1
|
Essat A, Chapel A, Amokrane K, Monceaux V, Didier C, Melard A, Gardiennet E, Avettand-Fenoel V, Orr S, Boufassa F, Lambotte O, Müller-Trutwin M, Lécuroux C, Chéret A, Goujard C, Rouzioux C, Caillat-Zucman S, Hocqueloux L, Scott-Algara D, Meyer L, Sáez-Cirión A. A genetic fingerprint associated with durable HIV remission after interruption of antiretroviral treatment: ANRS VISCONTI/PRIMO. MED 2025:100670. [PMID: 40300610 DOI: 10.1016/j.medj.2025.100670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/27/2024] [Accepted: 03/19/2025] [Indexed: 05/01/2025]
Abstract
BACKGROUND There is currently no curative treatment for HIV-1 infection. However, some individuals (defined as posttreatment controllers) durably control viremia after the discontinuation of antiretroviral therapy (ART). Although the ability to achieve this HIV-1 remission status is enhanced by early treatment initiation, the mechanisms leading to posttreatment HIV-1 control remain unclear. METHODS We retrospectively explored the immunogenetic characteristics of long-term posttreatment controllers from the ANRS VISCONTI study and persons monitored since primary HIV-1 infection in the ANRS PRIMO cohort and evaluated their influence on clinical parameters and outcome after ART discontinuation. FINDINGS We identified a major histocompatibility complex (MHC)-related fingerprint favoring sustained HIV-1 remission. HLA-B∗35 alleles, which are associated with rapid progression to AIDS during natural HIV-1 infection, were paradoxically overrepresented among posttreatment controllers and had a positive impact on outcome after treatment discontinuation in people who began therapy during primary infection. Specifically, the influence of HLA-B∗35 alleles was observed when they were carried in combination with other HLA class I alleles expressing Bw4 and C2 ligands of killer immunoglobulin-like receptors (KIRs) in a genetic context that favors KIR education of natural killer (NK) cells (Bw4TTC2 genotype). Accordingly, posttreatment controllers with HLA-B∗35 alleles carry distinct KIR genotypes and NK cells. CONCLUSIONS The combination of HLA-B∗35 with Bw4TTC2 genotype, associated with KIR education of NK cells, was abundant among posttreatment HIV-1 controllers and promoted viral control after interruption of early-initiated antiretroviral treatment. These results support a role of NK cells in sustained HIV-1 remission. FUNDING The VISCONTI study and the PRIMO cohort are funded by the ANRS-MIE.
Collapse
Affiliation(s)
- Asma Essat
- Université Paris-Saclay, Inserm CESP U1018, AP-HP, Department of Public Health, Bicêtre Hospital, 94270 Paris-Saclay, France
| | - Anaïs Chapel
- Institut Pasteur, Université Paris Cité, Viral Reservoirs and Immune Control Unit, 75015 Paris, France; Institut Pasteur, Université Paris Cité, HIV Inflammation and Persistence Unit, 75015 Paris, France
| | - Kahina Amokrane
- AP-HP, Hôpital Saint-Louis, Université Paris Cité, Laboratoire d'Immunologie et Histocompatibilité, 75010 Paris, France
| | - Valérie Monceaux
- Institut Pasteur, Université Paris Cité, Viral Reservoirs and Immune Control Unit, 75015 Paris, France; Institut Pasteur, Université Paris Cité, HIV Inflammation and Persistence Unit, 75015 Paris, France
| | - Céline Didier
- Institut Pasteur, Unité Régulation des Infections Rétrovirales, 75015 Paris, France
| | - Adeline Melard
- Université Paris Cité, Faculté de Médecine, 75015 Paris, France; INSERM U1016, CNRS UMR8104, Institut Cochin, 75014 Paris, France
| | - Elise Gardiennet
- Université Paris Cité, Faculté de Médecine, 75015 Paris, France; INSERM U1016, CNRS UMR8104, Institut Cochin, 75014 Paris, France
| | - Véronique Avettand-Fenoel
- Université Paris Cité, Faculté de Médecine, 75015 Paris, France; INSERM U1016, CNRS UMR8104, Institut Cochin, 75014 Paris, France; Université d'Orléans, LI(2)RSO, CHU Orléans, Virologie, 45100 Orléans, France
| | - Sylvie Orr
- Université Paris-Saclay, Inserm CESP U1018, AP-HP, Department of Public Health, Bicêtre Hospital, 94270 Paris-Saclay, France
| | - Faroudy Boufassa
- Université Paris-Saclay, Inserm CESP U1018, AP-HP, Department of Public Health, Bicêtre Hospital, 94270 Paris-Saclay, France
| | - Olivier Lambotte
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological, Bacterial Diseases (IMVA-HB/IDMIT/UMRS1184), 94270 Le Kremlin Bicêtre, France
| | - Michaela Müller-Trutwin
- Institut Pasteur, Université Paris Cité, HIV Inflammation and Persistence Unit, 75015 Paris, France
| | - Camille Lécuroux
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological, Bacterial Diseases (IMVA-HB/IDMIT/UMRS1184), 94270 Le Kremlin Bicêtre, France
| | - Antoine Chéret
- INSERM U1016, CNRS UMR8104, Institut Cochin, 75014 Paris, France; Université Paris-Saclay, AP-HP, Hôpital Bicêtre, DMU 7, Inserm U1018, CESP, 94270 Le Kremlin Bicêtre, France
| | - Cécile Goujard
- Université Paris-Saclay, AP-HP, Hôpital Bicêtre, DMU 7, Inserm U1018, CESP, 94270 Le Kremlin Bicêtre, France
| | | | - Sophie Caillat-Zucman
- AP-HP, Hôpital Saint-Louis, Université Paris Cité, Laboratoire d'Immunologie et Histocompatibilité, 75010 Paris, France
| | - Laurent Hocqueloux
- Centre Hospitalier Universitaire, Service des Maladies Infectieuses, 45100 Orléans, France
| | - Daniel Scott-Algara
- Institut Pasteur, Université Paris Cité, Lymphocyte Cell Biology Unit, 75015 Paris, France
| | - Laurence Meyer
- Université Paris-Saclay, Inserm CESP U1018, AP-HP, Department of Public Health, Bicêtre Hospital, 94270 Paris-Saclay, France
| | - Asier Sáez-Cirión
- Institut Pasteur, Université Paris Cité, Viral Reservoirs and Immune Control Unit, 75015 Paris, France; Institut Pasteur, Université Paris Cité, HIV Inflammation and Persistence Unit, 75015 Paris, France.
| |
Collapse
|
2
|
Valenzuela-Ponce H, Carbajal C, Soto-Nava M, Tapia-Trejo D, García-Morales C, Murillo W, Lorenzana I, Reyes-Terán G, Ávila-Ríos S. Honduras HIV cohort: HLA class I and CCR5-Δ32 profiles and their associations with HIV disease outcome. Microbiol Spectr 2023; 11:e0161323. [PMID: 37962394 PMCID: PMC10714756 DOI: 10.1128/spectrum.01613-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/03/2023] [Indexed: 11/15/2023] Open
Abstract
IMPORTANCE We identify both canonical and novel human leukocyte antigen (HLA)-HIV associations, providing a first step toward improved understanding of HIV immune control among the understudied Honduras Mestizo population. Our results are relevant to understanding the protective or detrimental effects of HLA subtypes in Latin America because their unique HLA diversity poses challenges for designing vaccines against HIV and interpreting results from such vaccine trials. Likewise, the description of the HLA profile in an understudied population that shows a unique HLA immunogenetic background is not only relevant for HIV immunology but also relevant in population genetics, molecular anthropology, susceptibility to other infections, autoimmune diseases, and allograft transplantation.
Collapse
Affiliation(s)
- Humberto Valenzuela-Ponce
- CIENI Centro de Investigación en Enfermedades Respiratorias, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Candy Carbajal
- Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - Maribel Soto-Nava
- CIENI Centro de Investigación en Enfermedades Respiratorias, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Daniela Tapia-Trejo
- CIENI Centro de Investigación en Enfermedades Respiratorias, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Claudia García-Morales
- CIENI Centro de Investigación en Enfermedades Respiratorias, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Wendy Murillo
- Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - Ivette Lorenzana
- Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - Gustavo Reyes-Terán
- Comisión Coordinadora de Institutos Nacional de Salud y Hospitales de Alta Especialidad, Secretar ´ıa de Salud, Mexico City, Mexico
| | - Santiago Ávila-Ríos
- CIENI Centro de Investigación en Enfermedades Respiratorias, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| |
Collapse
|
3
|
Immunological Control of HIV-1 Disease Progression by Rare Protective HLA Allele. J Virol 2022; 96:e0124822. [DOI: 10.1128/jvi.01248-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HLA-B57 is a relatively rare allele around world and the strongest protective HLA allele in Caucasians and African black individuals infected with HIV-1. Previous studies suggested that the advantage of this allele in HIV-1 disease progression is due to a strong functional ability of HLA-B57-restricted Gag-specific T cells and lower fitness of mutant viruses selected by the T cells.
Collapse
|
4
|
Pereira LMS, França EDS, Costa IB, Jorge EVO, Mattos PJDSM, Freire ABC, Ramos FLDP, Monteiro TAF, Macedo O, Sousa RCM, Dos Santos EJM, Freitas FB, Costa IB, Vallinoto ACR. HLA-B*13, B*35 and B*39 Alleles Are Closely Associated With the Lack of Response to ART in HIV Infection: A Cohort Study in a Population of Northern Brazil. Front Immunol 2022; 13:829126. [PMID: 35371095 PMCID: PMC8966405 DOI: 10.3389/fimmu.2022.829126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Immune reconstitution failure after HIV treatment is a multifactorial phenomenon that may also be associated with a single polymorphism of human leukocyte antigen (HLA); however, few reports include patients from the Brazilian Amazon. Our objective was to evaluate the association of the immunogenic profile of the “classical” HLA-I and HLA-II loci with treatment nonresponse in a regional cohort monitored over 24 months since HIV diagnosis. Materials and Methods Treatment-free participants from reference centers in the state of Pará, Brazil, were enrolled. Infection screening was performed using enzyme immunoassays (Murex AG/AB Combination DiaSorin, UK) and confirmed by immunoblots (Bio-Manguinhos, FIOCRUZ). Plasma viral load was quantified by real-time PCR (ABBOTT, Chicago, Illinois, USA). CD4+/CD8+ T lymphocyte quantification was performed by immunophenotyping and flow cytometry (BD Biosciences, San Jose, CA, USA). Infection was monitored via test and logistics platforms (SISCEL and SICLOM). Therapeutic response failure was inferred based on CD4+ T lymphocyte quantification after 1 year of therapy. Loci A, B and DRB1 were genotyped using PCR-SSO (One Lambda Inc., Canoga Park, CA, USA). Statistical tests were applied using GENEPOP, GraphPad Prism 8.4.3 and BioEstat 5.3. Results Of the 270 patients monitored, 134 responded to treatment (CD4+ ≥ 500 cells/µL), and 136 did not respond to treatment (CD4+ < 500 cells/µL). The allele frequencies of the loci were similar to heterogeneous populations. The allelic profile of locus B was statistically associated with treatment nonresponse, and the B*13, B*35 and B*39 alleles had the greatest probabilistic influence. The B*13 allele had the highest risk of treatment nonresponse, and carriers of the allele had a detectable viral load and a CD4+ T lymphocyte count less than 400 cells/µL with up to 2 years of therapy. The B*13 allele was associated with a switch in treatment regimens, preferably to efavirenz (EFZ)-based regimens, and among those who switched regimens, half had a history of coinfection with tuberculosis. Conclusions The allelic variants of the B locus are more associated with non-response to therapy in people living with HIV (PLHIV) from a heterogeneous population in the Brazilian Amazon.
Collapse
Affiliation(s)
| | | | - Iran Barros Costa
- Epstein-Barr Virus Laboratory, Virology Unit, Evandro Chagas Institute, Ananindeua, Brazil
| | | | | | | | | | | | - Olinda Macedo
- Retrovirus Laboratory, Virology Unit, Evandro Chagas Institute, Ananindeua, Brazil
| | - Rita Catarina Medeiros Sousa
- Epstein-Barr Virus Laboratory, Virology Unit, Evandro Chagas Institute, Ananindeua, Brazil.,School of Medicine, Federal University of Pará, Belém, Brazil
| | - Eduardo José Melo Dos Santos
- Laboratory of Human and Medical Genetics, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil.,Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | | | - Igor Brasil Costa
- Epstein-Barr Virus Laboratory, Virology Unit, Evandro Chagas Institute, Ananindeua, Brazil.,Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Antonio Carlos Rosário Vallinoto
- Virology Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil.,Graduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| |
Collapse
|
5
|
Murakoshi H, Chikata T, Akahoshi T, Zou C, Borghan MA, Van Tran G, Nguyen TV, Van Nguyen K, Kuse N, Takiguchi M. Critical effect of Pol escape mutations associated with detrimental allele HLA-C*15: 05 on clinical outcome in HIV-1 subtype A/E infection. AIDS 2021; 35:33-43. [PMID: 33031103 PMCID: PMC7752225 DOI: 10.1097/qad.0000000000002704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 01/15/2023]
Abstract
OBJECTIVE The mechanism explaining the role of detrimental HLA alleles in HIV-1 infections has been investigated in very few studies. HLA-A*29:01-B*07:05-C*15:05 is a detrimental haplotype in HIV-1 subtype A/E-infected Vietnamese individuals. The accumulation of mutations at Pol 653/657 is associated with a poor clinical outcome in these individuals. However, the detrimental HLA allele and the mechanism responsible for its detrimental effect remains unknown. Therefore, in this current study we identified the detrimental HLA allele and investigated the mechanism responsible for the detrimental effect. DESIGN AND METHODS A T-cell epitope including Pol 653/657 and its HLA restriction were identified by using overlapping HIV-1 peptides and cell lines expressing a single HLA. The effect of the mutations on the T-cell recognition of HIV-1-infected cells was investigated by using target cells infected with the mutant viruses. The effect of these mutations on the clinical outcome was analyzed in 74 HLA-C*15:05 Vietnamese infected with the subtype A/E virus. RESULTS We identified HLA-C*15:05-restricted SL9 epitope including Pol 653/657. PolS653A/T/L mutations within this epitope critically impaired the T-cell recognition of HIV-1-infected cells, indicating that these mutations had escaped from the T cells. T-cell responders infected with these mutants showed significantly lower CD4 T-cell counts than those with the wild-type virus or Pol S653K/Q mutants, which are not associated with HLA-C*15:05. CONCLUSION The accumulation of Pol S653A/T/L escape mutants critically affected the control of HIV-1 by SL9-specific T cells and led to a poor clinical outcome in the subtype A/E-infected individuals having the detrimental HLA-C*15:05 allele.
Collapse
Affiliation(s)
- Hayato Murakoshi
- Joint Research Center for Human Retrovirus Infection
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Takayuki Chikata
- Joint Research Center for Human Retrovirus Infection
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | | | - Chengcheng Zou
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Mohamed Ali Borghan
- Department of Physiology and Biophysics, College of Medicine and Health Sciences, National University of Science and Technology, Sohar, Sultanate of Oman
| | - Giang Van Tran
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
- National Hospital of Tropical Diseases
- Hanoi Medical University, Hanoi, Vietnam
| | - Trung Vu Nguyen
- National Hospital of Tropical Diseases
- Hanoi Medical University, Hanoi, Vietnam
| | | | - Nozomi Kuse
- Joint Research Center for Human Retrovirus Infection
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Masafumi Takiguchi
- Joint Research Center for Human Retrovirus Infection
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
6
|
Role of Escape Mutant-Specific T Cells in Suppression of HIV-1 Replication and Coevolution with HIV-1. J Virol 2020; 94:JVI.01151-20. [PMID: 32699092 PMCID: PMC7495385 DOI: 10.1128/jvi.01151-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 07/18/2020] [Indexed: 12/20/2022] Open
Abstract
Escape mutant-specific CD8+ T cells were elicited in some individuals infected with escape mutants, but it is still unknown whether these CD8+ T cells can suppress HIV-1 replication. We clarified that Gag280V mutation were selected by HLA-B*52:01-restricted CD8+ T cells specific for the GagRI8 protective epitope, whereas the Gag280V virus could frequently elicit GagRI8-6V mutant-specific CD8+ T cells. GagRI8-6V mutant-specific T cells had a strong ability to suppress the replication of the Gag280V mutant virus both in vitro and in vivo. In addition, these T cells contributed to the selection of wild-type virus in HLA-B*52:01+ Japanese individuals. We for the first time demonstrated that escape mutant-specific CD8+ T cells can suppress HIV-1 replication and play an important role in the coevolution with HIV-1. Thus, the present study highlighted an important role of escape mutant-specific T cells in the control of HIV-1 and coevolution with HIV-1. The accumulation of HIV-1 escape mutations affects HIV-1 control by HIV-1-specific T cells. Some of these mutations can elicit escape mutant-specific T cells, but it still remains unclear whether they can suppress the replication of HIV-1 mutants. It is known that HLA-B*52:01-restricted RI8 (Gag 275 to 282; RMYSPTSI) is a protective T cell epitope in HIV-1 subtype B-infected Japanese individuals, though 3 Gag280A/S/V mutations are found in 26% of them. Gag280S and Gag280A were HLA-B*52:01-associated mutations, whereas Gag280V was not, implying a different mechanism for the accumulation of Gag280 mutations. In this study, we investigated the coevolution of HIV-1 with RI8-specific T cells and suppression of HIV-1 replication by its escape mutant-specific T cells both in vitro and in vivo. HLA-B*52:01+ individuals infected with Gag280A/S mutant viruses failed to elicit these mutant epitope-specific T cells, whereas those with the Gag280V mutant one effectively elicited RI8-6V mutant-specific T cells. These RI8-6V-specific T cells suppressed the replication of Gag280V virus and selected wild-type virus, suggesting a mechanism affording no accumulation of the Gag280V mutation in the HLA-B*52:01+ individuals. The responders to wild-type (RI8-6T) and RI8-6V mutant peptides had significantly higher CD4 counts than nonresponders, indicating that the existence of not only RI8-6T-specific T cells but also RI8-6V-specific ones was associated with a good clinical outcome. The present study clarified the role of escape mutant-specific T cells in HIV-1 evolution and in the control of HIV-1. IMPORTANCE Escape mutant-specific CD8+ T cells were elicited in some individuals infected with escape mutants, but it is still unknown whether these CD8+ T cells can suppress HIV-1 replication. We clarified that Gag280V mutation were selected by HLA-B*52:01-restricted CD8+ T cells specific for the GagRI8 protective epitope, whereas the Gag280V virus could frequently elicit GagRI8-6V mutant-specific CD8+ T cells. GagRI8-6V mutant-specific T cells had a strong ability to suppress the replication of the Gag280V mutant virus both in vitro and in vivo. In addition, these T cells contributed to the selection of wild-type virus in HLA-B*52:01+ Japanese individuals. We for the first time demonstrated that escape mutant-specific CD8+ T cells can suppress HIV-1 replication and play an important role in the coevolution with HIV-1. Thus, the present study highlighted an important role of escape mutant-specific T cells in the control of HIV-1 and coevolution with HIV-1.
Collapse
|
7
|
Impact of HLA-B*52:01-Driven Escape Mutations on Viral Replicative Capacity. J Virol 2020; 94:JVI.02025-19. [PMID: 32321820 DOI: 10.1128/jvi.02025-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/10/2020] [Indexed: 11/20/2022] Open
Abstract
HLA-B*52:01 is strongly associated with protection against HIV disease progression. However, the mechanisms of HLA-B*52:01-mediated immune control have not been well studied. We here describe a cohort with a majority of HIV C-clade-infected individuals from Delhi, India, where HLA-B*52:01 is highly prevalent (phenotypic frequency, 22.5%). Consistent with studies of other cohorts, expression of HLA-B*52:01 was associated with high absolute CD4 counts and therefore a lack of HIV disease progression. We here examined the impact of HLA-B*52:01-associated viral polymorphisms within the immunodominant C clade Gag epitope RMTSPVSI (here, RI8; Gag residues 275 to 282) on viral replicative capacity (VRC) since HLA-mediated reduction in VRC is a central mechanism implicated in HLA-associated control of HIV. We observed in HLA-B*52:01-positive individuals a higher frequency of V280T, V280S, and V280A variants within RI8 (P = 0.0001). Each of these variants reduced viral replicative capacity in C clade viruses, particularly the V280A variant (P < 0.0001 in both the C clade consensus and in the Indian study cohort consensus p24 Gag backbone), which was also associated with significantly higher absolute CD4 counts in the donors (median, 941.5 cells/mm3; P = 0.004). A second HLA-B*52:01-associated mutation, K286R, flanking HLA-B*52:01-RI8, was also analyzed. Although selected in HLA-B*52:01-positive subjects often in combination with the V280X variants, this mutation did not act as a compensatory mutant but, indeed, further reduced VRC. These data are therefore consistent with previous work showing that HLA-B molecules that are associated with immune control of HIV principally target conserved epitopes within the capsid protein, escape from which results in a significant reduction in VRC.IMPORTANCE Few studies have addressed the mechanisms of immune control in HIV-infected subjects in India, where an estimated 2.7 million people are living with HIV. We focus here on a study cohort in Delhi on one of the most prevalent HLA-B alleles, HLA-B*52:01, present in 22.5% of infected individuals. HLA-B*52:01 has consistently been shown in other cohorts to be associated with protection against HIV disease progression, but studies have been limited by the low prevalence of this allele in North America and Europe. Among the C-clade-infected individuals, we show that HLA-B*52:01 is the most protective of all the HLA-B alleles expressed in the Indian cohort and is associated with the highest absolute CD4 counts. Further, we show that the mechanism by which HLA-B*52:01 mediates immune protection is, at least in part, related to the inability of HIV to evade the HLA-B*52:01-restricted p24 Gag-specific CD8+ T-cell response without incurring a significant loss to viral replicative capacity.
Collapse
|
8
|
Li L, Liu Y, Gorny MK. Association of Diverse Genotypes and Phenotypes of Immune Cells and Immunoglobulins With the Course of HIV-1 Infection. Front Immunol 2018; 9:2735. [PMID: 30534128 PMCID: PMC6275200 DOI: 10.3389/fimmu.2018.02735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/06/2018] [Indexed: 12/19/2022] Open
Abstract
Disease progression among HIV-1-infected individuals varies widely, but the mechanisms underlying this variability remains unknown. Distinct disease outcomes are the consequences of many factors working in concert, including innate and adaptive immune responses, cell-mediated and humoral immunity, and both genetic and phenotypic factors. Current data suggest that these multifaceted aspects in infected individuals should be considered as a whole, rather than as separate unique elements, and that analyses must be performed in greater detail in order to meet the requirements of personalized medicine and guide optimal vaccine design. However, the wide adoption of antiretroviral therapy (ART) influences the implementation of systematic analyses of the HIV-1-infected population. Consequently, fewer data will be available for acquisition in the future, preventing the comprehensive investigations required to elucidate the underpinnings of variability in disease outcome. This review seeks to recapitulate the distinct genotypic and phenotypic features of the immune system, focusing in particular on comparing the surface proteins of immune cells among individuals with different HIV infection outcomes.
Collapse
Affiliation(s)
- Liuzhe Li
- Department of Pathology, New York University School of Medicine, New York, NY, United States
| | - Yan Liu
- Institute of Pathogenic Biology, Medical College, University of South China, Hengyang, China
| | - Miroslaw K Gorny
- Department of Pathology, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
9
|
Murakoshi H, Koyanagi M, Akahoshi T, Chikata T, Kuse N, Gatanaga H, Rowland-Jones SL, Oka S, Takiguchi M. Impact of a single HLA-A*24:02-associated escape mutation on the detrimental effect of HLA-B*35:01 in HIV-1 control. EBioMedicine 2018; 36:103-112. [PMID: 30249546 PMCID: PMC6197679 DOI: 10.1016/j.ebiom.2018.09.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/04/2018] [Accepted: 09/12/2018] [Indexed: 01/06/2023] Open
Abstract
Background HLA-B*35 is an HLA allele associated with rapid progression to AIDS. However, a mechanism underlying the detrimental effect of HLA-B*35 on disease outcome remains unknown. Recent studies demonstrated that most prevalent subtype HLA-B*35:01 is a detrimental allele in HIV-1 clade B-infected individuals. We here investigated the effect of mutations within the epitopes on HLA-B*35:01-restricted CD8+ T cells having abilities to suppress HIV-1 replication. Methods We analyzed 16 HLA-B*35:01-restricted epitope-specific T cells in 63 HIV-1 clade B-infected Japanese B*35:01+ individuals and identified HLA-B*35:01-restricted CD8+ T cells having abilities to suppress HIV-1 replication. We further analyzed the effect of HLA-associated mutations on the ability of these T cells. Findings The breadth of T cell responses to 4 epitopes was inversely associated with plasma viral load (pVL). However, the accumulation of an Y135F mutation in NefYF9 out of the 4 epitopes, which is selected by HLA-A*24:02-restricted T cells, affected the ability of YF9-specific T cells to suppress HIV-1 replication. HLA-B*35:01+ individuals harboring this mutation had much higher pVL than those without it. YF9-specific T cells failed to suppress replication of the Y135F mutant in vitro. These results indicate that this mutation impairs suppression of HIV-1 replication by YF9-specific T cells. Interpretation These findings indicate that the Y135F mutation is a key factor underlying the detrimental effect of HLA-B*35:01 on disease outcomes in HIV-1 clade B-infected individuals. Fund Grants-in-aid for AIDS Research from AMED and for scientific research from the Ministry of Education, Science, Sports, and Culture, Japan. T cells specific for 4 HLA-B*35:01-restricted epitopes have abilities to suppress HIV-1 replication in vivo. An Y135F mutation selected by HLA-A*24:02-restricted T cells affected HIV-1 control by NefYF9-specific T cells in vivo. The NefY135F mutation impaired suppression of HIV-1 replication by NefYF9-specific T cells in vitro.
Collapse
Affiliation(s)
- Hayato Murakoshi
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, Japan
| | - Madoka Koyanagi
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, Japan
| | - Tomohiro Akahoshi
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, Japan
| | - Takayuki Chikata
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, Japan
| | - Nozomi Kuse
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, Japan
| | - Hiroyuki Gatanaga
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, Japan; AIDS Clinical Center, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, Japan
| | - Sarah L Rowland-Jones
- IRCMS, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, Japan; Nuffield Department of Medicine, University of Oxford, Old Road Campus, Headington, Oxford OX3 7FZ, UK
| | - Shinichi Oka
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, Japan; AIDS Clinical Center, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, Japan
| | - Masafumi Takiguchi
- Center for AIDS Research, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto, Japan; Nuffield Department of Medicine, University of Oxford, Old Road Campus, Headington, Oxford OX3 7FZ, UK.
| |
Collapse
|
10
|
Valenzuela-Ponce H, Alva-Hernández S, Garrido-Rodríguez D, Soto-Nava M, García-Téllez T, Escamilla-Gómez T, García-Morales C, Quiroz-Morales VS, Tapia-Trejo D, Del Arenal-Sánchez S, Prado-Galbarro FJ, Hernández-Juan R, Rodríguez-Aguirre E, Murakami-Ogasawara A, Mejía-Villatoro C, Escobar-Urias IY, Pinzón-Meza R, Pascale JM, Zaldivar Y, Porras-Cortés G, Quant-Durán C, Lorenzana I, Meza RI, Palou EY, Manzanero M, Cedillos RA, Aláez C, Brockman MA, Harrigan PR, Brumme CJ, Brumme ZL, Ávila-Ríos S, Reyes-Terán G. Novel HLA class I associations with HIV-1 control in a unique genetically admixed population. Sci Rep 2018; 8:6111. [PMID: 29666450 PMCID: PMC5904102 DOI: 10.1038/s41598-018-23849-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/21/2018] [Indexed: 12/26/2022] Open
Abstract
Associations between HLA class I alleles and HIV progression in populations exhibiting Amerindian and Caucasian genetic admixture remain understudied. Using univariable and multivariable analyses we evaluated HLA associations with five HIV clinical parameters in 3,213 HIV clade B-infected, ART-naïve individuals from Mexico and Central America (MEX/CAM cohort). A Canadian cohort (HOMER, n = 1622) was used for comparison. As expected, HLA allele frequencies in MEX/CAM and HOMER differed markedly. In MEX/CAM, 13 HLA-A, 24 HLA-B, and 14 HLA-C alleles were significantly associated with at least one clinical parameter. These included previously described protective (e.g. B*27:05, B*57:01/02/03 and B*58:01) and risk (e.g. B*35:02) alleles, as well as novel ones (e.g. A*03:01, B*15:39 and B*39:02 identified as protective, and A*68:03/05, B*15:30, B*35:12/14, B*39:01/06, B*39:05~C*07:02, and B*40:01~C*03:04 identified as risk). Interestingly, both protective (e.g. B*39:02) and risk (e.g. B*39:01/05/06) subtypes were identified within the common and genetically diverse HLA-B*39 allele group, characteristic to Amerindian populations. While HLA-HIV associations identified in MEX and CAM separately were similar overall (Spearman's rho = 0.33, p = 0.03), region-specific associations were also noted. The identification of both canonical and novel HLA/HIV associations provides a first step towards improved understanding of HIV immune control among unique and understudied Mestizo populations.
Collapse
Affiliation(s)
- Humberto Valenzuela-Ponce
- National Institute of Respiratory Diseases, CIENI Center for Research in Infectious Diseases, Mexico City, Mexico
| | - Selma Alva-Hernández
- National Institute of Respiratory Diseases, CIENI Center for Research in Infectious Diseases, Mexico City, Mexico
| | - Daniela Garrido-Rodríguez
- National Institute of Respiratory Diseases, CIENI Center for Research in Infectious Diseases, Mexico City, Mexico
| | - Maribel Soto-Nava
- National Institute of Respiratory Diseases, CIENI Center for Research in Infectious Diseases, Mexico City, Mexico
| | - Thalía García-Téllez
- National Institute of Respiratory Diseases, CIENI Center for Research in Infectious Diseases, Mexico City, Mexico.,Institut Pasteur, Unité HIV, Inflammation and Persistence, Paris, France
| | - Tania Escamilla-Gómez
- National Institute of Respiratory Diseases, CIENI Center for Research in Infectious Diseases, Mexico City, Mexico
| | - Claudia García-Morales
- National Institute of Respiratory Diseases, CIENI Center for Research in Infectious Diseases, Mexico City, Mexico
| | | | - Daniela Tapia-Trejo
- National Institute of Respiratory Diseases, CIENI Center for Research in Infectious Diseases, Mexico City, Mexico
| | - Silvia Del Arenal-Sánchez
- National Institute of Respiratory Diseases, CIENI Center for Research in Infectious Diseases, Mexico City, Mexico
| | | | - Ramón Hernández-Juan
- National Institute of Respiratory Diseases, CIENI Center for Research in Infectious Diseases, Mexico City, Mexico
| | - Edna Rodríguez-Aguirre
- National Institute of Respiratory Diseases, CIENI Center for Research in Infectious Diseases, Mexico City, Mexico
| | - Akio Murakami-Ogasawara
- National Institute of Respiratory Diseases, CIENI Center for Research in Infectious Diseases, Mexico City, Mexico
| | | | | | | | | | - Yamitzel Zaldivar
- Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama City, Panama
| | | | | | - Ivette Lorenzana
- Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - Rita I Meza
- Honduras HIV National Laboratory, Tegucigalpa, Honduras
| | - Elsa Y Palou
- Hospital Escuela Universitario, Tegucigalpa, Honduras
| | | | | | - Carmen Aláez
- National Institute of Genomic Medicine, Translational Medicine Laboratory, Mexico City, Mexico
| | - Mark A Brockman
- Simon Fraser University, Faculty of Health Sciences, Burnaby, Canada.,British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
| | | | - Chanson J Brumme
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
| | - Zabrina L Brumme
- Simon Fraser University, Faculty of Health Sciences, Burnaby, Canada.,British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
| | - Santiago Ávila-Ríos
- National Institute of Respiratory Diseases, CIENI Center for Research in Infectious Diseases, Mexico City, Mexico.
| | - Gustavo Reyes-Terán
- National Institute of Respiratory Diseases, CIENI Center for Research in Infectious Diseases, Mexico City, Mexico.
| | | |
Collapse
|
11
|
Chikata T, Tran GV, Murakoshi H, Akahoshi T, Qi Y, Naranbhai V, Kuse N, Tamura Y, Koyanagi M, Sakai S, Nguyen DH, Nguyen DT, Nguyen HT, Nguyen TV, Oka S, Martin MP, Carrington M, Sakai K, Nguyen KV, Takiguchi M. HLA Class I-Mediated HIV-1 Control in Vietnamese Infected with HIV-1 Subtype A/E. J Virol 2018; 92:e01749-17. [PMID: 29237835 PMCID: PMC5809730 DOI: 10.1128/jvi.01749-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/05/2017] [Indexed: 12/21/2022] Open
Abstract
HIV-1-specific cytotoxic T cells (CTLs) play an important role in the control of HIV-1 subtype B or C infection. However, the role of CTLs in HIV-1 subtype A/E infection still remains unclear. Here we investigated the association of HLA class I alleles with clinical outcomes in treatment-naive Vietnamese infected with subtype A/E virus. We found that HLA-C*12:02 was significantly associated with lower plasma viral loads (pVL) and higher CD4 counts and that the HLA-A*29:01-B*07:05-C*15:05 haplotype was significantly associated with higher pVL and lower CD4 counts than those for individuals without these respective genotypes. Nine Pol and three Nef mutations were associated with at least one HLA allele in the HLA-A*29:01-B*07:05-C*15:05 haplotype, with a strong negative correlation between the number of HLA-associated Pol mutations and CD4 count as well as a positive correlation with pVL for individuals with these HLA alleles. The results suggest that the accumulation of mutations selected by CTLs restricted by these HLA alleles affects HIV control.IMPORTANCE Most previous studies on HLA association with disease progression after HIV-1 infection have been performed on cohorts infected with HIV-1 subtypes B and C, whereas few such population-based studies have been reported for cohorts infected with the Asian subtype A/E virus. In this study, we analyzed the association of HLA class I alleles with clinical outcomes for 536 HIV-1 subtype A/E-infected Vietnamese individuals. We found that HLA-C*12:02 is protective, while the HLA haplotype HLA-A*29:01-B*07:05-C*15:05 is deleterious. The individuals with HIV-1 mutations associated with at least one of the HLA alleles in the deleterious HLA haplotype had higher plasma viral loads and lower CD4 counts than those of individuals without the mutations, suggesting that viral adaptation and escape from HLA-mediated immune control occurred. The present study identifies a protective allele and a deleterious haplotype for HIV-1 subtype A/E infection which are different from those identified for cohorts infected with HIV-1 subtypes B and C.
Collapse
Affiliation(s)
| | - Giang Van Tran
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
- National Hospital of Tropical Diseases, Dong Da District, Hanoi, Vietnam
| | | | | | - Ying Qi
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Vivek Naranbhai
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
- Center for the AIDS Program of Research in South Africa (CAPRISA), Durban, South Africa
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Nozomi Kuse
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Yoshiko Tamura
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Madoka Koyanagi
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Sachiko Sakai
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Dung Hoai Nguyen
- National Hospital of Tropical Diseases, Dong Da District, Hanoi, Vietnam
| | - Dung Thi Nguyen
- National Hospital of Tropical Diseases, Dong Da District, Hanoi, Vietnam
| | - Ha Thu Nguyen
- National Hospital of Tropical Diseases, Dong Da District, Hanoi, Vietnam
| | - Trung Vu Nguyen
- National Hospital of Tropical Diseases, Dong Da District, Hanoi, Vietnam
| | - Shinichi Oka
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Maureen P Martin
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Mary Carrington
- Cancer and Inflammation Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Keiko Sakai
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | - Kinh Van Nguyen
- National Hospital of Tropical Diseases, Dong Da District, Hanoi, Vietnam
| | | |
Collapse
|
12
|
Leitman EM, Willberg CB, Tsai MH, Chen H, Buus S, Chen F, Riddell L, Haas D, Fellay J, Goedert JJ, Piechocka-Trocha A, Walker BD, Martin J, Deeks S, Wolinsky SM, Martinson J, Martin M, Qi Y, Sáez-Cirión A, Yang OO, Matthews PC, Carrington M, Goulder PJR. HLA-B*14:02-Restricted Env-Specific CD8 + T-Cell Activity Has Highly Potent Antiviral Efficacy Associated with Immune Control of HIV Infection. J Virol 2017; 91:e00544-17. [PMID: 28878089 PMCID: PMC5660483 DOI: 10.1128/jvi.00544-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 08/21/2017] [Indexed: 12/19/2022] Open
Abstract
Immune control of human immunodeficiency virus type 1 (HIV) infection is typically associated with effective Gag-specific CD8+ T-cell responses. We here focus on HLA-B*14, which protects against HIV disease progression, but the immunodominant HLA-B*14-restricted anti-HIV response is Env specific (ERYLKDQQL, HLA-B*14-EL9). A subdominant HLA-B*14-restricted response targets Gag (DRYFKTLRA, HLA-B*14-DA9). Using HLA-B*14/peptide-saporin-conjugated tetramers, we show that HLA-B*14-EL9 is substantially more potent at inhibiting viral replication than HLA-B*14-DA9. HLA-B*14-EL9 also has significantly higher functional avidity (P < 0.0001) and drives stronger selection pressure on the virus than HLA-B*14-DA9. However, these differences were HLA-B*14 subtype specific, applying only to HLA-B*14:02 and not to HLA-B*14:01. Furthermore, the HLA-B*14-associated protection against HIV disease progression is significantly greater for HLA-B*14:02 than for HLA-B*14:01, consistent with the superior antiviral efficacy of the HLA-B*14-EL9 response. Thus, although Gag-specific CD8+ T-cell responses may usually have greater anti-HIV efficacy, factors independent of protein specificity, including functional avidity of individual responses, are also critically important to immune control of HIV.IMPORTANCE In HIV infection, although cytotoxic T lymphocytes (CTL) play a potentially critical role in eradication of viral reservoirs, the features that constitute an effective response remain poorly defined. We focus on HLA-B*14, unique among HLAs associated with control of HIV in that the dominant CTL response is Env specific, not Gag specific. We demonstrate that Env-specific HLA-B*14-restricted activity is substantially more efficacious than the subdominant HLA-B*14-restricted Gag response. Env immunodominance over Gag and strong Env-mediated selection pressure on HIV are observed only in subjects expressing HLA-B*14:02, and not HLA-B*14:01. This reflects the increased functional avidity of the Env response over Gag, substantially more marked for HLA-B*14:02. Finally, we show that HLA-B*14:02 is significantly more strongly associated with viremic control than HLA-B*14:01. These findings indicate that, although Gag-specific CTL may usually have greater anti-HIV efficacy than Env responses, factors independent of protein specificity, including functional avidity, may carry greater weight in mediating effective control of HIV.
Collapse
Affiliation(s)
- Ellen M Leitman
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- Harvard Medical School, Boston, Massachusetts, USA
| | | | - Ming-Han Tsai
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Huabiao Chen
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, USA
- Vaccine and Immunotherapy Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Søren Buus
- Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fabian Chen
- Department of Sexual Health, Royal Berkshire Hospital, Reading, United Kingdom
| | - Lynn Riddell
- Integrated Sexual Health Services, Northamptonshire Healthcare NHS Trust, Northampton, United Kingdom
| | - David Haas
- Departments of Medicine, Pharmacology, Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Jacques Fellay
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - James J Goedert
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Bruce D Walker
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, USA
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Jeffrey Martin
- Department of Medicine, University of California San Francisco Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
| | - Steven Deeks
- Department of Medicine, University of California, San Francisco, California, USA
| | - Steven M Wolinsky
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jeremy Martinson
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Maureen Martin
- Cancer and Inflammation Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Ying Qi
- Cancer and Inflammation Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Asier Sáez-Cirión
- Institut Pasteur, Unité HIV, Inflammation et Persistance, Paris, France
| | - Otto O Yang
- Department of Medicine, Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- AIDS Healthcare Foundation, Los Angeles, California, USA
| | - Philippa C Matthews
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Mary Carrington
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, USA
- Cancer and Inflammation Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Philip J R Goulder
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
13
|
Toxoplasmic encephalitis: role of Human Leucocyte Antigens/alleles associated with rapid progression to Acquired Immunodeficiency Syndrome. Braz J Infect Dis 2016; 20:115-8. [PMID: 26786385 PMCID: PMC9427609 DOI: 10.1016/j.bjid.2015.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 10/23/2015] [Accepted: 10/25/2015] [Indexed: 11/26/2022] Open
Abstract
Background/aims The frequency of Human Leucocyte Antigens/alleles associated with rapid progression from Human Immunodeficiency Virus infection to Acquired Immunodeficiency Syndrome was evaluated in Brazilian patients with Acquired Immunodeficiency Syndrome with and without Toxoplasmic Encephalitis. Methods 114 patients with Acquired Immunodeficiency Syndrome (41 with Toxoplasmic Encephalitis, 43 with anti-Toxoplasma gondii antibodies, without Toxoplasmic Eencephalitis, and 30 without anti-Toxoplasma gondii antibodies circulating and without Toxoplasmic Encephalitis) were studied. Results Human Leucocyte Antigens/alleles associated with rapid progression to Acquired Immunodeficiency Syndrome, particularly HLA-B35, -DR3, and -DR1 allele group, were significantly less represented in patients with Toxoplasmic Encephalitis and Acquired Immunodeficiency Syndrome. Conclusion The presence of these Human Leucocyte Antigens/Alleles that predispose to Acquired Immunodeficiency Syndrome progression was associated with resistance to Toxoplasmic Encephalitis among Human Immunodeficiency Virus-1 carriers.
Collapse
|
14
|
The HLA-C*04: 01/KIR2DS4 gene combination and human leukocyte antigen alleles with high population frequency drive rate of HIV disease progression. AIDS 2015; 29:507-17. [PMID: 25715101 DOI: 10.1097/qad.0000000000000574] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The objective of this study is to identify human leukocyte antigen (HLA) class I and killer-cell immunoglobulin-like receptor (KIR) genotypes associated with different risks for HIV acquisition and HIV disease progression. DESIGN A cross-sectional study of a cohort of 468 high-risk individuals (246 HIV-positive and 222 HIV-negative) from outpatient clinics in Lima (Perú). METHODS The cohort was high-resolution HLA and KIR-typed and analysed for potential differences in single-allele frequencies and allele combinations between HIV-positive and HIV-negative individuals and for associations with HIV viral load and CD4 cell counts in infected individuals. RESULTS HLA class I alleles associated with a lack of viral control had a significantly higher population frequency than relatively protective alleles (P = 0.0093), in line with a rare allele advantage. HLA-A02 : 01 and HLA-C04 : 01 were both associated with high viral loads (P = 0.0313 and 0.0001, respectively) and low CD4 cell counts (P = 0.0008 and 0.0087, respectively). Importantly, the association between HLA-C04 : 01 and poor viral control was not due to its linkage disequilibrium with other HLA alleles. Rather, the coexpression of its putative KIR ligand KIR2DS4f was critically linked to elevated viral loads. CONCLUSION These results highlight the impact of population allele frequency on viral control and identify a novel association between HLA-C04 : 01 in combination with KIR2DS4f and uncontrolled HIV infection. Our data further support the importance of the interplay of markers of the adaptive and innate immune system in viral control.
Collapse
|