although the mutation rate was low in ALMs, 36.4% were mutation positive at stage III/IV compared with 9.5% at stage I/II. This study confirmed associations among BRAF V600 mutations, pathological features and subtypes of melanoma. BRAF V600 mutations were more frequent in late-stage ALMs than in early-stage ALMs. Superficial spreading melanomas had similar mutation rates at all stages. These insights suggest improved treatment predictions for stage III/IV melanoma patients.
Collapse
|