1
|
Sachdeva RK, Naidu GSRSNK, Chauhan P, Kharbanda S, Kaur J, Joseph P, Arora S, Sharma A. Cerebrospinal Fluid Viral Escape on Highly Active Antiretroviral Therapy: Analysis from Single Tertiary Care Centre. AIDS Res Hum Retroviruses 2024. [PMID: 38366730 DOI: 10.1089/aid.2022.0187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024] Open
Abstract
HIV-infected individuals receiving regular antiretroviral therapy (ART) can present with a high viral load in cerebrospinal fluid (CSF) at times when it is suppressed in blood. This study presents data of HIV-infected patients who had undetectable or low plasma viral load in blood but presented with neurological signs and symptoms and were diagnosed to have CSF HIV viral escape. Records were reviewed for clinical manifestations, details of opportunistic or coinfection, and HIV viral copies in plasma and CSF at time of diagnosis of CSF escape. A total of 10,200 HIV-infected individuals were registered in HIV care till December 31, 2021. Nineteen individuals (14 virologically confirmed and 5 clinically) were diagnosed with high viral copies in CSF from June 2014 to December 2021. Mean age was 41.5 ± 9.2 (median, 39.5; range, 30-62) years. Average duration of antiretroviral treatment received at the time of diagnosis of CSF escape was 10.1 years. Median plasma HIV-viral copies were 2,469.8 (undetectable to 29,418) and in CSF were 12,773.7 (n = 14, range, 1,340-48,530) copies/mL. HIV viral copies in CSF were significantly higher than in plasma at the time of presentation (p = .003). ART regimen switch was done after identification of HIV CSF escape. Seventeen patients were alive with a regular follow-up of average 35 (range 7-66) months. All had documented clinical improvement with reversal of neurological impairment after ART switch. There was one death and one lost to follow-up. Early identification and timely intervention in CSF viral escape could revert severe neurological impairment and improves treatment outcome.
Collapse
Affiliation(s)
- Ravinder Kaur Sachdeva
- Antiretroviral Treatment Centre (ARTC), Department of Internal Medicine, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - G S R S N K Naidu
- Antiretroviral Treatment Centre (ARTC), Department of Internal Medicine, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - Pooja Chauhan
- Antiretroviral Treatment Centre (ARTC), Department of Internal Medicine, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - Siftinder Kharbanda
- Antiretroviral Treatment Centre (ARTC), Department of Internal Medicine, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - Jasleen Kaur
- Antiretroviral Treatment Centre (ARTC), Department of Internal Medicine, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - Prashansa Joseph
- Centre of Excellence in HIV Care, Department of Internal Medicine, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - Sunil Arora
- Department of Immunopathology, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| | - Aman Sharma
- Antiretroviral Treatment Centre (ARTC), Department of Internal Medicine, Postgraduate Institute of Medical Education & Research (PGIMER), Chandigarh, India
| |
Collapse
|
2
|
Mohammadzadeh N, Chomont N, Estaquier J, Cohen EA, Power C. Is the Central Nervous System Reservoir a Hurdle for an HIV Cure? Viruses 2023; 15:2385. [PMID: 38140626 PMCID: PMC10747469 DOI: 10.3390/v15122385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
There is currently no cure for HIV infection although adherence to effective antiretroviral therapy (ART) suppresses replication of the virus in blood, increases CD4+ T-cell counts, reverses immunodeficiency, and increases life expectancy. Despite these substantial advances, ART is a lifelong treatment for people with HIV (PWH) and upon cessation or interruption, the virus quickly rebounds in plasma and anatomic sites, including the central nervous system (CNS), resulting in disease progression. With recent advances in quantifying viral burden, detection of genetically intact viral genomes, and isolation of replication-competent virus from brain tissues of PWH receiving ART, it has become apparent that the CNS viral reservoir (largely comprised of macrophage type cells) poses a substantial challenge for HIV cure strategies. Other obstacles impacting the curing of HIV include ageing populations, substance use, comorbidities, limited antiretroviral drug efficacy in CNS cells, and ART-associated neurotoxicity. Herein, we review recent findings, including studies of the proviral integration sites, reservoir decay rates, and new treatment/prevention strategies in the context of the CNS, together with highlighting the next steps for investigations of the CNS as a viral reservoir.
Collapse
Affiliation(s)
- Nazanin Mohammadzadeh
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Nicolas Chomont
- Department of Immunopathology, Research Centre of the Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada;
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada;
| | - Jerome Estaquier
- Department of Microbiology and Immunology, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada;
| | - Eric A. Cohen
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, QC H3C 3J7, Canada;
- Institut de Recherches Cliniques de Montreal, Montreal, QC H2W 1R7, Canada
| | - Christopher Power
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| |
Collapse
|
3
|
Chishimba LC, Chomba M, Zimba S, Asukile MT, Makai O, Saylor DR. Clinical Reasoning: Rapidly Progressive Dementia in a Man With HIV Infection and Undetectable Plasma Viral Load. Neurology 2023; 100:344-348. [PMID: 36347626 PMCID: PMC9969911 DOI: 10.1212/wnl.0000000000201576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/06/2022] [Indexed: 11/11/2022] Open
Abstract
Neurocognitive decline associated with HIV infection remains prevalent even in the antiretroviral therapy (ART) era, albeit usually in less severe forms. The differential diagnosis of cognitive impairment in this population is quite broad, including infectious causes such as CNS opportunistic infections, causes directly related to HIV such as HIV-associated neurocognitive disorders, and causes entirely unrelated to HIV infection such as primary dementia syndromes. In this case report, a 47-year-old man with HIV on ART with an undetectable plasma viral load presented with rapidly progressive dementia to a clinic in Zambia. He had been functioning independently and fully employed before symptom onset but had to stop working within 2 months of symptom onset because of the severity and rapidity of his cognitive decline. Initial workup led to an empiric diagnosis and initiation of an empiric treatment regimen, which was ultimately ineffective. This prompted re-evaluation, additional workup, and, ultimately, discovering the correct diagnosis. This case highlights the stepwise approach to developing a diagnosis in a resource-limited setting where there exists a high burden of HIV infection, including the necessity of empiric diagnoses of treatment plans when investigations are limited and the importance of reconsidering these diagnoses in the face of additional clinical information. In addition, it highlights both infectious and noninfectious causes of cognitive decline in people with HIV.
Collapse
Affiliation(s)
- Lorraine Chishimba Chishimba
- From the Department of Internal Medicine (L.C.C., M.C., S.Z., M.T.A., D.R.S.), University Teaching Hospital, Lusaka, Zambia; Department of Internal Medicine (S.Z., D.R.S.), University of Zambia School of Medicine, Lusaka; Department of Internal Medicine (O.M.), Infectious Diseases Unit, University of Zambia, Lusaka; and Department of Neurology (D.R.S.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Mashina Chomba
- From the Department of Internal Medicine (L.C.C., M.C., S.Z., M.T.A., D.R.S.), University Teaching Hospital, Lusaka, Zambia; Department of Internal Medicine (S.Z., D.R.S.), University of Zambia School of Medicine, Lusaka; Department of Internal Medicine (O.M.), Infectious Diseases Unit, University of Zambia, Lusaka; and Department of Neurology (D.R.S.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Stanley Zimba
- From the Department of Internal Medicine (L.C.C., M.C., S.Z., M.T.A., D.R.S.), University Teaching Hospital, Lusaka, Zambia; Department of Internal Medicine (S.Z., D.R.S.), University of Zambia School of Medicine, Lusaka; Department of Internal Medicine (O.M.), Infectious Diseases Unit, University of Zambia, Lusaka; and Department of Neurology (D.R.S.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Melody Tunsubilege Asukile
- From the Department of Internal Medicine (L.C.C., M.C., S.Z., M.T.A., D.R.S.), University Teaching Hospital, Lusaka, Zambia; Department of Internal Medicine (S.Z., D.R.S.), University of Zambia School of Medicine, Lusaka; Department of Internal Medicine (O.M.), Infectious Diseases Unit, University of Zambia, Lusaka; and Department of Neurology (D.R.S.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Obrie Makai
- From the Department of Internal Medicine (L.C.C., M.C., S.Z., M.T.A., D.R.S.), University Teaching Hospital, Lusaka, Zambia; Department of Internal Medicine (S.Z., D.R.S.), University of Zambia School of Medicine, Lusaka; Department of Internal Medicine (O.M.), Infectious Diseases Unit, University of Zambia, Lusaka; and Department of Neurology (D.R.S.), Johns Hopkins University School of Medicine, Baltimore, MD
| | - Deanna R Saylor
- From the Department of Internal Medicine (L.C.C., M.C., S.Z., M.T.A., D.R.S.), University Teaching Hospital, Lusaka, Zambia; Department of Internal Medicine (S.Z., D.R.S.), University of Zambia School of Medicine, Lusaka; Department of Internal Medicine (O.M.), Infectious Diseases Unit, University of Zambia, Lusaka; and Department of Neurology (D.R.S.), Johns Hopkins University School of Medicine, Baltimore, MD.
| |
Collapse
|
4
|
Wahl A, Al-Harthi L. HIV infection of non-classical cells in the brain. Retrovirology 2023; 20:1. [PMID: 36639783 PMCID: PMC9840342 DOI: 10.1186/s12977-023-00616-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023] Open
Abstract
HIV-associated neurological disorders (HAND) affect up to 50% of people living with HIV (PLWH), even in the era of combination antiretroviral therapy (cART). HIV-DNA can be detected in the cerebral spinal fluid (CSF) of approximately half of aviremic ART-suppressed PLWH and its presence is associated with poorer neurocognitive performance. HIV DNA + and HIV RNA + cells have also been observed in postmortem brain tissue of individuals with sustained cART suppression. In this review, we provide an overview of how HIV invades the brain and HIV infection of resident brain glial cells (astrocytes and microglia). We also discuss the role of resident glial cells in persistent neuroinflammation and HAND in PLWH and their potential contribution to the HIV reservoir. HIV eradication strategies that target persistently infected glia cells will likely be needed to achieve HIV cure.
Collapse
Affiliation(s)
- Angela Wahl
- grid.10698.360000000122483208International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC USA ,grid.10698.360000000122483208Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC USA ,grid.10698.360000000122483208Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Lena Al-Harthi
- grid.240684.c0000 0001 0705 3621Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL USA
| |
Collapse
|
5
|
Nühn MM, Gumbs SBH, Buchholtz NVEJ, Jannink LM, Gharu L, de Witte LD, Wensing AMJ, Lewin SR, Nijhuis M, Symons J. Shock and kill within the CNS: A promising HIV eradication approach? J Leukoc Biol 2022; 112:1297-1315. [PMID: 36148896 PMCID: PMC9826147 DOI: 10.1002/jlb.5vmr0122-046rrr] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 01/18/2023] Open
Abstract
The most studied HIV eradication approach is the "shock and kill" strategy, which aims to reactivate the latent reservoir by latency reversing agents (LRAs) and allowing elimination of these cells by immune-mediated clearance or viral cytopathic effects. The CNS is an anatomic compartment in which (persistent) HIV plays an important role in HIV-associated neurocognitive disorder. Restriction of the CNS by the blood-brain barrier is important for maintenance of homeostasis of the CNS microenvironment, which includes CNS-specific cell types, expression of transcription factors, and altered immune surveillance. Within the CNS predominantly myeloid cells such as microglia and perivascular macrophages are thought to be a reservoir of persistent HIV infection. Nevertheless, infection of T cells and astrocytes might also impact HIV infection in the CNS. Genetic adaptation to this microenvironment results in genetically distinct, compartmentalized viral populations with differences in transcription profiles. Because of these differences in transcription profiles, LRAs might have different effects within the CNS as compared with the periphery. Moreover, reactivation of HIV in the brain and elimination of cells within the CNS might be complex and could have detrimental consequences. Finally, independent of activity on latent HIV, LRAs themselves can have adverse neurologic effects. We provide an extensive overview of the current knowledge on compartmentalized (persistent) HIV infection in the CNS and on the "shock and kill" strategy. Subsequently, we reflect on the impact and promise of the "shock and kill" strategy on the elimination of persistent HIV in the CNS.
Collapse
Affiliation(s)
- Marieke M. Nühn
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| | - Stephanie B. H. Gumbs
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| | - Ninée V. E. J. Buchholtz
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| | - Lisanne M. Jannink
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| | - Lavina Gharu
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| | - Lot D. de Witte
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands,Department of PsychiatryIcahn School of MedicineNew YorkNew YorkUSA
| | - Annemarie M. J. Wensing
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| | - Sharon R. Lewin
- Department of Infectious DiseasesThe University of Melbourne at the Peter Doherty Institute of Immunity and InfectionMelbourneVICAustralia,Victorian Infectious Diseases ServiceThe Royal Melbourne Hospital at the Peter Doherty Institute of Immunity and InfectionMelbourneVICAustralia,Department of Infectious DiseasesAlfred Hospital and Monash UniversityMelbourneVICAustralia
| | - Monique Nijhuis
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| | - Jori Symons
- Translational Virology, Department of Medical MicrobiologyUniversity Medical CenterUtrechtthe Netherlands
| |
Collapse
|
6
|
Ulfhammer G, Edén A, Antinori A, Brew BJ, Calcagno A, Cinque P, De Zan V, Hagberg L, Lin A, Nilsson S, Oprea C, Pinnetti C, Spudich S, Trunfio M, Winston A, Price RW, Gisslén M. Cerebrospinal Fluid Viral Load Across the Spectrum of Untreated Human Immunodeficiency Virus Type 1 (HIV-1) Infection: A Cross-Sectional Multicenter Study. Clin Infect Dis 2022; 75:493-502. [PMID: 34747481 PMCID: PMC9427147 DOI: 10.1093/cid/ciab943] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The aim of this large multicenter study was to determine variations in cerebrospinal fluid (CSF) HIV-RNA in different phases of untreated human immunodeficiency virus type 1 (HIV-1) infection and its associations with plasma HIV-RNA and other biomarkers. METHODS Treatment naive adults with available CSF HIV-RNA quantification were included and divided into groups representing significant disease phases. Plasma HIV-RNA, CSF white blood cell count (WBC), neopterin, and albumin ratio were included when available. RESULTS In total, 1018 patients were included. CSF HIV-RNA was in median (interquartile range [IQR]) 1.03 log10 (0.37-1.86) copies/mL lower than in plasma, and correlated with plasma HIV-RNA (r = 0.44, P < .01), neopterin concentration in CSF (r = 0.49, P < .01) and in serum (r = 0.29, P < .01), CSF WBC (r = 0.34, P < .01) and albumin ratio (r = 0.25, P < .01). CSF HIV-RNA paralleled plasma HIV-RNA in all groups except neuroasymptomatic patients with advanced immunodeficiency (CD4 < 200) and patients with HIV-associated dementia (HAD) or opportunistic central nervous system (CNS) infections. Patients with HAD had the highest CSF HIV-RNA (in median [IQR] 4.73 (3.84-5.35) log10 copies/mL). CSF > plasma discordance was found in 126 of 972 individuals (13%) and varied between groups, from 1% in primary HIV, 11% in neuroasymptomatic groups, up to 30% of patients with HAD. CONCLUSIONS Our study confirms previous smaller observations of variations in CSF HIV-RNA in different stages of HIV disease. Overall, CSF HIV-RNA was approximately 1 log10 copies/mL lower in CSF than in plasma, but CSF discordance was found in a substantial minority of subjects, most commonly in patients with HAD, indicating increasing CNS compartmentalization paralleling disease progression.
Collapse
Affiliation(s)
- Gustaf Ulfhammer
- Correspondence: G. Ulfhammer, Dept. of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, SE-416 85 Gothenburg, Sweden ()
| | - Arvid Edén
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg, Sweden
| | | | - Bruce J Brew
- Departments of Neurology and Immunology, Peter Duncan Neurosciences Unit St Vincent’s Centre for Applied Medical Research, St Vincent’s Hospital, University of New South Wales and University of Notre Dame, Australia
| | - Andrea Calcagno
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Torino, Italy
| | | | | | - Lars Hagberg
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg, Sweden
| | - Amy Lin
- Stanford University School of Medicine, Department of Biomedical Data Science, Palo Alto, California, USA
| | - Staffan Nilsson
- Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Cristiana Oprea
- Carol Davila University of Medicine and Pharmacy, Victor Babes Clinical Hospital for Infectious and Tropical Diseases, Bucharest, Romania
| | - Carmela Pinnetti
- National Institute of Infectious Diseases L. Spallanzani, Rome, Italy
| | | | - Mattia Trunfio
- Unit of Infectious Diseases, Department of Medical Sciences, University of Torino, Torino, Italy
| | | | - Richard W Price
- University of California at San Francisco, San Francisco, California, USA
| | - Magnus Gisslén
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Department of Infectious Diseases, Gothenburg, Sweden
| |
Collapse
|
7
|
Gumbs SBH, Kübler R, Gharu L, Schipper PJ, Borst AL, Snijders GJLJ, Ormel PR, van Berlekom AB, Wensing AMJ, de Witte LD, Nijhuis M. Human microglial models to study HIV infection and neuropathogenesis: a literature overview and comparative analyses. J Neurovirol 2022; 28:64-91. [PMID: 35138593 PMCID: PMC9076745 DOI: 10.1007/s13365-021-01049-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/03/2021] [Accepted: 12/18/2021] [Indexed: 02/08/2023]
Abstract
HIV persistence in the CNS despite antiretroviral therapy may cause neurological disorders and poses a critical challenge for HIV cure. Understanding the pathobiology of HIV-infected microglia, the main viral CNS reservoir, is imperative. Here, we provide a comprehensive comparison of human microglial culture models: cultured primary microglia (pMG), microglial cell lines, monocyte-derived microglia (MDMi), stem cell-derived microglia (iPSC-MG), and microglia grown in 3D cerebral organoids (oMG) as potential model systems to advance HIV research on microglia. Functional characterization revealed phagocytic capabilities and responsiveness to LPS across all models. Microglial transcriptome profiles of uncultured pMG showed the highest similarity to cultured pMG and oMG, followed by iPSC-MG and then MDMi. Direct comparison of HIV infection showed a striking difference, with high levels of viral replication in cultured pMG and MDMi and relatively low levels in oMG resembling HIV infection observed in post-mortem biopsies, while the SV40 and HMC3 cell lines did not support HIV infection. Altogether, based on transcriptional similarities to uncultured pMG and susceptibility to HIV infection, MDMi may serve as a first screening tool, whereas oMG, cultured pMG, and iPSC-MG provide more representative microglial culture models for HIV research. The use of current human microglial cell lines (SV40, HMC3) is not recommended.
Collapse
Affiliation(s)
- Stephanie B H Gumbs
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Raphael Kübler
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Psychiatry, Icahn School of Medicine, New York, NY, USA
| | - Lavina Gharu
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pauline J Schipper
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Anne L Borst
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gijsje J L J Snijders
- Department of Psychiatry, Icahn School of Medicine, New York, NY, USA
- Department of Psychiatry, University Medical Center Utrecht, Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Paul R Ormel
- Department of Psychiatry, University Medical Center Utrecht, Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Amber Berdenis van Berlekom
- Department of Psychiatry, University Medical Center Utrecht, Brain Center, Utrecht University, Utrecht, The Netherlands
- Department of Translational Neuroscience, University Medical Center Utrecht, Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Annemarie M J Wensing
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lot D de Witte
- Department of Psychiatry, Icahn School of Medicine, New York, NY, USA
- Department of Psychiatry, University Medical Center Utrecht, Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Monique Nijhuis
- Translational Virology, Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
8
|
Crucial Role of Central Nervous System as a Viral Anatomical Compartment for HIV-1 Infection. Microorganisms 2021; 9:microorganisms9122537. [PMID: 34946138 PMCID: PMC8705402 DOI: 10.3390/microorganisms9122537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/11/2021] [Accepted: 07/17/2021] [Indexed: 11/17/2022] Open
Abstract
The chronic infection established by the human immunodeficiency virus 1 (HIV-1) produces serious CD4+ T cell immunodeficiency despite the decrease in HIV-1 ribonucleic acid (RNA) levels and the raised life expectancy of people living with HIV-1 (PLWH) through treatment with combined antiretroviral therapies (cART). HIV-1 enters the central nervous system (CNS), where perivascular macrophages and microglia are infected. Serious neurodegenerative symptoms related to HIV-associated neurocognitive disorders (HAND) are produced by infection of the CNS. Despite advances in the treatment of this infection, HAND significantly contribute to morbidity and mortality globally. The pathogenesis and the role of inflammation in HAND are still incompletely understood. Principally, growing evidence shows that the CNS is an anatomical reservoir for viral infection and replication, and that its compartmentalization can trigger the evolution of neurological damage and thus make virus eradication more difficult. In this review, important concepts for understanding HAND and neuropathogenesis as well as the viral proteins involved in the CNS as an anatomical reservoir for HIV infection are discussed. In addition, an overview of the recent advancements towards therapeutic strategies for the treatment of HAND is presented. Further neurological research is needed to address neurodegenerative difficulties in people living with HIV, specifically regarding CNS viral reservoirs and their effects on eradication.
Collapse
|
9
|
Anderson AM, Tang B, Vaida F, Mcclernon D, Deutsch R, Cherner M, Cookson D, Crescini M, Grant I, Ellis RJ, Letendre SL. Low-Level HIV RNA in Cerebrospinal Fluid and Neurocognitive Performance: A Longitudinal Cohort Study. J Acquir Immune Defic Syndr 2021; 87:1196-1204. [PMID: 33901102 PMCID: PMC8596378 DOI: 10.1097/qai.0000000000002714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/29/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Cognitive complications persist in persons with HIV during suppressive antiretroviral therapy (ART). Low levels of HIV during ART could contribute to these complications. In this study, we measured cerebrospinal fluid (CSF) HIV using a single-copy assay (SCA) to investigate a possible relationship between low-level HIV and cognition. DESIGN/METHODS SCA data were analyzed from 3 consecutively paired CSF-plasma specimens collected over a mean of 456 days from 96 participants on suppressive ART. Using mixed models, the presence of CSF HIV by SCA as a risk factor for worse neurocognitive performance was examined. RESULTS At baseline on the SCA, 45.8% of participants had detectable plasma HIV RNA (median 8 copies/mL and interquartile range = 3-17 among detectable values) and 17.7% had detectable CSF HIV RNA (median CSF concentration= 3 copies/mL and interquartile range= 2-13 among detectable values). The frequency of CSF HIV RNA detection declined over time in CSF (P = 0.018) with a trend toward decline in plasma (P = 0.064). Detectable CSF HIV RNA during the study was associated with worse performance in the domains of recall (P = 0.014) and motor (P = 0.040) and a trend with worse overall global performance (P = 0.078). Integrase inhibitor use, although very infrequent in this cohort, was associated with better performance in 2 domains. CONCLUSIONS Low-level CSF HIV RNA declines with time but is associated with worse cognitive performance in 2 domains. Additional research is needed to better understand the relationship between HIV RNA persistence during long-term ART and central nervous system complications in persons with HIV.
Collapse
Affiliation(s)
- Albert M. Anderson
- Department of Medicine, Division of Infectious Diseases, Emory University School of Medicine
| | - Bin Tang
- Department of Psychiatry, University of California, San Diego
| | - Florin Vaida
- Department of Psychiatry, University of California, San Diego
| | | | - Reena Deutsch
- Department of Psychiatry, University of California, San Diego
| | - Mariana Cherner
- Department of Psychiatry, University of California, San Diego
| | - Debra Cookson
- Department of Psychiatry, University of California, San Diego
| | | | - Igor Grant
- Department of Psychiatry, University of California, San Diego
| | - Ronald J. Ellis
- Department of Psychiatry, University of California, San Diego
- Department of Neurosciences, University of California, San Diego
| | - Scott L. Letendre
- Department of Psychiatry, University of California, San Diego
- Department of Medicine, University of California, San Diego
| |
Collapse
|
10
|
Jones JE, Le Sage V, Lakdawala SS. Viral and host heterogeneity and their effects on the viral life cycle. Nat Rev Microbiol 2020; 19:272-282. [PMID: 33024309 PMCID: PMC7537587 DOI: 10.1038/s41579-020-00449-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2020] [Indexed: 02/08/2023]
Abstract
Traditionally, the viral replication cycle is envisioned as a single, well-defined loop with four major steps: attachment and entry into a target cell, replication of the viral genome, maturation of viral proteins and genome packaging into infectious progeny, and egress and dissemination to the next target cell. However, for many viruses, a growing body of evidence points towards extreme heterogeneity in each of these steps. In this Review, we reassess the major steps of the viral replication cycle by highlighting recent advances that show considerable variability during viral infection. First, we discuss heterogeneity in entry receptors, followed by a discussion on error-prone and low-fidelity polymerases and their impact on viral diversity. Next, we cover the implications of heterogeneity in genome packaging and assembly on virion morphology. Last, we explore alternative egress mechanisms, including tunnelling nanotubes and host microvesicles. In summary, we discuss the implications of viral phenotypic, morphological and genetic heterogeneity on pathogenesis and medicine. This Review highlights common themes and unique features that give nuance to the viral replication cycle.
Collapse
Affiliation(s)
- Jennifer E Jones
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Valerie Le Sage
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Seema S Lakdawala
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. .,Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
11
|
Gianella S, Chaillon A, Chun TW, Sneller MC, Ignacio C, Vargas-Meneses MV, Caballero G, Ellis RJ, Kovacs C, Benko E, Huibner S, Kaul R. HIV RNA Rebound in Seminal Plasma after Antiretroviral Treatment Interruption. J Virol 2020; 94:e00415-20. [PMID: 32434884 PMCID: PMC7375368 DOI: 10.1128/jvi.00415-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022] Open
Abstract
If strategies currently in development succeed in eradicating HIV reservoirs in peripheral blood and lymphoid tissues, residual sources of virus may remain in anatomic compartments. Paired blood and semen samples were collected from 12 individuals enrolled in a randomized, double-blind, placebo-controlled therapeutic vaccine clinical trial in people with HIV (PWH) who began antiretroviral therapy (ART) during acute or early infection (ClinicalTrials registration no. NCT01859325). After the week 56 visit (postintervention), all participants interrupted ART. At the first available time points after viral rebound, we sequenced HIV-1 env (C2-V3), gag (p24), and pol (reverse transcriptase) regions amplified from cell-free HIV RNA in blood and seminal plasma using the MiSeq Illumina platform. Comprehensive sequence and phylogenetic analyses were performed to evaluate viral population structure, compartmentalization, and viral diversity in blood and seminal plasma. Compared to that in blood, HIV RNA rebound in semen occurred significantly later (median of 66 versus 42 days post-ART interruption, P < 0.01) and reached lower levels (median 164 versus 16,090 copies/ml, P < 0.01). Three of five participants with available sequencing data presented compartmentalized viral rebound between blood and semen in one HIV coding region. Despite early ART initiation, HIV RNA molecular diversity was higher in semen than in blood in all three coding regions for most participants. Higher HIV RNA molecular diversity in the genital tract (compared to that in blood plasma) and evidence of compartmentalization illustrate the distinct evolutionary dynamics between these two compartments after ART interruption. Future research should evaluate whether the genital compartment might contribute to viral rebound in some PWH interrupting ART.IMPORTANCE To cure HIV, we likely need to target the reservoirs in all anatomic compartments. Here, we used sophisticated statistical and phylogenetic methods to analyze blood and semen samples collected from 12 persons with HIV who began antiretroviral therapy (ART) during very early HIV infection and who interrupted their ART as part of a clinical trial. First, we found that HIV RNA rebound in semen occurred significantly later and reached lower levels than in blood. Second, we found that the virus in semen was genetically different in some participants compared to that in blood. Finally, we found increased HIV RNA molecular diversity in semen compared to that in blood in almost all study participants. These data suggest that the HIV RNA populations emerging from the genital compartment after ART interruption might not be the same as those emerging from blood plasma. Future research should evaluate whether the genital compartment might contribute to viral rebound in some people with HIV (PWH) interrupting ART.
Collapse
Affiliation(s)
- Sara Gianella
- University of California, San Diego, La Jolla, California, USA
| | | | - Tae-Wook Chun
- National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Michael C Sneller
- National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | | | | | - Gemma Caballero
- University of California, San Diego, La Jolla, California, USA
| | - Ronald J Ellis
- University of California, San Diego, La Jolla, California, USA
| | - Colin Kovacs
- Maple Leaf Medical Clinic, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Erika Benko
- Maple Leaf Medical Clinic, Toronto, Ontario, Canada
| | - Sanja Huibner
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Rupert Kaul
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Sharma V, Bryant C, Montero M, Creegan M, Slike B, Krebs SJ, Ratto-Kim S, Valcour V, Sithinamsuwan P, Chalermchai T, Eller MA, Bolton DL. Monocyte and CD4+ T-cell antiviral and innate responses associated with HIV-1 inflammation and cognitive impairment. AIDS 2020; 34:1289-1301. [PMID: 32598115 DOI: 10.1097/qad.0000000000002537] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Mechanisms underlying immune activation and HIV-associated neurocognitive disorders (HAND) in untreated chronic infection remain unclear. The objective of this study was to identify phenotypic and transcriptional changes in blood monocytes and CD4 T cells in HIV-1-infected and uninfected individuals and elucidate processes associated with neurocognitive impairment. DESIGN A group of chronically HIV-1-infected Thai individuals (n = 19) were selected for comparison with healthy donor controls (n = 10). Infected participants were further classified as cognitively normal (n = 10) or with HAND (n = 9). Peripheral monocytes and CD4 T cells were phenotyped by flow cytometry and simultaneously isolated for multiplex qPCR-targeted gene expression profiling directly ex vivo. The frequency of HIV-1 RNA-positive cells was estimated by limiting dilution cell sorting. RESULTS Expression of genes and proteins involved in cellular activation and proinflammatory immune responses was increased in monocytes and CD4 T cells from HIV-1-infected relative to uninfected individuals. Gene expression profiles of both CD4 T cells and monocytes correlated with soluble markers of inflammation in the periphery (P < 0.05). By contrast, only modest differences in gene programs were observed between cognitively normal and HAND cases. These included increased monocyte surface CD169 protein expression relative to cognitively normal (P = 0.10), decreased surface CD163 expression relative to uninfected (P = 0.02) and cognitively normal (P = 0.06), and downregulation of EMR2 (P = 0.04) and STAT1 (P = 0.02) relative to cognitively normal. CONCLUSION Our data support a model of highly activated monocytes and CD4 T cells associated with inflammation in chronic HIV-1 infection, but impaired monocyte anti-inflammatory responses in HAND compared with cognitively normal.
Collapse
Affiliation(s)
- Vishakha Sharma
- aU.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring bHenry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda cThe EMMES Corporation, Rockville, Maryland dMemory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, California, USA eFaculty of Medicine, Phramongkutklao Hospital fSEARCH, Thai Red Cross AIDS Research Centre, Bangkok, Thailand
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
de Almeida SM, Rotta I, de Pereira AP, Tang B, Umlauf A, Ribeiro CEL, Letendre S, Ellis RJ. Cerebrospinal fluid pleocytosis as a predictive factor for CSF and plasma HIV RNA discordance and escape. J Neurovirol 2020; 26:241-251. [PMID: 32002817 PMCID: PMC7261245 DOI: 10.1007/s13365-020-00828-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/10/2020] [Accepted: 01/23/2020] [Indexed: 01/14/2023]
Abstract
The aims of this study were to investigate the frequency of HIV-1 RNA level discordance between the cerebrospinal fluid (CSF) and plasma and of CSF viral escape (CVE) in patients with HIV-1 subtype C on antiretroviral therapy, and evaluate the CSF white blood cell (WBC) performance characteristics in predicting CSF discordance in HIV+ group and the frequency of cognitive impairment in individuals with CSF HIV discordance or escape. HIV-1 RNA levels were assessed in plasma and CSF samples from 68 HIV+ participants without opportunistic infection. CSF discordance was found in 7.4% and CVE in 10%, with comparable frequencies between HIV-1B and C. Twenty samples (29%) showed increased CSF WBC counts. This group had higher CSF and plasma HIV-1 RNA levels than the group with normal WBC counts (p < 0.0001 and 0.006, respectively). The odds of CSF discordance were 18 times higher for a person with CSF WBC count of > 5 cells/mm3 than the group with normal CSF WBC count. CSF WBC counts (cut-off of 15 cells/mm3) showed high-performance characteristics as a predictive biomarker of CSF discordance (AUC the ROC curve 0.98). The frequency of cognitive impairment for CSF escape or discordance was 83% and 80%. The odds of cognitive impairment in these groups were 19 and 15 times higher than those for an HIV(-) person. Viral discordance or escape in the CNS occurs at a comparable frequency for HIV-1C and HIV-1B. The CSF WBC count was effective as a predictive biomarker of CSF and plasma discordance.
Collapse
Affiliation(s)
| | - Indianara Rotta
- Virology Laboratory, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | | | - Bin Tang
- Department of Medicine and Psychiatry, University of California, San Diego, CA, USA
| | - Anya Umlauf
- Department of Medicine and Psychiatry, University of California, San Diego, CA, USA
| | - Cléa Elisa Lopes Ribeiro
- Infectious Diseases Unity, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Scott Letendre
- Department of Medicine and Psychiatry, University of California, San Diego, CA, USA
| | - Ronald J Ellis
- Department of Neurosciences and Psychiatry, University of California, San Diego, CA, USA
| |
Collapse
|
14
|
Abstract
A disease of more than 39.6 million people worldwide, HIV-1 infection has no curative therapy. To date, one man has achieved a sterile cure, with millions more hoping to avoid the potential pitfalls of lifelong antiretroviral therapy and other HIV-related disorders, including neurocognitive decline. Recent developments in immunotherapies and gene therapies provide renewed hope in advancing efforts toward a sterilizing or functional cure. On the horizon is research concentrated in multiple separate but potentially complementary domains: vaccine research, viral transcript editing, T-cell effector response targeting including checkpoint inhibitors, and gene editing. Here, we review the concept of targeting the HIV-1 tissue reservoirs, with an emphasis on the central nervous system, and describe relevant new work in functional cure research and strategies for HIV-1 eradication.
Collapse
|
15
|
Tovanabutra S, Sirijatuphat R, Pham PT, Bonar L, Harbolick EA, Bose M, Song H, Chang D, Oropeza C, O'Sullivan AM, Balinang J, Kroon E, Colby DJ, Sacdalan C, Hellmuth J, Chan P, Prueksakaew P, Pinyakorn S, Jagodzinski LL, Sutthichom D, Pattamaswin S, de Souza M, Gramzinski RA, Kim JH, Michael NL, Robb ML, Phanuphak N, Ananworanich J, Valcour V, Kijak GH, Sanders-Buell E, Spudich S. Deep Sequencing Reveals Central Nervous System Compartmentalization in Multiple Transmitted/Founder Virus Acute HIV-1 Infection. Cells 2019; 8:E902. [PMID: 31443253 PMCID: PMC6721674 DOI: 10.3390/cells8080902] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/10/2019] [Accepted: 08/11/2019] [Indexed: 01/31/2023] Open
Abstract
HIV-1 disseminates to a broad range of tissue compartments during acute HIV-1 infection (AHI). The central nervous system (CNS) can serve as an early and persistent site of viral replication, which poses a potential challenge for HIV-1 remission strategies that target the HIV reservoir. CNS compartmentalization is a key feature of HIV-1 neuropathogenesis. Thus far, the timing of how early CNS compartmentalization develops after infection is unknown. We examined whether HIV-1 transmitted/founder (T/F) viruses differ between CNS and blood during AHI using single-genome sequencing of envelope gene and further examined subregions in pol and env using next-generation sequencing in paired plasma and cerebrospinal fluid (CSF) from 18 individuals. Different proportions of mostly minor variants were found in six of the eight multiple T/F-infected individuals, indicating enrichment of some variants in CSF that may lead to significant compartmentalization in the later stages of infection. This study provides evidence for the first time that HIV-1 compartmentalization in the CNS can occur within days of HIV-1 exposure in multiple T/F infections. Further understanding of factors that determine enrichment of T/F variants in the CNS, as well as potential long-term implications of these findings for persistence of HIV-1 reservoirs and neurological impairment in HIV, is needed.
Collapse
Affiliation(s)
- Sodsai Tovanabutra
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA.
| | - Rujipas Sirijatuphat
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Phuc T Pham
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Lydia Bonar
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Elizabeth A Harbolick
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Meera Bose
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Hongshuo Song
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - David Chang
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Celina Oropeza
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Anne Marie O'Sullivan
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Joyce Balinang
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Eugene Kroon
- SEARCH, Thai Red Cross AIDS Research Centre, Bangkok 10330, Thailand
| | - Donn J Colby
- SEARCH, Thai Red Cross AIDS Research Centre, Bangkok 10330, Thailand
| | - Carlo Sacdalan
- SEARCH, Thai Red Cross AIDS Research Centre, Bangkok 10330, Thailand
| | - Joanna Hellmuth
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Phillip Chan
- SEARCH, Thai Red Cross AIDS Research Centre, Bangkok 10330, Thailand
| | | | - Suteeraporn Pinyakorn
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Linda L Jagodzinski
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | | | | | - Mark de Souza
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
- SEARCH, Thai Red Cross AIDS Research Centre, Bangkok 10330, Thailand
| | - Robert A Gramzinski
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Jerome H Kim
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- International Vaccine Institute, Seoul 08826, Korea
| | - Nelson L Michael
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Merlin L Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Nittaya Phanuphak
- SEARCH, Thai Red Cross AIDS Research Centre, Bangkok 10330, Thailand
| | - Jintanat Ananworanich
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
- SEARCH, Thai Red Cross AIDS Research Centre, Bangkok 10330, Thailand
- Academic Medical Center, Department of Global Health, University of Amsterdam, 1105AZ Amsterdam, The Netherlands
| | - Victor Valcour
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, CA 94158, USA
| | - Gustavo H Kijak
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Eric Sanders-Buell
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Serena Spudich
- Department of Neurology, Yale University; New Haven, CT 06510, USA
| |
Collapse
|
16
|
Molecular Signatures of HIV-1 Envelope Associated with HIV-Associated Neurocognitive Disorders. Curr HIV/AIDS Rep 2019; 15:72-83. [PMID: 29460224 DOI: 10.1007/s11904-018-0374-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW The HIV-1 envelope gene (env) has been an intense focus of investigation in the search for genetic determinants of viral entry and persistence in the central nervous system (CNS). RECENT FINDINGS Molecular signatures of CNS-derived HIV-1 env reflect the immune characteristics and cellular constraints of the CNS compartment. Although more readily found in those with advanced HIV-1 and HIV-associated neurocognitive disorders (HAND), molecular signatures distinguishing CNS-derived quasispecies can be identified early in HIV-1 infection, in the presence or absence of combination antiretroviral therapy (cART), and are dynamic. Amino acid signatures of CNS-compartmentalization and HAND have been identified across populations. While some significant overlap exists, none are universal. Detailed analyses of CNS-derived HIV-1 env have allowed researchers to identify a number of molecular determinants associated with neuroadaptation. Future investigations using comprehensive cohorts and longitudinal databases have the greatest potential for the identification of robust, validated signatures of HAND in the cART era.
Collapse
|
17
|
Evidence for both Intermittent and Persistent Compartmentalization of HIV-1 in the Female Genital Tract. J Virol 2019; 93:JVI.00311-19. [PMID: 30842323 DOI: 10.1128/jvi.00311-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 02/27/2019] [Indexed: 12/26/2022] Open
Abstract
HIV-1 has been shown to evolve independently in different anatomical compartments, but studies in the female genital tract have been inconclusive. Here, we examined evidence of compartmentalization using HIV-1 subtype C envelope (Env) glycoprotein genes (gp160) obtained from matched cervicovaginal lavage (CVL) and plasma samples over 2 to 3 years of infection. HIV-1 gp160 amplification from CVL was achieved for only 4 of 18 acutely infected women, and this was associated with the presence of proinflammatory cytokines and/or measurable viremia in the CVL. Maximum likelihood trees and divergence analyses showed that all four individuals had monophyletic compartment-specific clusters of CVL- and/or plasma-derived gp160 sequences at all or some time points. However, two participants (CAP177 and CAP217) had CVL gp160 diversity patterns that differed from those in plasma and showed restricted viral flow from the CVL. Statistical tests of compartmentalization revealed evidence of persistent compartment-specific gp160 evolution in CAP177, while in CAP217 this was intermittent. Lastly, we identified several Env sites that distinguished viruses in these two compartments; for CAP177, amino acid differences arose largely through positive selection, while insertions/deletions were more common in CAP217. In both cases these differences contributed to substantial charge changes spread across the Env. Our data indicate that, in some women, HIV-1 populations within the genital tract can have Env genetic features that differ from those of viruses in plasma, which could impact the sensitivity of viruses in the genital tract to vaginal microbicides and vaccine-elicited antibodies.IMPORTANCE Most HIV-1 infections in sub-Saharan Africa are acquired heterosexually through the genital mucosa. Understanding the properties of viruses replicating in the female genital tract, and whether these properties differ from those of more commonly studied viruses replicating in the blood, is therefore important. Using longitudinal CVL and plasma-derived sequences from four HIV-1 subtype C-infected women, we found fewer viral migrations from the genital tract to plasma than in the opposite direction, suggesting a mucosal sieve effect from the genital tract to the blood compartment. Evidence for both persistent and intermittent compartmentalization between the genital tract and plasma viruses during chronic infection was detected in two of four individuals, perhaps explaining previously conflicting findings. In cases where compartmentalization occurred, comparison of CVL- and plasma-derived HIV sequences indicated that distinct features of viral populations in the CVL may affect the efficacy of microbicides and vaccines designed to provide mucosal immunity.
Collapse
|
18
|
|
19
|
Abstract
: Neurological conditions associated with HIV remain major contributors to morbidity and mortality and are increasingly recognized in the aging population on long-standing combination antiretroviral therapy (cART). Importantly, growing evidence shows that the central nervous system (CNS) may serve as a reservoir for viral replication, which has major implications for HIV eradication strategies. Although there has been major progress in the last decade in our understanding of the pathogenesis, burden, and impact of neurological conditions associated with HIV infection, significant scientific gaps remain. In many resource-limited settings, antiretrovirals considered second or third line in the United States, which carry substantial neurotoxicity, remain mainstays of treatment, and patients continue to present with severe immunosuppression and CNS opportunistic infections. Despite this, increased global access to cART has coincided with an aging HIV-positive population with cognitive sequelae, cerebrovascular disease, and peripheral neuropathy. Further neurological research in low-income and middle-income countries (LMICs) is needed to address the burden of neurological complications in HIV-positive patients, particularly regarding CNS viral reservoirs and their effects on eradication.
Collapse
|
20
|
de Almeida SM, Oliveira MF, Chaillon A, Rotta I, Ribeiro CE, de Pereira AP, Smith D, Letendre S, Ellis RJ. Transient and asymptomatic meningitis in human immunodeficiency virus-1 subtype C: a case study of genetic compartmentalization and biomarker dynamics. J Neurovirol 2018; 24:786-796. [PMID: 30194587 PMCID: PMC6279585 DOI: 10.1007/s13365-018-0672-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/13/2018] [Accepted: 08/21/2018] [Indexed: 02/07/2023]
Abstract
Human immunodeficiency virus (HIV) genetic compartmentalization is defined as genetic differences in HIV in different tissue compartments or subcompartments that characterize viral quasispecies. This descriptive, longitudinal study assessed the dynamics of inflammation, humoral immune response, blood-brain barrier, blood-cerebrospinal fluid (CSF) barrier, as well as neuronal injury biomarkers in serially obtained CSF and serum samples from an antiretroviral (ARV) therapy-naïve patient with HIV-1 subtype C with CSF HIV genetic compartmentalization that resolved spontaneously without ARV treatment. The first CSF sample showed an increase in white blood cell (WBC) count (382 cells/mm3) and a marked increase in the levels of inflammatory cytokines and chemokines, including tumor necrosis factor (TNF)α, interleukin (IL)-10, IP-10, and regulated on activation, normal T cell expressed and secreted (RANTES), which raise the suspicion of dual infection. Serum sample analysis showed all cytokine levels to be normal, with only IP-10 slightly increased. These results corroborate the hypothesis that the CNS immunologic response in a patient with HIV infection was independent of the systemic immunologic response. The patient also had persistently elevated levels of sCD14, neopterin, and β2M, which were strongly suggestive of persistent CNS immunologic stimulation. This report describes a patient with HIV subtype C who developed a transient episode of asymptomatic HIV meningitis with compartmentalization of HIV in the CSF that resolved independently of ARV therapy. Extensive CSF studies were performed as part of an ongoing longitudinal study, which revealed CNS immune abnormalities. This case presents evidence of HIV-1 subtype C neurotropism and compartmentalization.
Collapse
Affiliation(s)
- Sergio M de Almeida
- Universidade Federal do Paraná, Curitiba, Paraná, Brazil.
- Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, Brazil.
- Hospital de Clínicas, Seção de Virologia, Setor Análises Clínicas Rua Padre Camargo, UFPR, 280, Curitiba, PR, 80060-240, Brazil.
| | | | | | - Indianara Rotta
- Universidade Federal do Paraná, Curitiba, Paraná, Brazil
- Faculdades Pequeno Príncipe, Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Paraná, Brazil
| | - Clea E Ribeiro
- Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | | | - Davey Smith
- University of California, San Diego, San Diego, CA, USA
| | | | | |
Collapse
|
21
|
Peripheral and cerebrospinal fluid immune activation and inflammation in chronically HIV-infected patients before and after virally suppressive combination antiretroviral therapy (cART). J Neurovirol 2018; 24:679-694. [PMID: 29987585 DOI: 10.1007/s13365-018-0661-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 06/13/2018] [Accepted: 06/28/2018] [Indexed: 12/14/2022]
Abstract
Cerebrospinal fluid (CSF)/plasma HIV-RNA ratio has been associated with residual neurocognitive impairment on cART, leading us to hypothesize a specific peripheral and/or CSF immune feature in patients with high CSF/plasma ratio (≥ 1). In patients with diverse pre-cART CSF/plasma ratio (61/70 with CSF/plasma ratio < 1, L-CSF, 9/70 with CSF/plasma ratio ≥ 1, H-CSF), we investigated the effects of 12 months of effective cART on peripheral and CSF inflammatory markers, on T cell activation/maturation and HIV/CMV-specific intracellular cytokine pattern. We also studied the possible clinical association between peripheral/CSF pro-inflammatory milieu and neurocognitive screening tests (MMSE, FAB, IHDS). Prior to cART, the two groups were comparable for peripheral and CSF inflammation, T cell activation/proliferation and maturation, and HIV/CMV-specific response. Upon cART initiation, both H-CSF and L-CSF featured a significant reduction in plasma TNF-α and circulating CD8 activation, with a redistribution of memory/naïve T cell subsets in L-CSF alone. In the CSF compartment, cART seemed able to reduce pro-inflammatory cytokine/chemokine levels in both H-CSF and L-CSF patients. Interestingly, despite a reduction in the pro-inflammatory milieu, no changes were shown in neurocognitive screening tests in both patients' groups. We hereby show that 12-month cART is able to reduce intratechal and peripheral pro-inflammatory burden; a longer cART exposure and a more comprehensive neuropsychological evaluation might be necessary to gain a broader insight into the possible effects on neurocognitive performance.
Collapse
|
22
|
Sojane K, Kangethe RT, Chang CC, Moosa MYS, Lewin SR, French MA, Ndung'u T. Individuals with HIV-1 Subtype C Infection and Cryptococcal Meningitis Exhibit Viral Genetic Intermixing of HIV-1 Between Plasma and Cerebrospinal Fluid and a High Prevalence of CXCR4-Using Variants. AIDS Res Hum Retroviruses 2018; 34:607-620. [PMID: 29658309 PMCID: PMC6314437 DOI: 10.1089/aid.2017.0209] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The genotypic properties of human immunodeficiency virus type 1 (HIV-1) subtype C in individuals presenting with cryptococcal meningitis (CM) are not well established. Employing single-genome amplification as well as bulk PCR, cloning and sequencing strategies, we evaluated the genetic properties of HIV-1 subtype C env in 16 antiretroviral therapy-naive study participants with CM. Eleven of the 16 participants had matched blood plasma and cerebrospinal fluid (CSF) evaluated, with the rest having either a plasma or CSF sample evaluated. Before antiretroviral therapy initiation, matched plasma and CSF-derived env sequences of all 11 participants displayed genetic intermixing between the two compartments. Overall, 7 of the 16 (∼43.8%) participants harbored CXCR4-using variants in plasma and/or CSF, according to coreceptor usage prediction algorithms. This study suggests that HIV-1 subtype C genetic intermixing between peripheral blood and the central nervous system is common in individuals presenting with CM, and that CXCR4 usage is present in one or both compartments in approximately 44% of individuals.
Collapse
Affiliation(s)
- Katlego Sojane
- 1 HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal , Durban, South Africa
| | - Richard T Kangethe
- 1 HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal , Durban, South Africa
| | - Christina C Chang
- 2 Department of Infectious Diseases, Alfred Hospital and Monash University , Melbourne, Australia
| | - Mahomed-Yunus S Moosa
- 3 Department of Infectious Diseases, King Edward VIII Hospital, University of KwaZulu-Natal , Durban, South Africa
| | - Sharon R Lewin
- 2 Department of Infectious Diseases, Alfred Hospital and Monash University , Melbourne, Australia
- 4 The Peter Doherty Institute for Infection and Immunity, University of Melbourne and Royal Melbourne Hospital , Melbourne, Australia
| | - Martyn A French
- 5 Medical School and School of Biomedical Sciences, University of Western Australia , Perth, Australia
- 6 Department of Clinical Immunology, Royal Perth Hospital and PathWest Laboratory Medicine , Perth, Australia
| | - Thumbi Ndung'u
- 1 HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal , Durban, South Africa
- 7 Africa Health Research Institute , Durban, South Africa
- 8 Ragon Institute of MGH, MIT and Harvard University , Cambridge, Massachusetts
- 9 Max Planck Institute for Infection Biology , Berlin, Germany
| |
Collapse
|
23
|
Basova L, Najera JA, Bortell N, Wang D, Moya R, Lindsey A, Semenova S, Ellis RJ, Marcondes MCG. Dopamine and its receptors play a role in the modulation of CCR5 expression in innate immune cells following exposure to Methamphetamine: Implications to HIV infection. PLoS One 2018; 13:e0199861. [PMID: 29944719 PMCID: PMC6019408 DOI: 10.1371/journal.pone.0199861] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 06/14/2018] [Indexed: 01/08/2023] Open
Abstract
The Human Immunodeficiency Virus (HIV) infects cells in the Central Nervous System (CNS), where the access of antiretrovirals and antibodies that can kill the virus may be challenging. As a result of the early HIV entry in the brain, infected individuals develop inflammation and neurological deficits at various levels, which are aggravated by drugs of abuse. In the non-human primate model of HIV, we have previously shown that drugs of abuse such as Methamphetamine (Meth) increase brain viral load in correlation with a higher number of CCR5-expressing myeloid cells. CCR5 is a chemokine receptor that may be involved in increasing inflammation, but also, it is a co-receptor for viral entry into target cells. CCR5-expressing myeloid cells are the main targets of HIV in the CNS. Thus, the identification of factors and mechanisms that impact the expression of CCR5 in the brain is critical, as changes in CCR5 levels may affect the infection in the brain. Using a well-characterized in vitro system, with the THP1 human macrophage cell line, we have investigated the hypothesis that the expression of CCR5 is acutely affected by Meth, and examined pathways by which this effect could happen. We found that Meth plays a direct role by regulating the abundance and nuclear translocation of transcription factors with binding sites in the CCR5 promoter. However, we found that the main factor that modifies the CCR5 gene promoter at the epigenetic level towards transcription is Dopamine (DA), a neurotransmitter that is produced primarily in brain regions that are rich in dopaminergic neurons. In THP1 cells, the effect of DA on innate immune CCR5 transcription was mediated by DA receptors (DRDs), mainly DRD4. We also identified a role for DRD1 in suppressing CCR5 expression in this myeloid cell system, with potential implications for therapy. The effect of DA on innate immune CCR5 expression was also detectable on the cell surface during acute time-points, using low doses. In addition, HIV Tat acted by enhancing the surface expression of CCR5, in spite of its poor effect on transcription. Overall, our data suggests that the exposure of myeloid cells to Meth in the context of presence of HIV peptides such as Tat, may affect the number of HIV targets by modulating CCR5 expression, through a combination of DA-dependent and–independent mechanisms. Other drugs that increase DA may affect similar mechanisms. The implications of these epigenetic and translational mechanisms in enhancing HIV infection in the brain and elsewhere are demonstrated.
Collapse
Affiliation(s)
- Liana Basova
- San Diego Biomedical Research Institute, San Diego, CA, United States of America
- Department of Neurosciences, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Julia A. Najera
- Department of Neurosciences, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Nikki Bortell
- Department of Neurosciences, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Di Wang
- Department of Neurosciences, The Scripps Research Institute, La Jolla, CA, United States of America
- University of California San Diego, Department of Psychiatry, San Diego, CA, United States of America
| | - Rosita Moya
- San Diego Biomedical Research Institute, San Diego, CA, United States of America
| | - Alexander Lindsey
- San Diego Biomedical Research Institute, San Diego, CA, United States of America
| | - Svetlana Semenova
- University of California San Diego, Department of Psychiatry, San Diego, CA, United States of America
| | - Ronald J. Ellis
- University of California San Diego, Department of Psychiatry, San Diego, CA, United States of America
| | - Maria Cecilia Garibaldi Marcondes
- San Diego Biomedical Research Institute, San Diego, CA, United States of America
- Department of Neurosciences, The Scripps Research Institute, La Jolla, CA, United States of America
- * E-mail:
| |
Collapse
|
24
|
Ene L. Human Immunodeficiency Virus in the Brain-Culprit or Facilitator? Infect Dis (Lond) 2018; 11:1178633717752687. [PMID: 29467577 PMCID: PMC5815409 DOI: 10.1177/1178633717752687] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/15/2017] [Indexed: 01/21/2023] Open
Abstract
Introduction: Human immunodeficiency virus (HIV) enters the brain early, where it can persist, evolve, and become compartmentalized. Central nervous system (CNS) disease can be attributed to HIV alone or to the complex interplay between the virus and other neurotropic pathogens. Aim: The current review aims to describe the direct impact of HIV on the brain as well as its relationship with other pathogens from a practitioner’s perspective, to provide a general clinical overview, brief workup, and, whenever possible, treatment guidance. Methods: A review of PubMed was conducted to identify studies on neuropathogenesis of HIV in relation to host responses. Furthermore, the interaction between the CNS pathogens and the host damage responses were revised in the setting of advanced and also well-controlled HIV infection. Results: Similar to other pathogens, HIV leads to CNS immune activation, inflammation, and viral persistence. Therefore, almost half of the infected individuals present with neurocognitive disorders, albeit mild. Compartmentalized HIV in the CNS can be responsible in a minority of cases for the dramatic presentation of symptomatic HIV escape. Disruption of the immune system secondary to HIV may reactivate latent infections or allow new pathogens to enter the CNS. Opportunistic infections with an inflammatory component are associated with elevated HIV loads in the cerebrospinal fluid and also with greater cognitive impairment. The inflammatory immune reconstitution syndrome associated with CNS opportunistic infections can be a life-threatening condition, which needs to be recognized and managed by efficiently controlling the pathogen burden and timely balanced combination antiretroviral therapy. Latent neurotropic pathogens can reactivate in the brain and mimic HIV-associated severe neurological diseases or contribute to neurocognitive impairment in the setting of stable HIV infection. Conclusions: As HIV can be responsible for considerable brain damage directly or by facilitating other pathogens, more effort is needed to recognize and manage HIV-associated CNS disorders and to eventually target HIV eradication from the brain.
Collapse
Affiliation(s)
- Luminita Ene
- HIV Department, "Dr. Victor Babes" Hospital for Infectious and Tropical Diseases, Bucharest, Romania
| |
Collapse
|
25
|
Probing the compartmentalization of HIV-1 in the central nervous system through its neutralization properties. PLoS One 2017; 12:e0181680. [PMID: 28841647 PMCID: PMC5571919 DOI: 10.1371/journal.pone.0181680] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 07/05/2017] [Indexed: 11/19/2022] Open
Abstract
Compartmentalization of HIV-1 has been observed in the cerebrospinal fluid (CSF) of patients at different clinical stages. Considering the low permeability of the blood-brain barrier, we wondered if a reduced selective pressure by neutralizing antibodies (NAb) in the central nervous system (CNS) could favor the evolution of NAb-sensitive viruses in this compartment. Single genome amplification (SGA) was used to sequence full-length HIV-1 envelope variants (453 sequences) from paired CSF and blood plasma samples in 9 subjects infected by HIV variants of various clades and suffering from diverse neurologic disorders. Dynamics of viral evolution were evaluated with a bayesian coalescent approach for individuals with longitudinal samples. Pseudotyped viruses expressing envelope glycoproteins variants representative of the quasi-species present in each compartment were generated, and their sensitivity to autologous neutralization, broadly neutralizing antibodies (bNAbs) and entry inhibitors was assessed. Significant compartmentalization of HIV populations between blood and CSF were detected in 5 out of 9 subjects. Some of the previously described genetic determinants for compartmentalization in the CNS were observed regardless of the HIV-1 clade. There was no difference of sensitivity to autologous neutralization between blood- and CSF-variants, even for subjects with compartmentalization, suggesting that selective pressure by autologous NAb is not the main driver of HIV evolution in the CNS. However, we observed major differences of sensitivity to sCD4 or to at least one bNAb targeting either the N160-V1V2 site, the N332-V3 site or the CD4bs, between blood- and CSF-variants in all cases. In particular, HIV-1 variants present in the CSF were more resistant to bNAbs than their blood counterpart in some cases. Considering the possible migration from CSF to blood, the CNS could be a reservoir of bNAb resistant viruses, an observation that should be considered for immunotherapeutic approaches.
Collapse
|
26
|
Abstract
OBJECTIVE To analyze and compare HIV-1 env sequences from the eye to those from the blood of individuals with uveitis attributed to HIV with the goal of gaining insight into the pathogenesis of HIV-associated eye disease. DESIGN A prospective case series of five HIV-infected antiretroviral-naive individuals with uveitis negative for other pathogens. METHODS RNA from blood plasma and ocular aqueous humor was reverse transcribed using random hexamers. HIV env C2-V5 (HXB2: 6990-7668) sequences were generated by single-genome amplification using nested polymerase chain reaction followed by bidirectional Sanger sequencing. Sequence analyses by Geneious, Geno2Pheno, N-GLYCOSITE, DIVEIN, and HyPhy evaluated relationships between HIV in plasma and aqueous humor. RESULTS A median of 20 (range: 13-22) plasma and 15 (range: 9-18) aqueous humor sequences were generated from each individual. The frequencies of sequences with predicted-N-linked-glycosylation sites and C-X-C chemokine receptor type 4 were comparable in aqueous humor and plasma of all five patients. Aqueous humor sequences had lower median genetic diversity compared with plasma across all patients, but similar divergence, in four of five patients. Aqueous humor HIV sequences were compartmentalized from plasma across subjects by Critchlow correlation coefficient, Slatkin and Maddison, nearest-neighbor statistic, and Fixation index. CONCLUSION Among antiretroviral-naive individuals with uveitis attributed to HIV, the universal compartmentalization and decreased diversity of eye compared with blood sequences suggests time-limited passage of a small subset of variants from each patient's viral population into the eye tissues, followed by limited immune selection despite the inflammatory uveitis.
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW Tissue reservoirs of HIV may promote the persistent immunopathology responsible for non-AIDS morbidity and data support multifocal reactivation from tissues as the source of viral rebound during antiretroviral therapy (ART) interruption. The heterogeneity of tissue reservoirs and incomplete knowledge about their composition are obstacles to an HIV cure. RECENT FINDINGS In addition to the higher concentration of infected CD4 T cells found in both central lymphoid tissues and gut, specific subsets of CD4 T cells appear to play a disproportionate role in HIV persistence. Recently, a subset of central memory T cells enriched in lymph node germinal centers called T-follicular helper cells has been identified that expresses more viral RNA and occupies an anatomic niche inaccessible to cytotoxic T lymphocyte killing. Additional observations suggest that antiretroviral drug (ARV) concentrations may be lower in some tissues, raising the possibility for localized, low-level viral replication. Finally, some recent data implicate the persistence of infected, non-CD4 T-cell types in tissues during ART. SUMMARY The retention of infected cells in a wide variety of tissues, often with distinct viral and cellular characteristics, underscores the importance of studying tissue reservoirs in the development and assessment of cure strategies. Both inhibitory ARVs and latency-reversing drugs must reach these sites, and novel strategies may be needed to attack virus in cells as variable as T-follicular helper cells and macrophages.
Collapse
|
28
|
Yilmaz A, Blennow K, Hagberg L, Nilsson S, Price RW, Schouten J, Spudich S, Underwood J, Zetterberg H, Gisslén M. Neurofilament light chain protein as a marker of neuronal injury: review of its use in HIV-1 infection and reference values for HIV-negative controls. Expert Rev Mol Diagn 2017; 17:761-770. [PMID: 28598205 DOI: 10.1080/14737159.2017.1341313] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Several CSF biomarkers of neuronal injury have been studied in people living with HIV. At this time, the most useful is the light subunit of the neurofilament protein (NFL). This major structural component of myelinated axons is essential to maintain axonal caliber and to facilitate effective nerve conduction. CSF concentrations of NFL provide a sensitive marker of CNS injury in a number of neurological diseases, including HIV-related neuronal injury. Areas Covered: In this review, the authors describe CSF NFL concentrations across the spectrum of HIV-infection, from its early acute phase to severe immunosuppression, with and without neurological conditions, and with and without antiretroviral treatment (n = 516). Furthermore, in order to provide more precise estimates of age-related upper limits of CSF NFL concentrations, the authors present data from a large number (n = 359) of HIV-negative controls. Expert Commentary: Recently a new ultrasensitive diagnostic assay for quantification of NFL in plasma has been developed, providing a convenient way to assess neuronal damage without having to perform a lumbar puncture. This review also considers our current knowledge of plasma NFL in HIV CNS infection.
Collapse
Affiliation(s)
- Aylin Yilmaz
- a Institute of Biomedicine, Department of Infectious Diseases , University of Gothenburg , Gothenburg , Sweden
| | - Kaj Blennow
- b Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry , University of Gothenburg , Gothenburg , Sweden.,c Clinical Neurochemistry Laboratory , Sahlgrenska University Hospital , Molndal , Sweden
| | - Lars Hagberg
- a Institute of Biomedicine, Department of Infectious Diseases , University of Gothenburg , Gothenburg , Sweden
| | - Staffan Nilsson
- d Mathematical Sciences , Chalmers University of Technology , Gothenburg , Sweden
| | - Richard W Price
- e Department of Neurology , University of California San Francisco , San Francisco , California , USA
| | - Judith Schouten
- f Department of Neurology, Academic Medical Center and Department of Global Health , Academic Medical Center, and Amsterdam Institute for Global Health and Development , Amsterdam , The Netherlands
| | - Serena Spudich
- g Department of Neurology , Yale University , New Haven , Connecticut , USA
| | - Jonathan Underwood
- h Division of Infectious Diseases , Imperial College London , London , UK
| | - Henrik Zetterberg
- b Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry , University of Gothenburg , Gothenburg , Sweden.,c Clinical Neurochemistry Laboratory , Sahlgrenska University Hospital , Molndal , Sweden.,i Department of Molecular Neuroscience , UCL Institute of Neurology , London , UK
| | - Magnus Gisslén
- a Institute of Biomedicine, Department of Infectious Diseases , University of Gothenburg , Gothenburg , Sweden
| |
Collapse
|
29
|
Gougeon ML. Alarmins and central nervous system inflammation in HIV-associated neurological disorders. J Intern Med 2017; 281:433-447. [PMID: 27862491 DOI: 10.1111/joim.12570] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the era of highly active antiretroviral therapy (HAART), HIV-1-associated neurocognitive disorders (HAND) persist in infected individuals with adequate immunological and virological status. Risk factors for cognitive impairment include hepatitis C virus co-infection, host genetic factors predisposing to HAND, the early establishment of the virus in the CNS and its persistence under HAART; thus, the CNS is an important reservoir for HIV. Microglial cells are permissive to HIV-1, and NLRP3 inflammasome-associated genes were found expressed in brains of HIV-1-infected persons, contributing to brain disease. Inflammasomes can be triggered by alarmins or danger-associated molecular patterns (DAMPs), which directly stimulate the production of proinflammatory mediators by glial cells, contribute to blood-brain barrier injury through induction of release of various proteases and allow the passage of infected macrophages, and trigger IL-1β release from primed cells. Amongst alarmins involved in HIV-1-induced neuropathogenesis, IL-33 and high-mobility group box 1 (HMGB1) are of particular interest. Neurocognitive alterations were recently associated with dysregulation of the IL-33/ST2 axis in the CNS, leading to the induction of neuronal apoptosis, decrease in synaptic function and neuroinflammation. Specific biomarkers, including HMGB1 and anti-HMGB1 antibodies, have been identified in cerebrospinal fluid from patients with HAND, correlated with immune activation and identifying a very early stage of neurocognitive impairment that precedes changes in metabolites detected by magnetic resonance spectroscopy. Moreover, HMGB1 plays a crucial role in HIV-1 persistence in dendritic cells and in the constitution of viral reservoirs. In this review, the mechanisms whereby alarmins contribute to HIV-1-induced CNS inflammation and neuropathogenesis will be discussed.
Collapse
Affiliation(s)
- M-L Gougeon
- Institut Pasteur, Antiviral Immunity, Biotherapy and Vaccine Unit, Infection and Epidemiology Department, Paris, France
| |
Collapse
|
30
|
Scutari R, Alteri C, Perno CF, Svicher V, Aquaro S. The Role of HIV Infection in Neurologic Injury. Brain Sci 2017; 7:E38. [PMID: 28383502 PMCID: PMC5406695 DOI: 10.3390/brainsci7040038] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/27/2017] [Accepted: 03/30/2017] [Indexed: 12/20/2022] Open
Abstract
The central nervous system (CNS) is a very challenging HIV-1 sanctuary, in which HIV-1 replication is established early on during acute infection and can persist despite potent antiretroviral treatments. HIV-1 infected macrophages play a pivotal role acting as vehicles for HIV-1 to spread into the brain, and can be the major contributor of an early compartmentalization. HIV-1 infection in CNS may lead to a broad spectrum of neurological syndromes, such as dementia, mild neurocognitive disorders, and asymptomatic impairment. These clinical manifestations are caused by the release of neurotoxins from infected cells (mainly macrophages), and also by several HIV-1 proteins, able to activate cell-signaling involved in the control of cellular survival and apoptosis. This review is aimed at highlighting the virological aspects associated with the onset of neurocognitive disorders and at addressing the novel therapeutic approaches to stop HIV-1 replication in this critical sanctuary.
Collapse
Affiliation(s)
- Rossana Scutari
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome 00133, Italy.
| | - Claudia Alteri
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome 00133, Italy.
| | - Carlo Federico Perno
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome 00133, Italy.
| | - Valentina Svicher
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome 00133, Italy.
| | - Stefano Aquaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende (CS) 87036, Italy.
| |
Collapse
|
31
|
Dynamic of CSF and serum biomarkers in HIV-1 subtype C encephalitis with CNS genetic compartmentalization-case study. J Neurovirol 2017; 23:460-473. [PMID: 28247269 DOI: 10.1007/s13365-017-0518-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/23/2017] [Accepted: 01/30/2017] [Indexed: 12/22/2022]
Abstract
Despite the effective suppression of viremia with antiretroviral therapy, HIV can still replicate in the central nervous system (CNS). This was a longitudinal study of the cerebrospinal fluid (CSF) and serum dynamics of several biomarkers related to inflammation, the blood-brain barrier, neuronal injury, and IgG intrathecal synthesis in serial samples of CSF and serum from a patient infected with HIV-1 subtype C with CNS compartmentalization.The phylogenetic analyses of plasma and CSF samples in an acute phase using next-generation sequencing and F-statistics analysis of C2-V3 haplotypes revealed distinct compartmentalized CSF viruses in paired CSF and peripheral blood mononuclear cell samples. The CSF biomarker analysis in this patient showed that symptomatic CSF escape is accompanied by CNS inflammation, high levels of cell and humoral immune biomarkers, CNS barrier dysfunction, and an increase in neuronal injury biomarkers with demyelization. Independent and isolated HIV replication can occur in the CNS, even in HIV-1 subtype C, leading to compartmentalization and development of quasispecies distinct from the peripheral plasma. These immunological aspects of the HIV CNS escape have not been described previously. To our knowledge, this is the first report of CNS HIV escape and compartmentalization in HIV-1 subtype C.
Collapse
|
32
|
Alvarez-Carbonell D, Garcia-Mesa Y, Milne S, Das B, Dobrowolski C, Rojas R, Karn J. Toll-like receptor 3 activation selectively reverses HIV latency in microglial cells. Retrovirology 2017; 14:9. [PMID: 28166799 PMCID: PMC5294768 DOI: 10.1186/s12977-017-0335-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/19/2017] [Indexed: 01/27/2023] Open
Abstract
Background Multiple toll-like receptors (TLRs) are expressed in cells of the monocytic lineage, including microglia, which constitute the major reservoir for human immunodeficiency virus (HIV) infection in the brain. We hypothesized that TLR receptor mediated responses to inflammatory conditions by microglial cells in the central nervous system (CNS) are able to induce latent HIV proviruses, and contribute to the etiology of HIV-associated neurocognitive disorders. Results Newly developed human microglial cell lines (hµglia), obtained by immortalizing human primary microglia with simian virus-40 (SV40) large T antigen and the human telomerase reverse transcriptase, were used to generate latently infected cells using a single-round HIV virus carrying a green fluorescence protein reporter (hµglia/HIV, clones HC01 and HC69). Treatment of these cells with a panel of TLR ligands showed surprisingly that two potent TLR3 agonists, poly (I:C) and bacterial ribosomal RNA potently reactivated HIV in hμglia/HIV cells. LPS (TLR4 agonist), flagellin (TLR5 agonist), and FSL-1 (TLR6 agonist) reactivated HIV to a lesser extent, while Pam3CSK4 (TLR2/1 agonist) and HKLM (TLR2 agonist) only weakly reversed HIV latency in these cells. While agonists for TLR2/1, 4, 5 and 6 reactivated HIV through transient NF-κB induction, poly (I:C), the TLR3 agonist, did not activate NF-κB, and instead induced the virus by a previously unreported mechanism mediated by IRF3. The selective induction of IRF3 by poly (I:C) was confirmed by chromatin immunoprecipitation (ChIP) analysis. In comparison, in latently infected rat-derived microglial cells (hT-CHME-5/HIV, clone HC14), poly (I:C), LPS and flagellin were only partially active. The TLR response profile in human microglial cells is also distinct from that shown by latently infected monocyte cell lines (THP-1/HIV, clone HA3, U937/HIV, clone HUC5, and SC/HIV, clone HSCC4), where TLR2/1, 4, 5, 6 or 8, but not for TLR3, 7 or 9, reactivated HIV. Conclusions TLR signaling, in particular TLR3 activation, can efficiently reactivate HIV transcription in infected microglia, but not in monocytes or T cells. The unique response profile of microglial cells to TLR3 is fundamental to understanding how the virus responds to continuous microbial exposure, especially during inflammatory episodes, that characterizes HIV infection in the CNS. Electronic supplementary material The online version of this article (doi:10.1186/s12977-017-0335-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David Alvarez-Carbonell
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., SOM WRT 200, Cleveland, OH, 44106, USA
| | - Yoelvis Garcia-Mesa
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., SOM WRT 200, Cleveland, OH, 44106, USA
| | - Stephanie Milne
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., SOM WRT 200, Cleveland, OH, 44106, USA
| | - Biswajit Das
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., SOM WRT 200, Cleveland, OH, 44106, USA
| | - Curtis Dobrowolski
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., SOM WRT 200, Cleveland, OH, 44106, USA
| | - Roxana Rojas
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., SOM WRT 200, Cleveland, OH, 44106, USA
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University, 10900 Euclid Ave., SOM WRT 200, Cleveland, OH, 44106, USA.
| |
Collapse
|
33
|
Oliveira MF, Chaillon A, Nakazawa M, Vargas M, Letendre SL, Strain MC, Ellis RJ, Morris S, Little SJ, Smith DM, Gianella S. Early Antiretroviral Therapy Is Associated with Lower HIV DNA Molecular Diversity and Lower Inflammation in Cerebrospinal Fluid but Does Not Prevent the Establishment of Compartmentalized HIV DNA Populations. PLoS Pathog 2017; 13:e1006112. [PMID: 28046096 PMCID: PMC5266327 DOI: 10.1371/journal.ppat.1006112] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 01/25/2017] [Accepted: 12/06/2016] [Indexed: 12/31/2022] Open
Abstract
Even when antiretroviral therapy (ART) is started early after infection, HIV DNA might persist in the central nervous system (CNS), possibly contributing to inflammation, brain damage and neurocognitive impairment. Paired blood and cerebrospinal fluid (CSF) were collected from 16 HIV-infected individuals on suppressive ART: 9 participants started ART <4 months of the estimated date of infection (EDI) ("early ART"), and 7 participants started ART >14 months after EDI ("late ART"). For each participant, neurocognitive functioning was measured by Global Deficit Score (GDS). HIV DNA levels were measured in peripheral blood mononuclear cells (PBMCs) and CSF cell pellets by droplet digital (dd)PCR. Soluble markers of inflammation (sCD163, IL-6, MCP-1, TNF-α) and neuronal damage (neurofilament light [NFL]) were measured in blood and CSF supernatant by immunoassays. HIV-1 partial C2V3 env deep sequencing data (Roche 454) were obtained for 8 paired PBMC and CSF specimens and used for phylogenetic and compartmentalization analysis. Median exposure to ART at the time of sampling was 2.6 years (IQR: 2.2-3.7) and did not differ between groups. We observed that early ART was significantly associated with lower molecular diversity of HIV DNA in CSF (p<0.05), and lower IL-6 levels in CSF (p = 0.02), but no difference for GDS, NFL, or HIV DNA detectability compared to late ART. Compartmentalization of HIV DNA populations between CSF and blood was detected in 6 out of 8 participants with available paired HIV DNA sequences (2 from early and 4 from late ART group). Phylogenetic analysis confirmed the presence of monophyletic HIV DNA populations within the CSF in 7 participants, and the same population was repeatedly sampled over a 5 months period in one participant with longitudinal sampling. Such compartmentalized provirus in the CNS needs to be considered for the design of future eradication strategies and might contribute to the neuropathogenesis of HIV.
Collapse
Affiliation(s)
- Michelli F. Oliveira
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Antoine Chaillon
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Masato Nakazawa
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Milenka Vargas
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Scott L. Letendre
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- HIV Neurobehavioral Research Center, San Diego, California, United States of America
| | - Matthew C. Strain
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Ronald J. Ellis
- HIV Neurobehavioral Research Center, San Diego, California, United States of America
- Departments of Neurosciences and Psychiatry, University of California San Diego, La Jolla, California, United States of America
| | - Sheldon Morris
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Susan J. Little
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Davey M. Smith
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
- Veterans Affairs San Diego Healthcare System, San Diego, California, United States of America
| | - Sara Gianella
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
34
|
Lamers SL, Rose R, Maidji E, Agsalda-Garcia M, Nolan DJ, Fogel GB, Salemi M, Garcia DL, Bracci P, Yong W, Commins D, Said J, Khanlou N, Hinkin CH, Sueiras MV, Mathisen G, Donovan S, Shiramizu B, Stoddart CA, McGrath MS, Singer EJ. HIV DNA Is Frequently Present within Pathologic Tissues Evaluated at Autopsy from Combined Antiretroviral Therapy-Treated Patients with Undetectable Viral Loads. J Virol 2016; 90:8968-83. [PMID: 27466426 PMCID: PMC5044815 DOI: 10.1128/jvi.00674-16] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/20/2016] [Indexed: 01/05/2023] Open
Abstract
UNLABELLED HIV infection treatment strategies have historically defined effectiveness through measuring patient plasma HIV RNA. While combined antiretroviral therapy (cART) can reduce plasma viral load (pVL) to undetectable levels, the degree that HIV is eliminated from other anatomical sites remains unclear. We investigated the HIV DNA levels in 229 varied autopsy tissues from 20 HIV-positive (HIV(+)) cART-treated study participants with low or undetectable plasma VL and cerebrospinal fluid (CSF) VL prior to death who were enrolled in the National Neurological AIDS Bank (NNAB) longitudinal study and autopsy cohort. Extensive medical histories were obtained for each participant. Autopsy specimens, including at least six brain and nonbrain tissues per participant, were reviewed by study pathologists. HIV DNA, measured in tissues by quantitative and droplet digital PCR, was identified in 48/87 brain tissues and 82/142 nonbrain tissues at levels >200 HIV copies/million cell equivalents. No participant was found to be completely free of tissue HIV. Parallel sequencing studies from some tissues recovered intact HIV DNA and RNA. Abnormal histological findings were identified in all participants, especially in brain, spleen, lung, lymph node, liver, aorta, and kidney. All brain tissues demonstrated some degree of pathology. Ninety-five percent of participants had some degree of atherosclerosis, and 75% of participants died with cancer. This study assists in characterizing the anatomical locations of HIV, in particular, macrophage-rich tissues, such as the central nervous system (CNS) and testis. Additional studies are needed to determine if the HIV recovered from tissues promotes the pathogenesis of inflammatory diseases, such as HIV-associated neurocognitive disorders, cancer, and atherosclerosis. IMPORTANCE It is well-known that combined antiretroviral therapy (cART) can reduce plasma HIV to undetectable levels; however, cART cannot completely clear HIV infection. An ongoing question is, "Where is HIV hiding?" A well-studied HIV reservoir is "resting" T cells, which can be isolated from blood products and succumb to cART once activated. Less-studied reservoirs are anatomical tissue samples, which have unknown cART penetration, contain a comparably diverse spectrum of potentially HIV-infected immune cells, and are important since <2% of body lymphocytes actually reside in blood. We examined 229 varied autopsy specimens from 20 HIV(+) participants who died while on cART and identified that >50% of tissues were HIV infected. Additionally, we identified considerable pathology in participants' tissues, especially in brain, spleen, lung, lymph node, liver, aorta, and kidney. This study substantiates that tissue-associated HIV is present despite cART and can inform future studies into HIV persistence.
Collapse
Affiliation(s)
| | | | - Ekaterina Maidji
- Division of Experimental Medicine, Department of Medicine, San Francisco General Hospital, University of California, San Francisco, California, USA
| | - Melissa Agsalda-Garcia
- The University of Hawaii, Department of Tropical Medicine, Medical Microbiology & Pharmacology and Hawaii Center for AIDS, Honolulu, Hawaii, USA
| | - David J Nolan
- Bioinfoexperts, LLC, Thibodaux, Louisiana, USA The University of Florida Emerging Pathogens Institute, Department of Pathology and Laboratory Medicine, Gainesville, Florida, USA
| | - Gary B Fogel
- Natural Selection, Inc., San Diego, California, USA
| | - Marco Salemi
- The University of Florida Emerging Pathogens Institute, Department of Pathology and Laboratory Medicine, Gainesville, Florida, USA
| | - Debra L Garcia
- The AIDS and Cancer Specimen Resource, San Francisco, California, USA University of California, San Francisco, Department of Medicine, San Francisco, California, USA
| | - Paige Bracci
- The AIDS and Cancer Specimen Resource, San Francisco, California, USA University of California, San Francisco, Department of Medicine, San Francisco, California, USA
| | - William Yong
- National Neurological AIDS Bank, Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, USA David Geffen School of Medicine and Olive View-UCLA Medical Center, Department of Pathology and Laboratory Medicine, Los Angeles, California, USA
| | - Deborah Commins
- University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Jonathan Said
- National Neurological AIDS Bank, Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, USA David Geffen School of Medicine and Olive View-UCLA Medical Center, Department of Pathology and Laboratory Medicine, Los Angeles, California, USA
| | - Negar Khanlou
- National Neurological AIDS Bank, Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, USA David Geffen School of Medicine and Olive View-UCLA Medical Center, Department of Pathology and Laboratory Medicine, Los Angeles, California, USA
| | - Charles H Hinkin
- National Neurological AIDS Bank, Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, USA UCLA School of Medicine, Department of Psychiatry & Biobehavioral Sciences, Los Angeles, California, USA
| | - Miguel Valdes Sueiras
- National Neurological AIDS Bank, Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, USA David Geffen School of Medicine and Olive View-UCLA Medical Center, Department of Neurology, Los Angeles, California, USA
| | - Glenn Mathisen
- National Neurological AIDS Bank, Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, USA
| | - Suzanne Donovan
- National Neurological AIDS Bank, Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, USA
| | - Bruce Shiramizu
- The University of Hawaii, Department of Tropical Medicine, Medical Microbiology & Pharmacology and Hawaii Center for AIDS, Honolulu, Hawaii, USA
| | - Cheryl A Stoddart
- Division of Experimental Medicine, Department of Medicine, San Francisco General Hospital, University of California, San Francisco, California, USA
| | - Michael S McGrath
- The AIDS and Cancer Specimen Resource, San Francisco, California, USA University of California, San Francisco, Department of Medicine, San Francisco, California, USA
| | - Elyse J Singer
- National Neurological AIDS Bank, Department of Neurology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California, USA David Geffen School of Medicine and Olive View-UCLA Medical Center, Department of Neurology, Los Angeles, California, USA
| |
Collapse
|
35
|
Qian YW, Li C, Jiang AP, Ge S, Gu P, Fan X, Li TS, Jin X, Wang JH, Wang ZL. HIV-1 gp120 Glycoprotein Interacting with Dendritic Cell-specific Intercellular Adhesion Molecule 3-grabbing Non-integrin (DC-SIGN) Down-Regulates Tight Junction Proteins to Disrupt the Blood Retinal Barrier and Increase Its Permeability. J Biol Chem 2016; 291:22977-22987. [PMID: 27605665 DOI: 10.1074/jbc.m116.744615] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Indexed: 11/06/2022] Open
Abstract
Approximately 70% of HIV-1 infected patients acquire ocular opportunistic infections and manifest eye disorders during the course of their illness. The mechanisms by which pathogens invade the ocular site, however, are unclear. Under normal circumstances, vascular endothelium and retinal pigment epithelium (RPE), which possess a well developed tight junction complex, form the blood-retinal barrier (BRB) to prevent pathogen invasion. We hypothesize that disruption of the BRB allows pathogen entry into ocular sites. The hypothesis was tested using in vitro models. We discovered that human RPE cells could bind to either HIV-1 gp120 glycoproteins or HIV-1 viral particles. Furthermore, the binding was mediated by dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN) expressed on RPE cells. Upon gp120 binding to DC-SIGN, cellular NF-κB signaling was triggered, leading to the induction of matrix metalloproteinases, which subsequently degraded tight junction proteins and disrupted the BRB integrity. DC-SIGN knockdown or prior blocking with a specific antibody abolished gp120-induced matrix metalloproteinase expression and reduced the degradation of tight junction proteins. This study elucidates a novel mechanism by which HIV, type 1 invades ocular tissues and provides additional insights into the translocation or invasion process of ocular complication-associated pathogens.
Collapse
Affiliation(s)
- Yi-Wen Qian
- From the Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Chuan Li
- From the Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Ai-Ping Jiang
- the Chinese Academy of Sciences Key Laboratory of Molecular Virology and Immunology and
| | - Shengfang Ge
- From the Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Ping Gu
- From the Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Xianqun Fan
- From the Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Tai-Sheng Li
- the Department of Infectious Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xia Jin
- the Chinese Academy of Sciences Key Laboratory of Molecular Virology and Immunology and.,Viral Disease and Vaccine Translational Research Unit and Vaccine Center, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China, and
| | - Jian-Hua Wang
- the Chinese Academy of Sciences Key Laboratory of Molecular Virology and Immunology and
| | - Zhi-Liang Wang
- From the Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University, Shanghai 200011, China,
| |
Collapse
|
36
|
Gianella S, Kosakovsky Pond SL, Oliveira MF, Scheffler K, Strain MC, De la Torre A, Letendre S, Smith DM, Ellis RJ. Compartmentalized HIV rebound in the central nervous system after interruption of antiretroviral therapy. Virus Evol 2016; 2:vew020. [PMID: 27774305 PMCID: PMC5072458 DOI: 10.1093/ve/vew020] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
To design effective eradication strategies, it may be necessary to target HIV reservoirs in anatomic compartments other than blood. This study examined HIV RNA rebound following interruption of antiretroviral therapy (ART) in blood and cerebrospinal fluid (CSF) to determine whether the central nervous system (CNS) might serve as an independent source of resurgent viral replication. Paired blood and CSF samples were collected longitudinally from 14 chronically HIV-infected individuals undergoing ART interruption. HIV env (C2-V3), gag (p24) and pol (reverse transcriptase) were sequenced from cell-free HIV RNA and cell-associated HIV DNA in blood and CSF using the Roche 454 FLX Titanium platform. Comprehensive sequence and phylogenetic analyses were performed to search for evidence of unique or differentially represented viral subpopulations emerging in CSF supernatant as compared with blood plasma. Using a conservative definition of compartmentalization based on four distinct statistical tests, nine participants presented a compartmentalized HIV RNA rebound within the CSF after interruption of ART, even when sampled within 2 weeks from viral rebound. The degree and duration of viral compartmentalization varied considerably between subjects and between time-points within a subject. In 10 cases, we identified viral populations within the CSF supernatant at the first sampled time-point after ART interruption, which were phylogenetically distinct from those present in the paired blood plasma and mostly persisted over time (when longitudinal time-points were available). Our data suggest that an independent source of HIV RNA contributes to viral rebound within the CSF after treatment interruption. The most likely source of compartmentalized HIV RNA is a CNS reservoir that would need to be targeted to achieve complete HIV eradication.
Collapse
Affiliation(s)
- Sara Gianella
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | - Michelli F Oliveira
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Konrad Scheffler
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Matt C Strain
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Antonio De la Torre
- Departments of Neurosciences and Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Scott Letendre
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Davey M Smith
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA; Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Ronald J Ellis
- Departments of Neurosciences and Psychiatry, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
37
|
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection occurs throughout the body and can have dramatic physical effects, such as neurocognitive impairment in the central nervous system (CNS). Furthermore, examining the virus that resides in the CNS is challenging due to its location and can only be done using samples collected either at autopsy, indirectly form the cerebral spinal fluid (CSF), or through the use of animal models. The unique milieu of the CNS fosters viral compartmentalization as well as evolution of viral sequences, allowing for new cell types, such as macrophages and microglia, to be infected. Treatment must also cross the blood-brain barrier adding additional obstacles in eliminating viral populations in the CNS. These long-lived infected cell types and treatment barriers may affect functional cure strategies in people on highly active antiretroviral therapy (HAART).
Collapse
|
38
|
Salemi M, Rife B. Phylogenetics and Phyloanatomy of HIV/SIV Intra-Host Compartments and Reservoirs: The Key Role of the Central Nervous System. Curr HIV Res 2016; 14:110-20. [PMID: 26511341 PMCID: PMC9199530 DOI: 10.2174/1570162x13666151029102413] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 10/10/2015] [Accepted: 10/21/2015] [Indexed: 11/22/2022]
Abstract
BACKGROUND The ability of the human immunodeficiency virus type 1 (HIV-1) to persist in anatomic compartments and cellular reservoirs is a major obstacle for eradication of replicationcompetent virus in the infected host. APPROACH We extensively review recent advancements in phylogenetic and phylogeographic techniques that provide a unique opportunity for studies of intra-host HIV-1 compartmentalization and the detection of potential reservoirs. CONCLUSION We show that infected macrophages in the central nervous system (CNS) harbor viral subpopulations that play a key role in the emergence of escape variants and viral rebound following discontinuation of antiretroviral therapy. An HIV cure, therefore, cannot be achieved without the effective targeting of the virus in the CNS, for which in depth knowledge of viral population dynamics contributing to the development and maintenance of latent reservoirs is critical.
Collapse
Affiliation(s)
- Marco Salemi
- Department of Pathology, Immunology, and Laboratory Medicine, Emerging Pathogens Institute, University of Florida, 2055 Mowry Rd, Gainesville, FL, USA.
| | | |
Collapse
|
39
|
Almeida SMD. Cerebrospinal fluid analysis in the HIV infection and compartmentalization of HIV in the central nervous system. ARQUIVOS DE NEURO-PSIQUIATRIA 2015. [PMID: 26200059 DOI: 10.1590/0004-282x20150071] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The nervous system plays an important role in HIV infection. The purpose of this review is to discuss the indications for cerebrospinal fluid (CSF) analysis in HIV infection in clinical practice. CSF analysis in HIV infection is indicated for the diagnosis of opportunistic infections and co-infections, diagnosis of meningitis caused by HIV, quantification of HIV viral load, and analysis of CNS HIV compartmentalization. Although several CSF biomarkers have been investigated, none are clinically applicable. The capacity of HIV to generate genetic diversity, in association with the constitutional characteristics of the CNS, facilitates the generation of HIV quasispecies in the CNS that are distinct from HIV in the systemic circulation. CSF analysis has a well-defined and valuable role in the diagnosis of CNS infections in HIV/AIDS patients. Further research is necessary to establish a clinically applicable biomarker for the diagnosis of HIV-associated neurocognitive disorders.
Collapse
Affiliation(s)
- Sérgio Monteiro de Almeida
- Laboratório de Clínica Patológica, Departamento de Patologia Médica; Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, PR, Brazil
| |
Collapse
|
40
|
Kearney MF, Anderson EM, Coomer C, Smith L, Shao W, Johnson N, Kline C, Spindler J, Mellors JW, Coffin JM, Ambrose Z. Well-mixed plasma and tissue viral populations in RT-SHIV-infected macaques implies a lack of viral replication in the tissues during antiretroviral therapy. Retrovirology 2015; 12:93. [PMID: 26559632 PMCID: PMC4642622 DOI: 10.1186/s12977-015-0212-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/01/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Determining the anatomic compartments that contribute to plasma HIV-1 is critical to understanding the sources of residual viremia during combination antiretroviral therapy (ART). We analyzed viral DNA and RNA populations in the plasma and tissues from macaques infected with SIV containing HIV-1 RT (RT-SHIV) to identify possible sources of persistent viremia and to investigate the effect of ART on viral replication in tissues. Tissues were collected at necropsy from four pigtailed macaques infected for 30 weeks with a diverse population of RT-SHIV. Two animals (6760 and 8232) were untreated and two animals (8030 and 8272) were treated with efavirenz, tenofovir, and emtricitabine for 20 weeks. RESULTS A total of 1800 single-genome RT-SHIV pol and env DNA and RNA sequences were analyzed from the plasma, PBMCs, axillary and mesenteric lymph nodes, spleen, thymus, small intestine, bone marrow, lung, and brain. Analyses of intracellular DNA and RNA populations revealed that the majority of proviruses in tissues from untreated animal 8232 were not expressed, whereas a greater proportion of proviruses in tissues were expressed from 6760. Few intracellular RNA sequences were detected in treated animals and most contained inactivating mutations, such as frame shifts or large deletions. Phylogenetics showed that RT-SHIV DNA populations in tissues were not different from virus in contemporary plasma samples in the treated or untreated animals, demonstrating a lack of anatomic compartmentalization and suggesting that plasma viremia is derived from multiple tissue sources. No sequence divergence was detected in the plasma or between tissues in the treated animals after 20 weeks of ART indicating a lack of ongoing replication in tissues during treatment. CONCLUSIONS Virus populations in plasma and tissues did not differ significantly in either treated or untreated macaques, suggesting frequent exchange of virus or infected cells between tissues and plasma, consistent with non-compartmentalized and widely disseminated infection. There was no genetic evidence of ongoing replication in tissues during suppressive ART.
Collapse
Affiliation(s)
- Mary F Kearney
- HIV Dynamics and Replicaton Program, National Cancer Institute at Frederick, 1050 Boyles Street, Building 535, Room 109, Frederick, MD, 21702-1201, USA.
| | - Elizabeth M Anderson
- HIV Dynamics and Replicaton Program, National Cancer Institute at Frederick, 1050 Boyles Street, Building 535, Room 109, Frederick, MD, 21702-1201, USA.
| | - Charles Coomer
- HIV Dynamics and Replicaton Program, National Cancer Institute at Frederick, 1050 Boyles Street, Building 535, Room 109, Frederick, MD, 21702-1201, USA.
| | - Luke Smith
- HIV Dynamics and Replicaton Program, National Cancer Institute at Frederick, 1050 Boyles Street, Building 535, Room 109, Frederick, MD, 21702-1201, USA.
| | - Wei Shao
- Advanced Biomedical Computing Center, SAIC, Frederick, USA.
| | - Nicholas Johnson
- HIV Dynamics and Replicaton Program, National Cancer Institute at Frederick, 1050 Boyles Street, Building 535, Room 109, Frederick, MD, 21702-1201, USA.
| | - Christopher Kline
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Jonathan Spindler
- HIV Dynamics and Replicaton Program, National Cancer Institute at Frederick, 1050 Boyles Street, Building 535, Room 109, Frederick, MD, 21702-1201, USA.
| | - John W Mellors
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - John M Coffin
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA, USA.
| | - Zandrea Ambrose
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
41
|
Abstract
In the era of combined antiretroviral therapy (cART), HIV-associated neurocognitive disorders (HAND) account for 40 to 56% of all HIV+ cases. During the acute stage of HIV-1 infection (<6 months), the virus invades and replicates within the central nervous system (CNS). Compared to peripheral tissues, the local CNS cell population expresses distinct levels of chemokine receptors, which levels exert selective pressure on the invading virus. HIV-1 envelope (env) sequences recovered from the brains and cerebrospinal fluid (CSF) of neurocognitively impaired HIV+ subjects often display higher nucleotide variability as compared to non-impaired HIV+ subjects. Specifically, env evolution provides HIV-1 with the strategies to evade host immune response, to reduce chemokine receptor dependence, to increase co-receptor binding efficiency, and to potentiate neurotoxicity. The evolution of env within the CNS leads to changes that may result in the emergence of novel isolates with neurotoxic and neurovirulent features. However, whether specific factors of HIV-1 evolution lead to the emergence of neurovirulent and neurotropic isolates remains ill-defined. HIV-1 env evolution is an ongoing phenomenon that occurs independently of neurological and neurocognitive disease severity; thus HIV env evolution may play a pivotal and reciprocal role in the etiology of HAND. Despite the use of cART, the reactivation of latent viral reservoirs represents a clinical challenge because of the replenishment of the viral pool that may subsequently lead to persistent infection. Therefore, gaining a more complete understanding of how HIV-1 env evolves over the course of the disease should be considered for the development of future therapies aimed at controlling CNS burden, diminishing persistent viremia, and eradicating viral reservoirs. Here we review the current literature on the role of HIV-1 env evolution in the setting of HAND disease progression and on the impact of cART on the dynamics of viral evolution.
Collapse
Affiliation(s)
- Fabián J Vázquez-Santiago
- Department of Basic Sciences, Ponce Health Sciences University- School of Medicine / Ponce Research Institute, Ponce, PR 00716, USA
| | - Vanessa Rivera-Amill
- Department of Basic Sciences, Ponce Health Sciences University- School of Medicine / Ponce Research Institute, Ponce, PR 00716, USA
| |
Collapse
|
42
|
Joseph SB, Arrildt KT, Sturdevant CB, Swanstrom R. HIV-1 target cells in the CNS. J Neurovirol 2015; 21:276-89. [PMID: 25236812 PMCID: PMC4366351 DOI: 10.1007/s13365-014-0287-x] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 08/23/2014] [Accepted: 08/27/2014] [Indexed: 10/24/2022]
Abstract
HIV-1 replication in the central nervous system (CNS) is typically limited by the availability of target cells. HIV-1 variants that are transmitted and dominate the early stages of infection almost exclusively use the CCR5 coreceptor and are well adapted to entering, and thus infecting, cells expressing high CD4 densities similar to those found on CD4+ T cells. While the "immune privileged" CNS is largely devoid of CD4+ T cells, macrophage and microglia are abundant throughout the CNS. These cells likely express CD4 densities that are too low to facilitate efficient entry or allow sustained replication by most HIV-1 isolates. Examination of CNS viral populations reveals that late in disease the CNS of some individuals contains HIV-1 lineages that have evolved the ability to enter cells expressing low levels of CD4 and are well-adapted to entering macrophages. These macrophage-tropic (M-tropic) viruses are able to maintain sustained replication in the CNS for many generations, and their presence is associated with severe neurocognitive impairment. Whether conditions such as pleocytosis are necessary for macrophage-tropic viruses to emerge in the CNS is unknown, and extensive examinations of macrophage-tropic variants have not revealed a genetic signature of this phenotype. It is clear, however, that macrophage tropism is rare among HIV-1 isolates and is not transmitted, but is important due to its pathogenic effects on hosts. Prior to the evolution of macrophage-tropic variants, the viruses that are predominately infecting T cells (R5 T cell-tropic) may infect macrophages at a low level and inefficiently, but this could contribute to the reservoir.
Collapse
Affiliation(s)
- Sarah B Joseph
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA,
| | | | | | | |
Collapse
|
43
|
Sturdevant CB, Joseph SB, Schnell G, Price RW, Swanstrom R, Spudich S. Compartmentalized replication of R5 T cell-tropic HIV-1 in the central nervous system early in the course of infection. PLoS Pathog 2015; 11:e1004720. [PMID: 25811757 PMCID: PMC4374811 DOI: 10.1371/journal.ppat.1004720] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 01/31/2015] [Indexed: 02/07/2023] Open
Abstract
Compartmentalized HIV-1 replication within the central nervous system (CNS) likely provides a foundation for neurocognitive impairment and a potentially important tissue reservoir. The timing of emergence and character of this local CNS replication has not been defined in a population of subjects. We examined the frequency of elevated cerebrospinal fluid (CSF) HIV-1 RNA concentration, the nature of CSF viral populations compared to the blood, and the presence of a cellular inflammatory response (with the potential to bring infected cells into the CNS) using paired CSF and blood samples obtained over the first two years of infection from 72 ART-naïve subjects. Using single genome amplification (SGA) and phylodynamics analysis of full-length env sequences, we compared CSF and blood viral populations in 33 of the 72 subjects. Independent HIV-1 replication in the CNS (compartmentalization) was detected in 20% of sample pairs analyzed by SGA, or 7% of all sample pairs, and was exclusively observed after four months of infection. In subjects with longitudinal sampling, 30% showed evidence of CNS viral replication or pleocytosis/inflammation in at least one time point, and in approximately 16% of subjects we observed evolving CSF/CNS compartmentalized viral replication and/or a marked CSF inflammatory response at multiple time points suggesting an ongoing or recurrent impact of the infection in the CNS. Two subjects had one of two transmitted lineages (or their recombinant) largely sequestered within the CNS shortly after transmission, indicating an additional mechanism for establishing early CNS replication. Transmitted variants were R5 T cell-tropic. Overall, examination of the relationships between CSF viral populations, blood and CSF HIV-1 RNA concentrations, and inflammatory responses suggested four distinct states of viral population dynamics, with associated mechanisms of local viral replication and the early influx of virus into the CNS. This study considerably enhances the generalizability of our results and greatly expands our knowledge of the early interactions of HIV-1 in the CNS.
Collapse
Affiliation(s)
- Christa Buckheit Sturdevant
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sarah B. Joseph
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Gretja Schnell
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Richard W. Price
- Department of Neurology, University of California, San Francisco, San Francisco, California, United States of America
| | - Ronald Swanstrom
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Serena Spudich
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
44
|
Treatment of HIV in the CNS: effects of antiretroviral therapy and the promise of non-antiretroviral therapeutics. Curr HIV/AIDS Rep 2015; 11:353-62. [PMID: 25063356 DOI: 10.1007/s11904-014-0223-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The growing recognition of the burden of neurologic disease associated with HIV infection in the last decade has led to renewed efforts to characterize the pathophysiology of the virus within the central nervous system (CNS). The concept of the AIDS-dementia complex is now better understood as a spectrum of HIV-associated neurocognitive disorders (HAND), which range from asymptomatic disease to severe impairment. Recent work has shown that even optimally treated patients can experience not only persistent HAND, but also the development of new neurologic abnormalities despite viral suppression. This has thrown into question what the impact of antiretroviral therapy has been on the incidence and prevalence of neurocognitive dysfunction. In this context, the last few years have seen a concentrated effort to identify the effects that antiretroviral therapy has on the neurologic manifestations of HIV and to develop therapeutic modalities that might specifically alter the trajectory of HIV within the CNS.
Collapse
|
45
|
Svicher V, Ceccherini-Silberstein F, Antinori A, Aquaro S, Perno CF. Understanding HIV compartments and reservoirs. Curr HIV/AIDS Rep 2015; 11:186-94. [PMID: 24729094 DOI: 10.1007/s11904-014-0207-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The spectrum of HIV-1 cellular reservoirs is highly diversified, and their role varies according to the milieu of the anatomical sites in which the virus replicates. In this light, mechanisms underlying HIV-1 persistence in anatomical compartments may be profoundly different from what is observed in peripheral blood. This scenario is further complicated by sub-optimal drug penetration in tissues allowing persistent and cryptic HIV-1 replication in body districts despite undetectable viremia. On this basis, this review aims at providing recent insights regarding the critical role of HIV-1 cellular reservoirs in different anatomical compartments, and their relationship with the pathogenesis of HIV-1 infection. A comprehensive definition of the complex interplay between the virus and its reservoir is critical in order to set up prophylactic and therapeutic strategies aimed at achieving the maximal virological suppression and hopefully in the near future the cure of HIV-1 infection (either functional or biological).
Collapse
Affiliation(s)
- Valentina Svicher
- Department of Experimental Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | | | | | | | | |
Collapse
|
46
|
Vázquez-Santiago F, García Y, Rivera-Román I, Noel RJ, Wojna V, Meléndez LM, Rivera-Amill V. Longitudinal Analysis of Cerebrospinal Fluid and Plasma HIV-1 Envelope Sequences Isolated From a Single Donor with HIV Asymptomatic Neurocognitive Impairment. ACTA ACUST UNITED AC 2015; 4. [PMID: 26167513 DOI: 10.4172/2324-8955.1000135] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Combined antiretroviral treatment (cART) has changed the clinical presentation of HIV-associated neurocognitive disorders (HAND) to that of the milder forms of the disease. Asymptomatic neurocognitive impairment (ANI) is now more prevalent and is associated with increased morbidity and mortality risk in HIV-1-infected people. HIV-1 envelope (env) genetic heterogeneity has been detected within the central nervous system (CNS) of individuals with ANI. Changes within env determine co-receptor use, cellular tropism, and neuropathogenesis. We hypothesize that compartmental changes are associated with HIV-1 env C2V4 during ANI and sought to analyze paired HIV-1 env sequences from plasma and cerebrospinal fluid (CSF) of a female subject undergoing long-term cART. METHODS Paired plasma and CSF samples were collected at 12-month intervals and HIV-1 env C2V4 was cloned and sequenced. RESULTS Phylogenetic analysis of paired samples consistently showed genetic variants unique to the CSF. Phenotypic prediction showed CCR5 (R5) variants for all CSF-derived sequences and showed minor X4 variants (or dual-tropic) in the plasma at later time points. Viral compartmentalization was evident throughout the study, suggesting that the occurrence of distinctive env strains may contribute to the neuropathogenesis of HAND. CONCLUSIONS Our study provides new insights about the genetic characteristics within the C2V4 of HIV-1 env that persist after long-term cART and during the course of persistent ANI.
Collapse
Affiliation(s)
- Fabián Vázquez-Santiago
- Department of Microbiology, Ponce Health Sciences University- School of Medicine/Ponce Research Institute, Ponce, PR 00716, USA
| | - Yashira García
- Department of Microbiology, Ponce Health Sciences University- School of Medicine/Ponce Research Institute, Ponce, PR 00716, USA
| | - Ivelisse Rivera-Román
- Department of Microbiology, Ponce Health Sciences University- School of Medicine/Ponce Research Institute, Ponce, PR 00716, USA
| | - Richard J Noel
- Department of Biochemistry, Ponce Health Sciences University- School of Medicine/Ponce Research Institute, Ponce, PR 00716, USA
| | - Valerie Wojna
- Specialized NeuroAIDS Program, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, 00936, USA ; Department of Internal Medicine, Neurology Division, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00936, USA
| | - Loyda M Meléndez
- Specialized NeuroAIDS Program, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, 00936, USA ; Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, PR, 00936, USA
| | - Vanessa Rivera-Amill
- Department of Microbiology, Ponce Health Sciences University- School of Medicine/Ponce Research Institute, Ponce, PR 00716, USA
| |
Collapse
|
47
|
Human immunodeficiency virus-associated vasculopathy with CNS compartmentalization of HIV-1. J Neurovirol 2014; 21:101-4. [PMID: 25537635 DOI: 10.1007/s13365-014-0307-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/21/2014] [Accepted: 12/07/2014] [Indexed: 10/24/2022]
|
48
|
Nightingale S, Winston A, Letendre S, Michael BD, McArthur JC, Khoo S, Solomon T. Controversies in HIV-associated neurocognitive disorders. Lancet Neurol 2014; 13:1139-1151. [PMID: 25316020 PMCID: PMC4313542 DOI: 10.1016/s1474-4422(14)70137-1] [Citation(s) in RCA: 227] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cross-sectional studies show that around half of individuals infected with HIV-1 have some degree of cognitive impairment despite the use of antiretroviral drugs. However, prevalence estimates vary depending on the population and methods used to assess cognitive impairment. Whether asymptomatic patients would benefit from routine screening for cognitive difficulties is unclear and the appropriate screening method and subsequent management is the subject of debate. In some patients, HIV-1 RNA can be found at higher concentrations in CSF than in blood, which potentially results from the poor distribution of antiretroviral drugs into the CNS. However, the clinical relevance of so-called CSF viral escape is not well understood. The extent to which antiretroviral drug distribution and toxicity in the CNS affect clinical decision making is also debated.
Collapse
Affiliation(s)
- Sam Nightingale
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK.
| | - Alan Winston
- Division of Medicine, Imperial College London, St Mary's Campus, London, UK
| | - Scott Letendre
- University of California and HIV Neurobehavioral Research Center and Antiviral Research Center, San Diego, CA, USA
| | - Benedict D Michael
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK; The Walton Centre Neurology and Neurosurgery NHS Foundation Trust, Liverpool, UK
| | - Justin C McArthur
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Saye Khoo
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Tom Solomon
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK; The Walton Centre Neurology and Neurosurgery NHS Foundation Trust, Liverpool, UK
| |
Collapse
|
49
|
Agsalda-Garcia M, Shiramizu B, Melendez L, Plaud M, Liang CY, Wojna V. Different levels of HIV DNA copy numbers in cerebrospinal fluid cellular subsets. J Health Care Poor Underserved 2014; 24:8-16. [PMID: 24241256 DOI: 10.1353/hpu.2014.0010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Inequities in the incidence of HIV infection and AIDS with continued persistence of HIV-associated neurocognitive disorders (HAND) exist in populations in Hawaii (HI) and Puerto Rico (PR). We previously reported that peripheral monocyte HIV DNA levels are high in patients in Hawaii with HAND and we now hypothesize that similar findings would be observed in the cerebrospinal fluid (CSF) cellular subsets. Cerebrospinal fluid cells were obtained from patients from PR and HI undergoing neurocognitive testing and sorted into monocytes (CD14+) and lymphocytes (CD14-) and HIV DNA was measured. From six PR subjects (three HAND, three normal cognition, NC) and six HI subjects (three HAND, three NC), HIV DNA burden in CD14+ cells was higher in HAND than NC patients; NC patients had higher HIV DNA burden in CD14-cells versus HAND. Differences in HIV DNA burden in particular CSF cellular subsets suggest that HIV DNA burden may play a role in HAND neuropathogenesis.
Collapse
|
50
|
Garrido C, Margolis DM. Translational challenges in targeting latent HIV infection and the CNS reservoir problem. J Neurovirol 2014; 21:222-6. [PMID: 25060298 DOI: 10.1007/s13365-014-0269-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/09/2014] [Accepted: 06/18/2014] [Indexed: 01/19/2023]
Abstract
Too controversial to discuss only a short time ago, achieving a cure for HIV infection has become a priority in HIV research. However, substantial challenges must be overcome. Among key hurdles to be surmounted is the definition of a reliable, validated model in which to test latency reversal agents (LRAs), as current primary cell models differ in their response to such agents. Animal models such as the HIV-infected humanized BLT mouse and SIV-infected macaque will be essential to study LRAs and to quantify their effects in anatomic reservoirs. Of several potential anatomic reservoirs, the central nervous system presents a significant obstacle, as it is known to harbor persistent HIV infection and is difficult to access for study and therapeutic intervention.
Collapse
Affiliation(s)
- Carolina Garrido
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | | |
Collapse
|