1
|
Zhang X, Yuan X, Li X, Yu H, Wang T, Zhang C, Wu J, You X. Sodium Danshensu alleviates bone cancer pain by inhibiting the osteoclast differentiation and CGRP expression. Eur J Pharmacol 2025; 992:177296. [PMID: 39900329 DOI: 10.1016/j.ejphar.2025.177296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/22/2025] [Accepted: 01/22/2025] [Indexed: 02/05/2025]
Abstract
CONTEXT The morbidity of bone cancer pain (BCP) is on the rise, yet current treatments have limited analgesic efficacy. Sodium Danshensu (SDSS), or sodium 3-(3,4-dihydroxyphenyl)-DL-lactate, exhibits anti-inflammatory, anti-osteoporotic properties. Current research shows that bone cancer pain is closely related to the development of osteoclasts. OBJECTIVE To investigate the analgesic effects of SDSS on BCP in mice and explore the underlying mechanisms. MATERIALS & METHODS Nociceptive behaviors in BCP mice were evaluated by paw withdrawal threshold (PWT) and limb using score (LUS). Network pharmacology, Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation, and molecular docking identified potential targets. Histological analyses, Western blot, RT-qPCR, ELISA, and immunofluorescence staining were performed on mice femurs. RESULTS SDSS significantly increased PWT and LUS in BCP mice. Forty-three common targets were identified, with the estrogen signaling pathway showing the highest enrichment. Molecular docking analysis suggested a potential binding affinity between SDSS and ESRα. SDSS administration up-regulated ESRα expression and down-regulated RANKL, RANK, NFATc1, c-fos, TRAP, and Cathepsin K (CTSK). In addition, SDSS suppressed the abnormal increase of calcitonin gene-related peptide-positive (CGRP+) neural budding and expression in nerve endings, effects which were reversed by ESRa inhibitor ICI-182780. CONCLUSIONS SDSS relieves bone cancer pain by inhibiting osteoclast activity, providing a potential new drug option for cancer pain patients.
Collapse
Affiliation(s)
- Xiaoxuan Zhang
- School of Medicine, Shanghai University, Shanghai, 200444, China; Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200030, China
| | - Xinru Yuan
- School of Medicine, Shanghai University, Shanghai, 200444, China; Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200030, China
| | - Xin Li
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200030, China; School of Medical Instrument and Food Engineering USST, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Haonan Yu
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Tingfang Wang
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Chuan Zhang
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Jingxiang Wu
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, 200030, China.
| | - Xingji You
- School of Medicine, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
2
|
Wang K, Zhang Y, Shu R, Yuan L, Tu H, Wang S, Ni B, Zhang Y, Jiang C, Luo Y, Yin Y. GPR37 Activation Alleviates Bone Cancer Pain via the Inhibition of Osteoclastogenesis and Neuronal Hyperexcitability. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2417367. [PMID: 39965073 PMCID: PMC11984854 DOI: 10.1002/advs.202417367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/04/2025] [Indexed: 02/20/2025]
Abstract
Osteolytic bone cancer pain is a primary concern for cancer patients with bone metastasis, and current therapies offer inadequate pain relief. The present study demonstrates that activation of the G protein-coupled receptor 37 (GPR37) by neuroprotectin D1 (NPD1) or artesunate (ARU) alleviates both acute and persistent pain in multiple mouse models of bone cancer. GPR37 agonists also protect against cancer-induced bone destruction. Mechanistically, NPD1 or ARU binding to GPR37 in macrophages promotes the release of IL-10, which further inhibits cancer-induced osteoclastogenesis. Moreover, direct activation of GPR37 in dorsal root ganglion (DRG) neurons and the spinal dorsal horn reduces action potential firing and the frequency of spontaneous excitatory postsynaptic currents (sEPSCs), thereby suppressing cancer-induced neuronal hyperexcitability. Importantly, the analgesic and protective effects of NPD1 and ARU are abolished in Gpr37-/- mice, and β-arrestin 2 is identified as a key mediator in IL-10 release and neuronal inhibition. In patients with bone metastases, plasma levels of endogenous NPD1 are negatively correlated with both pain intensity and the bone resorption marker CTX-I. Collectively, these findings highlight GPR37 activation as a potential therapeutic strategy for alleviating bone cancer pain through direct and synergistic inhibition of osteoclastogenesis and neuronal hyperexcitability.
Collapse
Affiliation(s)
- Kaiyuan Wang
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerState Key Laboratory of Druggability Evaluation and Systematic Translational MedicineTianjin's Clinical Research Center for CancerTianjin300060China
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjin301617China
| | - Yongfang Zhang
- Shenzhen University Medical SchoolShenzhenGuangdong518060China
| | - Ruichen Shu
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerState Key Laboratory of Druggability Evaluation and Systematic Translational MedicineTianjin's Clinical Research Center for CancerTianjin300060China
| | - Limei Yuan
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerState Key Laboratory of Druggability Evaluation and Systematic Translational MedicineTianjin's Clinical Research Center for CancerTianjin300060China
| | - Huifang Tu
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjin301617China
| | - Shengran Wang
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerState Key Laboratory of Druggability Evaluation and Systematic Translational MedicineTianjin's Clinical Research Center for CancerTianjin300060China
| | - Bo Ni
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerState Key Laboratory of Druggability Evaluation and Systematic Translational MedicineTianjin's Clinical Research Center for CancerTianjin300060China
| | - Yi‐Fan Zhang
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerState Key Laboratory of Druggability Evaluation and Systematic Translational MedicineTianjin's Clinical Research Center for CancerTianjin300060China
| | - Changyu Jiang
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain MedicineThe 6th Affiliated Hospital of Shenzhen University Health Science CenterShenzhenGuangdong518052China
| | - Yuhui Luo
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain MedicineThe 6th Affiliated Hospital of Shenzhen University Health Science CenterShenzhenGuangdong518052China
| | - Yiqing Yin
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and HospitalNational Clinical Research Center for CancerState Key Laboratory of Druggability Evaluation and Systematic Translational MedicineTianjin's Clinical Research Center for CancerTianjin300060China
| |
Collapse
|
3
|
Bencze N, Scheich B, Szőke É, Wilhelm I, Körmöndi S, Botz B, Helyes Z. Osteosarcoma-Induced Pain Is Mediated by Glial Cell Activation in the Spinal Dorsal Horn, but Not Capsaicin-Sensitive Nociceptive Neurons: A Complex Functional and Morphological Characterization in Mice. Cancers (Basel) 2024; 16:1788. [PMID: 38791867 PMCID: PMC11120600 DOI: 10.3390/cancers16101788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/25/2024] [Accepted: 04/27/2024] [Indexed: 05/26/2024] Open
Abstract
Bone cancer and its related chronic pain are huge clinical problems since the available drugs are often ineffective or cannot be used long term due to a broad range of side effects. The mechanisms, mediators and targets need to be identified to determine potential novel therapies. Here, we characterize a mouse bone cancer model induced by intratibial injection of K7M2 osteosarcoma cells using an integrative approach and investigate the role of capsaicin-sensitive peptidergic sensory nerves. The mechanical pain threshold was assessed by dynamic plantar aesthesiometry, limb loading by dynamic weight bearing, spontaneous pain-related behaviors via observation, knee diameter with a digital caliper, and structural changes by micro-CT and glia cell activation by immunohistochemistry in BALB/c mice of both sexes. Capsaicin-sensitive peptidergic sensory neurons were defunctionalized by systemic pretreatment with a high dose of the transient receptor potential vanilloid 1 (TRPV1) agonist resiniferatoxin (RTX). During the 14- and 28-day experiments, weight bearing on the affected limb and the paw mechanonociceptive thresholds significantly decreased, demonstrating secondary mechanical hyperalgesia. Signs of spontaneous pain and osteoplastic bone remodeling were detected both in male and female mice without any sex differences. Microglia activation was shown by the increased ionized calcium-binding adapter molecule 1 (Iba1) immunopositivity on day 14 and astrocyte activation by the enhanced glial fibrillary acidic protein (GFAP)-positive cell density on day 28 in the ipsilateral spinal dorsal horn. Interestingly, defunctionalization of the capsaicin-sensitive afferents representing approximately 2/3 of the nociceptive fibers did not alter any functional parameters. Here, we provide the first complex functional and morphological characterization of the K7M2 mouse osteosarcoma model. Bone-cancer-related chronic pain and hyperalgesia are likely to be mediated by central sensitization involving neuroinflammation via glial cell activation in the spinal dorsal horn, but not the capsaicin-sensitive sensory neuronal system.
Collapse
Affiliation(s)
- Noémi Bencze
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.B.); (É.S.); (B.B.)
- National Laboratory for Drug Research and Development, Magyar Tudósok Krt. 2, 1117 Budapest, Hungary
| | - Bálint Scheich
- Department of Pathology and Experimental Cancer Research, Faculty of Medicine, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary;
| | - Éva Szőke
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.B.); (É.S.); (B.B.)
- National Laboratory for Drug Research and Development, Magyar Tudósok Krt. 2, 1117 Budapest, Hungary
- Hungarian Research Network, Chronic Pain Research Group (HUN-REN-PTE), 7624 Pécs, Hungary
| | - Imola Wilhelm
- Institute of Biophysics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary;
| | - Sándor Körmöndi
- Department of Traumatology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary;
| | - Bálint Botz
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.B.); (É.S.); (B.B.)
- Department of Medical Imaging, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.B.); (É.S.); (B.B.)
- National Laboratory for Drug Research and Development, Magyar Tudósok Krt. 2, 1117 Budapest, Hungary
- Hungarian Research Network, Chronic Pain Research Group (HUN-REN-PTE), 7624 Pécs, Hungary
- PharmInVivo Ltd., Szondy György Str. 10, 7629 Pécs, Hungary
| |
Collapse
|
4
|
Guo J, Ma RY, Qian BZ. Macrophage heterogeneity in bone metastasis. J Bone Oncol 2024; 45:100598. [PMID: 38585688 PMCID: PMC10997910 DOI: 10.1016/j.jbo.2024.100598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 04/09/2024] Open
Abstract
Previous studies illustrated that macrophage, a type of innate immune cell, plays critical roles in tumour progression and metastasis. Bone is the most frequent site of metastasis for several cancer types including breast, prostate, and lung. In bone metastasis, osteoclast, a macrophage subset specialized in bone resorption, was heavily investigated in the past. Recent studies illustrated that other macrophage subsets, e.g. monocyte-derived macrophages, and bone resident macrophages, promoted bone metastasis independent of osteoclast function. These novel mechanisms further improved our understanding of macrophage heterogeneity in the context of bone metastasis and illustrated new opportunities for future studies.
Collapse
Affiliation(s)
| | | | - Bin-Zhi Qian
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, The Human Phenome Institute, Zhangjiang-Fudan International Innovation Center, Fudan University, Shanghai 200438, China
| |
Collapse
|
5
|
Wang S, Ko CC, Chung MK. Nociceptor mechanisms underlying pain and bone remodeling via orthodontic forces: toward no pain, big gain. FRONTIERS IN PAIN RESEARCH 2024; 5:1365194. [PMID: 38455874 PMCID: PMC10917994 DOI: 10.3389/fpain.2024.1365194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
Orthodontic forces are strongly associated with pain, the primary complaint among patients wearing orthodontic braces. Compared to other side effects of orthodontic treatment, orthodontic pain is often overlooked, with limited clinical management. Orthodontic forces lead to inflammatory responses in the periodontium, which triggers bone remodeling and eventually induces tooth movement. Mechanical forces and subsequent inflammation in the periodontium activate and sensitize periodontal nociceptors and produce orthodontic pain. Nociceptive afferents expressing transient receptor potential vanilloid subtype 1 (TRPV1) play central roles in transducing nociceptive signals, leading to transcriptional changes in the trigeminal ganglia. Nociceptive molecules, such as TRPV1, transient receptor potential ankyrin subtype 1, acid-sensing ion channel 3, and the P2X3 receptor, are believed to mediate orthodontic pain. Neuropeptides such as calcitonin gene-related peptides and substance P can also regulate orthodontic pain. While periodontal nociceptors transmit nociceptive signals to the brain, they are also known to modulate alveolar bone remodeling in periodontitis. Therefore, periodontal nociceptors and nociceptive molecules may contribute to the modulation of orthodontic tooth movement, which currently remains undetermined. Future studies are needed to better understand the fundamental mechanisms underlying neuroskeletal interactions in orthodontics to improve orthodontic treatment by developing novel methods to reduce pain and accelerate orthodontic tooth movement-thereby achieving "big gains with no pain" in clinical orthodontics.
Collapse
Affiliation(s)
- Sheng Wang
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, United States
| | - Ching-Chang Ko
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, United States
| | - Man-Kyo Chung
- Department of Neural and Pain Sciences, School of Dentistry, University of Maryland Baltimore, Baltimore, MD, United States
- Center to Advance Chronic Pain Research, University of Maryland Baltimore, Baltimore, MD, United States
| |
Collapse
|
6
|
Dutta RK, Abu YF, Tao J, Chupikova I, Oleas J, Singh PK, Vitari NA, Qureshi R, Ramakrishnan S, Roy S. Altered gut microbiome drives heightened pain sensitivity in a murine model of metastatic triple-negative breast cancer. Am J Cancer Res 2024; 14:274-299. [PMID: 38323292 PMCID: PMC10839306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/25/2023] [Indexed: 02/08/2024] Open
Abstract
The microbiota residing in the gut environment is essential for host homeostasis. Increasing evidence suggests that microbial perturbation (dysbiosis) regulates cancer initiation and progression at local and distant sites. Here, we have identified microbial dysbiosis with the depletion of commensal bacteria as a host-intrinsic factor associated with metastatic dissemination to the bone. Using a mouse model of triple-negative mammary cancer, we demonstrate that a pre-established disruption of microbial homeostasis using an antibiotic cocktail increases tumor growth, enhanced circulating tumor cells, and subsequent dissemination to the bone. We found that the presence of pathogenic bacteria and loss of commensal bacteria in an antibiotic-induced gut environment is associated with sustained inflammation. Increased secretion of G-CSF and MMP-9 in intestinal tissues, followed by increased neutrophil infiltration and severe systemic inflammation in tumor-bearing mice, indicates the direct consequence of a dysbiotic microbiome. Increased neutrophil infiltration to the bone metastatic niche facilitates extravasation and transendothelial migration of tumor cells. It provides a novel, pre-established, and favorable environment to form an immunosuppressive pre-metastatic niche. The presence of tumor cells in immunosuppressive metastatic tumor niche disrupts the balance between osteoblasts and osteoclasts, promotes osteoclast differentiation, and remodels the bone structure. Excessive bone resorption by osteoclasts causes bone degradation and ultimately causes extreme pain in a bone metastatic mouse model. In clinical settings, bone metastasis is associated with intractable severe pain that severely compromises the quality of life in these patients.
Collapse
Affiliation(s)
- Rajib K Dutta
- Department of Surgery, University of MiamiMiami, FL 33136, USA
| | - Yaa F Abu
- Department of Surgery, University of MiamiMiami, FL 33136, USA
- Department of Microbiology and Immunology, University of MiamiMiami, FL 33136, USA
| | - Junyi Tao
- Department of Surgery, University of MiamiMiami, FL 33136, USA
| | - Irina Chupikova
- Department of Surgery, University of MiamiMiami, FL 33136, USA
| | - Janneth Oleas
- Department of Surgery, University of MiamiMiami, FL 33136, USA
| | - Praveen K Singh
- Department of Surgery, University of MiamiMiami, FL 33136, USA
| | - Nicolas A Vitari
- Department of Surgery, University of MiamiMiami, FL 33136, USA
- Department of Microbiology and Immunology, University of MiamiMiami, FL 33136, USA
| | - Rehana Qureshi
- Department of Pathology, University of MiamiMiami, FL 33136, USA
| | | | - Sabita Roy
- Department of Surgery, University of MiamiMiami, FL 33136, USA
| |
Collapse
|
7
|
Chen O, Luo X, Ji RR. Macrophages and microglia in inflammation and neuroinflammation underlying different pain states. MEDICAL REVIEW (2021) 2023; 3:381-407. [PMID: 38283253 PMCID: PMC10811354 DOI: 10.1515/mr-2023-0034] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/26/2023] [Indexed: 01/30/2024]
Abstract
Pain is a main symptom in inflammation, and inflammation induces pain via inflammatory mediators acting on nociceptive neurons. Macrophages and microglia are distinct cell types, representing immune cells and glial cells, respectively, but they share similar roles in pain regulation. Macrophages are key regulators of inflammation and pain. Macrophage polarization plays different roles in inducing and resolving pain. Notably, macrophage polarization and phagocytosis can be induced by specialized pro-resolution mediators (SPMs). SPMs also potently inhibit inflammatory and neuropathic pain via immunomodulation and neuromodulation. In this review, we discuss macrophage signaling involved in pain induction and resolution, as well as in maintaining physiological pain. Microglia are macrophage-like cells in the central nervous system (CNS) and drive neuroinflammation and pathological pain in various inflammatory and neurological disorders. Microglia-produced inflammatory cytokines can potently regulate excitatory and inhibitory synaptic transmission as neuromodulators. We also highlight sex differences in macrophage and microglial signaling in inflammatory and neuropathic pain. Thus, targeting macrophage and microglial signaling in distinct locations via pharmacological approaches, including immunotherapies, and non-pharmacological approaches will help to control chronic inflammation and chronic pain.
Collapse
Affiliation(s)
- Ouyang Chen
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Xin Luo
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, USA
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Ru-Rong Ji
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, NC, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
8
|
Lu HJ, Wu XB, Wei QQ. Ion channels in cancer-induced bone pain: from molecular mechanisms to clinical applications. Front Mol Neurosci 2023; 16:1239599. [PMID: 37664239 PMCID: PMC10469682 DOI: 10.3389/fnmol.2023.1239599] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
Cancer-induced bone pain (CIBP) caused by bone metastasis is one of the most prevalent diseases, and current treatments rely primarily on opioids, which have significant side effects. However, recent developments in pharmaceutical science have identified several new mechanisms for CIBP, including the targeted modification of certain ion channels and receptors. Ion channels are transmembrane proteins, which are situated on biological cell membranes, which facilitate passive transport of inorganic ions across membranes. They are involved in various physiological processes, including transmission of pain signals in the nervous system. In recent years, there has been an increasing interest in the role of ion channels in chronic pain, including CIBP. Therefore, in this review, we summarize the current literature on ion channels, related receptors, and drugs and explore the mechanism of CIBP. Targeting ion channels and regulating their activity might be key to treating pain associated with bone cancer and offer new treatment avenues.
Collapse
Affiliation(s)
- Huan-Jun Lu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China
| | - Xiao-Bo Wu
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong, China
| | - Qian-Qi Wei
- Department of Infectious Diseases, General Hospital of Tibet Military Command, Xizang, China
| |
Collapse
|
9
|
Zhao J, Huh Y, Bortsov A, Diatchenko L, Ji RR. Immunotherapies in chronic pain through modulation of neuroimmune interactions. Pharmacol Ther 2023; 248:108476. [PMID: 37307899 PMCID: PMC10527194 DOI: 10.1016/j.pharmthera.2023.108476] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/18/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023]
Abstract
It is generally believed that immune activation can elicit pain through production of inflammatory mediators that can activate nociceptive sensory neurons. Emerging evidence suggests that immune activation may also contribute to the resolution of pain by producing distinct pro-resolution/anti-inflammatory mediators. Recent research into the connection between the immune and nervous systems has opened new avenues for immunotherapy in pain management. This review provides an overview of the most utilized forms of immunotherapies (e.g., biologics) and highlight their potential for immune and neuronal modulation in chronic pain. Specifically, we discuss pain-related immunotherapy mechanisms that target inflammatory cytokine pathways, the PD-L1/PD-1 pathway, and the cGAS/STING pathway. This review also highlights cell-based immunotherapies targeting macrophages, T cells, neutrophils and mesenchymal stromal cells for chronic pain management.
Collapse
Affiliation(s)
- Junli Zhao
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Yul Huh
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Andrey Bortsov
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Luda Diatchenko
- Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC H3A 0G4, Canada; Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC H3A 0G4, Canada
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
10
|
Zhang Z, Wang F, Huang X, Sun H, Xu J, Qu H, Yan X, Shi W, Teng W, Jin X, Shao Z, Zhang Y, Zhao S, Wu Y, Ye Z, Yu X. Engineered Sensory Nerve Guides Self-Adaptive Bone Healing via NGF-TrkA Signaling Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206155. [PMID: 36725311 PMCID: PMC10074090 DOI: 10.1002/advs.202206155] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/10/2023] [Indexed: 06/17/2023]
Abstract
The upstream role of sensory innervation during bone homeostasis is widely underestimated in bone repairing strategies. Herein, a neuromodulation approach is proposed to orchestrate bone defect healing by constructing engineered sensory nerves (eSN) in situ to leverage the adaptation feature of SN during tissue formation. NGF liberated from ECM-constructed eSN effectively promotes sensory neuron differentiation and enhances CGRP secretion, which lead to improved RAOECs mobility and osteogenic differentiation of BMSC. In turn, such eSN effectively drives ossification in vivo via NGF-TrkA signaling pathway, which substantially accelerates critical size bone defect healing. More importantly, eSN also adaptively suppresses excessive bone formation and promotes bone remodeling by activating osteoclasts via CGRP-dependent mechanism when combined with BMP-2 delivery, which ingeniously alleviates side effects of BMP-2. In sum, this eSN approach offers a valuable avenue to harness the adaptive role of neural system to optimize bone homeostasis under various clinical scenario.
Collapse
Affiliation(s)
- Zengjie Zhang
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineOrthopedics Research Institute of Zhejiang UniversityKey Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province88 Jiefang RoadHangzhou CityZhejiang Province310003P. R. China
| | - Fangqian Wang
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineOrthopedics Research Institute of Zhejiang UniversityKey Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province88 Jiefang RoadHangzhou CityZhejiang Province310003P. R. China
| | - Xin Huang
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineOrthopedics Research Institute of Zhejiang UniversityKey Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province88 Jiefang RoadHangzhou CityZhejiang Province310003P. R. China
| | - Hangxiang Sun
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineOrthopedics Research Institute of Zhejiang UniversityKey Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province88 Jiefang RoadHangzhou CityZhejiang Province310003P. R. China
| | - Jianxiang Xu
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineOrthopedics Research Institute of Zhejiang UniversityKey Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province88 Jiefang RoadHangzhou CityZhejiang Province310003P. R. China
| | - Hao Qu
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineOrthopedics Research Institute of Zhejiang UniversityKey Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province88 Jiefang RoadHangzhou CityZhejiang Province310003P. R. China
| | - Xiaobo Yan
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineOrthopedics Research Institute of Zhejiang UniversityKey Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province88 Jiefang RoadHangzhou CityZhejiang Province310003P. R. China
| | - Wei Shi
- Department of OrthopedicTaizhou First People's HospitalWenzhou Medical University218 Hengjie Road, Huangyan DistrictTaizhou CityZhejiang Province318020P. R. China
| | - Wangsiyuan Teng
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineOrthopedics Research Institute of Zhejiang UniversityKey Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province88 Jiefang RoadHangzhou CityZhejiang Province310003P. R. China
| | - Xiaoqiang Jin
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineOrthopedics Research Institute of Zhejiang UniversityKey Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province88 Jiefang RoadHangzhou CityZhejiang Province310003P. R. China
| | - Zhenxuan Shao
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineOrthopedics Research Institute of Zhejiang UniversityKey Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province88 Jiefang RoadHangzhou CityZhejiang Province310003P. R. China
| | - Yongxing Zhang
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineOrthopedics Research Institute of Zhejiang UniversityKey Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province88 Jiefang RoadHangzhou CityZhejiang Province310003P. R. China
| | - Shenzhi Zhao
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineOrthopedics Research Institute of Zhejiang UniversityKey Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province88 Jiefang RoadHangzhou CityZhejiang Province310003P. R. China
| | - Yan Wu
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineOrthopedics Research Institute of Zhejiang UniversityKey Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province88 Jiefang RoadHangzhou CityZhejiang Province310003P. R. China
| | - Zhaoming Ye
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineOrthopedics Research Institute of Zhejiang UniversityKey Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province88 Jiefang RoadHangzhou CityZhejiang Province310003P. R. China
| | - Xiaohua Yu
- Department of Orthopedic SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineOrthopedics Research Institute of Zhejiang UniversityKey Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province88 Jiefang RoadHangzhou CityZhejiang Province310003P. R. China
| |
Collapse
|
11
|
Landini L, Marini M, Souza Monteiro de Araujo D, Romitelli A, Montini M, Albanese V, Titiz M, Innocenti A, Bianchini F, Geppetti P, Nassini R, De Logu F. Schwann Cell Insulin-like Growth Factor Receptor Type-1 Mediates Metastatic Bone Cancer Pain in Mice. Brain Behav Immun 2023; 110:348-364. [PMID: 36940752 DOI: 10.1016/j.bbi.2023.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/27/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023] Open
Abstract
Insulin growth factor-1 (IGF-1), an osteoclast-dependent osteolysis biomarker, contributes to metastatic bone cancer pain (MBCP), but the underlying mechanism is poorly understood. In mice, the femur metastasis caused by intramammary inoculation of breast cancer cells resulted in IGF-1 increase in femur and sciatic nerve, and IGF-1-dependent stimulus/non-stimulus-evoked pain-like behaviors. Adeno-associated virus-based shRNA selective silencing of IGF-1 receptor (IGF-1R) in Schwann cells, but not in dorsal root ganglion (DRG) neurons, attenuated pain-like behaviors. Intraplantar IGF-1 evoked acute nociception and mechanical/cold allodynia, which were reduced by selective IGF-1R silencing in DRG neurons and Schwann cells, respectively. Schwann cell IGF-1R signaling promoted an endothelial nitric oxide synthase-mediated transient receptor potential ankyrin 1 (TRPA1) activation and release of reactive oxygen species that, via macrophage-colony stimulating factor-dependent endoneurial macrophage expansion, sustained pain-like behaviors. Osteoclast derived IGF-1 initiates a Schwann cell-dependent neuroinflammatory response that sustains a proalgesic pathway that provides new options for MBCP treatment.
Collapse
Affiliation(s)
- Lorenzo Landini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy
| | - Matilde Marini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy
| | | | - Antonia Romitelli
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy
| | - Marco Montini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Medical Genetics Unit, University of Florence, 50141, Florence, Italy
| | - Valentina Albanese
- Department of Environmental and Prevention Sciences - DEPS, University of Ferrara, Ferrara, 44121, Italy
| | - Mustafa Titiz
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy
| | - Alessandro Innocenti
- Plastic and Reconstructive Microsurgery - Careggi University Hospital, Florence, 50139, Italy
| | - Francesca Bianchini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Experimental Pathology and Oncology, University of Florence, 50141, Florence, Italy
| | - Pierangelo Geppetti
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy
| | - Romina Nassini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy.
| | - Francesco De Logu
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, 50139, Italy
| |
Collapse
|
12
|
Tanaka K, Kondo T, Narita M, Muta T, Yoshida S, Sato D, Suda Y, Hamada Y, Shimizu T, Kuzumaki N, Narita M. Cancer aggravation due to persistent pain signals with the increased expression of pain-related mediators in sensory neurons of tumor-bearing mice. Mol Brain 2023; 16:19. [PMID: 36737827 PMCID: PMC9896755 DOI: 10.1186/s13041-023-01001-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/12/2023] [Indexed: 02/05/2023] Open
Abstract
A growing body of evidence suggests that intractable pain reduces both the quality of life and survival in cancer patients. In the present study, we evaluated whether chronic pain stimuli could directly affect cancer pathology using tumor-bearing mice. For this purpose, we used two different models of chronic pain in mice, neuropathic pain and persistent postsurgical pain, with Lewis lung carcinoma (LLC) as tumor cells. We found that tumor growth was dramatically promoted in these pain models. As well as these pain models, tumor growth of LLC, severe osteosarcoma (AXT) and B16 melanoma cells was significantly promoted by concomitant activation of sensory neurons in AAV6-hM3Dq-injected mice treated with the designer drug clozapine-N-oxide (CNO). Significant increases in mRNA levels of vascular endothelial growth factor-A (Vegfa), tachykinin precursor 1 (Tac1) and calcitonin-related polypeptide alpha (Calca) in the ipsilateral side of dorsal root ganglion of AAV6-hM3Dq-injected mice were observed by concomitant activation of sensory neurons due to CNO administration. Moreover, in a model of bone cancer pain in which mice were implanted with AXT cells into the right femoral bone marrow cavity, the survival period was significantly prolonged by repeated inhibition of sensory neurons of AAV6-hM4Di-injected mice by CNO administration. These findings suggest that persistent pain signals may promote tumor growth by the increased expression of sensory-located peptides and growth factors, and controlling cancer pain may prolong cancer survival.
Collapse
Affiliation(s)
- Kenichi Tanaka
- grid.412239.f0000 0004 1770 141XPresent Address: Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501 Japan ,grid.272242.30000 0001 2168 5385Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| | - Takashige Kondo
- grid.412239.f0000 0004 1770 141XPresent Address: Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501 Japan
| | - Michiko Narita
- grid.272242.30000 0001 2168 5385Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| | - Takeru Muta
- grid.412239.f0000 0004 1770 141XPresent Address: Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501 Japan
| | - Sara Yoshida
- grid.412239.f0000 0004 1770 141XPresent Address: Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501 Japan ,grid.272242.30000 0001 2168 5385Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| | - Daisuke Sato
- grid.412239.f0000 0004 1770 141XPresent Address: Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501 Japan
| | - Yukari Suda
- grid.412239.f0000 0004 1770 141XPresent Address: Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501 Japan ,grid.272242.30000 0001 2168 5385Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| | - Yusuke Hamada
- grid.412239.f0000 0004 1770 141XPresent Address: Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501 Japan ,grid.272242.30000 0001 2168 5385Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045 Japan
| | - Takatsune Shimizu
- grid.412239.f0000 0004 1770 141XDepartment of Pathophysiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501 Japan
| | - Naoko Kuzumaki
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan. .,Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| | - Minoru Narita
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan. .,Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
13
|
Smith AE, Muralidharan A, Smith MT. Prostate cancer induced bone pain: pathobiology, current treatments and pain responses from recent clinical trials. Discov Oncol 2022; 13:108. [PMID: 36258057 PMCID: PMC9579264 DOI: 10.1007/s12672-022-00569-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/29/2022] [Indexed: 11/04/2022] Open
Abstract
PURPOSE Metastatic spread of prostate cancer to the skeleton may result in debilitating bone pain. In this review, we address mechanisms underpinning the pathobiology of metastatic prostate cancer induced bone pain (PCIBP) that include sensitization and sprouting of primary afferent sensory nerve fibres in bone. We also review current treatments and pain responses evoked by various treatment modalities in clinical trials in this patient population. METHODS We reviewed the literature using PubMed to identify research on the pathobiology of PCIBP. Additionally, we reviewed clinical trials of various treatment modalities in patients with PCIBP with pain response outcomes published in the past 7 years. RESULTS Recent clinical trials show that radionuclides, given either alone or in combination with chemotherapy, evoked favourable pain responses in many patients and a single fraction of local external beam radiation therapy was as effective as multiple fractions. However, treatment with chemotherapy, small molecule inhibitors and/or immunotherapy agents, produced variable pain responses but pain response was the primary endpoint in only one of these trials. Additionally, there were no published trials of potentially novel analgesic agents in patients with PCIBP. CONCLUSION There is a knowledge gap for clinical trials of chemotherapy, small molecule inhibitors and/or immunotherapy in patients with PCIBP where pain response is the primary endpoint. Also, there are no novel analgesic agents on the horizon for the relief of PCIBP and this is an area of large unmet medical need that warrants concerted research attention.
Collapse
Affiliation(s)
- A. E. Smith
- St Vincent’s Hospital, Darlinghurst, Sydney, NSW Australia
| | - A. Muralidharan
- Neurobiology of Chronic Pain, The Charles Perkins Centre, Faculty of Science, The University of Sydney, Sydney, NSW 2006 Australia
| | - M. T. Smith
- Centre for Integrated Preclinical Drug Development, School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia Campus, Brisbane, QLD 4072 Australia
| |
Collapse
|
14
|
Al-Otaibi JS, Sheena Mary Y, Shyma Mary Y, Soman S, Thirunavukkarasu M. Solvation Effects, Reactivity Studies and Molecular Dynamics of Two Phosphonic Acids – Theoretical Investigation. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2126504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Jamelah S. Al-Otaibi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | | | | | - Sreejit Soman
- Stemskills Research and Education Lab Private Limited, Faridabad, India
| | - M. Thirunavukkarasu
- Department of Physics, Indo-American College, Cheyyar, India
- Department of Physics, Thiru A Govindasamy Govt. Arts College, Tindivanam, India
| |
Collapse
|
15
|
Yuan ZL, Liu XD, Zhang ZX, Li S, Tian Y, Xi K, Cai J, Yang XM, Liu M, Xing GG. Activation of GDNF-ERK-Runx1 signaling contributes to P2X3R gene transcription and bone cancer pain. iScience 2022; 25:104936. [PMID: 36072549 PMCID: PMC9441333 DOI: 10.1016/j.isci.2022.104936] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/15/2022] [Accepted: 08/10/2022] [Indexed: 11/24/2022] Open
Abstract
Bone cancer pain is a common symptom in cancer patients with bone metastases and its underlying mechanisms remain unknown. Here, we report that Runx1 directly upregulates the transcriptional activity of P2X3 receptor (P2X3R) gene promoter in PC12 cells. Knocking down Runx1 in dorsal root ganglion (DRG) neurons suppresses the functional upregulation of P2X3R, attenuates neuronal hyperexcitability and pain hypersensitivity in tumor-bearing rats, whereas overexpressing Runx1 promotes P2X3R gene transcription in DRG neurons, induces neuronal hyperexcitability and pain hypersensitivity in naïve rats. Activation of GDNF-GFRα1-Ret-ERK signaling is required for Runx1-mediated P2X3R gene transcription in DRG neurons, and contributes to neuronal hyperexcitability and pain hypersensitivity in tumor-bearing rats. These findings indicate that the Runx1-mediated P2X3R gene transcription resulted from activation of GDNF-GFRα1-Ret-ERK signaling contributes to the sensitization of DRG neurons and pathogenesis of bone cancer pain. Our findings identify a potentially targetable mechanism that may cause bone metastasis-associated pain in cancer patients.
Collapse
Affiliation(s)
- Zhu-Lin Yuan
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| | - Xiao-Dan Liu
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| | - Zi-Xian Zhang
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| | - Song Li
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| | - Yue Tian
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| | - Ke Xi
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| | - Jie Cai
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| | - Xiao-Mei Yang
- Department of Human Anatomy and Embryology, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Min Liu
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| | - Guo-Gang Xing
- Neuroscience Research Institute, Peking University, Beijing 100191, China
- Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
- Key Laboratory for Neuroscience, Ministry of Education of China and National Health Commission of China, Beijing 100191, China
| |
Collapse
|
16
|
Yang HY, Zhang F, Cheng ML, Wu J, Xie M, Yu LZ, Liu L, Xiong J, Zhu HL. Glycogen synthase kinase-3β inhibition decreases inflammation and relieves cancer induced bone pain via reducing Drp1-mediated mitochondrial damage. J Cell Mol Med 2022; 26:3965-3976. [PMID: 35689386 PMCID: PMC9279596 DOI: 10.1111/jcmm.17432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/24/2022] [Accepted: 05/20/2022] [Indexed: 12/19/2022] Open
Abstract
Bone is the preferential site of metastasis for breast cancer. Invasion of cancer cells induces the destruction of bone tissue and damnification of peripheral nerves and consequently induced central sensitization which contributes to severe pain. Herein, cancer induced bone pain (CIBP) rats exhibited destruction of tibia, mechanical allodynia and spinal inflammation. Inflammatory response mainly mediated by astrocyte and microglia in central nervous system. Our immunofluorescence analysis revealed activation of spinal astrocytes and microglia in CIBP rats. Transmission electron microscopy (TEM) observations of mitochondrial outer membrane disruption and cristae damage in spinal mitochondria of CIBP rats. Proteomics analysis identified abnormal expression of proteins related to mitochondrial organization and function. Intrathecally, injection of GSK‐3β activity inhibitor TDZD‐8 significantly attenuated Drp1‐mediated mitochondrial fission and recovered mitochondrial function. Inhibition of GSK‐3β activity also suppressed NLRP3 inflammasome cascade and consequently decreased mechanical pain sensitivity of CIBP rats. For cell research, TDZD‐8 treatment significantly reversed TNF‐α induced mitochondrial membrane potential (MMP) deficiency and high mitochondrial reactive oxygen species level. Taken together, GSK‐3β inhibition by TDZD‐8 decreases spinal inflammation and relieves cancer induced bone pain via reducing Drp1‐mediated mitochondrial damage.
Collapse
Affiliation(s)
- He-Yu Yang
- School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| | - Feng Zhang
- School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| | - Meng-Lin Cheng
- School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, China
| | - Ji Wu
- Clinical College of Youjiang, Medical University for Nationalities, Baise, Guangxi, China
| | - Min Xie
- School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, China
| | - Liang-Zhu Yu
- School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, China
| | - Ling Liu
- School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, China
| | - Jun Xiong
- School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| | - Hai-Li Zhu
- School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
17
|
Trindade da Silva CA, Clemente-Napimoga JT, Abdalla HB, Basting RT, Napimoga MH. Peroxisome proliferator-activated receptor-gamma (PPARγ) and its immunomodulation function: current understanding and future therapeutic implications. Expert Rev Clin Pharmacol 2022; 15:295-303. [PMID: 35481412 DOI: 10.1080/17512433.2022.2071697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION : Pain is a multidimensional experience involving the biological, psychological, and social dimensions of each individual. Particularly, the biological aspects of pain conditions are a response of the neuroimmunology system and the control of painful conditions is a worldwide challenge for researchers. Although years of investigation on pain experience and treatment exist, the high prevalence of chronic pain is still a fact. AREAS COVERED : Peroxisome proliferator-activated receptor-gamma (PPARγ) is a ligand-activated transcription factor belonging to the nuclear hormone receptor superfamily. It regulates several metabolic pathways, including lipid biosynthesis and glucose metabolism, when activated. However, PPARγ activation also has a critical immunomodulatory and neuroprotective effect. EXPERT OPINION : This review summarizes the evidence of synthetic or natural PPARγ ligands such as 15d-PGJ2, epoxyeicosatrienoic acids, thiazolidinediones, and specialized pro-resolving mediators, representing an interesting therapeutic tool for pain control.
Collapse
Affiliation(s)
- Carlos Antonio Trindade da Silva
- Laboratoy of Neuroimmune Interface of Pain Research, Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic Campinas, SP, Brazil
| | - Juliana Trindade Clemente-Napimoga
- Laboratoy of Neuroimmune Interface of Pain Research, Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic Campinas, SP, Brazil
| | - Henrique Ballassini Abdalla
- Laboratoy of Neuroimmune Interface of Pain Research, Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic Campinas, SP, Brazil
| | - Rosanna Tarkany Basting
- Laboratoy of Neuroimmune Interface of Pain Research, Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic Campinas, SP, Brazil
| | - Marcelo Henrique Napimoga
- Laboratoy of Neuroimmune Interface of Pain Research, Faculdade São Leopoldo Mandic, Instituto de Pesquisas São Leopoldo Mandic Campinas, SP, Brazil
| |
Collapse
|
18
|
A metastasis-on-a-chip approach to explore the sympathetic modulation of breast cancer bone metastasis. Mater Today Bio 2022; 13:100219. [PMID: 35243294 PMCID: PMC8857466 DOI: 10.1016/j.mtbio.2022.100219] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 01/09/2023]
Abstract
Organ-on-a-chip models have emerged as a powerful tool to model cancer metastasis and to decipher specific crosstalk between cancer cells and relevant regulators of this particular niche. Recently, the sympathetic nervous system (SNS) was proposed as an important modulator of breast cancer bone metastasis. However, epidemiological studies concerning the benefits of the SNS targeting drugs on breast cancer survival and recurrence remain controversial. Thus, the role of SNS signaling over bone metastatic cancer cellular processes still requires further clarification. Herein, we present a novel humanized organ-on-a-chip model recapitulating neuro-breast cancer crosstalk in a bone metastatic context. We developed and validated an innovative three-dimensional printing based multi-compartment microfluidic platform, allowing both selective and dynamic multicellular paracrine signaling between sympathetic neurons, bone tropic breast cancer cells and osteoclasts. The selective multicellular crosstalk in combination with biochemical, microscopic and proteomic profiling show that synergistic paracrine signaling from sympathetic neurons and osteoclasts increase breast cancer aggressiveness demonstrated by augmented levels of pro-inflammatory cytokines (e.g. interleukin-6 and macrophage inflammatory protein 1α). Overall, this work introduced a novel and versatile platform that could potentially be used to unravel new mechanisms involved in intracellular communication at the bone metastatic niche.
Collapse
|
19
|
Yoneda T, Hiasa M, Okui T, Hata K. Sensory nerves: A driver of the vicious cycle in bone metastasis? J Bone Oncol 2021; 30:100387. [PMID: 34504741 PMCID: PMC8411232 DOI: 10.1016/j.jbo.2021.100387] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/04/2022] Open
Abstract
Bone is one of the preferential target organs of cancer metastasis. Bone metastasis is associated with various complications, of which bone pain is most common and debilitating. The cancer-associated bone pain (CABP) is induced as a consequence of increased neurogenesis, reprogramming and axonogenesis of sensory nerves (SNs) in harmony with sensitization and excitation of SNs in response to the tumor microenvironment created in bone. Importantly, CABP is associated with increased mortality, of which precise cellular and molecular mechanism remains poorly understood. Bone is densely innervated by autonomic nerves (ANs) (sympathetic and parasympathetic nerves) and SNs. Recent studies have shown that the nerves innervating the tumor microenvironment establish intimate communications with tumors, producing various stimuli for tumors to progress and disseminate. In this review, our current understanding of the role of SNs innervating bone in the pathophysiology of CABP will be overviewed. Then the hypothesis that SNs facilitate cancer progression in bone will be discussed in conjunction with our recent findings that SNs play an important role not only in the induction of CABP but also the progression of bone metastasis using a preclinical model of CABP. It is suggested that SNs are a critical component of the bone microenvironment that drives the vicious cycle between bone and cancer to progress bone metastasis. Suppression of the activity of bone-innervating SNs may have potential therapeutic effects on the progression of bone metastasis and induction of CABP.
Collapse
Key Words
- AN, autonomic nerve
- BDNF, brain-derived neurotrophic factor
- BMP, bone morphogenetic protein
- BMSC, bone marrow stromal cells
- Bone microenvironment
- CABP, cancer-associated bone pain
- CALCRL, calcitonin receptor-like receptor
- CAP, cancer-associated pain
- CCL2, C–C motif chemokine 2
- CGRP, calcitonin gene-related peptide
- CNS, central nervous system
- COX, cyclooxygenase
- CREB, cyclic AMP-responsive element-binding protein
- CRPC, castration-resistant prostate cancer
- CXCL1, C-X-C Motif Chemokine Ligand 1
- CXCL2, C-X-C Motif Chemokine Ligand 2
- Cancer-associated bone pain
- DRG, dorsal root ganglion
- ERK1/2, extracellular receptor kinase ½
- G-CSF, granulocyte colony-stimulating factor
- GDNF, glial-derived neurotrophic factor
- HGF, hepatocyte growth factor
- HIF-1α, hypoxia-inducible transcription factor-1α
- HMGB-1, high mobility group box-1
- HSCs, hematopoietic stem cells
- HUVECs, human umbilical vein endothelial cells
- IL-1β, interleukin 1β
- MM, multiple myeloma
- MOR, mu-opioid receptor
- NE, norepinephrine
- NGF, nerve growth factor
- NI, nerve invasion
- NPY, neuropeptide Y
- NSAIDs, nonsteroidal anti-inflammatory drugs
- Nociceptors
- OA, osteoarthritis
- OPG, osteoprotegerin
- PACAP, pituitary adenylate cyclase-activating peptide
- PD-1, programmed cell death-1
- PD-L1, programmed death-ligand 1
- PDAC, pancreatic ductal adenocarcinoma
- PGE2, prostaglandin E2
- PNI, perineural invasion
- PanIN, pancreatic intraepithelial neoplasia
- Perineural invasion
- RAGE, receptor for advanced glycation end products
- RAMP1, receptor activity modifying protein 1
- RANKL, receptor activator of NF-κB ligand
- RTX, resiniferatoxin
- SN, sensory nerves
- SP, substance P
- SRE, skeletal-related event
- Sensory nerves
- TGFβ, transforming growth factor β
- TNFα, tumor necrosis factor α
- TRPV1
- TrkA, tyrosine kinase receptor type 1
- VEGF, vascular endothelial growth factor
- VIP, vasoactive intestinal peptide
- a3V-H+-ATPase, a3 isoform vacuolar proton pump
Collapse
Affiliation(s)
- Toshiyuki Yoneda
- Department of Biochemistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| | - Masahiro Hiasa
- Department of Biomaterials and Bioengineerings, University of Tokushima Graduate School of Dentistry, Tokushima, Japan
| | - Tatsuo Okui
- Department of Oral and Maxillofacial Surgery and Biopathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama, Japan
| | - Kenji Hata
- Department of Biochemistry, Osaka University Graduate School of Dentistry, Osaka, Japan
| |
Collapse
|
20
|
Scheff NN, Saloman JL. Neuroimmunology of cancer and associated symptomology. Immunol Cell Biol 2021; 99:949-961. [PMID: 34355434 DOI: 10.1111/imcb.12496] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 11/27/2022]
Abstract
Evolutionarily the nervous system and immune cells have evolved to communicate with each other to control inflammation and host responses against injury. Recent findings in neuroimmune communication demonstrate that these mechanisms extend to cancer initiation and progression. Lymphoid structures and tumors, which are often associated with inflammatory infiltrate, are highly innervated by multiple nerve types (e.g. sympathetic, parasympathetic, sensory). Recent preclinical and clinical studies demonstrate that targeting the nervous system could be a therapeutic strategy to promote anti-tumor immunity while simultaneously reducing cancer-associated neurological symptoms, such as chronic pain, fatigue, and cognitive impairment. Sympathetic nerve activity is associated with physiological or psychological stress, which can be induced by tumor development and cancer diagnosis. Targeting the stress response through suppression of sympathetic activity or activation of parasympathetic activity has been shown to drive activation of effector T cells and inhibition of myeloid derived suppressor cells within the tumor. Additionally, there is emerging evidence that sensory nerves may regulate tumor growth and metastasis by promoting or inhibiting immunosuppression in a tumor-type specific manner. Since neural effects are often tumor-type specific, further study is required to optimize clinical therapeutic strategies. This review examines the emerging evidence that neuroimmune communication can regulate anti-tumor immunity as well as contribute to development of cancer-related neurological symptoms.
Collapse
Affiliation(s)
- Nicole N Scheff
- Biobehavioral Cancer Control Program UPMC Hillman Cancer Center, Center for Neuroscience, and Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jami L Saloman
- Biobehavioral Cancer Control Program UPMC Hillman Cancer Center, Center for Neuroscience, and Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
21
|
Wang K, Donnelly CR, Jiang C, Liao Y, Luo X, Tao X, Bang S, McGinnis A, Lee M, Hilton MJ, Ji RR. STING suppresses bone cancer pain via immune and neuronal modulation. Nat Commun 2021; 12:4558. [PMID: 34315904 PMCID: PMC8316360 DOI: 10.1038/s41467-021-24867-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 07/07/2021] [Indexed: 02/07/2023] Open
Abstract
Patients with advanced stage cancers frequently suffer from severe pain as a result of bone metastasis and bone destruction, for which there is no efficacious treatment. Here, using multiple mouse models of bone cancer, we report that agonists of the immune regulator STING (stimulator of interferon genes) confer remarkable protection against cancer pain, bone destruction, and local tumor burden. Repeated systemic administration of STING agonists robustly attenuates bone cancer-induced pain and improves locomotor function. Interestingly, STING agonists produce acute pain relief through direct neuronal modulation. Additionally, STING agonists protect against local bone destruction and reduce local tumor burden through modulation of osteoclast and immune cell function in the tumor microenvironment, providing long-term cancer pain relief. Finally, these in vivo effects are dependent on host-intrinsic STING and IFN-I signaling. Overall, STING activation provides unique advantages in controlling bone cancer pain through distinct and synergistic actions on nociceptors, immune cells, and osteoclasts.
Collapse
Affiliation(s)
- Kaiyuan Wang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA.
| | - Christopher R Donnelly
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA.
| | - Changyu Jiang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Yihan Liao
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
- Department of Orthopedic Surgery, Duke University Medical Center, Durham, NC, USA
| | - Xin Luo
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Xueshu Tao
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Sangsu Bang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Aidan McGinnis
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Michael Lee
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Matthew J Hilton
- Department of Orthopedic Surgery, Duke University Medical Center, Durham, NC, USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA.
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|