1
|
Sugimoto C, Wakao H. The Role of Mucosal-Associated Invariant T Cells in Viral Infections and Their Function in Vaccine Development. Vaccines (Basel) 2025; 13:155. [PMID: 40006702 PMCID: PMC11860804 DOI: 10.3390/vaccines13020155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
Mucosal-Associated Invariant T (MAIT) cells, which bridge innate and adaptive immunity, have emerged as an important player in viral infections despite their inability to directly recognize viral antigens. This review provides a comprehensive analysis of MAIT cell responses across different viral infections, revealing consistent patterns in their behavior and function. We discuss the dynamics of MAIT cells during various viral infections, including changes in their frequency, activation status, and functional characteristics. Particular attention is given to emerging strategies for MAIT-cell-targeted vaccine development, including the use of MR1 ligands as mucosal adjuvants and the activation of MAIT cells through viral vectors and mRNA vaccines. Current knowledge of MAIT cell biology in viral infections provides promising approaches for harnessing their functions in vaccine development.
Collapse
Affiliation(s)
- Chie Sugimoto
- Host Defense Division, Research Center for Advanced Medical Science, Dokkyo Medical University, Mibu 321-0293, Japan;
| | | |
Collapse
|
2
|
Ryu A, Clagett BM, Freeman ML. Inflammation and Microbial Translocation Correlate with Reduced MAIT Cells in People with HIV. Pathog Immun 2024; 10:19-46. [PMID: 39635460 PMCID: PMC11613984 DOI: 10.20411/pai.v10i1.746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/05/2024] [Indexed: 12/07/2024] Open
Abstract
Background Optimal control of microbial infections requires mucosal-associated invariant T (MAIT) cells. People living with HIV (PWH) on antiretroviral therapy (ART) can be divided into 2 groups: immune responders (IR) who recover or retain CD4 T cell numbers, and immune non-responders (INR) who do not. Compared to IR, INR have fewer MAIT cells and increased systemic inflammation and microbial translocation, but how these factors affect MAIT cells is unknown. Methods MAIT cells from IR, INR, and from controls without HIV were enumerated and characterized by flow cytometry. To determine the links among MAIT cells, inflammation, and microbial translocation, the correlations of MAIT cell numbers to previously published soluble inflammatory markers and plasma microbial genetic sequences were assessed by Spearman analysis. In vitro assays were used to support our findings. Results MAIT cell numbers were significantly negatively correlated with levels of IL-6 and IP-10 (markers of inflammation); CD14, LPS, and FABP2 (markers of microbial translocation); and with abundance of Serratia and other Proteobacteria genetic sequences in plasma. In a separate analysis of PWH on ART receiving the IL-6 receptor antagonist tocilizumab (TCZ), we found that blocking IL-6 signaling with TCZ increased IL-7 receptor expression on MAIT cells and reduced plasma IL-7 levels, consistent with improved uptake of IL-7 in vivo. Conclusions Our findings suggest inflammation and microbial translocation in PWH on ART lead to a loss of MAIT cells via impaired IL-7 responsiveness, resulting in further increased microbial translocation and inflammation.
Collapse
Affiliation(s)
- Angela Ryu
- Rustbelt Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Brian M. Clagett
- Rustbelt Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Michael L. Freeman
- Rustbelt Center for AIDS Research, Division of Infectious Diseases and HIV Medicine, Department of Medicine, Case Western Reserve University/University Hospitals Cleveland Medical Center, Cleveland, OH
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
3
|
Gong X, Wani MY, Al-Bogami AS, Ahmad A, Robinson K, Khan A. The Road Ahead: Advancing Antifungal Vaccines and Addressing Fungal Infections in the Post-COVID World. ACS Infect Dis 2024; 10:3475-3495. [PMID: 39255073 DOI: 10.1021/acsinfecdis.4c00245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
In impoverished nations, the COVID-19 pandemic has led to a widespread occurrence of deadly fungal diseases like mucormycosis. The limited availability of effective antifungal treatments and the emergence of drug-resistant fungal strains further exacerbate the situation. Factors such as systemic steroid use, intravenous drug misuse, and overutilization of broad-spectrum antimicrobials contribute to the prevalence of hospital-acquired infections caused by drug-resistant fungi. Fungal infections exploit compromised immune status and employ intricate mechanisms to evade immune surveillance. The immune response involves the innate and adaptive immune systems, leading to phagocytic and complement-mediated elimination of fungi. However, resistance to antifungals poses a challenge, highlighting the importance of antifungal prophylaxis and therapeutic vaccination. Understanding the host-fungal immunological interactions and developing vaccines are vital in combating fungal infections. Further research is needed to address the high mortality and morbidity associated with multidrug-resistant fungal pathogens and to develop innovative treatment drugs and vaccines. This review focuses on the global epidemiological burden of fungal infections, host-fungal immunological interactions, recent advancements in vaccine development and the road ahead.
Collapse
Affiliation(s)
- Xiaolong Gong
- Clinical Microbiology and Infectious Diseases, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
| | - Mohmmad Younus Wani
- Department of Chemistry, College of Science, University of Jeddah, 21589, Jeddah, Saudi Arabia
| | - Abdullah Saad Al-Bogami
- Department of Chemistry, College of Science, University of Jeddah, 21589, Jeddah, Saudi Arabia
| | - Aijaz Ahmad
- Clinical Microbiology and Infectious Diseases, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213, United States
| | - Keven Robinson
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213, United States
| | - Amber Khan
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
4
|
Yu PJ, Zhou M, Liu Y, Du J. Senescent T Cells in Age-Related Diseases. Aging Dis 2024; 16:AD.2024.0219. [PMID: 38502582 PMCID: PMC11745454 DOI: 10.14336/ad.2024.0219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/18/2024] [Indexed: 03/21/2024] Open
Abstract
Age-induced alterations in human immunity are often considered deleterious and are referred to as immunosenescence. The immune system monitors the number of senescent cells in the body, while immunosenescence may represent the initiation of systemic aging. Immune cells, particularly T cells, are the most impacted and involved in age-related immune function deterioration, making older individuals more prone to different age-related diseases. T-cell senescence can impact the effectiveness of immunotherapies that rely on the immune system's function, including vaccines and adoptive T-cell therapies. The research and practice of using senescent T cells as therapeutic targets to intervene in age-related diseases are in their nascent stages. Therefore, in this review, we summarize recent related literature to investigate the characteristics of senescent T cells as well as their formation mechanisms, relationship with various aging-related diseases, and means of intervention. The primary objective of this article is to explore the prospects and possibilities of therapeutically targeting senescent T cells, serving as a valuable resource for the development of immunotherapy and treatment of age-related diseases.
Collapse
Affiliation(s)
- Pei-Jie Yu
- Beijing Anzhen Hospital, Capital Medical University
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education
- Beijing Collaborative Innovative Research Center for Cardiovascular Diseases
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Mei Zhou
- Beijing Anzhen Hospital, Capital Medical University
- The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education
- Beijing Collaborative Innovative Research Center for Cardiovascular Diseases
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing 100029, China
| | - Yan Liu
- Correspondence should be addressed to: Dr. Jie Du () and Dr. Yan Liu (), Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Jie Du
- Correspondence should be addressed to: Dr. Jie Du () and Dr. Yan Liu (), Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| |
Collapse
|
5
|
Wu S, Yang X, Lou Y, Xiao X. MAIT cells in bacterial infectious diseases: heroes, villains, or both? Clin Exp Immunol 2023; 214:144-153. [PMID: 37624404 PMCID: PMC10714195 DOI: 10.1093/cei/uxad102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023] Open
Abstract
Due to the aggravation of bacterial drug resistance and the lag in the development of new antibiotics, it is crucial to develop novel therapeutic regimens for bacterial infectious diseases. Currently, immunotherapy is a promising regimen for the treatment of infectious diseases. Mucosal-associated invariant T (MAIT) cells, a subpopulation of innate-like T cells, are abundant in humans and can mount a rapid immune response to pathogens, thus becoming a potential target of immunotherapy for infectious diseases. At the site of infection, activated MAIT cells perform complex biological functions by secreting a variety of cytokines and cytotoxic substances. Many studies have shown that MAIT cells have immunoprotective effects because they can bridge innate and adaptive immune responses, leading to bacterial clearance, tissue repair, and homeostasis maintenance. MAIT cells also participate in cytokine storm generation, tissue fibrosis, and cancer progression, indicating that they play a role in immunopathology. In this article, we review recent studies of MAIT cells, discuss their dual roles in bacterial infectious diseases and provide some promising MAIT cell-targeting strategies for the treatment of bacterial infectious diseases.
Collapse
Affiliation(s)
- Sihong Wu
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xi Yang
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yongliang Lou
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xingxing Xiao
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
6
|
Crees ZD, Patel DA, Dram A, Kim M, Bern MD, Eberly AR, Augustin K, Hotchkiss RS, DiPersio JF. Immune Adjuvant Therapy With Interleukin-7 in a Lymphopenic Patient With Aplastic Anemia and Mucormycosis. Crit Care Explor 2023; 5:e0990. [PMID: 37868029 PMCID: PMC10589520 DOI: 10.1097/cce.0000000000000990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND We report the case of a patient with aplastic anemia and pancytopenia on immune-suppressive therapy who developed invasive pulmonary infection with mucormycosis and was treated with immune adjuvant therapy. CASE SUMMARY Given the patient's profound lymphopenia and progressive invasive mucor despite dual antifungal drug therapy, interleukin (IL)-7, a cytokine that induces lymphocyte activation and proliferation, was instituted and resulted in normalization of absolute lymphocyte counts and was temporally associated with clearance of fungal pathogens and resolution of clinical symptoms. CONCLUSION Patients with life-threatening fungal infections are frequently immune suppressed and immune adjuvant therapies should be considered in patients who are not responding to antifungal drugs and source control. Well-designed, double-blind, placebo-controlled trials are needed to advance the field. Although a number of immune adjuvants may be beneficial in fungal sepsis, IL-7 is a particularly attractive immune adjuvant because of its broad immunologic effects on key immunologic pathways that mediate enhanced antifungal immune system activity.
Collapse
Affiliation(s)
- Zachary D Crees
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Dilan A Patel
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Alexandra Dram
- Department of Anesthesiology and Critical Care Medicine, Washington University School of Medicine, St Louis, MO
| | - Miriam Kim
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Michael D Bern
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| | - Allison R Eberly
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO
| | | | - Richard S Hotchkiss
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
- Department of Anesthesiology and Critical Care Medicine, Washington University School of Medicine, St Louis, MO
- Department of Surgery, Washington University School of Medicine, St. Louis, MO
| | - John F DiPersio
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
7
|
Sandberg JK, Leeansyah E, Eller MA, Shacklett BL, Paquin-Proulx D. The Emerging Role of MAIT Cell Responses in Viral Infections. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:511-517. [PMID: 37549397 PMCID: PMC10421619 DOI: 10.4049/jimmunol.2300147] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/08/2023] [Indexed: 08/09/2023]
Abstract
Mucosal-associated invariant T (MAIT) cells are unconventional T cells with innate-like antimicrobial responsiveness. MAIT cells are known for MR1 (MHC class I-related protein 1)-restricted recognition of microbial riboflavin metabolites giving them the capacity to respond to a broad range of microbes. However, recent progress has shown that MAIT cells can also respond to several viral infections in humans and in mouse models, ranging from HIV-1 and hepatitis viruses to influenza virus and SARS-CoV-2, in a primarily cognate Ag-independent manner. Depending on the disease context MAIT cells can provide direct or indirect antiviral protection for the host and may help recruit other immune cells, but they may also in some circumstances amplify inflammation and aggravate immunopathology. Furthermore, chronic viral infections are associated with varying degrees of functional and numerical MAIT cell impairment, suggesting secondary consequences for host defense. In this review, we summarize recent progress and highlight outstanding questions regarding the emerging role of MAIT cells in antiviral immunity.
Collapse
Affiliation(s)
- Johan K. Sandberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Edwin Leeansyah
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Michael A. Eller
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Barbara L. Shacklett
- Department of Medical Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA
| | - Dominic Paquin-Proulx
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD
| |
Collapse
|
8
|
Wang NI, Ninkov M, Haeryfar SMM. Classic costimulatory interactions in MAIT cell responses: from gene expression to immune regulation. Clin Exp Immunol 2023; 213:50-66. [PMID: 37279566 PMCID: PMC10324557 DOI: 10.1093/cei/uxad061] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/17/2023] [Accepted: 06/01/2023] [Indexed: 06/08/2023] Open
Abstract
Mucosa-associated invariant T (MAIT) cells are evolutionarily conserved, innate-like T lymphocytes with enormous immunomodulatory potentials. Due to their strategic localization, their invariant T cell receptor (iTCR) specificity for major histocompatibility complex-related protein 1 (MR1) ligands of commensal and pathogenic bacterial origin, and their sensitivity to infection-elicited cytokines, MAIT cells are best known for their antimicrobial characteristics. However, they are thought to also play important parts in the contexts of cancer, autoimmunity, vaccine-induced immunity, and tissue repair. While cognate MR1 ligands and cytokine cues govern MAIT cell maturation, polarization, and peripheral activation, other signal transduction pathways, including those mediated by costimulatory interactions, regulate MAIT cell responses. Activated MAIT cells exhibit cytolytic activities and secrete potent inflammatory cytokines of their own, thus transregulating the biological behaviors of several other cell types, including dendritic cells, macrophages, natural killer cells, conventional T cells, and B cells, with significant implications in health and disease. Therefore, an in-depth understanding of how costimulatory pathways control MAIT cell responses may introduce new targets for optimized MR1/MAIT cell-based interventions. Herein, we compare and contrast MAIT cells and mainstream T cells for their expression of classic costimulatory molecules belonging to the immunoglobulin superfamily and the tumor necrosis factor (TNF)/TNF receptor superfamily, based not only on the available literature but also on our transcriptomic analyses. We discuss how these molecules participate in MAIT cells' development and activities. Finally, we introduce several pressing questions vis-à-vis MAIT cell costimulation and offer new directions for future research in this area.
Collapse
Affiliation(s)
- Nicole I Wang
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Marina Ninkov
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - S M Mansour Haeryfar
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
- Division of Clinical Immunology and Allergy, Department of Medicine, Western University, London, Ontario, Canada
- Division of General Surgery, Department of Surgery, Western University, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| |
Collapse
|
9
|
Choi J, Schmerk CL, Mele TS, Rudak PT, Wardell CM, Deng G, Pavri FR, Kim K, Cepinskas G, He W, Haeryfar SM. Longitudinal analysis of mucosa-associated invariant T cells in sepsis reveals their early numerical decline with prognostic implications and a progressive loss of antimicrobial functions. Immunol Cell Biol 2023; 101:249-261. [PMID: 36604951 DOI: 10.1111/imcb.12619] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/24/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Sepsis-elicited immunosuppression elevates the risk of secondary infections. We used a clinically relevant mouse model and serial peripheral blood samples from patients to assess the antimicrobial activities of mucosa-associated invariant T (MAIT) cells in sepsis. Hepatic and splenic MAIT cells from B6-MAITCAST mice displayed increased CD69 expression and a robust interferon-γ (IFNγ) production capacity shortly after sublethal cecal ligation and puncture, but not at a late timepoint. Peripheral blood MAIT cell frequencies were reduced in septic patients at the time of intensive care unit (ICU) admission, and more dramatically so among nonsurvivors, suggesting the predictive usefulness of early MAIT cell enumeration. In addition, at ICU admission, MAIT cells from sepsis survivors launched stronger IFNγ responses to several bacterial species compared with those from patients who subsequently died of sepsis. Of note, while low human leukocyte antigen (HLA)-DR+ monocyte frequencies, widely regarded as a surrogate indicator of sepsis-induced immunosuppression, were gradually corrected, the numerical insufficiency of MAIT cells was not resolved over time, and their CD69 expression continued to decline. MAIT cell responses to bacterial pathogens, a major histocompatibility complex-related protein 1 (MR1) ligand, and interleukin (IL)-12 and IL-18 were also progressively lost during sepsis and did not recover by the time of ICU/hospital discharge. We propose that MAIT cell dysfunctions contribute to post-sepsis immunosuppression.
Collapse
Affiliation(s)
- Joshua Choi
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Crystal L Schmerk
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Tina S Mele
- Division of Critical Care Medicine, Department of Medicine, Western University, London, Ontario, Canada.,Division of General Surgery, Department of Surgery, Western University, London, Ontario, Canada
| | - Patrick T Rudak
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Christine M Wardell
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Gansen Deng
- Department of Statistical and Actuarial Sciences, Western University, London, Ontario, Canada
| | - Farzan R Pavri
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Kyoungok Kim
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada
| | - Gediminas Cepinskas
- Centre for Critical Illness Research, Lawson Health Research Institute, London, Ontario, Canada.,Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Wenqing He
- Department of Statistical and Actuarial Sciences, Western University, London, Ontario, Canada
| | - Sm Mansour Haeryfar
- Department of Microbiology and Immunology, Western University, London, Ontario, Canada.,Division of General Surgery, Department of Surgery, Western University, London, Ontario, Canada.,Division of Clinical Immunology and Allergy, Department of Medicine, Western University, London, Ontario, Canada
| |
Collapse
|
10
|
IL-7: Comprehensive review. Cytokine 2022; 160:156049. [DOI: 10.1016/j.cyto.2022.156049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 01/08/2023]
|
11
|
Vimali J, Yong YK, Murugesan A, Vishnupriya K, Ashwin R, Daniel EA, Balakrishnan P, Raju S, Rosmawati M, Velu V, Larsson M, Shankar EM. Plasma interleukin-7 correlation with human immunodeficiency virus RNA and CD4+ T cell counts, and interleukin-5 with circulating hepatitis B virus DNA may have implications in viral control. Front Med (Lausanne) 2022; 9:1019230. [PMID: 36405584 PMCID: PMC9668853 DOI: 10.3389/fmed.2022.1019230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/12/2022] [Indexed: 08/30/2023] Open
Abstract
Chronic viral infections represent a leading cause of global morbidity and mortality. Chronic HBV, HCV, and HIV infections result in cytokine perturbations that may hold key implications in understanding the complex disease mechanisms driving virus persistence and/or resolution. Here, we determined the levels of various plasma cytokines using a commercial Bio-Plex Luminex cytokine array in chronic HBV (n = 30), HCV (n = 15), and HIV (n = 40) infections and correlated with corresponding plasma viral loads (PVLs) and liver parameters. We observed differential perturbations in cytokine profiles among the study groups. The cytokines levels positively correlated with PVL and liver transaminases. The monocyte-derived cytokines viz., MIP-1β, IL-8, and TNF-α, and Th2 cytokines like IL-4, IL-5, and IL-13 showed a better correlation with liver enzymes as compared to their corresponding PVLs. Our investigation also identified two cytokines viz., IL-5 and IL-7 that inversely correlated with HBV DNA and HIV PVLs, respectively. Regression analysis adjusted for age showed that every increase of IL-5 by one unit was associated with a reduction in HBV PVL by log10 0.4, whereas, every elevation by a unit of IL-7 was associated with decreased HIV PVL by log10 2.5. We also found that IL-7 levels correlated positively with absolute CD4+ T cell counts in HIV-infected patients. We concluded that plasma IL-5 and IL-7 may likely have a key role on viral control in HBV and HIV infections, respectively. A noteworthy increase in cytokines appears to bear protective and pathological significance, and indeed is reflective of the host's versatile immune armory against viral persistence.
Collapse
Affiliation(s)
- Jaisheela Vimali
- Infection Biology, Department of Biotechnology, Central University of Tamil Nadu, Thiruvarur, India
| | - Yean Kong Yong
- Laboratory Centre, Xiamen University Malaysia, Sepang, Selangor, Malaysia
| | - Amudhan Murugesan
- Department of Microbiology, Government Theni Medical College and Hospital, Theni, India
| | | | - Rajeev Ashwin
- Infection Biology, Department of Biotechnology, Central University of Tamil Nadu, Thiruvarur, India
| | - Evangeline Ann Daniel
- National Institute for Research in Tuberculosis, Indian Council of Medical Research, Chennai, India
| | - Pachamuthu Balakrishnan
- Department of Microbiology, Centre for Infectious Diseases, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Sivadoss Raju
- State Public Health Laboratory, Directorate of Public Health and Preventive Medicine, Chennai, India
| | - Mohamed Rosmawati
- Division of Gastroenterology and Hepatology, Department of Medicine, Faculty of Medicine, Universiti Malaya Medical Center, Kuala Lumpur, Malaysia
| | - Vijayakumar Velu
- Division of Microbiology and Immunology, Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Marie Larsson
- Division of Molecular Medicine and Virology, Department of Biomedicine and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Esaki M. Shankar
- Infection Biology, Department of Biotechnology, Central University of Tamil Nadu, Thiruvarur, India
| |
Collapse
|
12
|
Han F, Gulam MY, Zheng Y, Zulhaimi NS, Sia WR, He D, Ho A, Hadadi L, Liu Z, Qin P, Lobie PE, Kamarulzaman A, Wang LF, Sandberg JK, Lewin SR, Rajasuriar R, Leeansyah E. IL7RA single nucleotide polymorphisms are associated with the size and function of the MAIT cell population in treated HIV-1 infection. Front Immunol 2022; 13:985385. [PMID: 36341446 PMCID: PMC9632172 DOI: 10.3389/fimmu.2022.985385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 10/04/2022] [Indexed: 11/24/2022] Open
Abstract
MAIT cells are persistently depleted and functionally exhausted in HIV-1-infected patients despite long-term combination antiretroviral therapy (cART). IL-7 treatment supports MAIT cell reconstitution in vivo HIV-1-infected individuals and rescues their functionality in vitro. Single-nucleotide polymorphisms (SNPs) of the IL-7RA gene modulate the levels of soluble(s)IL-7Rα (sCD127) levels and influence bioavailability of circulating IL-7. Here we evaluate the potential influence of IL-7RA polymorphisms on MAIT cell numbers and function in healthy control (HC) subjects and HIV-1-infected individuals on long-term cART. Our findings indicate that IL-7RA haplotype 2 (H2*T), defined as T-allele carriers at the tagging SNP rs6897932, affects the size of the peripheral blood MAIT cell pool, as well as their production of cytokines and cytolytic effector proteins in response to bacterial stimulation. H2*T carriers had lower sIL-7Rα levels and higher MAIT cell frequency with enhanced functionality linked to higher expression of MAIT cell-associated transcription factors. Despite an average of 7 years on suppressive cART, MAIT cell levels and function in HIV-1-infected individuals were still significantly lower than those of HC. Notably, we observed a significant correlation between MAIT cell levels and cART duration only in HIV-1-infected individuals carrying IL-7RA haplotype 2. Interestingly, treatment with sIL-7Rα in vitro suppressed IL-7-dependent MAIT cell proliferation and function following cognate stimulations. These observations suggest that sIL-7Rα levels may influence MAIT cell numbers and function in vivo by limiting IL-7 bioavailability to MAIT cells. Collectively, these observations suggest that IL-7RA polymorphisms may play a significant role in MAIT cell biology and influence MAIT cells recovery in HIV-1 infection. The potential links between IL7RA polymorphisms, MAIT cell immunobiology, and HIV-1 infection warrant further studies going forward.
Collapse
Affiliation(s)
- Fei Han
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Muhammad Yaaseen Gulam
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Yichao Zheng
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Nurul Syuhada Zulhaimi
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, Kuala Lumpur, Malaysia
- Department of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Wan Rong Sia
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Dan He
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Amanda Ho
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Leila Hadadi
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Zhenyu Liu
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Peiwu Qin
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Peter E. Lobie
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Adeeba Kamarulzaman
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, Kuala Lumpur, Malaysia
- Department of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
| | - Johan K. Sandberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sharon R. Lewin
- Peter Doherty Institute for Infection and Immunity, Melbourne University, Victoria, Australia
| | - Reena Rajasuriar
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, Kuala Lumpur, Malaysia
- Department of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Peter Doherty Institute for Infection and Immunity, Melbourne University, Victoria, Australia
| | - Edwin Leeansyah
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Precision Medicine and Healthcare Research Centre, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
- Programme in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
- *Correspondence: Edwin Leeansyah,
| |
Collapse
|
13
|
Phetsouphanh C, Phalora P, Hackstein CP, Thornhill J, Munier CML, Meyerowitz J, Murray L, VanVuuren C, Goedhals D, Drexhage L, Russell RA, Sattentau QJ, Mak JYW, Fairlie DP, Fidler S, Kelleher AD, Frater J, Klenerman P. Human MAIT cells respond to and suppress HIV-1. eLife 2021; 10:e50324. [PMID: 34951583 PMCID: PMC8752121 DOI: 10.7554/elife.50324] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
Human MAIT cells sit at the interface between innate and adaptive immunity, are polyfunctional and are capable of killing pathogen infected cells via recognition of the Class IB molecule MR1. MAIT cells have recently been shown to possess an antiviral protective role in vivo and we therefore sought to explore this in relation to HIV-1 infection. There was marked activation of MAIT cells in vivo in HIV-1-infected individuals, which decreased following ART. Stimulation of THP1 monocytes with R5 tropic HIVBAL potently activated MAIT cells in vitro. This activation was dependent on IL-12 and IL-18 but was independent of the TCR. Upon activation, MAIT cells were able to upregulate granzyme B, IFNγ and HIV-1 restriction factors CCL3, 4, and 5. Restriction factors produced by MAIT cells inhibited HIV-1 infection of primary PBMCs and immortalized target cells in vitro. These data reveal MAIT cells to be an additional T cell population responding to HIV-1, with a potentially important role in controlling viral replication at mucosal sites.
Collapse
Affiliation(s)
- Chansavath Phetsouphanh
- Peter Medawar Building for Pathogen Research, University of OxfordOxfordUnited Kingdom
- The Kirby Institute, University of New South WalesSydneyAustralia
| | - Prabhjeet Phalora
- Peter Medawar Building for Pathogen Research, University of OxfordOxfordUnited Kingdom
| | | | | | | | - Jodi Meyerowitz
- Peter Medawar Building for Pathogen Research, University of OxfordOxfordUnited Kingdom
| | - Lyle Murray
- Peter Medawar Building for Pathogen Research, University of OxfordOxfordUnited Kingdom
| | | | - Dominique Goedhals
- Division of Virology, University of the Free State/National Health Laboratory ServiceFree StateSouth Africa
| | - Linnea Drexhage
- Sir William Dunn School of Pathology, University of OxfordOxfordUnited Kingdom
| | - Rebecca A Russell
- Sir William Dunn School of Pathology, University of OxfordOxfordUnited Kingdom
| | - Quentin J Sattentau
- Sir William Dunn School of Pathology, University of OxfordOxfordUnited Kingdom
| | - Jeffrey YW Mak
- ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of QueenslandBrisbaneAustralia
- ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of QueenslandBrisbaneAustralia
| | - David P Fairlie
- ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of QueenslandBrisbaneAustralia
- ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of QueenslandBrisbaneAustralia
| | | | | | - John Frater
- Peter Medawar Building for Pathogen Research, University of OxfordOxfordUnited Kingdom
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
14
|
In vitro Interleukin-7 treatment partially rescues MAIT cell dysfunction caused by SARS-CoV-2 infection. Sci Rep 2021; 11:14090. [PMID: 34238985 PMCID: PMC8266862 DOI: 10.1038/s41598-021-93536-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022] Open
Abstract
MAIT cells have been shown to be activated upon several viral infections in a TCR-independent manner by responding to inflammatory cytokines secreted by antigen-presenting cells. Recently, a few studies have shown a similar activation of MAIT cells in response to severe acute respiratory coronavirus 2 (SARS-CoV-2) infection. In this study, we investigate the effect of SARS-CoV-2 infection on the frequency and phenotype of MAIT cells by flow cytometry, and we test in vitro stimulation conditions on the capacity to enhance or rescue the antiviral function of MAIT cells from patients with coronavirus disease 2019 (COVID-19). Our study, in agreement with recently published studies, confirmed the decline in MAIT cell frequency of hospitalized donors in comparison to healthy donors. MAIT cells of COVID-19 patients also had lower expression levels of TNF-alpha, perforin and granzyme B upon stimulation with IL-12 + IL-18. 24 h’ incubation with IL-7 successfully restored perforin expression levels in COVID-19 patients. Combined, our findings support the growing evidence that SARS-CoV-2 is dysregulating MAIT cells and that IL-7 treatment might improve their function, rendering them more effective in protecting the body against the virus.
Collapse
|
15
|
Hanson ED, Bates LC, Harrell EP, Bartlett DB, Lee JT, Wagoner CW, Alzer MS, Amatuli DJ, Jensen BC, Deal AM, Muss HB, Nyrop KA, Battaglini CL. Exercise training partially rescues impaired mucosal associated invariant t-cell mobilization in breast cancer survivors compared to healthy older women. Exp Gerontol 2021; 152:111454. [PMID: 34146655 DOI: 10.1016/j.exger.2021.111454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/21/2022]
Abstract
Exercise may attenuate immunosenescence with aging that appears to be accelerated following breast cancer treatment, although limited data on specific cell types exists and acute and chronic exercise have been investigated independently in older adults. PURPOSE To determine the mucosal associated invariant T (MAIT) cell response to acute exercise before (PRE) and after (POST) 16 weeks of exercise training in breast cancer survivors (BCS) and healthy older women (CON). METHODS Age-matched BCS and CON performed 45 min of intermittent cycling at 60% peak power output wattage. Blood samples were obtained at rest, immediately (0 h) and 1 h after exercise to determine MAIT cell counts, frequency, and intracellular cytokine expression. RESULTS At PRE, MAIT cell counts were greater in CON (137%) than BCS at 0 h (46%, p < 0.001), with increased MAIT cell frequency in CON but not BCS. TNFα+ and IFNγ+ MAIT cell counts increased at 0 h by ~120% in CON (p < 0.001), while BCS counts and frequencies were unchanged. Similar deficits were observed in CD3+ and CD3+ CD8+ cells. At POST, exercise-induced mobilization and egress of MAIT cell counts and frequency showed trends towards improvement in BCS that approached levels in CON. Independent of group, TNFα frequency trended to improve (p = 0.053). CONCLUSIONS MAIT mobilization in older BCS following acute exercise was attenuated; however, exercise training may partially rescue these initial deficits, including greater sensitivity to mitogenic stimulation. Using acute exercise before and after interventions provides a unique approach to identify age- and cancer-related immuno-dysfunction that is less apparent at rest.
Collapse
Affiliation(s)
- Erik D Hanson
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America.
| | - Lauren C Bates
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Elizabeth P Harrell
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - David B Bartlett
- Division of Medical Oncology, Duke Cancer Institute, Duke University, Durham, NC, USA
| | - Jordan T Lee
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Chad W Wagoner
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Mohamdod S Alzer
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Dean J Amatuli
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Brian C Jensen
- Division of Cardiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Allison M Deal
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Hyman B Muss
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Department of Hematology Oncology, University of North Carolina, Chapel Hill, NC, United States of America
| | - Kirsten A Nyrop
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Department of Hematology Oncology, University of North Carolina, Chapel Hill, NC, United States of America
| | - Claudio L Battaglini
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Human Movement Science Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| |
Collapse
|
16
|
Moriarty RV, Ellis AL, O’Connor SL. Monkeying around with MAIT Cells: Studying the Role of MAIT Cells in SIV and Mtb Co-Infection. Viruses 2021; 13:863. [PMID: 34066765 PMCID: PMC8151491 DOI: 10.3390/v13050863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 11/25/2022] Open
Abstract
There were an estimated 10 million new cases of tuberculosis (TB) disease in 2019. While over 90% of individuals successfully control Mycobacterium tuberculosis (Mtb) infection, which causes TB disease, HIV co-infection often leads to active TB disease. Despite the co-endemic nature of HIV and TB, knowledge of the immune mechanisms contributing to the loss of control of Mtb replication during HIV infection is lacking. Mucosal-associated invariant T (MAIT) cells are innate-like T cells that target and destroy bacterially-infected cells and may contribute to the control of Mtb infection. Studies examining MAIT cells in human Mtb infection are commonly performed using peripheral blood samples. However, because Mtb infection occurs primarily in lung tissue and lung-associated lymph nodes, these studies may not be fully translatable to the tissues. Additionally, studies longitudinally examining MAIT cell dynamics during HIV/Mtb co-infection are rare, and lung and lymph node tissue samples from HIV+ patients are typically unavailable. Nonhuman primates (NHP) provide a model system to characterize MAIT cell activity during Mtb infection, both in Simian Immunodeficiency Virus (SIV)-infected and SIV-naïve animals. Using NHPs allows for a more comprehensive understanding of tissue-based MAIT cell dynamics during infection with both pathogens. NHP SIV and Mtb infection is similar to human HIV and Mtb infection, and MAIT cells are phenotypically similar in humans and NHPs. Here, we discuss current knowledge surrounding MAIT cells in SIV and Mtb infection, how SIV infection impairs MAIT cell function during Mtb co-infection, and knowledge gaps to address.
Collapse
Affiliation(s)
| | | | - Shelby L. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA; (R.V.M.); (A.L.E.)
| |
Collapse
|
17
|
Parrot T, Healy K, Boulouis C, Sobkowiak MJ, Leeansyah E, Aleman S, Bertoletti A, Sällberg Chen M, Sandberg JK. Expansion of donor-unrestricted MAIT cells with enhanced cytolytic function suitable for TCR redirection. JCI Insight 2021; 6:140074. [PMID: 33561009 PMCID: PMC8021122 DOI: 10.1172/jci.insight.140074] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 02/03/2021] [Indexed: 12/17/2022] Open
Abstract
Progress in our understanding of MR1-restricted mucosa-associated invariant T (MAIT) cells has raised interest in harnessing these cells for immunotherapy. The innate-like response characteristics, abundance in the blood, donor-unrestricted nature, and tropism for tissues make MAIT cells suitable candidates for adoptive cell transfer therapies. However, reliable methods and tools to utilize MAIT cells in such approaches are lacking. Here, we established methodology for efficient expansion of human MAIT cells in culture with high purity and yield, while preserving their functional response toward their natural ligand and increasing their cytotoxic potential. The cultured MAIT cells retained their effector memory characteristics without signs of terminal differentiation and expressed a more diverse set of chemokine receptors, potentially widening their already broad tissue tropism. To investigate the potential of MAIT cells in a context outside their main role in controlling bacterial infection, we engineered cultured MAIT cells with a new TCR specificity to mediate effective antiviral HLA class I–restricted effector function. In summary, we developed robust and effective methodology for the expansion of human MAIT cells with enhanced cytolytic capacity and for their engineering with a new specificity. These findings form a basis for the development of MAIT cells as a platform for adoptive immunotherapy.
Collapse
Affiliation(s)
| | - Katie Healy
- Division of Clinical Diagnostics and Surgery, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Michał J Sobkowiak
- Division of Clinical Diagnostics and Surgery, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Edwin Leeansyah
- Center for Infection Medicine, Department of Medicine, and.,Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China.,Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore
| | - Soo Aleman
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Antonio Bertoletti
- Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore
| | - Margaret Sällberg Chen
- Division of Clinical Diagnostics and Surgery, Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
18
|
Le Hingrat Q, Sereti I, Landay AL, Pandrea I, Apetrei C. The Hitchhiker Guide to CD4 + T-Cell Depletion in Lentiviral Infection. A Critical Review of the Dynamics of the CD4 + T Cells in SIV and HIV Infection. Front Immunol 2021; 12:695674. [PMID: 34367156 PMCID: PMC8336601 DOI: 10.3389/fimmu.2021.695674] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/09/2021] [Indexed: 01/02/2023] Open
Abstract
CD4+ T-cell depletion is pathognomonic for AIDS in both HIV and simian immunodeficiency virus (SIV) infections. It occurs early, is massive at mucosal sites, and is not entirely reverted by antiretroviral therapy (ART), particularly if initiated when T-cell functions are compromised. HIV/SIV infect and kill activated CCR5-expressing memory and effector CD4+ T-cells from the intestinal lamina propria. Acute CD4+ T-cell depletion is substantial in progressive, nonprogressive and controlled infections. Clinical outcome is predicted by the mucosal CD4+ T-cell recovery during chronic infection, with no recovery occurring in rapid progressors, and partial, transient recovery, the degree of which depends on the virus control, in normal and long-term progressors. The nonprogressive infection of African nonhuman primate SIV hosts is characterized by partial mucosal CD4+ T-cell restoration, despite high viral replication. Complete, albeit very slow, recovery of mucosal CD4+ T-cells occurs in controllers. Early ART does not prevent acute mucosal CD4+ T-cell depletion, yet it greatly improves their restoration, sometimes to preinfection levels. Comparative studies of the different models of SIV infection support a critical role of immune activation/inflammation (IA/INFL), in addition to viral replication, in CD4+ T-cell depletion, with immune restoration occurring only when these parameters are kept at bay. CD4+ T-cell depletion is persistent, and the recovery is very slow, even when both the virus and IA/INFL are completely controlled. Nevertheless, partial mucosal CD4+ T-cell recovery is sufficient for a healthy life in natural hosts. Cell death and loss of CD4+ T-cell subsets critical for gut health contribute to mucosal inflammation and enteropathy, which weaken the mucosal barrier, leading to microbial translocation, a major driver of IA/INFL. In turn, IA/INFL trigger CD4+ T-cells to become either viral targets or apoptotic, fueling their loss. CD4+ T-cell depletion also drives opportunistic infections, cancers, and comorbidities. It is thus critical to preserve CD4+ T cells (through early ART) during HIV/SIV infection. Even in early-treated subjects, residual IA/INFL can persist, preventing/delaying CD4+ T-cell restoration. New therapeutic strategies limiting mucosal pathology, microbial translocation and IA/INFL, to improve CD4+ T-cell recovery and the overall HIV prognosis are needed, and SIV models are extensively used to this goal.
Collapse
Affiliation(s)
- Quentin Le Hingrat
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Irini Sereti
- HIV Pathogenesis Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Alan L Landay
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Ivona Pandrea
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Infectious Diseases and Immunology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Cristian Apetrei
- Division of Infectious Diseases, DOM, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Department of Infectious Diseases and Immunology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
19
|
Sortino O, Dias J, Anderson M, Laidlaw E, Leeansyah E, Lisco A, Sheikh V, Sandberg JK, Sereti I. Preserved Mucosal-Associated Invariant T-Cell Numbers and Function in Idiopathic CD4 Lymphocytopenia. J Infect Dis 2020; 224:715-725. [PMID: 34398238 DOI: 10.1093/infdis/jiaa782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 12/18/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Mucosal-associated invariant T (MAIT) cells constitute a subset of unconventional, MR1-restricted T cells involved in antimicrobial responses as well as inflammatory, allergic, and autoimmune diseases. Chronic infection and inflammatory disorders as well as immunodeficiencies are often associated with decline and/or dysfunction of MAIT cells. METHODS We investigated the MAIT cells in patients with idiopathic CD4+ lymphocytopenia (ICL), a syndrome characterized by consistently low CD4 T-cell counts (<300 cell/µL) in the absence of HIV infection or other known immunodeficiency, and by susceptibility to certain opportunistic infections. RESULTS The numbers, phenotype, and function of MAIT cells in peripheral blood were preserved in ICL patients compared to healthy controls. Administration of interleukin-7 (IL-7) to ICL patients expanded the CD8+ MAIT-cell subset, with maintained responsiveness and effector functions after IL-7 treatment. CONCLUSIONS ICL patients maintain normal levels and function of MAIT cells, preserving some antibacterial responses despite the deficiency in CD4+ T cells. CLINICAL TRIALS REGISTRATION NCT00867269.
Collapse
Affiliation(s)
- Ornella Sortino
- Clinical Research Directorate/Clinical Monitoring Leidos Research Program, Leidos Biomedical Research, Inc., National Cancer Institute Campus at Frederick, Frederick, Maryland, USA
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Joana Dias
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Megan Anderson
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Elizabeth Laidlaw
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Edwin Leeansyah
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Andrea Lisco
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Virginia Sheikh
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Johan K Sandberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Irini Sereti
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
20
|
Emerging Role for MAIT Cells in Control of Antimicrobial Resistance. Trends Microbiol 2020; 29:504-516. [PMID: 33353796 DOI: 10.1016/j.tim.2020.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/14/2022]
Abstract
Antimicrobial resistance is a serious threat to global public health as antibiotics are losing effectiveness due to rapid development of resistance. The human immune system facilitates control and clearance of resistant bacterial populations during the course of antimicrobial therapy. Here we review current knowledge of mucosa-associated invariant T (MAIT) cells, an arm of the immune system on the border between innate and adaptive, and their critical place in human antibacterial immunity. We propose that MAIT cells play important roles against antimicrobial-resistant infections through their capacity to directly clear multidrug-resistant bacteria and overcome mechanisms of antimicrobial resistance. Finally, we discuss outstanding questions pertinent to the possible advancement of host-directed therapy as an alternative intervention strategy for antimicrobial-resistant bacterial infections.
Collapse
|
21
|
Wedemeyer H, Khera T, Strunz B, Björkström NK. Reversal of Immunity After Clearance of Chronic HCV Infection-All Reset? Front Immunol 2020; 11:571166. [PMID: 33133084 PMCID: PMC7578424 DOI: 10.3389/fimmu.2020.571166] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic viral infections cause deterioration of our immune system. However, since persistent infections rarely can be eliminated, the reinvigoration capacity of an exhausted immune system has remained largely elusive. Chronic hepatitis C virus (HCV) infection can since some years be effectively cured with novel direct acting antiviral agents. Thus, it is now possible to study reversal of immunity in patients that are cured from a long-lasting chronic infection. We here highlight recent developments in the analysis of various immune cell populations during and after clearance of HCV infection. Surprisingly, whereas reinvigoration of certain immune traits clearly can be seen, many features of immune exhaustion persist over time after viral elimination. Thus, a long-term chronic insult might result in irreversible damage to our immune system. This will be important to consider in therapeutic vaccination efforts against chronic infection and in the development of immunotherapy based strategies against cancer.
Collapse
Affiliation(s)
- Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.,Department of Gastroenterology and Hepatology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany.,German Center for Infection Research (DZIF), Hannover-Braunschweig, Germany
| | - Tanvi Khera
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.,Department of Gastroenterology and Hepatology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Benedikt Strunz
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
22
|
Ioannidis M, Cerundolo V, Salio M. The Immune Modulating Properties of Mucosal-Associated Invariant T Cells. Front Immunol 2020; 11:1556. [PMID: 32903532 PMCID: PMC7438542 DOI: 10.3389/fimmu.2020.01556] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/12/2020] [Indexed: 12/12/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are unconventional T lymphocytes that express a semi-invariant T cell receptor (TCR) recognizing microbial vitamin B metabolites presented by the highly conserved major histocompatibility complex (MHC) class I like molecule, MR1. The vitamin B metabolites are produced by several commensal and pathogenic bacteria and yeast, but not viruses. Nevertheless, viral infections can trigger MAIT cell activation in a TCR-independent manner, through the release of pro-inflammatory cytokines by antigen-presenting cells (APCs). MAIT cells belong to the innate like T family of cells with a memory phenotype, which allows them to rapidly release Interferon (IFN)-γ, tumor necrosis factor (TNF)-α, and in some circumstances Interleukin (IL)-17 and IL-10, exerting an immunomodulatory role on the ensuing immune response, akin to iNKT cells and γδ T cells. Recent studies implicate MAIT cells in a variety of inflammatory, autoimmune diseases, and in cancer. In addition, through the analysis of the transcriptome of MAIT cells activated in different experimental conditions, an important function in tissue repair and control of immune homeostasis has emerged, shared with other innate-like T cells. In this review, we discuss these recent findings, focussing on the understanding of the molecular mechanisms underpinning MAIT cell activation and effector function in health and disease, which ultimately will aid in clinically harnessing this unique, not donor-restricted cell subtype.
Collapse
Affiliation(s)
- Melina Ioannidis
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Vincenzo Cerundolo
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Mariolina Salio
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
23
|
Boulouis C, Gorin JB, Dias J, Bergman P, Leeansyah E, Sandberg JK. Opsonization-Enhanced Antigen Presentation by MR1 Activates Rapid Polyfunctional MAIT Cell Responses Acting as an Effector Arm of Humoral Antibacterial Immunity. THE JOURNAL OF IMMUNOLOGY 2020; 205:67-77. [PMID: 32434941 DOI: 10.4049/jimmunol.2000003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/30/2020] [Indexed: 12/27/2022]
Abstract
Mucosa-associated invariant T (MAIT) cells are innate-like antimicrobial T cells recognizing a breadth of important pathogens via presentation of microbial riboflavin metabolite Ags by MHC class Ib-related (MR1) molecules. However, the interaction of human MAIT cells with adaptive immune responses and the role they may play in settings of vaccinology remain relatively little explored. In this study we investigated the interplay between MAIT cell-mediated antibacterial effector functions and the humoral immune response. IgG opsonization of the model microbe Escherichia coli with pooled human sera markedly enhanced the capacity of monocytic APC to stimulate MAIT cells. This effect included greater sensitivity of recognition and faster response kinetics, as well as a markedly higher polyfunctionality and magnitude of MAIT cell responses involving a range of effector functions. The boost of MAIT cell responses was dependent on strongly enhanced MR1-mediated Ag presentation via increased FcγR-mediated uptake and signaling primarily mediated by FcγRI. To investigate possible translation of this effect to a vaccine setting, sera from human subjects before and after vaccination with the 13-valent-conjugated Streptococcus pneumoniae vaccine were assessed in a MAIT cell activation assay. Interestingly, vaccine-induced Abs enhanced Ag presentation to MAIT cells, resulting in more potent effector responses. These findings indicate that enhancement of Ag presentation by IgG opsonization allows innate-like MAIT cells to mount a faster, stronger, and qualitatively more complex response and to function as an effector arm of vaccine-induced humoral adaptive antibacterial immunity.
Collapse
Affiliation(s)
- Caroline Boulouis
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, 14152 Stockholm, Sweden
| | - Jean-Baptiste Gorin
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, 14152 Stockholm, Sweden
| | - Joana Dias
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, 14152 Stockholm, Sweden
| | - Peter Bergman
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Huddinge, 14152 Stockholm, Sweden.,Infectious Disease Clinic, Immunodeficiency Unit, Karolinska University Hospital, Huddinge, 14186 Stockholm, Sweden; and
| | - Edwin Leeansyah
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, 14152 Stockholm, Sweden.,Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, 169587 Singapore
| | - Johan K Sandberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, 14152 Stockholm, Sweden;
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW To analyze the possible role that the 'unconventional' T-cell populations mucosal-associated invariant T cell (MAIT) and iNKT cells play during HIV infection and following antiretroviral therapy (ART) treatment. RECENT FINDINGS A substantial body of evidence now demonstrates that both MAIT and iNKT cells are depleted in blood during HIV infection. The depletion and dysfunction of MAIT and iNKT cells are only partially restored by suppressive ART, potentially contributing to HIV-related comorbidities. SUMMARY The deficiency and dysfunction of MAIT and iNKT T-cell subsets likely impact on immunity to important coinfections including Mycobacterium tuberculosis. This underscores the importance of research on restoring these unconventional T cells during HIV infection. Future studies in this field should address the challenge of studying tissue-resident cells, particularly in the gut, and better defining the determinants of MAIT/iNKT cell dysfunction. Such studies could have a significant impact on improving the immune function of HIV-infected individuals.
Collapse
|
25
|
Abstract
Mucosal-associated invariant T (MAIT) cells are unique innate-like T cells that bridge innate and adaptive immunity. They are activated by conserved bacterial ligands derived from vitamin B biosynthesis and have important roles in defence against bacterial and viral infections. However, they can also have various deleterious and protective functions in autoimmune, inflammatory and metabolic diseases. MAIT cell involvement in a large spectrum of pathological conditions makes them attractive targets for potential therapeutic approaches.
Collapse
|
26
|
Tang X, Zhang S, Peng Q, Ling L, Shi H, Liu Y, Cheng L, Xu L, Cheng L, Chakrabarti LA, Chen Z, Wang H, Zhang Z. Sustained IFN-I stimulation impairs MAIT cell responses to bacteria by inducing IL-10 during chronic HIV-1 infection. SCIENCE ADVANCES 2020; 6:eaaz0374. [PMID: 32128419 PMCID: PMC7030930 DOI: 10.1126/sciadv.aaz0374] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 12/03/2019] [Indexed: 05/10/2023]
Abstract
Mucosal-associated invariant T (MAIT) cells in HIV-1-infected individuals are functionally impaired by poorly understood mechanisms. Single-cell transcriptional and surface protein analyses revealed that peripheral MAIT cells from HIV-1-infected subjects were highly activated with the up-regulation of interferon (IFN)-stimulated genes as compared to healthy individuals. Sustained IFN-α treatment suppressed MAIT cell responses to Escherichia coli by triggering high-level interleukin-10 (IL-10) production by monocytes, which subsequently inhibited the secretion of IL-12, a crucial costimulatory cytokine for MAIT cell activation. Blocking IFN-α or IL-10 receptors prevented MAIT cell dysfunction induced by HIV-1 exposure in vitro. Moreover, blocking the IL-10 receptor significantly improved anti-Mycobacterium tuberculosis responses of MAIT cells from HIV-1-infected patients. Our findings demonstrate the central role of the IFN-I/IL-10 axis in MAIT cell dysfunction during HIV-1 infection, which has implications for the development of anti-IFN-I/IL-10 strategies against bacterial coinfections in HIV-1-infected patients.
Collapse
Affiliation(s)
- X. Tang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen 518112, Guangdong Province, China
- The Second Affiliated Hospital, School of Medicine, South University of Science and Technology, Shenzhen 518100, China
| | - S. Zhang
- Shanghai Public Health Clinical Center and Institute of Biomedical Sciences, Fudan University, Shanghai 201508, China
| | - Q. Peng
- Department of Infectious Diseases, Shenzhen Third People’s Hospital, Shenzhen 518112, China
| | - L. Ling
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong, China
| | - H. Shi
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen 518112, Guangdong Province, China
| | - Y. Liu
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen 518112, Guangdong Province, China
| | - L. Cheng
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen 518112, Guangdong Province, China
| | - L. Xu
- Department of Infectious Diseases, Shenzhen Third People’s Hospital, Shenzhen 518112, China
| | - L. Cheng
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - L. A. Chakrabarti
- Institut Pasteur, Groupe Contrôle des Infections Virales Chroniques, Unité Virus et Immunité, 75724 Paris Cedex 15, France
| | - Z. Chen
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen 518112, Guangdong Province, China
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Li Ka Shing Faculty of Medicine, Hong Kong, China
| | - H. Wang
- Department of Infectious Diseases, Shenzhen Third People’s Hospital, Shenzhen 518112, China
| | - Z. Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People’s Hospital, Shenzhen 518112, Guangdong Province, China
- The Second Affiliated Hospital, School of Medicine, South University of Science and Technology, Shenzhen 518100, China
- Guangdong Key Lab of Emerging Infectious Diseases, Shenzhen Third People’s Hospital, Shenzhen 518112, China
- Key Laboratory of Immunology, Sino-French Hoffmann Institute, School of Basic Medical Sciences and Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
- Corresponding author.
| |
Collapse
|
27
|
Murugesan A, Ibegbu C, Styles TM, Jones AT, Shanmugasundaram U, Reddy PBJ, Rahman SJ, Saha P, Vijay-Kumar M, Shankar EM, Amara RR, Velu V. Functional MAIT Cells Are Associated With Reduced Simian-Human Immunodeficiency Virus Infection. Front Immunol 2020; 10:3053. [PMID: 32010135 PMCID: PMC6978843 DOI: 10.3389/fimmu.2019.03053] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/12/2019] [Indexed: 01/01/2023] Open
Abstract
Mucosa-associated invariant T (MAIT) cells are recently characterized as a novel subset of innate-like T cells that recognize microbial metabolites as presented by the MHC-1b-related protein MR1. The significance of MAIT cells in anti-bacterial defense is well-understood but not clear in viral infections such as SIV/HIV infection. Here we studied the phenotype, distribution, and function of MAIT cells and their association with plasma viral levels during chronic SHIV infection in rhesus macaques (RM). Two groups of healthy and chronic SHIV-infected macaques were characterized for MAIT cells in blood and mucosal tissues. Similar to human, we found a significant fraction of macaque T cells co-expressing MAIT cell markers CD161 and TCRVα-7.2 that correlated directly with macaque MR1 tetramer. These cells displayed memory phenotype and expressed high levels of IL-18R, CCR6, CD28, and CD95. During chronic infection, the frequency of MAIT cells are enriched in the blood but unaltered in the rectum; both blood and rectal MAIT cells displayed higher proliferative and cytotoxic phenotype post-SHIV infection. The frequency of MAIT cells in blood and rectum correlated inversely with plasma viral RNA levels and correlated directly with total CD4 T cells. MAIT cells respond to microbial products during chronic SHIV infection and correlated positively with serum immunoreactivity to flagellin levels. Tissue distribution analysis of MAIT cells during chronic infection showed significant enrichment in the non-lymphoid tissues (lung, rectum, and liver) compared to lymphoid tissues (spleen and LN), with higher levels of tissue-resident markers CD69 and CD103. Exogenous in vitro cytokine treatments during chronic SHIV infection revealed that IL-7 is important for the proliferation of MAIT cells, but IL-12 and IL-18 are important for their cytolytic function. Overall our results demonstrated that MAIT cells are enriched in blood but unaltered in the rectum during chronic SHIV infection, which displayed proliferative and functional phenotype that inversely correlated with SHIV plasma viral RNA levels. Treatment such as combined cytokine treatments could be beneficial for enhancing functional MAIT cells during chronic HIV infection in vivo.
Collapse
Affiliation(s)
- Amudhan Murugesan
- Emory Vaccine Center, Emory University, Atlanta, GA, United States.,Department of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Chris Ibegbu
- Emory Vaccine Center, Emory University, Atlanta, GA, United States
| | - Tiffany M Styles
- Emory Vaccine Center, Emory University, Atlanta, GA, United States.,Department of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Andrew T Jones
- Emory Vaccine Center, Emory University, Atlanta, GA, United States.,Department of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | | | - Pradeep B J Reddy
- Emory Vaccine Center, Emory University, Atlanta, GA, United States.,Department of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Sadia J Rahman
- Emory Vaccine Center, Emory University, Atlanta, GA, United States.,Department of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Piu Saha
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Matam Vijay-Kumar
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Esaki Muthu Shankar
- Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur, India
| | - Rama Rao Amara
- Emory Vaccine Center, Emory University, Atlanta, GA, United States.,Department of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Vijayakumar Velu
- Emory Vaccine Center, Emory University, Atlanta, GA, United States.,Department of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA, United States
| |
Collapse
|
28
|
Flip the coin: IL-7 and IL-7R in health and disease. Nat Immunol 2019; 20:1584-1593. [PMID: 31745336 DOI: 10.1038/s41590-019-0479-x] [Citation(s) in RCA: 227] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 07/26/2019] [Indexed: 12/14/2022]
Abstract
The cytokine IL-7 and its receptor, IL-7R, are critical for T cell and, in the mouse, B cell development, as well as differentiation and survival of naive T cells, and generation and maintenance of memory T cells. They are also required for innate lymphoid cell (ILC) development and maintenance, and consequently for generation of lymphoid structures and barrier defense. Here we discuss the central role of IL-7 and IL-7R in the lymphoid system and highlight the impact of their deregulation, placing a particular emphasis on their 'dark side' as promoters of cancer development. We also explore therapeutic implications and opportunities associated with either positive or negative modulation of the IL-7-IL-7R signaling axis.
Collapse
|
29
|
Perdomo-Celis F, Taborda NA, Rugeles MT. CD8 + T-Cell Response to HIV Infection in the Era of Antiretroviral Therapy. Front Immunol 2019; 10:1896. [PMID: 31447862 PMCID: PMC6697065 DOI: 10.3389/fimmu.2019.01896] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/26/2019] [Indexed: 12/21/2022] Open
Abstract
Although the combined antiretroviral therapy (cART) has decreased the deaths associated with the immune deficiency acquired syndrome (AIDS), non-AIDS conditions have emerged as an important cause of morbidity and mortality in HIV-infected patients under suppressive cART. Since these conditions are associated with a persistent inflammatory and immune activation state, major efforts are currently made to improve the immune reconstitution. CD8+ T-cells are critical in the natural and cART-induced control of viral replication; however, CD8+ T-cells are highly affected by the persistent immune activation and exhaustion state driven by the increased antigenic and inflammatory burden during HIV infection, inducing phenotypic and functional alterations, and hampering their antiviral response. Several CD8+ T-cell subsets, such as interleukin-17-producing and follicular CXCR5+ CD8+ T-cells, could play a particular role during HIV infection by promoting the gut barrier integrity, and exerting viral control in lymphoid follicles, respectively. Here, we discuss the role of CD8+ T-cells and some of their subpopulations during HIV infection in the context of cART-induced viral suppression, focusing on current challenges and alternatives for reaching complete reconstitution of CD8+ T-cells antiviral function. We also address the potential usefulness of CD8+ T-cell features to identify patients who will reach immune reconstitution or have a higher risk for developing non-AIDS conditions. Finally, we examine the therapeutic potential of CD8+ T-cells for HIV cure strategies.
Collapse
Affiliation(s)
- Federico Perdomo-Celis
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | - Natalia A Taborda
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia.,Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellin, Colombia
| | - Maria T Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| |
Collapse
|
30
|
Downey AM, Kapłonek P, Seeberger PH. MAIT cells as attractive vaccine targets. FEBS Lett 2019; 593:1627-1640. [DOI: 10.1002/1873-3468.13488] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 12/21/2022]
Affiliation(s)
- A. Michael Downey
- Department of Biomolecular Systems Max‐Planck‐Institute of Colloids and Interfaces Potsdam Germany
| | - Paulina Kapłonek
- Department of Biomolecular Systems Max‐Planck‐Institute of Colloids and Interfaces Potsdam Germany
- Institute of Chemistry and Biochemistry Freie Universität Berlin Germany
| | - Peter H. Seeberger
- Department of Biomolecular Systems Max‐Planck‐Institute of Colloids and Interfaces Potsdam Germany
- Institute of Chemistry and Biochemistry Freie Universität Berlin Germany
| |
Collapse
|
31
|
Cocker AT, Greathead L, Herasimtschuk AA, Mandalia S, Kelleher P, Imami N. Short Communication: Therapeutic Immunization Benefits Mucosal-Associated Invariant T Cell Recovery in Contrast to Interleukin-2, Granulocyte-Macrophage Colony-Stimulating Factor, and Recombinant Human Growth Hormone Addition in HIV-1+ Treated Patients: Individual Case Reports from Phase I Trial. AIDS Res Hum Retroviruses 2019; 35:306-309. [PMID: 30600702 DOI: 10.1089/aid.2018.0176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Mucosal-associated invariant T (MAIT) cell populations are reduced in frequency in HIV-1+ patients, and this disruption is associated with systemic immune activation. Reconstitution of MAIT frequency may benefit HIV-1-infected individuals; however, only recently has in vivo work been endeavored. Treatment with interleukin (IL)-2, granulocyte-macrophage colony-stimulating factor (GM-CSF), and recombinant human growth hormone (rhGH) immunotherapy combined with an HIV-1 vaccine in the context of antiretroviral therapy (ART) has shown to reconstitute CD4 T cell population numbers and function. In this study cryopreserved peripheral blood mononuclear cells (PBMCs) from 12 HIV-1+ patients who were undergoing a combination of HIV-1 vaccine and/or IL-2, GM-CSF and rhGH immunotherapy in conjunction with ART were analyzed to assess the potential of this treatment to promote MAIT cell proliferation. PBMCs were thawed from study baseline, weeks 2 and 48 time points, fluorescently stained for MAIT cell markers, and assessed by flow cytometric analysis. Matched pairs and intergroup results were statistically compared using appropriate methods. MAIT cell frequency was increased from baseline at 48 weeks in participants who received vaccine only, whereas individuals receiving IL-2, GM-CSF, and rhGH immunotherapy with or without vaccine did not show additional benefit. Although IL-2, GM-CSF, and rhGH treatment promotes CD4 T cell reconstitution and HIV-1-specific T cell function, it does not support MAIT cell recovery in patients on suppressive ART. Therapeutic immunization however has a positive effect, highlighting the importance of aiming for balanced promotion of T cell population reconstitution to impact on HIV-1 transmission and pathogenesis.
Collapse
Affiliation(s)
| | - Louise Greathead
- Department of Medicine, Imperial College London, London, United Kingdom
| | | | - Sundhiya Mandalia
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Peter Kelleher
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Nesrina Imami
- Department of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
32
|
Paquin-Proulx D, Costa PR, Terrassani Silveira CG, Marmorato MP, Cerqueira NB, Sutton MS, O’Connor SL, Carvalho KI, Nixon DF, Kallas EG. Latent Mycobacterium tuberculosis Infection Is Associated With a Higher Frequency of Mucosal-Associated Invariant T and Invariant Natural Killer T Cells. Front Immunol 2018; 9:1394. [PMID: 29971068 PMCID: PMC6018487 DOI: 10.3389/fimmu.2018.01394] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 06/05/2018] [Indexed: 12/11/2022] Open
Abstract
Increasing drug resistance and the lack of an effective vaccine are the main factors contributing to Mycobacterium tuberculosis (Mtb) being a major cause of death globally. Despite intensive research efforts, it is not well understood why some individuals control Mtb infection and some others develop active disease. HIV-1 infection is associated with an increased incidence of active tuberculosis, even in virally suppressed individuals. Mucosal-associated invariant T (MAIT) and invariant natural killer T (iNKT) cells are innate T cells that can recognize Mtb-infected cells. Contradicting results regarding the frequency of MAIT cells in latent Mtb infection have been reported. In this confirmatory study, we investigated the frequency, phenotype, and IFNγ production of MAIT and iNKT cells in subjects with latent or active Mtb infection. We found that the frequency of both cell types was increased in subjects with latent Mtb infection compared with uninfected individuals or subjects with active infection. We found no change in the expression of HLA-DR, PD-1, and CCR6, as well as the production of IFNγ by MAIT and iNKT cells, among subjects with latent Mtb infection or uninfected controls. The proportion of CD4- CD8+ MAIT cells in individuals with latent Mtb infection was, however, increased. HIV-1 infection was associated with a loss of MAIT and iNKT cells, and the residual cells had elevated expression of the exhaustion marker PD-1. Altogether, the results suggest a role for MAIT and iNKT cells in immunity against Mtb and show a deleterious impact of HIV-1 infection on those cells.
Collapse
Affiliation(s)
- Dominic Paquin-Proulx
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC, United States
| | | | | | | | | | - Matthew S. Sutton
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Shelby L. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Karina I. Carvalho
- Hospital Israelita Albert Einstein, Instituto Israelita de Ensino e Pesquisa, São Paulo, Brazil
| | - Douglas F. Nixon
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC, United States
| | - Esper G. Kallas
- School of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|